1
|
Velichko NS, Kokoulin MS, Dmitrenok PS, Grinev VS, Kuchur PD, Komissarov AS, Fedonenko YP. Lipopolysaccharides of Herbaspirillum species and their relevance for bacterium-host interactions. Int J Biol Macromol 2024; 261:129516. [PMID: 38278393 DOI: 10.1016/j.ijbiomac.2024.129516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
The lipopolysaccharides of Herbaspirillum lusitanum P6-12T (HlP6-12T) and H. frisingense GSF30T (HfGSF30T) was isolated by phenol-water extraction from bacterial cells and was characterized using chemical analysis and SDS-PAGE. It was shown that these bacteria produce LPSs that differ in their physicochemical properties and macromolecular organization. In this paper, the lipid A structure of the HlP6-12T LPS, was characterized through chemical analyses and matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To prove the effect of the size of micelles on their bioavailability, we examined the activity of both LPSs toward the morphology of wheat seedlings. Analysis of the HlP6-12T and HfGSF30T genomes showed no significant differences between the operons that encode proteins involved in the biosynthesis of the lipids A and core oligosaccharides. The difference may be due to the composition of the O-antigen operon. HfGSF30T has two copies of the rfb operon, with the main one divided into two fragments. In contrast, the HlP6-12T genome contains only a single rfb-containing operon, and the other O-antigen operons are not comparable at all. The integrity of O-antigen-related genes may also affect LPS variability of. Specifically, we have observed a hairpin structure in the middle of the O-antigen glycosyltransferase gene, which led to the division of the gene into two fragments, resulting in incorrect protein synthesis and potential abnormalities in O-antigen production.
Collapse
Affiliation(s)
- Natalya S Velichko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 Let Vladivostoku, Vladivostok 690022, Russia
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 Let Vladivostoku, Vladivostok 690022, Russia
| | - Vyacheslav S Grinev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| | - Polina D Kuchur
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, 9 Ulitsa Lomonosova, St. Petersburg 191002, Russia
| | - Aleksey S Komissarov
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, 9 Ulitsa Lomonosova, St. Petersburg 191002, Russia
| | - Yulia P Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia; G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 Let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
2
|
Tang Z, Cai S, Liu Y, Li D, Xie F, Lin H, Chen D, Li Y. A Lipopolysaccharide O-Antigen Synthesis Gene in Mesorhizobium huakuii Plays Differentiated Roles in Root Nodule Symbiotic Compatibility with Astragalus sinicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:623-635. [PMID: 37366577 DOI: 10.1094/mpmi-05-23-0066-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Lipopolysaccharide (LPS) is a ubiquitous microbial-associated molecular pattern. Plants can sense the three components of LPS, including core polysaccharide, lipid A, and O-antigen. LPS biosynthesis is an essential factor for the successful establishment of symbiosis in the rhizobium-legume plant system. The MCHK_1752 gene (Mesorhizobium huakuii 7653R gene) encodes O-antigen polymerase and affects the synthesis of O-antigen. Here, we investigated the symbiotic phenotypes of six Astragalus sinicus accessions inoculated with the MCHK_1752 deletion mutant strain. The results revealed that the MCHK_1752 deletion mutant strain had a suppressing effect on the symbiotic nitrogen fixation of two A. sinicus accessions, a promoting effect in three A. sinicus accessions, and no significant effect in one A. sinicus accessions. In addition, the effect of MCHK_1752 on the phenotype was confirmed by its complementary strains and LPS exogenous application. Deletion of MCHK_1752 showed no effect on the growth of a strain, but affected biofilm formation and led to higher susceptibility to stress in a strain. At the early symbiotic stage, Xinzi formed more infection threads and nodule primordia than Shengzhong under inoculation with the mutant, which might be an important reason for the final symbiotic phenotype. A comparison of early transcriptome data between Xinzi and Shengzhong also confirmed the phenotype at the early symbiotic stage. Our results suggest that O-antigen synthesis genes influence symbiotic compatibility during symbiotic nitrogen fixation. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhide Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuyun Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuan Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Dongzhi Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fuli Xie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hui Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
3
|
Castro C, Massonnet M, Her N, DiSalvo B, Jablonska B, Jeske DR, Cantu D, Roper MC. Priming grapevine with lipopolysaccharide confers systemic resistance to Pierce's disease and identifies a peroxidase linked to defense priming. THE NEW PHYTOLOGIST 2023; 239:687-704. [PMID: 37149885 DOI: 10.1111/nph.18945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
Priming is an adaptive mechanism that fortifies plant defense by enhancing activation of induced defense responses following pathogen challenge. Microorganisms have signature microbe-associated molecular patterns (MAMPs) that induce the primed state. The lipopolysaccharide (LPS) MAMP isolated from the xylem-limited pathogenic bacterium, Xylella fastidiosa, acts as a priming stimulus in Vitis vinifera grapevines. Grapevines primed with LPS developed significantly less internal tyloses and external disease symptoms than naive vines. Differential gene expression analysis indicated major transcriptomic reprogramming during the priming and postpathogen challenge phases. Furthermore, the number of differentially expressed genes increased temporally and spatially in primed vines, but not in naive vines during the postpathogen challenge phase. Using a weighted gene co-expression analysis, we determined that primed vines have more genes that are co-expressed in both local and systemic petioles than naive vines indicating an inherent synchronicity that underlies the systemic response to this vascular pathogen specific to primed plants. We identified a cationic peroxidase, VviCP1, that was upregulated during the priming and postpathogen challenge phases in an LPS-dependent manner. Transgenic expression of VviCP1 conferred significant disease resistance, thus, demonstrating that grapevine is a robust model for mining and expressing genes linked to defense priming and disease resistance.
Collapse
Affiliation(s)
- Claudia Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Nancy Her
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Biagio DiSalvo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Barbara Jablonska
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Daniel R Jeske
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
4
|
Jain M, Cai L, Black I, Azadi P, Carlson RW, Jones KM, Gabriel DW. ' Candidatus Liberibacter asiaticus'-Encoded BCP Peroxiredoxin Suppresses Lipopolysaccharide-Mediated Defense Signaling and Nitrosative Stress In Planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:257-273. [PMID: 34931906 DOI: 10.1094/mpmi-09-21-0230-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lipopolysaccharides (LPS) of gram-negative bacteria trigger a nitrosative and oxidative burst in both animals and plants during pathogen invasion. Liberibacter crescens strain BT-1 is a surrogate for functional genomic studies of the uncultured pathogenic 'Candidatus Liberibacter' spp. that are associated with severe diseases such as citrus greening and potato zebra chip. Structural determination of L. crescens LPS revealed the presence of a very long chain fatty acid modification. L. crescens LPS pretreatment suppressed growth of Xanthomonas perforans on nonhost tobacco (Nicotiana benthamiana) and X. citri subsp. citri on host orange (Citrus sinensis), confirming bioactivity of L. crescens LPS in activation of systemic acquired resistance (SAR). L. crescens LPS elicited a rapid burst of nitric oxide (NO) in suspension cultured tobacco cells. Pharmacological inhibitor assays confirmed that arginine-utilizing NO synthase (NOS) activity was the primary source of NO generation elicited by L. crescens LPS. LPS treatment also resulted in biological markers of NO-mediated SAR activation, including an increase in the glutathione pool, callose deposition, and activation of the salicylic acid and azelaic acid (AzA) signaling networks. Transient expression of 'Ca. L. asiaticus' bacterioferritin comigratory protein (BCP) peroxiredoxin in tobacco compromised AzA signaling, a prerequisite for LPS-triggered SAR. Western blot analyses revealed that 'Ca. L. asiaticus' BCP peroxiredoxin prevented peroxynitrite-mediated tyrosine nitration in tobacco. 'Ca. L. asiaticus' BCP peroxiredoxin (i) attenuates NO-mediated SAR signaling and (ii) scavenges peroxynitrite radicals, which would facilitate repetitive cycles of 'Ca. L. asiaticus' acquisition and transmission by fecund psyllids throughout the limited flush period in citrus.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mukesh Jain
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Lulu Cai
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, U.S.A
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, U.S.A
| | - Russell W Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, U.S.A
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, U.S.A
| | - Dean W Gabriel
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
5
|
Ossowska K, Motyka-Pomagruk A, Kaczyńska N, Kowalczyk A, Sledz W, Lojkowska E, Kaczyński Z. Heterogenicity within the LPS Structure in Relation to the Chosen Genomic and Physiological Features of the Plant Pathogen Pectobacterium parmentieri. Int J Mol Sci 2022; 23:ijms23042077. [PMID: 35216191 PMCID: PMC8879369 DOI: 10.3390/ijms23042077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
Pectobacterium parmentieri is a pectinolytic plant pathogenic bacterium causing high economic losses of cultivated plants. The highly devastating potential of this phytopathogen results from the efficient production of plant cell wall-degrading enzymes, i.e., pectinases, cellulases and proteases, in addition to the impact of accessory virulence factors such as motility, siderophores, biofilm and lipopolysaccharide (LPS). LPS belongs to pathogen-associated molecular patterns (PAMPs) and plays an important role in plant colonization and interaction with the defense systems of the host. Therefore, we decided to investigate the heterogeneity of O-polysaccharides (OPS) of LPS of different strains of P. parmentieri, in search of an association between the selected genomic and phenotypic features of the strains that share an identical structure of the OPS molecule. In the current study, OPS were isolated from the LPS of two P. parmentieri strains obtained either in Finland in the 1980s (SCC3193) or in Poland in 2013 (IFB5432). The purified polysaccharides were analyzed by utilizing 1D and 2D NMR spectroscopy (1H, DQF-COSY, TOCSY, ROESY, HSQC, HSQC-TOCSY and HMBC) in addition to chemical methods. Sugar and methylation analyses of native polysaccharides, absolute configuration assignment of constituent monosaccharides and NMR spectroscopy data revealed that these two P. parmentieri strains isolated in different countries possess the same structure of OPS with a very rare residue of 5,7-diamino-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (pseudaminic acid) substituted in the position C-8: →3)-β-d-Galf-(1→3)-α-d-Galp-(1→8)-β-Pse4Ac5Ac7Ac-(2→6)-α-d-Glcp-(1→6)-β-d-Glcp-(1→. The previous study indicated that three other P. parmentieri strains, namely IFB5427, IFB5408 and IFB5443, exhibit a different OPS molecule than SCC3193 and IFB5432. The conducted biodiversity-oriented assays revealed that the P. parmentieri IFB5427 and IFB5408 strains possessing the same OPS structure yielded the highest genome-wide similarity, according to average nucleotide identity analyses, in addition to the greatest ability to macerate chicory tissue among the studied P. parmentieri strains. The current research demonstrated a novel OPS structure, characteristic of at least two P. parmentieri strains (SCC3193 and IFB5432), and discussed the observed heterogenicity in the OPS of P. parmentieri in a broad genomic and phenotype-related context.
