1
|
Simpson LL, Stembridge M, Siebenmann C, Moore JP, Lawley JS. Mechanisms underpinning sympathoexcitation in hypoxia. J Physiol 2024; 602:5485-5503. [PMID: 38533641 DOI: 10.1113/jp284579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Sympathoexcitation is a hallmark of hypoxic exposure, occurring acutely, as well as persisting in acclimatised lowland populations and with generational exposure in highland native populations of the Andean and Tibetan plateaus. The mechanisms mediating altitude sympathoexcitation are multifactorial, involving alterations in both peripheral autonomic reflexes and central neural pathways, and are dependent on the duration of exposure. Initially, hypoxia-induced sympathoexcitation appears to be an adaptive response, primarily mediated by regulatory reflex mechanisms concerned with preserving systemic and cerebral tissue O2 delivery and maintaining arterial blood pressure. However, as exposure continues, sympathoexcitation is further augmented above that observed with acute exposure, despite acclimatisation processes that restore arterial oxygen content (C a O 2 ${C_{{\mathrm{a}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Under these conditions, sympathoexcitation may become maladaptive, giving rise to reduced vascular reactivity and mildly elevated blood pressure. Importantly, current evidence indicates the peripheral chemoreflex does not play a significant role in the augmentation of sympathoexcitation during altitude acclimatisation, although methodological limitations may underestimate its true contribution. Instead, processes that provide no obvious survival benefit in hypoxia appear to contribute, including elevated pulmonary arterial pressure. Nocturnal periodic breathing is also a potential mechanism contributing to altitude sympathoexcitation, although experimental studies are required. Despite recent advancements within the field, several areas remain unexplored, including the mechanisms responsible for the apparent normalisation of muscle sympathetic nerve activity during intermediate hypoxic exposures, the mechanisms accounting for persistent sympathoexcitation following descent from altitude and consideration of whether there are sex-based differences in sympathetic regulation at altitude.
Collapse
Affiliation(s)
- Lydia L Simpson
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Jonathan P Moore
- School of Psychology and Sport Science, Institute of Applied Human Physiology, Bangor University, Bangor, UK
| | - Justin S Lawley
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| |
Collapse
|
2
|
Roy S, Lam MY, Panerai RB, Robinson TG, Minhas JS. Blood pressure variability at rest and during pressor challenges in patients with acute ischemic stroke. Blood Press Monit 2024; 29:232-241. [PMID: 38841869 DOI: 10.1097/mbp.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Patients with acute ischemic stroke (AIS) have elevated blood pressure (BP) variability (BPV) and reduced baroreflex sensitivity (BRS) at rest for several days after initial stroke symptoms. We aimed to assess BPV and BRS in AIS patients during pressor challenge maneuvers in the acute and subacute phases of stroke. Pressor challenge maneuvers simulate day-to-day activities and can predict the quality of life. METHODS Continuous beat-to-beat BP and ECG in 15 AIS patients (mean age 69 ± 7.5 years) and 15 healthy controls (57 ± 16 years) were recorded at rest and during a 5-min rapid head positioning (RHP) paradigm. Patients were assessed within 24 h (acute phase) and 7 days (subacute phase) of stroke onset. Low frequency (LF) SBP power (measure of BPV), LF-α, and combined α-index (measure of BRS) were calculated from the recordings. RESULTS In the acute phase, at rest, LF-SBP power was higher ( P = 0.024) and α-index was lower ( P = 0.006) in AIS patients than in healthy controls. There was no change in LF-SBP during RHP in the patients but in healthy controls, it increased significantly ( P = 0.018). In the subacute phase, at rest, the alpha-index increased ( P = 0.037) and LF-SBP decreased ( P = 0.029) significantly in the AIS patients, however, there was still no rise in the LF-SBP power during RHP ( P = 0.240). CONCLUSION AIS patients have a high resting BPV. High resting BPV may be responsible for blunted BPV responses during pressor challenge maneuvers such as RHP, suggesting ongoing autonomic dysfunction and compromised quality of life.
Collapse
Affiliation(s)
- Sankanika Roy
- Department of Cardiovascular Sciences, University of Leicester
| | - Man Y Lam
- Department of Cardiovascular Sciences, University of Leicester
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
3
|
Trueblood CT, Singh A, Cusimano MA, Hou S. Autonomic Dysreflexia in Spinal Cord Injury: Mechanisms and Prospective Therapeutic Targets. Neuroscientist 2024; 30:597-611. [PMID: 38084412 PMCID: PMC11166887 DOI: 10.1177/10738584231217455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
High-level spinal cord injury (SCI) often results in cardiovascular dysfunction, especially the development of autonomic dysreflexia. This disorder, characterized as an episode of hypertension accompanied by bradycardia in response to visceral or somatic stimuli, causes substantial discomfort and potentially life-threatening symptoms. The neural mechanisms underlying this dysautonomia include a loss of supraspinal control to spinal sympathetic neurons, maladaptive plasticity of sensory inputs and propriospinal interneurons, and excessive discharge of sympathetic preganglionic neurons. While neural control of cardiovascular function is largely disrupted after SCI, the renin-angiotensin system (RAS), which mediates blood pressure through hormonal mechanisms, is up-regulated after injury. Whether the RAS engages in autonomic dysreflexia, however, is still controversial. Regarding therapeutics, transplantation of embryonic presympathetic neurons, collected from the brainstem or more specific raphe regions, into the injured spinal cord may reestablish supraspinal regulation of sympathetic activity for cardiovascular improvement. This treatment reduces the occurrence of spontaneous autonomic dysreflexia and the severity of artificially triggered dysreflexic responses in rodent SCI models. Though transplanting early-stage neurons improves neural regulation of blood pressure, hormonal regulation remains high and baroreflex dysfunction persists. Therefore, cell transplantation combined with selected RAS inhibition may enhance neuroendocrine homeostasis for cardiovascular recovery after SCI.
Collapse
Affiliation(s)
- Cameron T. Trueblood
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Anurag Singh
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Marissa A. Cusimano
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Shaoping Hou
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Fernández-Peña C, Pace RL, Fernando LM, Pittman BG, Schwarz LA. Adrenergic C1 neurons enhance anxiety via projections to PAG. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612440. [PMID: 39314285 PMCID: PMC11419123 DOI: 10.1101/2024.09.11.612440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Anxiety is an emotional state precipitated by the anticipation of real or potential threats. Anxiety disorders are the most prevalent psychiatric illnesses globally and increase the risk of developing comorbid conditions that negatively impact the brain and body. The etiology of anxiety disorders remains unresolved, limiting improvement of therapeutic strategies to alleviate anxiety-related symptoms with increased specificity and efficacy. Here, we applied novel intersectional tools to identify a discrete population of brainstem adrenergic neurons, named C1 cells, that promote aversion and anxiety-related behaviors via projections to the periaqueductal gray matter (PAG). While C1 cells have traditionally been implicated in modulation of autonomic processes, rabies tracing revealed that they receive input from brain areas with diverse functions. Calcium-based in vivo imaging showed that activation of C1 cells enhances excitatory responses in vlPAG, activity that is exacerbated in times of heightened stress. Furthermore, inhibition of C1 cells impedes the development of anxiety-like behaviors in response to stressful situations. Overall, these findings suggest that C1 neurons are positioned to integrate complex information from the brain and periphery for the promotion of anxiety-like behaviors.
Collapse
Affiliation(s)
- Carlos Fernández-Peña
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Rachel L. Pace
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lourds M. Fernando
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Brittany G. Pittman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lindsay A. Schwarz
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| |
Collapse
|
5
|
Fernandes IA, Stavres J, Hamaoka T, Ojikutu QA, Sabino-Carvalho JL, Vianna LC, Luck JC, Blaha C, Cauffman AE, Dalton PC, Herr MD, Ruiz-Velasco V, Carr ZJ, Janicki PK, Cui J. Does a single oral administration of amiloride affect spontaneous arterial baroreflex sensitivity and blood pressure variability in healthy young adults? J Neurophysiol 2024; 132:922-928. [PMID: 39110514 DOI: 10.1152/jn.00264.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Preclinical models indicate that amiloride (AMD) reduces baroreflex sensitivity and perturbs homeostatic blood pressure (BP) regulation. However, it remains unclear whether these findings translate to humans. This study investigated whether oral administration of AMD reduces spontaneous cardiac and sympathetic baroreflex sensitivity and perturbs BP regulation in healthy young humans. Heart rate (HR; electrocardiography), beat-to-beat BP (photoplethysmography), and muscle sympathetic activity (MSNA, microneurography) were continuously measured in 10 young subjects (4 females) during rest across two randomized experimental visits: 1) after 3 h of oral administration of placebo (PLA, 10 mg of methylcellulose within a gelatin capsule) and 2) after 3 h of oral administration of AMD (10 mg). Visits were separated for at least 48 h. We calculated the standard deviation and other indices of BP variability. Spontaneous cardiac baroreflex was assessed via the sequence technique and cardiac autonomic modulation through time- and frequency-domain HR variability. The sensitivity (gain) of the sympathetic baroreflex was determined via weighted linear regression analysis between MSNA and diastolic BP. AMD did not affect HR, BP, and MSNA compared with PLA. Indexes of cardiac autonomic modulation (time- and frequency-domain HR variability) and BP variability were also unchanged after AMD ingestion. Likewise, AMD did not modify the gain of both spontaneous cardiac and sympathetic arterial baroreflex. A single oral dose of AMD does not affect spontaneous arterial baroreflex sensitivity and BP variability in healthy young adults.NEW & NOTEWORTHY Preclinical models indicate that amiloride (AMD), a nonselective antagonist of the acid-sensing ion channels (ASICs), impairs baroreflex sensitivity and perturbs blood pressure regulation. We translated these findings into humans, investigating the impact of acute oral ingestion of AMD on blood pressure variability and spontaneous cardiac and sympathetic baroreflex sensitivity in healthy young humans. In contrast to preclinical evidence, AMD does not impair spontaneous arterial baroreflex sensitivity and blood pressure variability in healthy young adults.
Collapse
Affiliation(s)
- Igor A Fernandes
- Human Neurovascular Control Laboratory, Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States
| | - Jon Stavres
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, Mississippi, United States
| | - Takuto Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Qudus A Ojikutu
- Human Neurovascular Control Laboratory, Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States
| | - Jeann L Sabino-Carvalho
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Federal District, Brazil
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Aimee E Cauffman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Paul C Dalton
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Michael D Herr
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Zyad J Carr
- Department of Anesthesiology, Yale School of Medicine, Yale New Haven Hospital, New Haven, Connecticut
| | - Piotr K Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| |
Collapse
|
6
|
Bernardes-Ribeiro M, Patrone LGA, Cristina-Silva C, Bícego KC, Gargaglioni LH. Exercise derived myokine irisin as mediator of cardiorespiratory, metabolic and thermal adjustments during central and peripheral chemoreflex activation. Sci Rep 2024; 14:12262. [PMID: 38806563 PMCID: PMC11133352 DOI: 10.1038/s41598-024-62650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Exercise elicits physiological adaptations, including hyperpnea. However, the mechanisms underlying exercise-induced hyperpnea remain unresolved. Skeletal muscle acts as a secretory organ, releasing irisin (IR) during exercise. Irisin can cross the blood-brain barrier, influencing muscle and tissue metabolism, as well as signaling in the central nervous system (CNS). We evaluated the effect of intracerebroventricular or intraperitoneal injection of IR in adult male rats on the cardiorespiratory and metabolic function during sleep-wake cycle under room air, hypercapnia and hypoxia. Central IR injection caused an inhibition on ventilation (VE) during wakefulness under normoxia, while peripheral IR reduced VE during sleep. Additionally, central IR exacerbates hypercapnic hyperventilation by increasing VE and reducing oxygen consumption. As to cardiovascular regulation, central IR caused an increase in heart rate (HR) across all conditions, while no change was observed following peripheral administration. Finally, central IR attenuated the hypoxia-induced regulated hypothermia and increase sleep episodes, while peripheral IR augmented CO2-induced hypothermia, during wakefulness. Overall, our results suggest that IR act mostly on CNS exerting an inhibitory effect on breathing under resting conditions, while stimulating the hypercapnic ventilatory response and increasing HR. Therefore, IR seems not to be responsible for the exercise-induced hyperpnea, but contributes to the increase in HR.
Collapse
Affiliation(s)
- Mariana Bernardes-Ribeiro
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP/FCAV), Via de Acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-000, Brazil
| | - Luis Gustavo A Patrone
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP/FCAV), Via de Acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-000, Brazil
| | - Caroline Cristina-Silva
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP/FCAV), Via de Acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-000, Brazil
| | - Kênia C Bícego
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP/FCAV), Via de Acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-000, Brazil
| | - Luciane H Gargaglioni
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP/FCAV), Via de Acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-000, Brazil.
| |
Collapse
|
7
|
AlShanableh Z, Ray EC. Magnesium in hypertension: mechanisms and clinical implications. Front Physiol 2024; 15:1363975. [PMID: 38665599 PMCID: PMC11044701 DOI: 10.3389/fphys.2024.1363975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Hypertension is associated with increased risk of cardiovascular disease and death. Evidence suggests that Mg2+ depletion contributes to hypertension. It is estimated that 25% or more of the United States population experiences chronic, latent Mg2+ depletion. This review explores mechanisms by which Mg2+ influences blood pressure, modifying risk of hypertension and complicating its treatment. Mechanisms addressed include effects upon i) sympathetic tone, via the modulation of N-methyl-D-aspartate (NMDA) receptor and N-type Ca2+ channel activity, influencing catecholamine release from sympathetic nerve endings; ii) vascular tone, via alteration of L-type Ca2+ and endothelial nitric oxide synthase (eNOS) activity and prostacyclin release; iii) renal K+ handling, influencing systemic K+ balance and potentially indirectly influencing blood pressure; iv) aldosterone secretion from the adrenal cortex; and v) modulation of pro-hypertensive inflammatory processes in dendritic cells and macrophages, including activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome and stimulation of isolevuglandin (IsoLG) production. Discovery of these mechanisms has furthered our understanding of the pathogenesis of hypertension, with implications for treatment and has highlighted the role of Mg2+ balance in hypertension and cardiovascular disease.
Collapse
Affiliation(s)
| | - Evan C. Ray
- Renal-Electrolyte Division, UPMC and University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Tonko JB, Lambiase PD. The proarrhythmogenic role of autonomics and emerging neuromodulation approaches to prevent sudden death in cardiac ion channelopathies. Cardiovasc Res 2024; 120:114-131. [PMID: 38195920 PMCID: PMC10936753 DOI: 10.1093/cvr/cvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Ventricular arrhythmias in cardiac channelopathies are linked to autonomic triggers, which are sub-optimally targeted in current management strategies. Improved molecular understanding of cardiac channelopathies and cellular autonomic signalling could refine autonomic therapies to target the specific signalling pathways relevant to the specific aetiologies as well as the central nervous system centres involved in the cardiac autonomic regulation. This review summarizes key anatomical and physiological aspects of the cardiac autonomic nervous system and its impact on ventricular arrhythmias in primary inherited arrhythmia syndromes. Proarrhythmogenic autonomic effects and potential therapeutic targets in defined conditions including the Brugada syndrome, early repolarization syndrome, long QT syndrome, and catecholaminergic polymorphic ventricular tachycardia will be examined. Pharmacological and interventional neuromodulation options for these cardiac channelopathies are discussed. Promising new targets for cardiac neuromodulation include inhibitory and excitatory G-protein coupled receptors, neuropeptides, chemorepellents/attractants as well as the vagal and sympathetic nuclei in the central nervous system. Novel therapeutic strategies utilizing invasive and non-invasive deep brain/brain stem stimulation as well as the rapidly growing field of chemo-, opto-, or sonogenetics allowing cell-specific targeting to reduce ventricular arrhythmias are presented.
Collapse
Affiliation(s)
- Johanna B Tonko
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
- Department for Cardiology, Bart’s Heart Centre, West Smithfield EC1A 7BE, London, UK
| |
Collapse
|
9
|
Rocha I, González-García M, Carrillo-Franco L, Dawid-Milner MS, López-González MV. Influence of Brainstem's Area A5 on Sympathetic Outflow and Cardiorespiratory Dynamics. BIOLOGY 2024; 13:161. [PMID: 38534431 DOI: 10.3390/biology13030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Area A5 is a noradrenergic cell group in the brain stem characterised by its important role in triggering sympathetic activity, exerting a profound influence on the sympathetic outflow, which is instrumental in the modulation of cardiovascular functions, stress responses and various other physiological processes that are crucial for adaptation and survival mechanisms. Understanding the role of area A5, therefore, not only provides insights into the basic functioning of the sympathetic nervous system but also sheds light on the neuronal basis of a number of autonomic responses. In this review, we look deeper into the specifics of area A5, exploring its anatomical connections, its neurochemical properties and the mechanisms by which it influences sympathetic nervous system activity and cardiorespiratory regulation and, thus, contributes to the overall dynamics of the autonomic function in regulating body homeostasis.
Collapse
Affiliation(s)
- Isabel Rocha
- Lisbon School of Medicine and CCUL@Rise, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Manuel Victor López-González
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| |
Collapse
|
10
|
Zhou W, Lee A, Zhou A, Lombardo D. Integrative care: acupuncture based neuromodulation therapy for diabetes and heart failure. Front Neurosci 2024; 18:1332957. [PMID: 38298910 PMCID: PMC10827876 DOI: 10.3389/fnins.2024.1332957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
The relationship between heart failure and diabetes is intricate and bidirectional. Individuals with diabetes face an elevated risk of developing heart failure due to factors like insulin resistance, chronic inflammation, and metabolic irregularities. Elevated blood sugar levels can harm blood vessels and nerves, culminating in the buildup of fatty deposits in arteries, atherosclerosis, and hypertension, which significantly contribute to heart failure. Furthermore, diabetes can adversely impact the structure and function of the heart muscle, impairing its pumping capacity. Conversely, heart failure can also contribute to the onset of diabetes by disrupting the body's metabolic processes and amplifying insulin resistance. The complex interaction between these conditions mandates a comprehensive approach to managing individuals with both diabetes and heart failure, underscoring the importance of addressing both aspects for enhanced patient outcomes. Although existing pharmacological treatments are limited and frequently associated with undesirable side effects, acupuncture has established itself as a traditional practice with a legacy. It remains a supplementary option for treating cardiovascular diseases. Heart failure and diabetes are both heavily associated with chronic upregulation of the sympathetic nervous system, which has been identified as a pivotal factor in the progression of disease. Mechanistic interplays such as the attenuation of central nitric oxide signaling may interfere with the production or availability of nitric oxide in key areas of the central nervous system, including the brainstem and hypothalamus. This review will delve into the current understanding of acupuncture on the autonomic nervous system and offer insights into its potential role in the future treatment landscape for diabetes and heart failure.
Collapse
Affiliation(s)
- Wei Zhou
- Division of Cardiology, University of California, Irvine, Orange, CA, United States
| | - Andy Lee
- Division of Cardiology, University of California, Irvine, Orange, CA, United States
| | - Aren Zhou
- Irvine Valley College, Irvine, CA, United States
| | - Dawn Lombardo
- Division of Cardiology, University of California, Irvine, Orange, CA, United States
| |
Collapse
|
11
|
Zsombok A, Desmoulins LD, Derbenev AV. Sympathetic circuits regulating hepatic glucose metabolism: where we stand. Physiol Rev 2024; 104:85-101. [PMID: 37440208 PMCID: PMC11281813 DOI: 10.1152/physrev.00005.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
The prevalence of metabolic disorders, including type 2 diabetes mellitus, continues to increase worldwide. Although newer and more advanced therapies are available, current treatments are still inadequate and the search for solutions remains. The regulation of energy homeostasis, including glucose metabolism, involves an exchange of information between the nervous systems and peripheral organs and tissues; therefore, developing treatments to alter central and/or peripheral neural pathways could be an alternative solution to modulate whole body metabolism. Liver glucose production and storage are major mechanisms controlling glycemia, and the autonomic nervous system plays an important role in the regulation of hepatic functions. Autonomic nervous system imbalance contributes to excessive hepatic glucose production and thus to the development and progression of type 2 diabetes mellitus. At cellular levels, change in neuronal activity is one of the underlying mechanisms of autonomic imbalance; therefore, modulation of the excitability of neurons involved in autonomic outflow governance has the potential to improve glycemic status. Tissue-specific subsets of preautonomic neurons differentially control autonomic outflow; therefore, detailed information about neural circuits and properties of liver-related neurons is necessary for the development of strategies to regulate liver functions via the autonomic nerves. This review provides an overview of our current understanding of the hypothalamus-ventral brainstem-liver pathway involved in the sympathetic regulation of the liver, outlines strategies to identify organ-related neurons, and summarizes neuronal plasticity during diabetic conditions with a particular focus on liver-related neurons in the paraventricular nucleus.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
12
|
Patel M, Braun J, Lambert G, Kameneva T, Keatch C, Lambert E. Central mechanisms in sympathetic nervous dysregulation in obesity. J Neurophysiol 2023; 130:1414-1424. [PMID: 37910522 DOI: 10.1152/jn.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiovascular and metabolic complications associated with excess adiposity are linked to chronic activation of the sympathetic nervous system, resulting in a high risk of mortality among obese individuals. Obesity-related positive energy balance underlies the progression of hypertension, end-organ damage, and insulin resistance, driven by increased sympathetic tone throughout the body. It is, therefore, important to understand the central network that drives and maintains sustained activation of the sympathetic nervous system in the obese state. Experimental and clinical studies have identified structural changes and altered dynamics in both grey and white matter regions in obesity. Aberrant activation in certain brain regions has been associated with altered reward circuitry and metabolic pathways including leptin and insulin signaling along with adiposity-driven systemic and central inflammation. The impact of these pathways on the brain via overactivity of the sympathetic nervous system has gained interest in the past decade. Primarily, the brainstem, hypothalamus, amygdala, hippocampus, and cortical structures including the insular, orbitofrontal, temporal, cingulate, and prefrontal cortices have been identified in this context. Although the central network involving these structures is much more intricate, this review highlights recent evidence identifying these regions in sympathetic overactivity in obesity.