Collapse
Affiliation(s)
- Karolina Ossowska
- Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland; (K.O.); (A.K.)
| | - Agata Motyka-Pomagruk
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Natalia Kaczyńska
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Agnieszka Kowalczyk
- Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland; (K.O.); (A.K.)
| | - Wojciech Sledz
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Ewa Lojkowska
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Zbigniew Kaczyński
- Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland; (K.O.); (A.K.)
- Correspondence:
| |
Collapse
|
6
|
Peng J, Liu H, Shen M, Chen R, Li J, Dong Y. The inhibitory effects of different types of Brassica seed meals on the virulence of Ralstonia solanacearum. PEST MANAGEMENT SCIENCE 2021; 77:5129-5138. [PMID: 34251090 DOI: 10.1002/ps.6552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Understanding the specific inhibitory effects of different Brassica seed meals (BSMs) on soilborne pathogens is important for their application as biocontrol agents for controlling plant disease. In this study, the seed meals of Brassica napus L. (BnSM), Brassica campestris L. (BcSM), and Brassica juncea L. (BjSM), and the combined seed meal of BcSM and BjSM (CSM, 1:1), were selected for investigation. The inhibitory effects of these seed meals on the plant pathogen Ralstonia solanacearum (Smith) and tomato bacterial wilt, were assessed and compared. RESULTS All the BSMs significantly inhibited the growth of R. solanacearum in vitro. Furthermore, the BSMs could effectively suppress R. solanacearum virulence traits, including motility, exopolysaccharide production, dehydrogenase activity, virulence-related gene expression, and colonization in the soil. Among them, BjSM showed the best inhibiting effects, and CSM displayed synergic toxicity against R. solanacearum. In addition, the predominant antibacterial compounds in BcSM and BjSM were identified as the volatile compounds, 3-butenyl isothiocyanate and allyl isothiocyanate, respectively. Finally, pot experiment verified that the control effects of BjSM and CSM on tomato wilt reached more than 90%. CONCLUSION This is the first study to report on the ability of different kinds of BSMs to suppress the virulence of R. solanacearum and biocontrol efficiencies against bacterial wilt in tomato plants. Furtherly, the main antibacterial compounds in the BSMs were identified. The results demonstrated that CSM may possess potential for controlling bacterial wilt caused by R. solanacearum. The results provide a fresh perspective for comprehending the mechanism underlying BSM suppression of pathogens and plant disease.
Collapse
Affiliation(s)
- Junwei Peng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minchong Shen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruihuan Chen
- University of Chinese Academy of Sciences, Beijing, China
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jiangang Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuanhua Dong
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
7
|
Niche differentiation of belowground microorganisms and their functional signatures in Assam type tea (Camellia sinensis var. assamica). Arch Microbiol 2021; 203:5661-5674. [PMID: 34462787 DOI: 10.1007/s00203-021-02547-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022]
Abstract
We employed an Illumina-based high-throughput metagenomics sequencing approach to unveil the rhizosphere and root endosphere microbial community associated with an organically grown Camellia population located at the Experimental Garden for Plantation Crops, Assam (India). The de novo assembled tea root endosphere metagenome contained 24,231 contigs (total 7,771,089 base pairs with an average length of 321 bps), while tea rhizosphere soil metagenome contained 261,965 sequences (total 230,537,174 base pairs, average length 846). The most prominent rhizobacteria belonged to the genera, viz., Bacillus (10.35%), Candidatus Solibacter (6.36%), Burkholderia (5.19%), Pseudomonas (3.9%), Streptomyces (3.52%), and Bradyrhizobium (2.77%), while the root endosphere was dominated by bacterial genera, viz., Serratia (46.64%), Methylobacterium (8.02%), Yersinia (5.97%), Burkholderia (2.05%), etc. The presence of few agronomically important bacterial genera, Bradyrhizobium, Rhizobium (each 0.93%), Sinorhizobium (0.34%), Azorhizobium, and Flavobacterium (0.17% each), was also detected in the root endosphere. KEGG pathway mapping indicated the presence of microbial metabolic pathway genes related to tyrosine metabolism, tryptophan metabolism, glyoxylate, and dicarboxylate metabolism which play important roles in endosphere activities, including survival, growth promotion, and host adaptation. The root endosphere microbiome also contained few important plant growth promoting traits related to phytohormone production, abiotic stress alleviation, mineral solubilization, and plant disease suppression.
Collapse
|
8
|
Li E, Zhang H, Jiang H, Pieterse CMJ, Jousset A, Bakker PAHM, de Jonge R. Experimental-Evolution-Driven Identification of Arabidopsis Rhizosphere Competence Genes in Pseudomonas protegens. mBio 2021; 12:e0092721. [PMID: 34101491 PMCID: PMC8262913 DOI: 10.1128/mbio.00927-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Beneficial plant root-associated microorganisms carry out a range of functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming several challenges, including competition with neighboring microorganisms and host immunity. Forward and reverse genetics have led to the identification of mechanisms that are used by beneficial microorganisms to overcome these challenges, such as the production of iron-chelating compounds, the formation of strong biofilms, or the concealment of characteristic microbial molecular patterns that trigger the host immune system. However, how such mechanisms arose from an evolutionary perspective is much less understood. To study bacterial adaptation in the rhizosphere, we employed experimental evolution to track the physiological and genetic dynamics of root-dwelling Pseudomonas protegens in the Arabidopsis thaliana rhizosphere under axenic conditions. This simplified binary one plant/one bacterium system allows for the amplification of key adaptive mechanisms for bacterial rhizosphere colonization. We identified 35 mutations, including single-nucleotide polymorphisms, insertions, and deletions, distributed over 28 genes. We found that mutations in genes encoding global regulators and in genes for siderophore production, cell surface decoration, attachment, and motility accumulated in parallel, underlining the finding that bacterial adaptation to the rhizosphere follows multiple strategies. Notably, we observed that motility increased in parallel across multiple independent evolutionary lines. All together, these results underscore the strength of experimental evolution in identifying key genes, pathways, and processes for bacterial rhizosphere colonization and a methodology for the development of elite beneficial microorganisms with enhanced root-colonizing capacities that can support sustainable agriculture in the future. IMPORTANCE Beneficial root-associated microorganisms carry out many functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming many challenges. Previously, diverse mechanisms that are used by beneficial microorganisms to overcome these challenges were identified. However, how such mechanisms have developed from an evolutionary perspective is much less understood. Here, we employed experimental evolution to track the evolutionary dynamics of a root-dwelling pseudomonad on the root of Arabidopsis. We found that mutations in global regulators, as well as in genes for siderophore production, cell surface decoration, attachment, and motility, accumulate in parallel, emphasizing these strategies for bacterial adaptation to the rhizosphere. We identified 35 mutations distributed over 28 genes. All together, our results demonstrate the power of experimental evolution in identifying key pathways for rhizosphere colonization and a methodology for the development of elite beneficial microorganisms that can support sustainable agriculture.
Collapse
Affiliation(s)
- Erqin Li
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Hao Zhang
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Henan Jiang
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Alexandre Jousset
- Ecology and Biodiversity, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Lee SM, Ryu CM. Algae as New Kids in the Beneficial Plant Microbiome. FRONTIERS IN PLANT SCIENCE 2021; 12:599742. [PMID: 33613596 PMCID: PMC7889962 DOI: 10.3389/fpls.2021.599742] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
Previously, algae were recognized as small prokaryotic and eukaryotic organisms found only in aquatic habitats. However, according to a recent paradigm shift, algae are considered ubiquitous organisms, occurring in plant tissues as well as in soil. Accumulating evidence suggests that algae represent a member of the plant microbiome. New results indicate that plants respond to algae and activate related downstream signaling pathways. Application of algae has beneficial effects on plant health, such as plant growth promotion and disease control. Although accumulating evidence suggests that secreted compounds and cell wall components of algae induce physiological and structural changes in plants that protect against biotic and abiotic stresses, knowledge of the underlying mechanisms and algal determinants is limited. In this review, we discuss recent studies on this topic, and highlight the bioprotectant and biostimulant roles of algae as a new member of the plant beneficial microbiome for crop improvement.
Collapse
Affiliation(s)
- Sang-Moo Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
10
|
Grapevine phenolic compounds influence cell surface adhesion of Xylella fastidiosa and bind to lipopolysaccharide. PLoS One 2020; 15:e0240101. [PMID: 33007036 PMCID: PMC7531785 DOI: 10.1371/journal.pone.0240101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial phytopathogen Xylella fastidiosa specifically colonizes the plant vascular tissue through a complex process of cell adhesion, biofilm formation, and dispersive movement. Adaptation to the chemical environment of the xylem is essential for bacterial growth and progression of infection. Grapevine xylem sap contains a range of plant secondary metabolites such as phenolics, which fluctuate in response to pathogen infection and plant physiological state. Phenolic compounds are often involved in host-pathogen interactions and influence infection dynamics through signaling activity, antimicrobial properties, and alteration of bacterial phenotypes. The effect of biologically relevant concentrations of phenolic compounds coumaric acid, gallic acid, epicatechin, and resveratrol on growth of X. fastidiosa was assessed in vitro. None of these compounds inhibited bacterial growth, but epicatechin and gallic acid reduced cell-surface adhesion. Cell-cell aggregation decreased with resveratrol treatment, but the other phenolic compounds tested had minimal effect on aggregation. Expression of attachment (xadA) and aggregation (fimA) related genes were altered by presence of the phenolic compounds, consistent with observed phenotypes. All four of the phenolic compounds bound to purified X. fastidiosa lipopolysaccharide (LPS), a major cell-surface component. Information regarding the impact of chemical environment on pathogen colonization in plants is important for understanding the infection process and factors associated with host susceptibility.
Collapse
|
11
|
Hernaández-Esquivel AA, Castro-Mercado E, Valencia-Cantero E, Alexandre G, García-Pineda E. Application of Azospirillum brasilense Lipopolysaccharides to Promote Early Wheat Plant Growth and Analysis of Related Biochemical Responses. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.579976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Cao T, Ling J, Liu Y, Chen X, Tian X, Meng D, Pan H, Hu J, Wang N. Characterization and abolishment of the cyclopiazonic acids produced by Aspergillus oryzae HMP-F28. Biosci Biotechnol Biochem 2018; 82:1832-1839. [PMID: 29985105 DOI: 10.1080/09168451.2018.1490170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular alkalinization and H2O2 production are important early events during induced resistance establishment in plants. In a screen for metabolites as plant resistance activators from 98 fungal isolates associated with marine sponge Hymeniacidon perleve, the cyclopiazonic acids (CPAs) produced by Aspergillus oryzae HMP-F28 induced significant extracellular alkalinization coupled with augmented H2O2 production in tobacco cell suspensions. Bioassay-guided fractionation led to the isolation and structural elucidation of a new CPA congener (4, 3-hydroxysperadine A) and three known ones (1-3). To construct a mutasynthetic strain to generate unnatural CPA analogues, a hybrid pks-nrps gene (cpaS) was disrupted to abolish the production of the critical precursor of cyclo-acetoacetyl-L-tryptophan (cAATrp) and all the downstream CPA products. Elimination of cAATrp will allow cAATrp mimics being processed by the CPA biosynthetic machinery to produce CPA derivatives with designed structural features.
Collapse
Affiliation(s)
- Ting Cao
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Junhong Ling
- c School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , China
| | - Yi Liu
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China.,c School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , China
| | - Xiaoqi Chen
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Xiaoyue Tian
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China.,c School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , China
| | - Dali Meng
- c School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , China
| | - Huaqi Pan
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China
| | - Jiangchun Hu
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China
| | - Nan Wang
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China
| |
Collapse
|
13
|
Vallejo-Ochoa J, López-Marmolejo M, Hernández-Esquivel AA, Méndez-Gómez M, Suárez-Soria LN, Castro-Mercado E, García-Pineda E. Early plant growth and biochemical responses induced by Azospirillum brasilense Sp245 lipopolysaccharides in wheat (Triticum aestivum L.) seedlings are attenuated by procyanidin B2. PROTOPLASMA 2018; 255:685-694. [PMID: 29110138 DOI: 10.1007/s00709-017-1180-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
This study analyzes the effects of procyanidin B2 on early wheat plant growth and plant biochemical responses promoted by lipopolysaccharides (LPS) derived from the rhizobacteria Azospirillum brasilense Sp245. Measurements of leaf, root length, fresh weight, and dry weight showed in vitro plant growth stimulation 4 days after treatment with A. brasilense as well as LPS. Superoxide anion (O2·-) and hydrogen peroxide (H2O2) levels increased in seedling roots treated with LPS (100 μg mL-1). The chlorophyll content in leaf decreased while the starch content increased 24 h after treatment in seedling roots. The LPS treatment induced a high increase in total peroxidase (POX) (EC 1.11.1.7) activity and ionically bound cell wall POX content in roots, when compared to respective controls. Early plant growth and biochemical responses observed in wheat seedlings treated with LPS were inhibited by the addition of procyanidin B2 (5 μg mL-1), a B type proanthocyanidin (PAC), plant-derived polyphenolic compound with binding properties of LPS. All results suggest first that the ionically bound cell wall POX enzymes could be a molecular target of A. brasilense LPS, and second that the recognition or association of LPS by plant cells is required to activate plant responses. This last event could play a critical role during plant growth regulation by A. brasilense LPS.
Collapse
Affiliation(s)
- Juan Vallejo-Ochoa
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Mariel López-Marmolejo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Alma Alejandra Hernández-Esquivel
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Manuel Méndez-Gómez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Laura Nicolasa Suárez-Soria
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico.
| |
Collapse
|
14
|
Rapicavoli JN, Blanco-Ulate B, Muszyński A, Figueroa-Balderas R, Morales-Cruz A, Azadi P, Dobruchowska JM, Castro C, Cantu D, Roper MC. Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa. Nat Commun 2018; 9:390. [PMID: 29374171 PMCID: PMC5786101 DOI: 10.1038/s41467-018-02861-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/04/2018] [Indexed: 11/08/2022] Open
Abstract
Lipopolysaccharides (LPS) are among the known pathogen-associated molecular patterns (PAMPs). LPSs are potent elicitors of PAMP-triggered immunity (PTI), and bacteria have evolved intricate mechanisms to dampen PTI. Here we demonstrate that Xylella fastidiosa (Xf), a hemibiotrophic plant pathogenic bacterium, possesses a long chain O-antigen that enables it to delay initial plant recognition, thereby allowing it to effectively skirt initial elicitation of innate immunity and establish itself in the host. Lack of the O-antigen modifies plant perception of Xf and enables elicitation of hallmarks of PTI, such as ROS production specifically in the plant xylem tissue compartment, a tissue not traditionally considered a spatial location of PTI. To explore translational applications of our findings, we demonstrate that pre-treatment of plants with Xf LPS primes grapevine defenses to confer tolerance to Xf challenge.
Collapse
Affiliation(s)
- Jeannette N Rapicavoli
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | | | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | | | - Claudia Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
15
|
Newman MA, Dow JM, Molinaro A, Parrilli M. Invited review: Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. ACTA ACUST UNITED AC 2016; 13:69-84. [PMID: 17621548 DOI: 10.1177/0968051907079399] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial lipopolysaccharides (LPSs) have multiple roles in plant—microbe interactions. LPS contributes to the low permeability of the outer membrane, which acts as a barrier to protect bacteria from plant-derived antimicrobial substances. Conversely, perception of LPS by plant cells can lead to the triggering of defence responses or to the priming of the plant to respond more rapidly and/or to a greater degree to subsequent pathogen challenge. LPS from symbiotic bacteria can have quite different effects on plants to those of pathogens. Some details are emerging of the structures within LPS that are responsible for induction of these different plant responses. The lipid A moiety is not solely responsible for all of the effects of LPS in plants; core oligosaccharide and O-antigen components can elicit specific responses. Here, we review the effects of LPS in induction of defence-related responses in plants, the structures within LPS responsible for eliciting these effects and discuss the possible nature of the (as yet unidentified) LPS receptors in plants.
Collapse
Affiliation(s)
- Mari-Anne Newman
- Department of Plant Biology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
16
|
Martínez-García PM, López-Solanilla E, Ramos C, Rodríguez-Palenzuela P. Prediction of bacterial associations with plants using a supervised machine-learning approach. Environ Microbiol 2016; 18:4847-4861. [PMID: 27234490 DOI: 10.1111/1462-2920.13389] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
Recent scenarios of fresh produce contamination by human enteric pathogens have resulted in severe food-borne outbreaks, and a new paradigm has emerged stating that some human-associated bacteria can use plants as secondary hosts. As a consequence, there has been growing concern in the scientific community about these interactions that have not yet been elucidated. Since this is a relatively new area, there is a lack of strategies to address the problem of food-borne illnesses due to the ingestion of fruits and vegetables. In the present study, we performed specific genome annotations to train a supervised machine-learning model that allows for the identification of plant-associated bacteria with a precision of ∼93%. The application of our method to approximately 9500 genomes predicted several unknown interactions between well-known human pathogens and plants, and it also confirmed several cases for which evidence has been reported. We observed that factors involved in adhesion, the deconstruction of the plant cell wall and detoxifying activities were highlighted as the most predictive features. The application of our strategy to sequenced strains that are involved in food poisoning can be used as a primary screening tool to determine the possible causes of contaminations.