Collapse
Affiliation(s)
- Mariya Patel
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Joe Braun
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Gavin Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Tatiana Kameneva
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charlotte Keatch
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Takla M, Saadeh K, Tse G, Huang CLH, Jeevaratnam K. Ageing and the Autonomic Nervous System. Subcell Biochem 2023; 103:201-252. [PMID: 37120470 DOI: 10.1007/978-3-031-26576-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.
Collapse
Affiliation(s)
| | | | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
- University of Surrey, Guildford, UK
| | | | | |
Collapse
|
14
|
Yang H, Tenorio Lopes L, Barioni NO, Roeske J, Incognito AV, Baker J, Raj SR, Wilson RJA. The molecular makeup of peripheral and central baroreceptors: stretching a role for Transient Receptor Potential (TRP), Epithelial Sodium Channel (ENaC), Acid Sensing Ion Channel (ASIC), and Piezo channels. Cardiovasc Res 2022; 118:3052-3070. [PMID: 34734981 DOI: 10.1093/cvr/cvab334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
The autonomic nervous system maintains homeostasis of cardiovascular, respiratory, gastrointestinal, urinary, immune, and thermoregulatory function. Homeostasis involves a variety of feedback mechanisms involving peripheral afferents, many of which contain molecular receptors sensitive to mechanical deformation, termed mechanosensors. Here, we focus on the molecular identity of mechanosensors involved in the baroreflex control of the cardiovascular system. Located within the walls of the aortic arch and carotid sinuses, and/or astrocytes in the brain, these mechanosensors are essential for the rapid moment-to-moment feedback regulation of blood pressure (BP). Growing evidence suggests that these mechanosensors form a co-existing system of peripheral and central baroreflexes. Despite the importance of these molecules in cardiovascular disease and decades of research, their precise molecular identity remains elusive. The uncertainty surrounding the identity of these mechanosensors presents a major challenge in understanding basic baroreceptor function and has hindered the development of novel therapeutic targets for conditions with known arterial baroreflex impairments. Therefore, the purpose of this review is to (i) provide a brief overview of arterial and central baroreflex control of BP, (ii) review classes of ion channels currently proposed as the baroreflex mechanosensor, namely Transient Receptor Potential (TRP), Epithelial Sodium Channel (ENaC), Acid Sensing Ion Channel (ASIC), and Piezo, along with additional molecular candidates that serve mechanotransduction in other organ systems, and (iii) summarize the potential clinical implications of impaired baroreceptor function in the pathophysiology of cardiovascular disease.
Collapse
Affiliation(s)
- Hannah Yang
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Luana Tenorio Lopes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Nicole O Barioni
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Jamie Roeske
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Anthony V Incognito
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Jacquie Baker
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Satish R Raj
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| |
Collapse
|
15
|
The Heart as a Target of Vasopressin and Other Cardiovascular Peptides in Health and Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms232214414. [PMID: 36430892 PMCID: PMC9699305 DOI: 10.3390/ijms232214414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The automatism of cardiac pacemaker cells, which is tuned, is regulated by the autonomic nervous system (ANS) and multiple endocrine and paracrine factors, including cardiovascular peptides. The cardiovascular peptides (CPs) form a group of essential paracrine factors affecting the function of the heart and vessels. They may also be produced in other organs and penetrate to the heart via systemic circulation. The present review draws attention to the role of vasopressin (AVP) and some other cardiovascular peptides (angiotensins, oxytocin, cytokines) in the regulation of the cardiovascular system in health and cardiovascular diseases, especially in post-infarct heart failure, hypertension and cerebrovascular strokes. Vasopressin is synthesized mostly by the neuroendocrine cells of the hypothalamus. There is also evidence that it may be produced in the heart and lungs. The secretion of AVP and other CPs is markedly influenced by changes in blood volume and pressure, as well as by other disturbances, frequently occurring in cardiovascular diseases (hypoxia, pain, stress, inflammation). Myocardial infarction, hypertension and cardiovascular shock are associated with an increased secretion of AVP and altered responsiveness of the cardiovascular system to its action. The majority of experimental studies show that the administration of vasopressin during ventricular fibrillation and cardiac arrest improves resuscitation, however, the clinical studies do not present consisting results. Vasopressin cooperates with the autonomic nervous system (ANS), angiotensins, oxytocin and cytokines in the regulation of the cardiovascular system and its interaction with these regulators is altered during heart failure and hypertension. It is likely that the differences in interactions of AVP with ANS and other CPs have a significant impact on the responsiveness of the cardiovascular system to vasopressin in specific cardiovascular disorders.
Collapse
|
16
|
Balik V, Šulla I. Autonomic Dysreflexia following Spinal Cord Injury. Asian J Neurosurg 2022; 17:165-172. [PMID: 36120615 PMCID: PMC9473833 DOI: 10.1055/s-0042-1751080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
AbstractAutonomic dysreflexia (AD) is a potentially life-threatening condition of the autonomic nervous system following spinal cord injury at or above T6. One of the most common symptoms is a sudden increase in blood pressure induced by afferent sensory stimulation owing to unmodulated reflex sympathetic hyperactivity. Such episodes of high blood pressure might be associated with a high risk of cerebral or retinal hemorrhage, seizures, heart failure, or pulmonary edema. In-depth knowledge is, therefore, crucial for the proper management of the AD, especially for spine surgeons, who encounter these patients quite often in their clinical practice. Systematical review of the literature dealing with strategies to prevent and manage this challenging condition was done by two independent reviewers. Studies that failed to assess primary (prevention, treatment strategies and management) and secondary outcomes (clinical symptomatology, presentation) were excluded. A bibliographical search revealed 85 eligible studies that provide a variety of preventive and treatment measures for the subjects affected by AD. As these measures are predominantly based on noncontrolled trials, long-term prospectively controlled multicenter studies are warranted to validate these preventive and therapeutic proposals.
Collapse
Affiliation(s)
- Vladimír Balik
- Department of Neurosurgery, Svet Zdravia Hospital, Michalovce, Slovakia
| | - Igor Šulla
- Department of Anatomy, University of Veterinary Medicine and Pharmacy, Histology and Physiology, Košice, Slovakia
| |
Collapse
|
17
|
Sesa-Ashton G, Wong R, McCarthy B, Datta S, Henderson LA, Dawood T, Macefield VG. Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans. Cereb Cortex Commun 2022; 3:tgac017. [PMID: 35559424 PMCID: PMC9086585 DOI: 10.1093/texcom/tgac017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Muscle sympathetic nerve activity (MSNA) controls the diameter of arterioles in skeletalmuscle, contributing importantly to the beat-to-beat regulation of blood pressure (BP). Although brain imaging studies have shown that bursts of MSNA originate in the rostral ventrolateral medulla, other subcortical and cortical structures-including the dorsolateral prefrontal cortex (dlPFC)-contribute. Hypothesis We tested the hypothesis that MSNA and BP could be modulated by stimulating the dlPFC. Method dlPFC. In 22 individuals MSNA was recorded via microelectrodes inserted into the common peroneal nerve, together with continuous BP, electrocardiographic, and respiration.Stimulation of the right (n=22) or left dlPFC (n=10) was achieved using transcranial alternating current (tcACS; +2 to -2mA, 0.08 Hz,100 cycles), applied between the nasion and electrodes over the F3 or F4 EEG sites on the scalp. Results Sinusoidal stimulation of either dlPFC caused cyclicmodulation of MSNA, BP and heart rate, and a significant increase in BP. Conclusion We have shown, for the first time, that tcACS of the dlPFC in awake humans causes partial entrainment of MSNA, heart rate and BP, arguing for an important role of this higher-level cortical area in the control of cardiovascular function.
Collapse
Affiliation(s)
- Gianni Sesa-Ashton
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Rebecca Wong
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Brendan McCarthy
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sudipta Datta
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
18
|
Alikhani V, Nikyar T, Mohebbati R, Shafei MN, Ghorbani A. Cardiovascular responses induced by the activation of muscarinic receptors of the pedunculopontine tegmental nucleus in anesthetized rats. Clin Exp Hypertens 2022; 44:297-305. [PMID: 35266430 DOI: 10.1080/10641963.2021.2007944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The cardiovascular effects of nicotinic receptors of cholinergic system in the pedunculopontine tegmental nucleus (PPT) were shown. OBJECTIVE In the following, the cardiovascular effects of the muscarinic receptor, another receptor in this system, were examined. METHODS Rats were divided into eight groups: 1) control; 2 and 3) Ach (acetylcholine, an agonist) 90 and 150 nmol; 4 and 5) Atr (atropine; a muscarinic antagonist) 3 and 9 nmol; 6) Atr 3 + Ach 150; 7) Atr 9 + Ach 150; and 8) Atr 3 + hexamethonium (Hexa; 300 nmol) + Ach 150. After anesthesia, cannulation of the femoral artery was performed, and then the mean arterial pressure (MAP), systolic blood pressure (SBP), and heart rate (HR) were recorded using a power lab apparatus. RESULTS Following drug microinjection, the maximum change (Δ) in MAP, SBP, and HR was calculated and analyzed. Both doses of Ach (90 and 150) significantly decreased ΔMAP and ΔSBP but could not change ΔHR. Neither of the doses of Atr significantly affected ΔMAP, ΔSBP, and ΔHR. Co-injection of Atr 3 + Ach 150 only increased ΔHR, but Atr 9 + Ach 150 decreased ΔMAP and ΔSBP than Ach 150 alone. The effect of the co-injection of Atr 9 + Hexa 300 + Ach 150 was also the same as the Atr 9 + Ach 150 group. CONCLUSION The present results revealed that cholinergic muscarinic receptors in the PPT have an inhibitory effect on MAP and SBP with no important effect on HR.