Collapse
Affiliation(s)
- Pedro Manuel Martínez-García
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain.,Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain.,Departamento de Biología Vegetal. Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Avenida Complutense, 3, Madrid, 28040, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain.,Departamento de Biología Vegetal. Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Avenida Complutense, 3, Madrid, 28040, Spain
| |
Collapse
|
17
|
Fesel PH, Zuccaro A. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol 2016; 90:53-60. [DOI: 10.1016/j.fgb.2015.12.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/28/2015] [Accepted: 12/08/2015] [Indexed: 01/15/2023]
|
18
|
Berendsen RL, van Verk MC, Stringlis IA, Zamioudis C, Tommassen J, Pieterse CMJ, Bakker PAHM. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 2015. [PMID: 26198432 PMCID: PMC4509608 DOI: 10.1186/s12864-015-1632-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) can protect plants against pathogenic microbes through a diversity of mechanisms including competition for nutrients, production of antibiotics, and stimulation of the host immune system, a phenomenon called induced systemic resistance (ISR). In the past 30 years, the Pseudomonas spp. PGPR strains WCS358, WCS374 and WCS417 of the Willie Commelin Scholten (WCS) collection have been studied in detail in pioneering papers on the molecular basis of PGPR-mediated ISR and mechanisms of biological control of soil-borne pathogens via siderophore-mediated competition for iron. Results The genomes of the model WCS PGPR strains were sequenced and analyzed to unearth genetic cues related to biological questions that surfaced during the past 30 years of functional studies on these plant-beneficial microbes. Whole genome comparisons revealed important novel insights into iron acquisition strategies with consequences for both bacterial ecology and plant protection, specifics of bacterial determinants involved in plant-PGPR recognition, and diversity of protein secretion systems involved in microbe-microbe and microbe-plant communication. Furthermore, multi-locus sequence alignment and whole genome comparison revealed the taxonomic position of the WCS model strains within the Pseudomonas genus. Despite the enormous diversity of Pseudomonas spp. in soils, several plant-associated Pseudomonas spp. strains that have been isolated from different hosts at different geographic regions appear to be nearly isogenic to WCS358, WCS374, or WCS417. Interestingly, all these WCS look-a-likes have been selected because of their plant protective or plant growth-promoting properties. Conclusions The genome sequences of the model WCS strains revealed that they can be considered representatives of universally-present plant-beneficial Pseudomonas spp. With their well-characterized functions in the promotion of plant growth and health, the fully sequenced genomes of the WCS strains provide a genetic framework that allows for detailed analysis of the biological mechanisms of the plant-beneficial traits of these PGPR. Considering the increasing focus on the role of the root microbiome in plant health, functional genomics of the WCS strains will enhance our understanding of the diversity of functions of the root microbiome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1632-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Marcel C van Verk
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. .,Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Christos Zamioudis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Jan Tommassen
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Mohamed KH, Daniel T, Aurélien D, El-Maarouf-Bouteau H, Rafik E, Arbelet-Bonnin D, Biligui B, Florence V, Mustapha EM, François B. Deciphering the dual effect of lipopolysaccharides from plant pathogenic Pectobacterium. PLANT SIGNALING & BEHAVIOR 2015; 10:e1000160. [PMID: 25760034 PMCID: PMC4622587 DOI: 10.1080/15592324.2014.1000160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 05/29/2023]
Abstract
Lipopolysaccharides (LPS) are a component of the outer cell surface of almost all Gram-negative bacteria and play an essential role for bacterial growth and survival. Lipopolysaccharides represent typical microbe-associated molecular pattern (MAMP) molecules and have been reported to induce defense-related responses, including the expression of defense genes and the suppression of the hypersensitive response in plants. However, depending on their origin and the challenged plant, LPS were shown to have complex and different roles. In this study we showed that LPS from plant pathogens Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum induce common and different responses in A. thaliana cells when compared to those induced by LPS from non-phytopathogens Escherichia coli and Pseudomonas aeruginosa. Among common responses to both types of LPS are the transcription of defense genes and their ability to limit of cell death induced by Pectobacterium carotovorum subsp carotovorum. However, the differential kinetics and amplitude in reactive oxygen species (ROS) generation seemed to regulate defense gene transcription and be determinant to induce programmed cell death in response to LPS from the plant pathogenic Pectobacterium. These data suggest that different signaling pathways could be activated by LPS in A. thaliana cells.
Collapse
Key Words
- AD, actinomycin D
- Chx, cycloheximide
- DPI, diphenylene iodonium
- EB, Evans Blue
- ETI, effector-triggered immunity
- HR, hypersensitive response
- LPS, lipopolysaccharides
- MAMP, microbe associated molecular pattern
- OPS, O-polysaccharide part
- PAMP, pathogen- associated molecular pattern
- PCD, programmed cell death
- PTI, PAMP triggered immunity
- Pa, Pectobacterium atrosepticum
- Pcc, Pectobacterium carotovorum carotovorum
- Pectobacterium spp
- ROS, reactive oxygen species
- Tiron, sodium 4,5-dihydroxybenzene-1,3-disulfonate
- defense responses
- lipopolysaccharides
- programmed cell death
- reactive oxygen species
Collapse
Affiliation(s)
- Kettani-Halabi Mohamed
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
- LVHM–Université Hassan II Mohammedia – Casabalanca; FSTM, Maroc
| | - Tran Daniel
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| | - Dauphin Aurélien
- UPMC UMR-S975; Inserm U975; CNRS UMR 7225 Plateforme d'Imagerie cellulaire Pitié-Salpêtrière; GH Pitié-Salpêtrière; Paris, France
| | | | - Errakhi Rafik
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| | | | - Bernadette Biligui
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| | | | | | - Bouteau François
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| |
Collapse
|
20
|
Chen X, Mou Y, Ling J, Wang N, Wang X, Hu J. Cyclic dipeptides produced by fungus Eupenicillium brefeldianum HMP-F96 induced extracellular alkalinization and H2O 2 production in tobacco cell suspensions. World J Microbiol Biotechnol 2015; 31:247-53. [PMID: 25344087 DOI: 10.1007/s11274-014-1759-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
Extracellular alkalinization and H2O2 production are important early events during induced systemic resistance (ISR) establishment in plants. In a screen for metabolites as potential ISR activators from 98 fungal isolates associated with marine sponge Hymeniacidon perleve, the crude metabolites of fungus Eupenicillium brefeldianum HMP-F96 induced significant extracellular alkalinization coupled with H2O2 production in tobacco cell suspensions. A combined bioactivity and (1)H NMR-guided fractionation approach was used to disclose the chemical determinants responsible for the activities. Eight cyclic dipeptides were purified from the fermentation broth of the strain and were structurally characterized by NMR and MS experiments. This study represents the first report of the occurrence of cyclic dipeptides in E. brefeldianum and of their activities of inducing extracellular alkalinization and H2O2 production in tobacco cell suspensions.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | | | | | | | | | | |
Collapse
|
21
|
Pel MJC, Pieterse CMJ. Microbial recognition and evasion of host immunity. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1237-48. [PMID: 23095994 DOI: 10.1093/jxb/ers262] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants are able to detect microbes by pattern recognition receptors in the host cells that, upon recognition of the enemy, activate effective immune responses in the invaded tissue. Recognition of microbes occurs by common conserved structures called microbe-associated molecular patterns (MAMPs). Plant pathogens and beneficial soil-borne microbes live in close contact with their host. Hence, prevention of the host's defence programme is essential for their survival. Active suppression of host defences by microbial effector proteins is a well-known strategy employed by many successful plant-associated microbes. Evasion of host immune recognition is less well studied but is emerging as another important strategy. Escape from recognition by the host's immune system can be caused by alterations in the structure of the recognized MAMPs, or by active intervention of ligand-receptor recognition. This paper reviews the structure and recognition of common MAMPs and the ways that plant-associated microbes have evolved to prevent detection by their host.
Collapse
Affiliation(s)
- Michiel J C Pel
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB Utrecht, The Netherlands
| | | |
Collapse
|
22
|
Comparison of intact Arabidopsis thaliana leaf transcript profiles during treatment with inhibitors of mitochondrial electron transport and TCA cycle. PLoS One 2012; 7:e44339. [PMID: 23028523 PMCID: PMC3445595 DOI: 10.1371/journal.pone.0044339] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/02/2012] [Indexed: 01/02/2023] Open
Abstract
Plant mitochondria signal to the nucleus leading to altered transcription of nuclear genes by a process called mitochondrial retrograde regulation (MRR). MRR is implicated in metabolic homeostasis and responses to stress conditions. Mitochondrial reactive oxygen species (mtROS) are a MRR signaling component, but whether all MRR requires ROS is not established. Inhibition of the cytochrome respiratory pathway by antimycin A (AA) or the TCA cycle by monofluoroacetate (MFA), each of which initiates MRR, can increase ROS production in some plant cells. We found that for AA and MFA applied to leaves of soil-grown Arabidopsis thaliana plants, ROS production increased with AA, but not with MFA, allowing comparison of transcript profiles under different ROS conditions during MRR. Variation in transcript accumulation over time for eight nuclear encoded mitochondrial protein genes suggested operation of both common and distinct signaling pathways between the two treatments. Consequences of mitochondrial perturbations for the whole transcriptome were examined by microarray analyses. Expression of 1316 and 606 genes was altered by AA and MFA, respectively. A subset of genes was similarly affected by both treatments, including genes encoding photosynthesis-related proteins. MFA treatment resulted in more down-regulation. Functional gene category (MapMan) and cluster analyses showed that genes with expression levels affected by perturbation from AA or MFA inhibition were most similarly affected by biotic stresses such as pathogens. Overall, the data provide further evidence for the presence of mtROS-independent MRR signaling, and support the proposed involvement of MRR and mitochondrial function in plant responses to biotic stress.
Collapse
|
23
|
Sanabria NM, van Heerden H, Dubery IA. Molecular characterisation and regulation of a Nicotiana tabacum S-domain receptor-like kinase gene induced during an early rapid response to lipopolysaccharides. Gene 2012; 501:39-48. [PMID: 22507449 DOI: 10.1016/j.gene.2012.03.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 01/03/2023]
Abstract
The isolation, characterization and regulation of the first lipopolysaccharide (LPS)-responsive S-domain receptor-like kinase (RLK) in Nicotiana tabacum are reported. The gene, corresponding to a differentially expressed LPS-responsive EST, was fully characterised to investigate its involvement in LPS-induced responses. The full genomic sequence, designated Nt-Sd-RLK, encodes for a S-domain RLK protein containing conserved modules (B-lectin-, S- and PAN-domains) reported to function in mediating protein-protein and protein-carbohydrate interactions in its extracellular domain, as well as the molecular architecture to transduce signals intracellularly through a Ser/Thr kinase domain. Phylogenetic analysis clustered Nt-Sd-RLK with S-domain RLKs induced by bacteria, wounding and salicylic acid. Perception of LPS induced a rapid, bi-phasic response in Nt-Sd-RLK expression with a 17-fold up-regulation at 3 and 9h. A defence-related W-box cis element was found in the promoter region of Nt-Sd-RLK and the transient induction of Nt-Sd-RLK in cultured cells by LPS exhibited a pattern typical of early response defence genes. Nt-Sd-RLK was also responsive to salicylic acid induction and was expressed in differentiated leaf tissue, where LPS elicited local as well as systemic up-regulation. The results contribute new knowledge about the potential role that S-domain RLKs may play within interactive signal transduction pathways associated with immunity and defence.
Collapse
Affiliation(s)
- Natasha M Sanabria
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | | | | |
Collapse
|
24
|
Erbs G, Newman MA. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. MOLECULAR PLANT PATHOLOGY 2012; 13:95-104. [PMID: 21726397 PMCID: PMC6638628 DOI: 10.1111/j.1364-3703.2011.00730.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In an environment that is rich in potentially pathogenic microorganisms, the survival of higher eukaryotic organisms depends on efficient pathogen sensing and rapidly mounted defence responses. Such protective mechanisms are found in all multicellular organisms, and are collectively referred to as 'innate immunity'. Innate immunity is the first line of defence against invading microorganisms in vertebrates and the only line of defence in invertebrates and plants. Bacterial glycoconjugates, such as lipopolysaccharides (LPSs) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the cell walls of both Gram-positive and Gram-negative bacteria, have been found to act as elicitors of plant innate immunity. These conserved, indispensable, microbe-specific molecules are also referred to as 'microbe-associated molecular patterns' (MAMPs). MAMPs are recognized by the plant innate immune system through the action of pattern recognition receptors (PRRs). A greater insight into the mechanisms of MAMP recognition and the description of PRRs for different microbial glycoconjugates will have considerable impact on the improvement of plant health and disease resistance. Here, the current knowledge about LPS and PGN as MAMPs is reviewed.
Collapse
Affiliation(s)
- Gitte Erbs
- University of Copenhagen, Department of Plant Biology and Biotechnology, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | |
Collapse
|
25
|
Steinberg PD, Rice SA, Campbell AH, McDougald D, Harder T. Interfaces Between Bacterial and Eukaryotic "Neuroecology". Integr Comp Biol 2011; 51:794-806. [DOI: 10.1093/icb/icr115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Evans TJ, Ind A, Komitopoulou E, Salmond GPC. Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence. J Appl Microbiol 2010; 109:505-514. [PMID: 20132374 DOI: 10.1111/j.1365-2672.2010.04669.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To positively select Pectobacterium atrosepticum (Pa) mutants with cell surface defects and to assess the impact of these mutations on phytopathogenesis. METHODS AND RESULTS Several phages were isolated from treated sewage effluent and were found to require bacterial lipopolysaccharide (LPS) for infection. Two strains with distinct mutations in LPS were obtained by transposon mutagenesis. Along with a third LPS mutant, these strains were characterized with respect to various virulence-associated phenotypes, including growth rate, motility and exoenzyme production, demonstrating that LPS mutations are pleiotropic. Two of the strains were deficient in the synthesis of the O-antigen portion of LPS, and both were less virulent than the wild type. A waaJ mutant, which has severe defects in LPS biosynthesis, was dramatically impaired in potato tuber rot assays. The infectivity of these novel phages on 32 additional strains of Pa was tested, showing that most Pa isolates were sensitive to the LPS-dependent phages. CONCLUSIONS Native LPS is crucial for optimal growth, survival and virulence of Pa in vivo, but simultaneously renders such strains susceptible to phage infection. SIGNIFICANCE AND IMPACT OF THE STUDY This work demonstrates the power of phages to select and identify the virulence determinants on the bacterial surface, and as potential biocontrol agents for Pa infections.
Collapse
Affiliation(s)
- T J Evans
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - A Ind
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - G P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
van Loon LC, Bakker PAHM, van der Heijdt WHW, Wendehenne D, Pugin A. Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1609-21. [PMID: 18986257 DOI: 10.1094/mpmi-21-12-1609] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Colonization of roots by selected strains of fluorescent Pseudomonas spp. can trigger induced systemic resistance (ISR) against foliar pathogens in a plant species-specific manner. It has been suggested that early responses in cell suspension cultures in response to rhizobacterial elicitors, such as generation of active oxygen species (AOS) and extracellular medium alkalinization (MA), are linked to the development of ISR in whole plants. Perception of flagellin was demonstrated to elicit ISR in Arabidopsis, and bacterial lipopolysaccharides (LPS) have been shown to elicit several defense responses and to act as bacterial determinants of ISR in various plant species. In the present study, the LPS-containing cell walls, the pyoverdine siderophores, and the flagella of Pseudomonas putida WCS358, P. fluorescens WCS374, and P. fluorescens WCS417, which are all known to act as elicitors of ISR in selected plant species, were tested for their effects on the production of AOS, MA, elevation of cytoplasmic Ca(2+) ([Ca(2+)](cyt)), and defense-related gene expression in tobacco suspension cells. The LPS of all three strains, the siderophore of WCS374, and the flagella of WCS358 induced a single, transient, early burst of AOS, whereas the siderophores of WCS358 and WCS417 and the flagella of WCS374 and WCS417 did not. None of the compounds caused cell death. Once stimulated by the active compounds, the cells became refractory to further stimulation by any of the active elicitors, but not to the elicitor cryptogein from the oomycete Phytophthora cryptogea, indicating that signaling upon perception of the different rhizobacterial compounds rapidly converges into a common response pathway. Of all compounds tested, only the siderophores of WCS358 and WCS417 did not induce MA; the flagella of WCS374 and WCS417, although not active as elicitors of AOS, did induce MA. These results were corroborated by using preparations from relevant bacterial mutants. The active rhizobacterial elicitors led to a rapid increase in [Ca(2+)](cyt), peaking at 6 min, whereas the inactive siderophores of WCS358 and WCS417 elicited a single spike at 1 min. Elicitation of the cells by cell-wall LPS of WCS358 or the siderophore of WCS374 induced a weak, transient expression of several defense-related genes, including PAL and GST. The spectrum of early responses of the suspension cells was not matched by the expression of ISR in whole tobacco plants against Erwinia carotovora pv. carotovora. Of the live bacterial strains, only WCS358 elicited significant ISR, but application of the LPS or the siderophore of all three strains also elicited ISR. Notably, the absence of elicitation of AOS and MA in suspension-cultured cells but induction of ISR in whole plants by the siderophore of WCS358, which was lost upon treatment with the siderophore-minus mutant of WCS358, indicates that the early responses in suspension cells are not predictive of the ability to induce ISR in whole plants. Possible explanations for these discrepancies are discussed.