Collapse
Affiliation(s)
- Vida Alikhani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Nikyar
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atiyeh Ghorbani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Perrotta M, Carnevale D. Brain Areas Involved in Modulating the Immune Response Participating in Hypertension and Its Target Organ Damage. Antioxid Redox Signal 2021; 35:1515-1530. [PMID: 34269604 DOI: 10.1089/ars.2021.0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Hypertension is a multifactorial disease ensuing from the continuous challenge imposed by several risk factors on the cardiovascular system. Classically known pathophysiological alterations associated with hypertension comprise neurogenic mechanisms dysregulating the autonomic nervous system (ANS), vascular dysfunction, and excessive activation of the renin angiotensin system. During the past few years, a considerable number of studies indicated that immune activation and inflammation also have an important role in the onset and maintenance of hypertension. Critical Issues: On these premises, it has been necessary to reconsider the pathophysiological mechanisms underlying hypertension development, taking into account the potential interactions established between classically known determinants of high blood pressure and the immune system. Recent Advances: Interestingly, central nervous system areas controlling cardiovascular functions are enriched with Angiotensin II receptors. Observations showing that these brain areas are crucial for mediating peripheral ANS and immune responses were suggestive of a critical role of neuroimmune interactions in hypertension. In fact, the ANS, characterized by an intricate network of afferent and efferent fibers, represents an intermediate between the brain and peripheral responses that are essential for blood pressure regulation. Future Directions: In this review, we will summarize studies showing how specific brain areas can modulate immune responses that are involved in hypertension. Antioxid. Redox Signal. 35, 1515-1530.
Collapse
Affiliation(s)
- Marialuisa Perrotta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Daniela Carnevale
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
20
|
Guyenet PG, Stornetta RL. Rostral ventrolateral medulla, retropontine region and autonomic regulations. Auton Neurosci 2021; 237:102922. [PMID: 34814098 DOI: 10.1016/j.autneu.2021.102922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The rostral half of the ventrolateral medulla (RVLM) and adjacent ventrolateral retropontine region (henceforth RVLMRP) have been divided into various sectors by neuroscientists interested in breathing or autonomic regulations. The RVLMRP regulates respiration, glycemia, vigilance and inflammation, in addition to blood pressure. It contains interoceptors that respond to acidification, hypoxia and intracranial pressure and its rostral end contains the retrotrapezoid nucleus (RTN) which is the main central respiratory chemoreceptor. Acid detection by the RTN is an intrinsic property of the principal neurons that is enhanced by paracrine influences from surrounding astrocytes and CO2-dependent vascular constriction. RTN mediates the hypercapnic ventilatory response via complex projections to the respiratory pattern generator (CPG). The RVLM contributes to autonomic response patterns via differential recruitment of several subtypes of adrenergic (C1) and non-adrenergic neurons that directly innervate sympathetic and parasympathetic preganglionic neurons. The RVLM also innervates many brainstem and hypothalamic nuclei that contribute, albeit less directly, to autonomic responses. All lower brainstem noradrenergic clusters including the locus coeruleus are among these targets. Sympathetic tone to the circulatory system is regulated by subsets of presympathetic RVLM neurons whose activity is continuously restrained by the baroreceptors and modulated by the respiratory CPG. The inhibitory input from baroreceptors and the excitatory input from the respiratory CPG originate from neurons located in or close to the rhythm generating region of the respiratory CPG (preBötzinger complex).
Collapse
Affiliation(s)
- Patrice G Guyenet
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | - Ruth L Stornetta
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| |
Collapse
|
21
|
Tomiyama H, Nakano H, Takahashi T, Fujii M, Shiina K, Matsumoto C, Chikamori T, Yamashina A. Heart rate modulates the relationship of augmented systolic blood pressure with the blood natriuretic peptide levels. ESC Heart Fail 2021; 8:3957-3963. [PMID: 34323018 PMCID: PMC8497200 DOI: 10.1002/ehf2.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS Augmented central systolic blood pressure (cSBP), which is known to affect the cardiac afterload, is an independent risk factor for cardiovascular disease. While an inverse relationship is known to exist between the heart rate (HR) and the cSBP, it has not yet been clarified if the HR also modulates the association between the cSBP and the cardiac afterload. The present study was conducted to clarify whether the association of the cSBP with the serum levels of the N-terminal fragment B-type natriuretic peptide (NT-proBNP) differs between subjects with high and low HRs, using data obtained from the same subjects on two occasions (2009 and 2012) so as to confirm their consistency. METHODS AND RESULTS The radial augmentation index, systolic pressure at the second peak of the radial pressure waveform (SBP2), and serum NT-proBNP levels were measured and analysed in a worksite cohort of 2000 middle-aged men in 2009 and in 2012. The subjects were divided into three groups by the HR (i.e. ≤69, 70-79, and ≥80 b.p.m.). While the serum NT-proBNP levels were similar among the three groups, the radial augmentation index increased (from 61 ± 12% to 72 ± 13%, P < 0.01 in 2009 and from 61 ± 13% to 73 ± 12%, P < 0.01 in 2012) and the SBP1-2 decreased (from 18 ± 7 to 13 ± 7 mmHg, P < 0.01 in 2009 and from 19 ± 7 to 13 ± 6 mmHg, P < 0.01 in 2012) significantly with decreasing HR. After the adjustment, the SBP2 showed a significant association with the serum NT-proBNP levels in the overall study population [non-standardized coefficient (B) = 0.005, standard error (SE) = 0.001, P < 0.01 in 2009 (n = 2257) and B = 0.004, SE = 0.001, P < 0.01 in 2012 (n = 1986)]. In subgroup analyses, the SBP2 showed a significant association with the serum NT-proBNP levels [B = 0.004, SE = 0.002, P = 0.02 in 2009 (n = 1291) and B = 0.005, SE = 0.001, P < 0.01 in 2012 (n = 1204)] only in the subject group with an HR of ≤69 b.p.m. CONCLUSIONS In middle-aged Japanese men, the relationship between the cSBP and the cardiac afterload appears to differ depending on the HR; the results of our analysis showed that the relationship between the cSBP and the cardiac overload may be more pronounced and strongly significant in patients with low HRs as compared with patients with high HRs.
Collapse
Affiliation(s)
- Hirofumi Tomiyama
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Hiroki Nakano
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Takamichi Takahashi
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Masatsune Fujii
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Kazuki Shiina
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Chisa Matsumoto
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Taishiro Chikamori
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Akira Yamashina
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| |
Collapse
|
22
|
Taavo M, Rundgren M, Frykholm P, Larsson A, Franzén S, Vargmar K, Valarcher JF, DiBona GF, Frithiof R. Role of Renal Sympathetic Nerve Activity in Volatile Anesthesia's Effect on Renal Excretory Function. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab042. [PMID: 35330795 PMCID: PMC8788708 DOI: 10.1093/function/zqab042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2023]
Abstract
Regulation of fluid balance is pivotal during surgery and anesthesia and affects patient morbidity, mortality, and hospital length of stay. Retention of sodium and water is known to occur during surgery but the mechanisms are poorly defined. In this study, we explore how the volatile anesthetic sevoflurane influences renal function by affecting renal sympathetic nerve activity (RSNA). Our results demonstrate that sevoflurane induces renal sodium and water retention during pediatric anesthesia in association with elevated plasma concentration of renin but not arginine-vasopressin. The mechanisms are further explored in conscious and anesthetized ewes where we show that RSNA is increased by sevoflurane compared with when conscious. This is accompanied by renal sodium and water retention and decreased renal blood flow (RBF). Finally, we demonstrate that renal denervation normalizes renal excretory function and improves RBF during sevoflurane anesthesia in sheep. Taken together, this study describes a novel role of the renal sympathetic nerves in regulating renal function and blood flow during sevoflurane anesthesia.
Collapse
Affiliation(s)
| | - Mats Rundgren
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Peter Frykholm
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences and Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Stephanie Franzén
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Karin Vargmar
- Department of Biomedical Sciences and Veterinary Public Health, Section of Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jean F Valarcher
- Department of Clinical Sciences, Division of Ruminant Medicine, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gerald F DiBona
- Carver College of Medicine, University of Iowa, Iowa, IA, USA
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Nandakumar S, Rozich E, Buttitta L. Cell Cycle Re-entry in the Nervous System: From Polyploidy to Neurodegeneration. Front Cell Dev Biol 2021; 9:698661. [PMID: 34249947 PMCID: PMC8264763 DOI: 10.3389/fcell.2021.698661] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Terminally differentiated cells of the nervous system have long been considered to be in a stable non-cycling state and are often considered to be permanently in G0. Exit from the cell cycle during development is often coincident with the differentiation of neurons, and is critical for neuronal function. But what happens in long lived postmitotic tissues that accumulate cell damage or suffer cell loss during aging? In other contexts, cells that are normally non-dividing or postmitotic can or re-enter the cell cycle and begin replicating their DNA to facilitate cellular growth in response to cell loss. This leads to a state called polyploidy, where cells contain multiple copies of the genome. A growing body of literature from several vertebrate and invertebrate model organisms has shown that polyploidy in the nervous system may be more common than previously appreciated and occurs under normal physiological conditions. Moreover, it has been found that neuronal polyploidization can play a protective role when cells are challenged with DNA damage or oxidative stress. By contrast, work over the last two and a half decades has discovered a link between cell-cycle reentry in neurons and several neurodegenerative conditions. In this context, neuronal cell cycle re-entry is widely considered to be aberrant and deleterious to neuronal health. In this review, we highlight historical and emerging reports of polyploidy in the nervous systems of various vertebrate and invertebrate organisms. We discuss the potential functions of polyploidization in the nervous system, particularly in the context of long-lived cells and age-associated polyploidization. Finally, we attempt to reconcile the seemingly disparate associations of neuronal polyploidy with both neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
| | | | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Time trends in the relation between blood pressure and dementia in 85-year-olds. J Hypertens 2021; 39:1964-1971. [PMID: 34102663 DOI: 10.1097/hjh.0000000000002902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Blood pressure has decreased in the general population. We aimed to examine whether this is true also among the very old, and among persons with and without dementia. Further, we aimed to investigate how common undetected and untreated hypertension is in the very old, both among people with and without dementia. METHOD Blood pressure was measured in representative population samples of 85-year-olds living in Gothenburg, Sweden, examined 1986-1987 (n = 484) and 2008-2010 (n = 571). Dementia was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, edition 3 revised, by the same medical doctor at both examinations. RESULTS Both systolic and diastolic blood pressure were lower in 85-year-olds examined 2008-2010 than in those examined 1986-1987, both among those with and without dementia. Participants with dementia had lower systolic blood pressure than those without dementia in both cohorts, and blood pressure levels related to dementia severity. Despite this, hypertension (≥140/90 mmHg) was found in almost half (46.5%) of those with dementia in 2008-2010. CONCLUSION Our findings show that time-trends of lower blood pressure in western populations also applies to the very old, and that individuals with dementia continue to have lower blood pressure compared to the rest of the population. The latter finding suggests that the pathophysiological processes in dementia affect blood pressure regulating regions in the brain independent of time trends. Still, hypertension is common in dementia and needs to be detected and treated.
Collapse
|
25
|
Sayegh ALC, Janzen A, Strzedulla I, Birklein F, Lautenschläger G, Oertel WH, Krämer HH, Best C. Increased muscle sympathetic nerve activity and impaired baroreflex control in isolated REM-sleep behavior disorder. Clin Neurophysiol 2021; 132:1537-1542. [PMID: 34023631 DOI: 10.1016/j.clinph.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Changes in baroreflex sensitivity have been reported in patients with idiopathic Parkinson's disease (PD). We sought to investigate the hypothesis that patients with isolated rapid eye movement (REM)-sleep behavior disorder (iRBD), known to be a prodromal stage for PD, will show abnormalities in baroreflex control. METHODS Ten iRBD patients were compared to 10 sex- and age-matched healthy controls. Their cardiovascular parameters and muscle sympathetic nerve activity (MSNA) were evaluated at rest and during baroreflex stimulation. RESULTS MSNA at rest was higher in iRBD patients (burst frequency [BF]: 44 ± 3 bursts/min; burst incidence [BI]: 60 ± 8 bursts/100 heartbeats) as compared to the controls (BF: 29 ± 3 bursts/min, p < 0.001; BI: 43 ± 9 bursts/100 heartbeats, p < 0.001). During baroreflex stimulation, iRBD patients showed increased absolute values of MSNA (BF: F = 62.728; p < 0.001; BI: F = 16.277; p < 0.001) as compared to the controls. The iRBD patients had decreased diastolic blood pressure at baseline and during lower body negative pressure, but the level of significance was not met. CONCLUSION Our study shows increased MSNA and impaired baroreflex control in iRBD patients. We propose that the inhibitory effect of locus coeruleus on baroreflex function might be impaired, leading to the disinhibition of sympathetic outflow. SIGNIFICANCE These findings might reflect the destruction of brain areas due to the ascending P-α-synuclein deposits in iRBD patients.
Collapse
Affiliation(s)
- Ana Luiza C Sayegh
- Department of Neurology, Justus-Liebig-University, Giessen, Germany; Department of Physiology, The University of Auckland, New Zealand
| | - Annette Janzen
- Department of Neurology, Philipps-University, Marburg, Germany
| | | | - Frank Birklein
- Department of Neurology, University Medical Center, Johannes-Gutenberg-University, Mainz, Germany
| | | | | | - Heidrun H Krämer
- Department of Neurology, Justus-Liebig-University, Giessen, Germany.
| | - Christoph Best
- Department of Neurology, Philipps-University, Marburg, Germany
| |
Collapse
|
26
|
Emmi A, Porzionato A, Contran M, De Rose E, Macchi V, De Caro R. 3D Reconstruction of the Morpho-Functional Topography of the Human Vagal Trigone. Front Neuroanat 2021; 15:663399. [PMID: 33935659 PMCID: PMC8085322 DOI: 10.3389/fnana.2021.663399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
The Vagal Trigone, often referred to as Ala Cinerea, is a triangular-shaped area of the floor of the fourth ventricle that is strictly involved in the network of chardiochronotropic, baroceptive, respiratory, and gastrointestinal control systems of the medulla oblongata. While it is frequently identified as the superficial landmark for the underlying Dorsal Motor Nucleus of the Vagus, this correspondence is not univocal in anatomical literature and is often oversimplified in neuroanatomy textbooks and neurosurgical atlases. As the structure represents an important landmark for neurosurgical procedures involving the floor of the fourth ventricle, accurate morphological characterization is required to avoid unwanted side effects (e.g., bradychardia, hypertension) during neuorphysiological monitoring and cranial nerve nuclei stimulation in intraoperative settings. The aim of this study was to address the anatomo-topographical relationships of the Vagal Trigone with the underlying nuclei. For this purpose, we have conducted an anatomo-microscopical examination of serial sections deriving from 54 Human Brainstems followed by 3D reconstruction and rendering of the specimens. Our findings indicate that the Vagal Trigone corresponds only partially with the Dorsal Motor Nucleus of the Vagus, while most of its axial profile is occupied by the dorsal regions of the Solitary Tract Nucleus. Furthermore, basing on literature and our findings we speculate that the neuroblasts of the Dorsal Motor Nucleus of the Vagus undergo neurobiotaxic migration induced by the neuroblasts of the dorsolaterally located solitary tract nucleus, giving rise to the Ala Cinerea, a topographically defined area for parasympathetic visceral control.
Collapse
Affiliation(s)
- Aron Emmi
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Martina Contran
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Enrico De Rose
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| |
Collapse
|
27
|
Sabino-Carvalho JL, Fisher JP, Vianna LC. Autonomic Function in Patients With Parkinson's Disease: From Rest to Exercise. Front Physiol 2021; 12:626640. [PMID: 33815139 PMCID: PMC8017184 DOI: 10.3389/fphys.2021.626640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder classically characterized by symptoms of motor impairment (e.g., tremor and rigidity), but also presenting with important non-motor impairments. There is evidence for the reduced activity of both the parasympathetic and sympathetic limbs of the autonomic nervous system at rest in PD. Moreover, inappropriate autonomic adjustments accompany exercise, which can lead to inadequate hemodynamic responses, the failure to match the metabolic demands of working skeletal muscle and exercise intolerance. The underlying mechanisms remain unclear, but relevant alterations in several discrete central regions (e.g., dorsal motor nucleus of the vagus nerve, intermediolateral cell column) have been identified. Herein, we critically evaluate the clinically significant and complex associations between the autonomic dysfunction, fatigue and exercise capacity in PD.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - James P Fisher
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil.,Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
28
|
Sabino-Carvalho JL, Falquetto B, Takakura AC, Vianna LC. Baroreflex dysfunction in Parkinson's disease: integration of central and peripheral mechanisms. J Neurophysiol 2021; 125:1425-1439. [PMID: 33625931 DOI: 10.1152/jn.00548.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The incidence of Parkinson's disease (PD) is increasing worldwide. Although the PD hallmark is the motor impairments, nonmotor dysfunctions are now becoming more recognized. Recently, studies have suggested that baroreflex dysfunction is one of the underlying mechanisms of cardiovascular dysregulation observed in patients with PD. However, the large body of literature on baroreflex function in PD is unclear. The baroreflex system plays a major role in the autonomic, and ultimately blood pressure and heart rate, adjustments that accompany acute cardiovascular stressors on a daily basis. Therefore, impaired baroreflex function (i.e., decreased sensitivity or gain) can lead to altered neural cardiovascular responses. Since PD affects parasympathetic and sympathetic branches of the autonomic nervous system and both are orchestrated by the baroreflex system, understanding of this crucial mechanism in PD is necessary. In the present review, we summarize the potential altered central and peripheral mechanisms affecting the feedback-controlled loops that comprise the reflex arc in patients with PD. Major factors including arterial stiffness, reduced number of C1 and activation of non-C1 neurons, presence of central α-synuclein aggregation, cardiac sympathetic denervation, attenuated muscle sympathetic nerve activity, and lower norepinephrine release could compromise baroreflex function in PD. Results from patients with PD and from animal models of PD provide the reader with a clearer picture of baroreflex function in this clinical condition. By doing so, our intent is to stimulate future studies to evaluate several unanswered questions in this research area.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Institute of Biomedical Sciences, University de Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University de Sao Paulo, Sao Paulo, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil.,Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
29
|
de Ataides Raquel H, Souza Guazelli CF, Verri WA, Michelini LC, Martins-Pinge MC. Swimming training reduces iNOS expression, augments the antioxidant defense and reduces sympathetic responsiveness in the rostral ventrolateral medulla of normotensive male rats. Brain Res Bull 2021; 170:225-233. [PMID: 33631270 DOI: 10.1016/j.brainresbull.2021.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/30/2022]
Abstract
We sought to investigate whether RVLM iNOS activity and oxidative profile may participate in the reduction of sympathetic responsiveness in swimming trained normotensive rats. Sedentary (S) and swimming trained (T) Wistar male rats chronically instrumented with an arterial catheter and guide cannula into the RVLM were submitted to continuous pressure and heart rate (HR) recordings and determination of autonomic control (power spectral analysis) before and after unilateral RVLM iNOS inhibition (aminoguanidine, 250 pmol/100 nL). Other S and T rats received local l-glutamate microinjection (5 nmol/100 nL). In separate S and T groups not submitted to brainstem cannulation, fresh bilateral RVLM punchs were collected for iNOS gene expression (qPCR); reduced glutathione and lipid peroxidation quantification (spectrophotometry); iron-reducing antioxidant (FRAP) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTS˙+) scavenger assays. iNOS gene expression was confirmed in fixed RVLM slices (immunofluorescence). T rats exhibited resting bradycardia, lower sympathovagal balance, reduced RVLM iNOS gene/protein expression and higher antioxidant capacity. Decreased iNOS expression was positively correlated with reduced HR. Pressor and tachycardic response to l-Glutamate were smaller in T rats. Aminoguanidine microinjection reduced sympathetic activity in S rats but did not change it in T rats expressing reduced RVLM iNOS content. Our data indicate that iNOS, expressed in the RVLM of normotensive male rats, has tonic effects on sympathetic activity and that swimming training is an efficient tool to reduce iNOS expression and augment the antioxidant defense, thus reducing glutamatergic responsiveness and sympathetic drive to cardiovascular effectors.