Collapse
Affiliation(s)
- Leendert C van Loon
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Val F, Desender S, Bernard K, Potin P, Hamelin G, Andrivon D. A culture filtrate of Phytophthora infestans primes defense reaction in potato cell suspensions. PHYTOPATHOLOGY 2008; 98:653-658. [PMID: 18944288 DOI: 10.1094/phyto-98-6-0653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Priming of defense reactions by an elicitor results in an enhanced ability of the plant to respond to subsequent pathogen challenges. We previously showed that application of lipopolysaccharides (LPS) to potato cell suspensions causes apoplastic acidification, but does not stimulate lipoxygenase (LOX) activity. Here, we tested the ability of various elicitors to prime and elicit defense reactions in potato cell suspensions. Adding 20 microg ml(1) LPS, laminarin, harpin N, or a concentrated culture filtrate (CCF) of Phytophthora infestans to cell cultures 18 h before a second elicitation with LPS did not alter the intensity of apoplastic acidification compared with a single LPS application. Conversely, high concentrations (200 or 400 microg ml(1)) of LPS, laminarin, and harpin N activated LOX in cells pretreated with 1 microg ml(1) CCF, but not in cells pretreated with LPS, laminarin, or harpin N. LOX response was maximal in pretreated cells of potato cv. Bintje when the second elicitation occurred 18 to 24 h after CCF application. These results showed that LOX activation is primed in potato cells by CCF, but not by LPS, harpin N, or laminarin. Finally, bioassays showed a slightly greater reduction of rot weight in half tubers treated with CCF followed by LPS before inoculation with Pectobacterium atrosepticum than in half tubers treated with either preparation alone, indicating a priming effect of CCF on both LOX induction and disease suppression.
Collapse
Affiliation(s)
- F Val
- INRA, Agrocampus Rennes, UMR1099 BiO3P (Biology of Organisms and Populations applied to Plant Protection), F-35000 Rennes, France.
| | | | | | | | | | | |
Collapse
|
29
|
Choudhary DK, Prakash A, Johri BN. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 2007; 47:289-97. [PMID: 23100680 PMCID: PMC3450033 DOI: 10.1007/s12088-007-0054-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022] Open
Abstract
Plants possess a range of active defense apparatuses that can be actively expressed in response to biotic stresses (pathogens and parasites) of various scales (ranging from microscopic viruses to phytophagous insect). The timing of this defense response is critical and reflects on the difference between coping and succumbing to such biotic challenge of necrotizing pathogens/parasites. If defense mechanisms are triggered by a stimulus prior to infection by a plant pathogen, disease can be reduced. Induced resistance is a state of enhanced defensive capacity developed by a plant when appropriately stimulated. Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms of induced resistance wherein plant defenses are preconditioned by prior infection or treatment that results in resistance against subsequent challenge by a pathogen or parasite. Selected strains of plant growth-promoting rhizobacteria (PGPR) suppress diseases by antagonism between the bacteria and soil-borne pathogens as well as by inducing a systemic resistance in plant against both root and foliar pathogens. Rhizobacteria mediated ISR resembles that of pathogen induced SAR in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Several rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface whereas other rhizobacteria trigger different signaling pathway independent of SA. The existence of SA-independent ISR pathway has been studied in Arabidopsis thaliana, which is dependent on jasmonic acid (JA) and ethylene signaling. Specific Pseudomonas strains induce systemic resistance in viz., carnation, cucumber, radish, tobacco, and Arabidopsis, as evidenced by an enhanced defensive capacity upon challenge inoculation. Combination of ISR and SAR can increase protection against pathogens that are resisted through both pathways besides extended protection to a broader spectrum of pathogens than ISR/SAR alone. Beside Pseudomonas strains, ISR is conducted by Bacillus spp. wherein published results show that several specific strains of species B. amyloliquifaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B.sphaericus elicit significant reduction in the incidence or severity of various diseases on a diversity of hosts.
Collapse
Affiliation(s)
| | - Anil Prakash
- Department of Biotechnology, Barkatullah University, Bhopal, 462 026 India
| | - B. N. Johri
- Department of Biotechnology, Barkatullah University, Bhopal, 462 026 India
| |
Collapse
|
30
|
Weinberger F. Pathogen-induced defense and innate immunity in macroalgae. THE BIOLOGICAL BULLETIN 2007; 213:290-302. [PMID: 18083968 DOI: 10.2307/25066646] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Animals and vascular plants are known to defend themselves facultatively against pathogens, with innate receptors mediating their resistance. Macroalgal defense against microorganisms, in contrast, has until recently been regarded mainly as constitutive. Indeed, many macroalgae appear to be chemically defended at constantly high levels, and this is possibly one of the reasons why the first evidence of pathogen-aroused resistance in a macroalga was detected only a decade ago. Here, I summarize the results of studies that indicate the existence of pathogen-activated or pathogen-induced macroalgal defense. Most indications so far come from molecular investigations, which revealed major functional similarities among the defense systems of distant macroalgal clades and the innate immune systems of vascular plants and metazoans. Homologies exist in the primary and secondary defense-activating signals, as well as in the enzymes that are involved and the cellular responses that are activated. This strongly suggests that innate immunity also exists in relatively distinct macroalgal clades. However, a macroalgal receptor still needs to be isolated and characterized, and the molecular concept of macroalgal receptor-mediated immunity needs to be complemented with an ecological perspective on pathogen-induced defense, to develop a joint neuroecological perspective on seaweed-microbe interactions.
Collapse
Affiliation(s)
- Florian Weinberger
- Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany.
| |
Collapse
|
31
|
van Loon LC. Plant responses to plant growth-promoting rhizobacteria. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2007; 119:243-254. [PMID: 0 DOI: 10.1007/s10658-007-9165-1] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 05/03/2007] [Indexed: 05/27/2023]
|
32
|
Kottapalli KR, Rakwal R, Satoh K, Shibato J, Kottapalli P, Iwahashi H, Kikuchi S. Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas oryzae pv oryzae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:834-50. [PMID: 17870590 DOI: 10.1016/j.plaphy.2007.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/23/2007] [Indexed: 05/02/2023]
Abstract
An indica rice cultivar IET8585 (Ajaya) resists diverse races of the Xanthomonas oryzae pv oryzae pathogen attack, and is often cultivated as bacterial leaf blight (blb) resistant check in India. Earlier we reported a recessive blb resistance gene mapped to the long arm of chromosome 5 in IET8585. Recessive gene-mediated blb resistance mechanism is not yet clearly understood. Here we analyzed the transcriptional profile of the blb infected resistant cultivar by rice 22K oligo array. Microarray analysis revealed differential expression of numerous genes at both early (6 h) and late (120 h) stages of infection in the resistant IET8585 cultivar over the susceptible IR24. Some of the differential gene expressions were validated by both RT-PCR and Western blot analysis. Higher expression of ethylene response element binding protein (EREBP) transcription factor along with lower expression of alcohol dehydrogenase gene and reactive oxygen species (ROS) scavenging system may be responsible for hypersensitive cell death in the resistant cultivar upon bacterial infection. Induction of glutathione-mediated detoxification and flavonoid biosynthetic pathways along with up-regulation of defense genes during infection may inhibit pathogen spread in the host tissues. In light of this and previous studies a mechanism of recessive gene-mediated bacterial blight resistance in indica rice is discussed.
Collapse
Affiliation(s)
- Kameswara Rao Kottapalli
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai, Tsukuba 305-8602, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Mishina TE, Zeier J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:500-13. [PMID: 17419843 DOI: 10.1111/j.1365-313x.2007.03067.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Systemic acquired resistance (SAR) is usually described as a phenomenon whereby localized inoculation with a necrotizing pathogen renders a plant more resistant to subsequent pathogen infection. Here we show that Pseudomonas syringae strains for which Arabidopsis thaliana represents a non-host plant systemically elevate resistance although the underlying interactions neither trigger a hypersensitive response nor cause necrotic disease symptoms. A similar enhancement of systemic resistance was observed when elicitor-active preparations of two typical bacterial pathogen-associated molecular patterns (PAMPs), flagellin and lipopolysaccharides (LPS), were applied in a localized manner. Several lines of evidence indicate that the observed systemic resistance responses are identical to SAR. Localized applications of non-adapted bacteria, flagellin or LPS elevate levels of the SAR regulatory metabolite salicylic acid (SA) and pathogenesis-related (PR) gene expression not only in treated but also in distant leaves. All treatments also systemically increase expression of the SAR marker gene FLAVIN-DEPENDENT MONOOXYGENASE 1. Further, a whole set of SAR-deficient Arabidopsis lines, including mutants in SA biosynthesis and signalling, are impaired in establishing the systemic resistance response triggered by non-host bacteria or PAMPs. We also show that the magnitude of defence reactions such as SA accumulation, PR gene expression or camalexin accumulation induced at sites of virulent or avirulent P. syringae inoculation but not the extent of tissue necrosis during these interactions determines the extent of SAR in distant leaves. Our data indicate that PAMPs significantly contribute to SAR initiation in Arabidopsis and that tissue necroses at inoculation sites are dispensable for SAR activation.