Collapse
Affiliation(s)
- Hiviny de Ataides Raquel
- Departament of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil; Departament of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carla Fabiana Souza Guazelli
- Departament of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu A Verri
- Departament of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Lisete C Michelini
- Departament of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marli Cardoso Martins-Pinge
- Departament of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
30
|
Lucci VEM, Inskip JA, McGrath MS, Ruiz I, Lee R, Kwon BK, Claydon VE. Longitudinal Assessment of Autonomic Function during the Acute Phase of Spinal Cord Injury: Use of Low-Frequency Blood Pressure Variability as a Quantitative Measure of Autonomic Function. J Neurotrauma 2020; 38:309-321. [PMID: 32940126 DOI: 10.1089/neu.2020.7286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
High-level spinal cord injury (SCI) can disrupt cardiovascular autonomic function. However, the evolution of cardiovascular autonomic function in the acute phase following injury is unknown. We evaluated the timing, severity, progression, and implications of cardiovascular autonomic injury following acute SCI. We tested 63 individuals with acute traumatic SCI (aged 48 ± 2 years) at five time-points: <2 weeks, and 1, 3, 6-12, and >12 months post-injury. Supine beat-to-beat systolic arterial pressure (SAP) and R-R interval (RRI) were recorded and low-frequency variability (LF SAP and LF RRI) determined. Cross-spectral analyses were used to determine baroreflex function (low frequency) and cardiorespiratory interactions (high frequency). Known electrocardiographic (ECG) markers for arrhythmia and self-reported symptoms of cardiovascular dysfunction were determined. Comparisons were made with historical data from individuals with chronic SCI and able-bodied controls. Most individuals had high-level (74%) motor/sensory incomplete (63%) lesions. All participants had decreased LF SAP at <2 weeks (2.22 ± 0.65 mm Hg2). Autonomic injury was defined as high-level SCI with LF SAP <2 mm Hg2. Two distinct groups emerged by 1 month: autonomically complete SCI with sustained low LF SAP (0.76 ± 0.17 mm Hg2) and autonomically incomplete SCI with increased LF SAP (5.46 ± 1.0 mm Hg2, p < 0.05). Autonomically complete injuries did not recover over time. Cardiovascular symptoms were prevalent and worsened with time, especially in those with autonomically complete lesions, and chronic SCI. Baroreflex function and cardiorespiratory interactions were impaired after SCI. Risk of arrhythmia increased immediately after SCI, and remained elevated throughout the acute phase. Acute SCI is associated with severe cardiovascular dysfunction. LF SAP provides a simple, non-invasive, translatable, quantitative assessment of autonomic function, and is most informative 1 month after injury.
Collapse
Affiliation(s)
- Vera-Ellen M Lucci
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,International Collaboration on Repair and Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica A Inskip
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,International Collaboration on Repair and Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Maureen S McGrath
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,International Collaboration on Repair and Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Ruiz
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rebekah Lee
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair and Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,International Collaboration on Repair and Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Wiener A, Goldstein P, Alkoby O, Doenyas K, Okon‐Singer H. Blood pressure reaction to negative stimuli: Insights from continuous recording and analysis. Psychophysiology 2020; 57:e13525. [PMID: 31922263 PMCID: PMC7078923 DOI: 10.1111/psyp.13525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 11/29/2022]
Abstract
Individuals with a tendency toward abnormally enhanced cardiovascular responses to stress are at greater risk of developing essential hypertension later in life. Accurate profiling of continuous blood pressure (BP) reactions in healthy populations is crucial for understanding normal and abnormal emotional reaction patterns. To this end, we examined the continuous time course of BP reactions to aversive pictures among healthy participants. In two experiments, we showed participants negative and neutral pictures while simultaneously measuring their continuous BP and heart rate (HR) reactions. In this study, BP reactions were analyzed continuously, in contrast to previous studies, in which BP responses were averaged across blocks. To compare time points along a temporal continuum, we applied a multi-level B-spline model, which is innovative in the context of BP analysis. Additionally, HR was similarly analyzed in order to examine its correlation with BP. Both experiments revealed a similar pattern of BP reactivity and association with HR. In line with previous studies, a decline in BP and HR levels was found in response to negative pictures compared to neutral pictures. In addition, in both conditions, we found an unexpected elevation of BP toward the end of the stimuli exposure period. These findings may be explained by the recruitment of attention resources in the presence of negative stimuli, which is alleviated toward the end of the stimulation. This study highlights the importance of continuous measurement and analysis for characterizing the time course of BP reactivity to emotional stimuli.
Collapse
Affiliation(s)
- Avigail Wiener
- Department of PsychologyUniversity of HaifaHaifaIsrael
- The Integrated Brain and Behavior Research Center (IBBR)University of HaifaHaifaIsrael
| | - Pavel Goldstein
- Department of Psychology and Neuroscience and the Institute for Cognitive ScienceUniversity of Colorado BoulderBoulderColorado USA
- School of Public HealthUniversity of HaifaHaifaIsrael
| | - Oren Alkoby
- Department of PsychologyUniversity of HaifaHaifaIsrael
- The Integrated Brain and Behavior Research Center (IBBR)University of HaifaHaifaIsrael
| | - Keren Doenyas
- Department of Nephrology and HypertensionAssaf Harofeh Medical Center, Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
- Sagol Center for Hyperbaric Medicine and ResearchAssaf Harofeh Medical CenterTel‐Aviv UniversityTel‐AvivIsrael
| | - Hadas Okon‐Singer
- Department of PsychologyUniversity of HaifaHaifaIsrael
- The Integrated Brain and Behavior Research Center (IBBR)University of HaifaHaifaIsrael
| |
Collapse
|
32
|
Mueller PJ, Fyk-Kolodziej BE, Azar TA, Llewellyn-Smith IJ. Subregional differences in GABA A receptor subunit expression in the rostral ventrolateral medulla of sedentary versus physically active rats. J Comp Neurol 2020; 528:1053-1075. [PMID: 31642070 PMCID: PMC7046220 DOI: 10.1002/cne.24798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
Neurons in the rostral ventrolateral medulla (RVLM) regulate blood pressure through direct projections to spinal sympathetic preganglionic neurons. Only some RVLM neurons are active under resting conditions due to significant, tonic inhibition by gamma-aminobutyric acid (GABA). Withdrawal of GABAA receptor-mediated inhibition of the RVLM increases sympathetic outflow and blood pressure substantially, providing a mechanism by which the RVLM could contribute chronically to cardiovascular disease (CVD). Here, we tested the hypothesis that sedentary conditions, a major risk factor for CVD, increase GABAA receptors in RVLM, including its rostral extension (RVLMRE ), both of which contain bulbospinal catecholamine (C1) and non-C1 neurons. We examined GABAA receptor subunits GABAAα1 and GABAAα2 in the RVLM/RVLMRE of sedentary or physically active (10-12 weeks of wheel running) rats. Western blot analyses indicated that sedentary rats had lower expression of GABAAα1 and GABAAα2 subunits in RVLM but only GABAAα2 was lower in the RVLMRE of sedentary rats. Sedentary rats had significantly reduced expression of the chloride transporter, KCC2, suggesting less effective GABA-mediated inhibition compared to active rats. Retrograde tracing plus triple-label immunofluorescence identified fewer bulbospinal non-C1 neurons immunoreactive for GABAAα1 but a higher percentage of bulbospinal C1 neurons immunoreactive for GABAAα1 in sedentary animals. Sedentary conditions did not significantly affect the number of bulbospinal C1 or non-C1 neurons immunoreactive for GABAAα2 . These results suggest a complex interplay between GABAA receptor expression by spinally projecting C1 and non-C1 neurons and sedentary versus physically active conditions. They also provide plausible mechanisms for both enhanced sympathoexcitatory and sympathoinhibitory responses following sedentary conditions.
Collapse
Affiliation(s)
- Patrick J. Mueller
- Department of Physiology, Wayne State University School of
Medicine, Detroit MI
| | | | - Toni A. Azar
- Department of Physiology, Wayne State University School of
Medicine, Detroit MI
| | - Ida J. Llewellyn-Smith
- Department of Physiology, Wayne State University School of
Medicine, Detroit MI
- Cardiovascular Medicine, Human Physiology and Centre for
Neuroscience, College of Medicine and Public Health, Flinders University, Bedford
Park SA, AUSTRALIA
| |
Collapse
|
33
|
Freeman R, Illigens BMW, Lapusca R, Campagnolo M, Abuzinadah AR, Bonyhay I, Sinn DI, Miglis M, White J, Gibbons CH. Symptom Recognition Is Impaired in Patients With Orthostatic Hypotension. Hypertension 2020; 75:1325-1332. [PMID: 32223377 DOI: 10.1161/hypertensionaha.119.13619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Failure to recognize symptoms of orthostatic hypotension (OH) may result in falls, syncope, and injuries. The relationship between orthostatic changes in blood pressure and symptom occurrence and severity is not known. The goal of the present study was to define the relationship between the occurrence and severity of the symptoms of orthostatic hypotension (OH) and (1) the upright systolic blood pressure (SBP) and (2) the fall in SBP after tilting in patients with OH. We prospectively studied 89 patients with OH. Reported BP values include the lowest BP in the first 3 minutes of tilt and the change in blood pressure during tilt. Subjects were queried about symptoms of orthostatic intolerance while supine and during the first 3 minutes of tilt testing using Question 1 of the Orthostatic Hypotension Questionnaire. Mean tilted SBP was 101.6±26.1 mm Hg and mean SBP fall 47.9±18.1 mm Hg. Mean symptom scores when upright were: light-headedness (2.3/10±2.7), dizziness (1.6/10±2.5), and impending blackout (0.8/10±1.9). The majority of patients were asymptomatic or mildly symptomatic and no discrete cutoff for symptoms was observed. The magnitude of the SBP fall (r=-0.07, P=NS) and the lowest upright SBP (r=0.08, P=NS) did not correlate with any reported symptom. These results suggest a poor relationship between the magnitude of the orthostatic BP fall, the upright orthostatic BP, and symptoms. Many patients are asymptomatic despite substantial SBP falls and low orthostatic blood pressures. These findings have implications for clinical care of patients with OH and clinical trials to treat patients with OH.
Collapse
Affiliation(s)
- Roy Freeman
- From the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (R.F., B.M.W.I., I.B., C.H.G.)
| | - Ben M W Illigens
- From the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (R.F., B.M.W.I., I.B., C.H.G.)
| | - Razvan Lapusca
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Germany (R.L.)
| | | | - Ahmad R Abuzinadah
- Department of Internal Medicine, King Abdulaziz University Hospital, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia (A.R.A.)
| | - Istvan Bonyhay
- From the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (R.F., B.M.W.I., I.B., C.H.G.)
| | - Dong-In Sinn
- Department of Neurology, Stanford Medical Center, Palo Alto, CA (D.-I.S., M.M.)
| | - Mitchell Miglis
- Department of Neurology, Stanford Medical Center, Palo Alto, CA (D.-I.S., M.M.)
| | - Jeffrey White
- University of Virginia School of Medicine, Charlottesville (J.W.)
| | - Christopher H Gibbons
- From the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (R.F., B.M.W.I., I.B., C.H.G.)
| |
Collapse
|
34
|
Differences in regional grey matter volume of the brain are related to mean blood pressure and muscle sympathetic nerve activity in normotensive humans. J Hypertens 2020; 38:303-313. [DOI: 10.1097/hjh.0000000000002243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Macefield VG, Henderson LA. Identifying Increases in Activity of the Human RVLM Through MSNA-Coupled fMRI. Front Neurosci 2020; 13:1369. [PMID: 32038124 PMCID: PMC6985468 DOI: 10.3389/fnins.2019.01369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
AIM We initially developed concurrent recording of muscle sympathetic nerve activity (MSNA) and functional magnetic resonance imaging (fMRI) of the brain to functionally identify the human homolog of the rostral ventrolateral medulla (RVLM). Here we summarize the cortical and subcortical connections to the RVLM, as identified using MSNA-coupled fMRI. METHODS MSNA was recorded via tungsten microelectrodes inserted into the peroneal nerve. Gradient echo, echo-planar fMRI was performed at 3T (Philips Achieva). 200 volumes (46 axial slices (TR = 8 s, TE = 4 s, flip angle = 90°, raw voxel size = 1.5 × 1.5 × 2.75 mm) were collected in a 4 s-ON, 4 s-OFF sparse sampling protocol and MSNA measured in each 1 s epoch in the 4-s period between scans. Blood oxygen level dependent (BOLD) signal intensity was measured in the corresponding 1 s epoch 4 s later to account for peripheral neural conduction and central neurovascular coupling delays. RESULTS BOLD signal intensity was positively related to bursts of MSNA in the RVLM, dorsomedial hypothalamus (DMH), ventromedial hypothalamus (VMH), insula, dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex (PCC), and precuneus, and negatively related in the caudal ventrolateral medulla (CVLM), nucleus tractus solitarius (NTS), and the midbrain periaqueductal gray (PAG). During physiological increases in MSNA (tonic muscle pain), MSNA-coupled BOLD signal intensity was greater in RVLM, NTS, PAG, DMH, dlPFC, medial prefrontal cortex (mPFC), precuneus, and anterior cingulate cortex (ACC) than at rest. During pathophysiological increases in MSNA [obstructive sleep apnoea (OSA)] signal intensity was also higher in dlPFC, mPFC, ACC, and precuneus than in controls. Conversely, signal intensity was lower in RVLM in OSA than in controls, which we interpret as reflecting a withdrawal of active inhibition of the RVLM. CONCLUSION These results suggest that multiple cortical and subcortical areas are functionally coupled to the RVLM, which in turn is functionally coupled to the generation of spontaneous bursts of MSNA and their augmentation during physiological and pathophysiological increase in vasoconstrictor drive.
Collapse
Affiliation(s)
- Vaughan G. Macefield
- Human Autonomic Neurophysiology Laboratory, School of Medicine, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Luke A. Henderson
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Kobuch S, Macefield VG, Henderson LA. Resting regional brain activity and connectivity vary with resting blood pressure but not muscle sympathetic nerve activity in normotensive humans: An exploratory study. J Cereb Blood Flow Metab 2019; 39:2433-2444. [PMID: 30182800 PMCID: PMC6893974 DOI: 10.1177/0271678x18798442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blood pressure is tightly controlled by the central nervous system, particularly the brainstem. The aim of this study was to investigate the relationship between mean blood pressure (MBP), muscle sympathetic nerve activity (MSNA) and resting regional brain activity in healthy human subjects. Pseudocontinuous arterial spin labeling and functional magnetic resonance imaging of the brain were performed immediately following a laboratory microneurography recording of MSNA and BP measurement in 31 young, healthy normotensive subjects. Regional cerebral blood flow (CBF) correlated significantly with resting MBP levels in the region encompassing the rostroventrolateral medulla (RVLM), dorsolateral pons, and insular, prefrontal and cingulate cortices. Functional connectivity analysis revealed that the ventrolateral prefrontal cortex displayed greater resting connectivity strength within the RVLM in the lower compared with the higher MBP group. No significant differences in CBF were found when subjects were divided based on their MSNA levels. These results suggest that even subtle differences in resting MBP are associated with significant differences in resting activity in brain regions, which are well known to play a role in cardiovascular function. These data raise the question of the potential long-term consequences of differences in regional brain activity levels and their relationship with systemic blood pressure.
Collapse
Affiliation(s)
- Sophie Kobuch
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia.,Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
Jefferys JGR, Arafat MA, Irazoqui PP, Lovick TA. Brainstem activity, apnea, and death during seizures induced by intrahippocampal kainic acid in anaesthetized rats. Epilepsia 2019; 60:2346-2358. [PMID: 31705531 DOI: 10.1111/epi.16374] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 11/30/2022]
Affiliation(s)
- John G. R. Jefferys
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- Department of Pharmacology Oxford University Oxford UK
| | - Muhammad A. Arafat
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- Department of Electrical and Computer Engineering Purdue University West Lafayette IN USA
| | - Pedro P. Irazoqui
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- Department of Electrical and Computer Engineering Purdue University West Lafayette IN USA
| | - Thelma A. Lovick
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- School of Physiology, Pharmacology and Neuroscience University of Bristol Bristol UK
| |
Collapse
|
38
|
Macefield VG, Henderson LA. Identification of the human sympathetic connectome involved in blood pressure regulation. Neuroimage 2019; 202:116119. [PMID: 31446130 DOI: 10.1016/j.neuroimage.2019.116119] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
We review our recent data obtained on the cortical and subcortical components of the human sympathetic connectome - the network of regions involved in the sympathetic control of blood pressure. Specifically, we functionally identified the human homologue of the rostral ventrolateral medulla (RVLM), the primary premotor sympathetic nucleus in the medulla responsible for generating sympathetic vasoconstrictor drive. By performing functional magnetic resonance imaging (fMRI) of the brain at the same time as recording muscle sympathetic nerve activity (MSNA), via a microlectrode inserted into the common peroneal nerve, we are able to identify areas of the brain involved in the generation of sympathetic outflow to the muscle vascular bed, a major contributor to blood pressure regulation. Together with functional connectivity analysis of areas identified through MSNA-coupled fMRI, we have established key components of the human sympathetic connectome and their roles in the control of blood pressure. Whilst our studies confirm the role of lower brainstem regions such as the NTS, CVLM and RVLM in baroreflex control of MSNA, our findings indicate that the insula - hypothalamus - PAG - RVLM circuitry is tightly coupled to MSNA at rest. This fits with data obtained from experimental animals, but also emphasizes the role of areas above the brainstem in the regulation of blood pressure.
Collapse
Affiliation(s)
| | - Luke A Henderson
- Department of Anatomy & Histology, University of Sydney, Sydney, Australia
| |
Collapse
|
39
|
Chan JYH, Chan SHH. Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacol Ther 2019; 201:120-136. [PMID: 31153955 DOI: 10.1016/j.pharmthera.2019.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Based on work-done in the rostral ventrolateral medulla (RVLM), this review presents four lessons learnt from studying the differential impacts of oxidative stress and nitrosative stress on sympathetic vasomotor tone and their clinical and therapeutic implications. The first lesson is that an increase in sympathetic vasomotor tone because of augmented oxidative stress in the RVLM is responsible for the generation of neurogenic hypertension. On the other hand, a shift from oxidative stress to nitrosative stress in the RVLM underpins the succession of increase to decrease in sympathetic vasomotor tone during the progression towards brain stem death. The second lesson is that, by having different cellular sources, regulatory mechanisms on synthesis and degradation, kinetics of chemical reactions, and downstream signaling pathways, reactive oxygen species and reactive nitrogen species should not be regarded as a singular moiety. The third lesson is that well-defined differential roles of oxidative stress and nitrosative stress with distinct regulatory mechanisms in the RVLM during neurogenic hypertension and brain stem death clearly denote that they are not interchangeable phenomena with unified cellular actions. Special attention must be paid to their beneficial or detrimental roles under a specific disease or a particular time-window of that disease. The fourth lesson is that, to be successful, future antioxidant therapies against neurogenic hypertension must take into consideration the much more complicated picture than that presented in this review on the generation, maintenance, regulation or modulation of the sympathetic vasomotor tone. The identification that the progression towards brain stem death entails a shift from oxidative stress to nitrosative stress in the RVLM may open a new vista for therapeutic intervention to slow down this transition.
Collapse
Affiliation(s)
- Julie Y H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
40
|
Mohebbati R, Hosseini M, Khazaei M, Khajavirad A, Shafei MN. The Effects of Inactivation of Pedunculopontine Tegmental Nucleus by Cobalt (II) Chloride on Cardiovascular Responses in Hemorrhagic Hypotensive Rats. Basic Clin Neurosci 2019; 10:235-244. [PMID: 31462978 PMCID: PMC6712636 DOI: 10.32598/bcn.9.10.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/10/2017] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Based on the evidence, the Pedunculopontine Tegmental nucleus (PPT) is involved in cardiovascular function regulation. In this study, the probable role of PPT on cardiovascular parameters in the hypotension induced by Hemorrhage (HEM) was evaluated. METHODS The study rats were divided up into 5 groups: 1. Control (Saline); 2. Cobalt(II) chloride (CoCl2); 3. HEM; 4. Saline+HEM; and 5. CoCl2+HEM. Their right and left femoral arteries were cannulated for recording the cardiovascular responses and blood withdrawal, respectively. Saline and CoCl2 were microinjected into the PPT using the stereotaxic apparatus. Maximum changes of Systolic Blood Pressure (SBP), Mean Arterial Pressure (MAP), and the Heart Rate (HR) after the microinjection of CoCl2 in normal and Hemorrhage conditions were recorded. Changes of SBP, MAP, and HR were calculated over time at 5-min intervals and compared with those of the control and HEM groups using repeated measures ANOVA. The Independent sample t-test was used to compare the changes in cardiovascular parameters between the control and HEM groups at 0 and 20 min after Hemorrhage. RESULTS The changes in SBP, MAP, and HR in the CoCl2 group were not significantly different from those in the control group. In the HEM group, the SBP and MAP changes significantly decreased (P<0.001) and HR changes significantly increased (P<0.001) compared to those parameters in the control group. In the CoCl2+HEM group, SBP and MAP changes were significantly attenuated compared to those in the HEM group (P<0.05) and HR changes induced by Hemorrhage decreased compared to that in the HEM group (P<0.01). CONCLUSION Our results indicate that the PPT has no effects on normal cardiovascular parameters. However, it could modulate cardiovascular responses induced by Hemorrhage.