Collapse
Affiliation(s)
- Tatiana E Mishina
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, D-97082 Würzburg, Germany
| | | |
Collapse
|
34
|
Tellström V, Usadel B, Thimm O, Stitt M, Küster H, Niehaus K. The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. PLANT PHYSIOLOGY 2007; 143:825-37. [PMID: 17220366 PMCID: PMC1803732 DOI: 10.1104/pp.106.090985] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/28/2006] [Indexed: 05/13/2023]
Abstract
In the establishment of symbiosis between Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti, the lipopolysaccharide (LPS) of the microsymbiont plays an important role as a signal molecule. It has been shown in cell cultures that the LPS is able to suppress an elicitor-induced oxidative burst. To investigate the effect of S. meliloti LPS on defense-associated gene expression, a microarray experiment was performed. For evaluation of the M. truncatula microarray datasets, the software tool MapMan, which was initially developed for the visualization of Arabidopsis (Arabidopsis thaliana) datasets, was adapted by assigning Medicago genes to the ontology originally created for Arabidopsis. This allowed functional visualization of gene expression of M. truncatula suspension-cultured cells treated with invertase as an elicitor. A gene expression pattern characteristic of a defense response was observed. Concomitant treatment of M. truncatula suspension-cultured cells with invertase and S. meliloti LPS leads to a lower level of induction of defense-associated genes compared to induction rates in cells treated with invertase alone. This suppression of defense-associated transcriptional rearrangement affects genes induced as well as repressed by elicitation and acts on transcripts connected to virtually all kinds of cellular processes. This indicates that LPS of the symbiont not only suppresses fast defense responses as the oxidative burst, but also exerts long-term influences, including transcriptional adjustment to pathogen attack. These data indicate a role for LPS during infection of the plant by its symbiotic partner.
Collapse
Affiliation(s)
- Verena Tellström
- Proteom und Metabolomforschung, Fakultät für Biologie, Universität Bielefeld, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Lee SW, Han SW, Bartley LE, Ronald PC. From the Academy: Colloquium review. Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci U S A 2006; 103:18395-400. [PMID: 17082309 PMCID: PMC1693675 DOI: 10.1073/pnas.0605508103] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 08/28/2006] [Indexed: 11/18/2022] Open
Abstract
This article provides a brief overview of some of the major concepts and molecular features of plant and animal innate immune systems. The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the AvrXa21 elicitor. Xa21 codes for a receptor-like kinase consisting of an extracellular leucine-rich repeat domain, a transmembrane domain, and a cytoplasmic kinase domain. We show that AvrXa21 activity requires the presence of rax (required for AvrXa21) A, raxB, and raxC genes that encode components of a type one secretion system. In contrast, an hrpC(-) strain deficient in type three secretion maintains AvrXa21 activity. Xanthomonas campestris pv. campestris can express AvrXa21 activity if raxST, encoding a putative sulfotransferase, and raxA are provided in trans. Expression of rax genes depends on population density and other functioning rax genes. This and other data suggest that the AvrXa21 pathogen-associated molecule is involved in quorum sensing. Together these data suggest that AvrXa21 represents a previously uncharacterized class of Gram-negative bacterial signaling molecules. These results from our studies of the XA21/AvrXa21 interaction call for some modifications in the way we think about innate immunity strategies.
Collapse
Affiliation(s)
- Sang-Won Lee
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616
| | - Sang-Wook Han
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616
| | - Laura E. Bartley
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616
| |
Collapse
|
36
|
Desaki Y, Miya A, Venkatesh B, Tsuyumu S, Yamane H, Kaku H, Minami E, Shibuya N. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. PLANT & CELL PHYSIOLOGY 2006; 47:1530-40. [PMID: 17018557 DOI: 10.1093/pcp/pcl019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
PAMP (pathogen-associated molecular pattern) recognition plays an important role during the innate immune response in both plants and animals. Lipopolysaccharides (LPS) derived from Gram-negative bacteria are representative of typical PAMP molecules and have been reported to induce defense-related responses, including the suppression of the hypersensitive response, the expression of defense genes and systemic resistance in plants. However, the details regarding the precise molecular mechanisms underlying these cellular responses, such as the molecular machinery involved in the perception and transduction of LPS molecules, remain largely unknown. Furthermore, the biological activities of LPS on plants have so far been reported only in dicots and no information is thus available regarding their functions in monocots. In our current study, we report that LPS preparations for various becteria, including plant pathogens and non-pathogens, can induce defense responses in rice cells, including reactive oxygen generation and defense gene expression. In addition, global analysis of gene expression induced by two PAMPs, LPS and chitin oligosaccharide, also reveals a close correlation between the gene responses induced by these factors. This indicates that there is a convergence of signaling cascades downstream of their corresponding receptors. Furthermore, we show that the defense responses induced by LPS in the rice cells are associated with programmed cell death (PCD), which is a finding that has not been previously reported for the functional role of these molecules in plant cells. Interestingly, PCD induction by the LPS was not detected in cultured Arabidopsis thaliana cells.
Collapse
Affiliation(s)
- Yoshitake Desaki
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B. Priming: getting ready for battle. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1062-71. [PMID: 17022170 DOI: 10.1094/mpmi-19-1062] [Citation(s) in RCA: 734] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Infection of plants by necrotizing pathogens or colonization of plant roots with certain beneficial microbes causes the induction of a unique physiological state called "priming." The primed state can also be induced by treatment of plants with various natural and synthetic compounds. Primed plants display either faster, stronger, or both activation of the various cellular defense responses that are induced following attack by either pathogens or insects or in response to abiotic stress. Although the phenomenon has been known for decades, most progress in our understanding of priming has been made over the past few years. Here, we summarize the current knowledge of priming in various induced-resistance phenomena in plants.
Collapse
|
38
|
Desender S, Klarzynski O, Potin P, Barzic MR, Andrivon D, Val F. Lipopolysaccharides of Pectobacterium atrosepticum and Pseudomonas corrugata induce different defence response patterns in tobacco, tomato, and potato. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:636-45. [PMID: 16755465 DOI: 10.1055/s-2006-924102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lipopolysaccharides (LPS), ubiquitous cell surface components of Gram-negative bacteria, are directly implicated in plant/pathogen interactions. However, their perception by the plant, the subsequent signal transduction in both compatible and incompatible interactions, as well as the defence reactions induced in compatible interactions are as yet poorly understood. We focused on biochemical and physiological reactions induced in cell suspensions of three Solanaceae species (tobacco, tomato, and potato) by purified lipopolysaccharides from PECTOBACTERIUM ATROSEPTICUM (PA), a pathogen of potato, and PSEUDOMONAS CORRUGATA (PSC), a pathogen of tomato. LPS PA and LPS PSC caused a significant acidification of potato, tomato, and tobacco extracellular media, whereas laminarin (a linear beta-1,3 oligosaccharide elicitor) induced an alkalinisation in tobacco and tomato, but not in potato cell suspensions. None of the two LPS induced the formation of active oxygen species in any of the hosts, while laminarin induced H (2)O (2) production in cells of tobacco but not of tomato and potato. In tomato cells, LPS PA and LPS PSC induced a strong but transitory stimulation of lipoxygenase activity, whereas laminarin induced a stable or slightly increasing LOX activity over the first 24 h of contact. In tobacco, LOX activity was not triggered by either LPS, but significantly increased following treatment with laminarin. In potato, neither LPS nor laminarin induced LOX activity, in contrast with concentrated culture filtrate of PHYTOPHTHORA INFESTANS (CCF). These results demonstrate that LPS, as well as laminarin, are perceived in different ways by SOLANACEAE species, and possibly cultivars. They also suggest that defence responses modulated by LPS depend on plant genotypes rather than on the type of interaction.
Collapse
Affiliation(s)
- S Desender
- UMR BiO3P, Biologie des Organismes et des Populations appliquée à la Protection des Plantes, INRA-Agrocampus Rennes, 65 Rue de Saint Brieuc, 35042 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
39
|
Sanabria NM, Dubery IA. Differential display profiling of the Nicotiana response to LPS reveals elements of plant basal resistance. Biochem Biophys Res Commun 2006; 344:1001-7. [PMID: 16643858 DOI: 10.1016/j.bbrc.2006.03.216] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 03/30/2006] [Indexed: 01/03/2023]
Abstract
The identification of cDNAs, representing up-regulated genes induced by lipopolysaccharides from Burkholderia cepacia, was achieved by differential display of mRNAs isolated from tobacco cells. In addition to up-regulation of superoxide dismutase, involved in the production of the signalling and defense molecule, hydrogen peroxide; differentially expressed cDNAs, indicative of the operation of an innate immune recognition system and expression of basal resistance, were identified. These include homologs to a receptor-like protein kinase; a binding protein for the type III secreted effector protein, harpin; a virus resistance N gene; an endogenous pararetrovirus and the Pto kinase. The altered gene expression may be responsible for activation of surveillance mechanisms and enhancement of the non-self recognition capacity. The putative roles of these transcripts in LPS-induced responses are discussed in relation to emerging concepts of innate immunity.
Collapse
Affiliation(s)
- Natasha M Sanabria
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, P.O. Box 524, Auckland Park 2006, South Africa
| | | |
Collapse
|
40
|
Bedini E, Carabellese A, Barone G, Parrilli M. First Synthesis of the β-d-Rhamnosylated Trisaccharide Repeating Unit of the O-Antigen from Xanthomonas campestris pv. campestris 8004. J Org Chem 2005; 70:8064-70. [PMID: 16277328 DOI: 10.1021/jo051153d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trisaccharide repeating unit of the O-antigen of the lipopolysaccharide from Xanthomonas campestris pv. campestris 8004, a pathogen of cruciferous crops, presents some structural features that renders it a challenging synthetic target: the presence of a beta-D-rhamnosidic linkage, the steric crowd on a 1,2-cis-diglycosylated D-rhamnose, and finally the noncommercial availability of its monosaccharide constituents. The synthesis of this trisaccharide as methyl glycoside has been accomplished by exploiting a strategy whose key steps were the sequential beta-D-rhamnosylation with a 2-O-benzylsulfonyl-N-phenyltrifluoroacetimidate donor, debenzylsulfonylation, and coupling with a D-Fucp3NAc thioglycoside donor.
Collapse
Affiliation(s)
- Emiliano Bedini
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli "Federico II", Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy
| | | | | | | |
Collapse
|
41
|
Guilhabert MR, Kirkpatrick BC. Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute a biofilm maturation to X. fastidios and colonization and attenuate virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:856-68. [PMID: 16134898 DOI: 10.1094/mpmi-18-0856] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xylella fastidosa, a gram-negative, xylem-limited bacterium, is the causal agent of several economically important plant diseases, including Pierce's disease (PD) and citrus variegated chlorosis (CVC). Until recently, the inability to transform or produce transposon mutants of X. fastidosa had been a major impediment to identifying X. fastidosa genes that mediate pathogen and plant interactions. A random transposon (Tn5) library of X. fastidosa was constructed and screened for mutants showing more severe symptoms and earlier grapevine death (hypervirulence) than did vines infected with the wild type. Seven hypervirulent mutants identified in this screen moved faster and reached higher populations than the wild type in grapevines. These results suggest that X. fastidosa attenuates its virulence in planta and that movement is important in X. fastidosa virulence. The mutated genes were sequenced and none had been described previously as antivirulence genes, although six of them showed similarity with genes of known functions in other organisms. One transposon insertion inactivated a hemagglutinin adhesin gene (PD2118), which we named HxfA. Another mutant in a second putative X. fastidosa hemagglutinin gene, PD1792 (HxfB), was constructed, and further characterization of these hxf mutants suggests that X. fastidosa hemagglutinins mediate contact between X. fastidosa cells, which results in colony formation and biofilm maturation within the xylem vessels.
Collapse
|
42
|
Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G, Lanzetta R, Newman MA, Parrilli M. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J Biol Chem 2005; 280:33660-8. [PMID: 16048996 DOI: 10.1074/jbc.m506254200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharides (LPSs) and lipooligosaccharides (LOSs) are major components of the cell surface of Gram-negative bacteria with diverse roles in bacterial pathogenesis of animals and plants that include elicitation of host defenses. Little is known about the mechanisms of perception of these molecules by plants and about the associated signal transduction pathways that trigger plant immunity. Here we address the issue of the molecular basis of elicitation of plant defenses through the structural determination of the LOS of the plant pathogen Xanthomonas campestris pv. campestris strain 8004 and examination of the effects of LOS and fragments obtained by chemical treatments on the immune response in Arabidopsis thaliana. The structure shows a strong accumulation of negatively charged groups in the lipid A-inner core region and has a number of novel features, including a galacturonyl phosphate attached at a 3-deoxy-D-manno-oct-2-ulosonic acid residue and a unique phosphoramide group in the inner core region. Intact LOS and the lipid A and core oligosaccharides derived from it were all able to induce the defense-related genes PR1 and PR2 in Arabidopsis and to prevent the hypersensitive response caused by avirulent bacteria. Although LOS induced defense-related gene transcription in two temporal phases, the core oligosaccharide induced only the earlier phase, and lipid A induced only the later phase. These findings suggest that plant cells can recognize lipid A and core oligosaccharide structures within LOS to trigger defensive cellular responses and that this may occur via two distinct recognition events.
Collapse
Affiliation(s)
- Alba Silipo
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Complesso Universitario Monte Sant' Angelo, Via Cintia 4, 80126 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bedini E, Carabellese A, Schiattarella M, Parrilli M. First synthesis of an α-d-Fucp3NAc containing oligosaccharide: a study on d-Fucp3NAc glycosylation. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Abstract
Plants have an immune system to perceive pathogenic or potentially beneficial bacteria. Aspects of perception, signal transduction and the responses that the plant produces resemble features of innate immunity observed in animals. Plant reactions are various and include the production of antimicrobial compounds. Bacteria that are successful in establishing pathogenic or symbiotic interactions have developed multiple ways to protect themselves. We review the general importance of bacterial surface polysaccharides in the evasion of plant immune responses and elaborate on their role in protecting symbiotic bacteria against toxic reactive oxygen species during invasion of the host plant.
Collapse
Affiliation(s)
- Wim D'Haeze
- The University of Georgia, Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA 30602-4712, USA
| | | |
Collapse
|
45
|
Bedini E, De Castro C, Erbs G, Mangoni L, Dow JM, Newman MA, Parrilli M, Unverzagt C. Structure-Dependent Modulation of a Pathogen Response in Plants by Synthetic O-Antigen Polysaccharides. J Am Chem Soc 2005; 127:2414-6. [PMID: 15724995 DOI: 10.1021/ja0452166] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many phytopathogenic bacteria display lipopolysaccharides (LPS) with the O-chain repeating unit [alpha-l-Rha-(1-->3)-alpha-l-Rha-(1-->3)-alpha-l-Rha-(1-->2)](n)(). This trisaccharide unit was synthesized and oligomerized to obtain hexa- and nonasaccharides. The deprotected rhamnans were effective in suppressing the hypersensitive response (HR) and in inducing PR-1 gene expression in Arabidopsis thaliana. Conformational analysis of the oligorhamnans by NMR spectroscopy and molecular dynamics calculations revealed that a coiled structure develops with increasing chain length of the oligosaccharide. This is associated with increasing efficacy in HR suppression and PR-1 gene expression. We therefore infer that the coiled structure of phytopathogenic bacteria is a plant-recognizable pathogen-associated molecular pattern (PAMP).
Collapse
Affiliation(s)
- Emiliano Bedini
- Dipartimento di Chimica Organica e Biochimica Complesso, Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Shah J. Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:229-60. [PMID: 16078884 DOI: 10.1146/annurev.phyto.43.040204.135951] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lipids and lipid metabolites influence pathogenesis and resistance mechanisms associated with plant-microbe interactions. Some microorganisms sense their presence on a host by perceiving plant surface waxes, whereas others produce toxins that target plant lipid metabolism. In contrast, plants have evolved to recognize microbial lipopolysaccharides (LPSs), sphingolipids, and lipid-binding proteins as elicitors of defense response. Recent studies have demonstrated that the plasma membrane provides a surface on which some plant resistance (R) proteins perceive pathogen-derived effectors and thus confer race-specific resistance. Plant cell membranes also serve as reservoirs from which biologically active lipids and precursors of oxidized lipids are released. Some of these oxylipins, for example jasmonic acid (JA), are important signal molecules in plant defense. Arabidopsis thaliana is an excellent model plant to elucidate the biosynthesis and metabolism of lipids and lipid metabolites, and the characterization of signaling mechanisms involved in the modulation of plant defense responses by phytolipids. This review focuses on recent studies that highlight the involvement of lipids and lipid metabolites, and enzymes involved in lipid metabolism and modification in plant disease resistance.
Collapse
Affiliation(s)
- Jyoti Shah
- Division of Biology and Molecular, Cellular and Developmental Biology Program, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
47
|
Bedini E, Carabellese A, Corsaro MM, De Castro C, Parrilli M. Synthesis of a d-rhamnose branched tetrasaccharide, repeating unit of the O-chain from Pseudomonas syringae pv. Syringae (cerasi) 435. Carbohydr Res 2004; 339:1907-15. [PMID: 15261583 DOI: 10.1016/j.carres.2004.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 05/26/2004] [Accepted: 06/13/2004] [Indexed: 10/26/2022]
Abstract
The first synthesis of a d-rhamnose branched tetrasaccharide, corresponding to the repeating unit of the O-chain from Pseudomonas syringae pv. cerasi 435, as methyl glycoside is reported. The approach used is based on the synthesis of an opportune building-block, that is the methyl 3-O-allyl-4-O-benzoyl-alpha-D-rhamnopyranoside, which was then converted into both a glycosyl acceptor and two different protected glycosyl trichloroacetimidate donors. Successive couplings of these three compounds afforded the target oligosaccharide. The reported synthesis is also useful to perform the oligomerization of the repeating unit.
Collapse
Affiliation(s)
- Emiliano Bedini
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli 'Federico II', Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | | | | | | | | |
Collapse
|
48
|
Jones DA, Takemoto D. Plant innate immunity – direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 2004; 16:48-62. [PMID: 14734110 DOI: 10.1016/j.coi.2003.11.016] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plants have the capacity to recognise and reject pathogens at various stages of their attempted colonisation of the plant. Non-specific rejection often arises as a consequence of the potential pathogen's attempt to breach the first lines of plant defence. Pathogens able to penetrate beyond this barrier of non-host resistance may seek a subtle and persuasive relationship with the plant. For some, this may be limited to molecular signals released outside the plant cell wall, but for others it includes penetration of the cell wall and the delivery of signal molecules to the plant cytosol. Direct or indirect recognition of these signals triggers host-specific resistance. Our understanding of host-specific resistance and its possible links to non-host-specific resistance has advanced significantly as more is discovered about the nature and function of the molecules underpinning both kinds of resistance.
Collapse
Affiliation(s)
- David A Jones
- Research School of Biological Sciences, Australian National University, ACT 2601 Canberra, Australia.
| | | |
Collapse
|