Collapse
Affiliation(s)
- Reza Mohebbati
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavirad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Lanfranconi F, Ferri A, Pollastri L, Bartesaghi M, Novarina M, De Vito G, Beretta E, Tremolizzo L. Impact of Hanging Motionless in Harness on Respiratory and Blood Pressure Reflex Modulation in Mountain Climbers. High Alt Med Biol 2019; 20:122-132. [PMID: 31009248 PMCID: PMC6602116 DOI: 10.1089/ham.2018.0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Harness hang syncope (HHS) is a risk that specifically affects safety of harness users in mountain climbing. Aims: To evaluate individual patterns of breathing resulting from deranged cardiovascular reflexes triggering a syncopal event when a mismatch between cerebral O2 demand and supply is present. Results: Forty healthy participants [aged 39.1 (8.2) years] were enrolled in a motionless suspension test while hanging in harness. Respiratory gas exchange values were analyzed to assess the pattern of breathing (EpInWel, respiratory elastic power) and cardiovascular parameters were monitored (BP, blood pressure). Four participants experienced HHS after 30.0 (7.6) minutes, with an early manifestation of loss of control of both a sustainable EpInWel and BP, starting after 10–12 minutes. Among the other participants, two different reactions were observed during suspension: (1) group G1 tolerated 32.7 (11.4) minutes of suspension by a favorable adaptation of the EpInWel and BP parameters and (2) group G2 showed significantly shorter time of suspension 24.0 (10.4) minutes with unfavorable increase in EpInWel and BP. Conclusions: Greater resistance to HHS occurs in people developing less marked fluctuations of both respiratory and cardiovascular reflex responses. Conversely, wider fluctuations both in control of EpInWel and BP were observed in the event of decreased suspension tolerance or in syncopal events.
Collapse
Affiliation(s)
- Francesca Lanfranconi
- 1 School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,2 Foundation Monza and Brianza for the Mother and Her Child, Monza, Italy
| | - Alessandra Ferri
- 1 School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,3 Institute for Health and Sport, Victoria University, Melbourne, Australia
| | | | | | | | - Giovanni De Vito
- 1 School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Egidio Beretta
- 1 School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lucio Tremolizzo
- 1 School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
42
|
Abstract
The autonomic nervous system has widespread innervation to nearly every organ system in the body. In order to understand the basics of autonomic function, knowledge of the neuroanatomy of the autonomic nervous system is necessary. Frequently considered to control the "fight or flight" and "rest and digest" functions, the autonomic nervous system has an intricate network of connections to finely tune the systemic response to nearly any situation. Although traditionally considered two discrete systems (sympathetic and parasympathetic), the enteric nervous system is now considered a third component of the autonomic nervous system. This chapter reviews the background of the neuroanatomical distribution of the autonomic nervous system in order to facilitate understanding the basics of autonomic function.
Collapse
Affiliation(s)
- Christopher H Gibbons
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
43
|
Gao H, Korim WS, Yao ST, Heesch CM, Derbenev AV. Glycinergic neurotransmission in the rostral ventrolateral medulla controls the time course of baroreflex-mediated sympathoinhibition. J Physiol 2018; 597:283-301. [PMID: 30312491 DOI: 10.1113/jp276467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/11/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS To maintain appropriate blood flow to various tissues of the body under a variety of physiological states, autonomic nervous system reflexes regulate regional sympathetic nerve activity and arterial blood pressure. Our data obtained in anaesthetized rats revealed that glycine released in the rostral ventrolateral medulla (RVLM) plays a critical role in maintaining arterial baroreflex sympathoinhibition. Manipulation of brainstem nuclei with known inputs to the RVLM (nucleus tractus solitarius and caudal VLM) unmasked tonic glycinergic inhibition in the RVLM. Whole-cell, patch clamp recordings demonstrate that both GABA and glycine inhibit RVLM neurons. Potentiation of neurotransmitter release from the active synaptic inputs in the RVLM produced saturation of GABAergic inhibition and emergence of glycinergic inhibition. Our data suggest that GABA controls threshold excitability, wherreas glycine increases the strength of inhibition under conditions of increased synaptic activity within the RVLM. ABSTRACT The arterial baroreflex is a rapid negative-feedback system that compensates changes in blood pressure by adjusting the output of presympathetic neurons in the rostral ventrolateral medulla (RVLM). GABAergic projections from the caudal VLM (CVLM) provide a primary inhibitory input to presympathetic RVLM neurons. Although glycine-dependent regulation of RVLM neurons has been proposed, its role in determining RVLM excitability is ill-defined. The present study aimed to determine the physiological role of glycinergic neurotransmission in baroreflex function, identify the mechanisms for glycine release, and evaluate co-inhibition of RVLM neurons by GABA and glycine. Microinjection of the glycine receptor antagonist strychnine (4 mm, 100 nL) into the RVLM decreased the duration of baroreflex-mediated inhibition of renal sympathetic nerve activity (control = 12 ± 1 min; RVLM-strychnine = 5.1 ± 1 min), suggesting that RVLM glycine plays a critical role in regulating the time course of sympathoinhibition. Blockade of output from the nucleus tractus solitarius and/or disinhibition of the CVLM unmasked tonic glycinergic inhibition of the RVLM. To evaluate cellular mechanisms, RVLM neurons were retrogradely labelled (prior injection of pseudorabies virus PRV-152) and whole-cell, patch clamp recordings were obtained in brainstem slices. Under steady-state conditions GABAergic inhibition of RVLM neurons predominated and glycine contributed less than 25% of the overall inhibition. By contrast, stimulation of synaptic inputs in the RVLM decreased GABAergic inhibition to 53%; and increased glycinergic inhibition to 47%. Thus, under conditions of increased synaptic activity in the RVLM, glycinergic inhibition is recruited to strengthen sympathoinhibition.
Collapse
Affiliation(s)
- Hong Gao
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Willian S Korim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Cheryl M Heesch
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA.,Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
44
|
Chan SHH, Chan JYH. Mitochondria and Reactive Oxygen Species Contribute to Neurogenic Hypertension. Physiology (Bethesda) 2018; 32:308-321. [PMID: 28615314 DOI: 10.1152/physiol.00006.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Beyond its primary role as fuel generators, mitochondria are engaged in a variety of cellular processes, including redox homeostasis. Mitochondrial dysfunction, therefore, may have a profound impact on high-energy-demanding organs such as the brain. Here, we review the roles of mitochondrial biogenesis and bioenergetics, and their associated signaling in cellular redox homeostasis, and illustrate their contributions to the oxidative stress-related neural mechanism of hypertension, focusing on specific brain areas that are involved in the generation or modulation of sympathetic outflows to the cardiovascular system. We also highlight future challenges of research on mitochondrial physiology and pathophysiology.
Collapse
Affiliation(s)
- Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
45
|
Wszedybyl-Winklewska M, Wolf J, Szarmach A, Winklewski PJ, Szurowska E, Narkiewicz K. Central sympathetic nervous system reinforcement in obstructive sleep apnoea. Sleep Med Rev 2018; 39:143-154. [DOI: 10.1016/j.smrv.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/30/2023]
|
46
|
Morgan BJ, Schrimpf N, Rothman M, Mitzey A, Brownfieldc MS, Speth RC, Dopp JM. Effect of Chronic Intermittent Hypoxia on Angiotensin II Receptors in the Central Nervous System. Clin Exp Hypertens 2018; 41:1-7. [PMID: 29561178 PMCID: PMC6150845 DOI: 10.1080/10641963.2018.1451536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
Chronic intermittent hypoxia (CIH) increases basal sympathetic nervous system activity, augments chemoreflex-induced sympathoexcitation, and raises blood pressure. All effects are attenuated by systemic or intracerebroventricular administration of angiotensin II type 1 receptor (AT1R) antagonists. This study aimed to quantify the effects of CIH on AT1R- and AT2R-like immunoreactivity in the rostroventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), central regions that are important components of the extended chemoreflex pathway. Eighteen Sprague-Dawley rats were exposed to intermittent hypoxia (FIO2 = 0.10, 1 min at 4-min intervals) for 10 hr/day for 1, 5, 10, or 21 days. After exposure, rats were deeply anesthetized and transcardially perfused with phosphate buffered saline (PBS) followed by 4% paraformaldehyde in PBS. Brains were removed and sectioned coronally into 50 µm slices. Immunohistochemistry was used to quantify AT1R and AT2R in the RVLM and the PVN. In the RVLM, CIH significantly increased the AT1R-like immunoreactivity, but did not alter AT2R immunoreactivity, thereby augmenting the AT1R:AT2R ratio in this nucleus. In the PVN, CIH had no effect on immunoreactivity of either receptor subtype. The current findings provide mechanistic insight into increased basal sympathetic outflow, enhanced chemoreflex sensitivity, and blood pressure elevation observed in rodents exposed to CIH.
Collapse
Affiliation(s)
- Barbara J. Morgan
- John Rankin Laboratory of Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Nicole Schrimpf
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Morgan Rothman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Ann Mitzey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Mark S. Brownfieldc
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Robert C. Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - John M. Dopp
- Pharmacy Practice Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
47
|
Role of ventral medullary catecholaminergic neurons for respiratory modulation of sympathetic outflow in rats. Sci Rep 2017; 7:16883. [PMID: 29203815 PMCID: PMC5715015 DOI: 10.1038/s41598-017-17113-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
Sympathetic activity displays rhythmic oscillations generated by brainstem inspiratory and expiratory neurons. Amplification of these rhythmic respiratory-related oscillations is observed in rats under enhanced central respiratory drive or during development of neurogenic hypertension. Herein, we evaluated the involvement of ventral medullary sympatho-excitatory catecholaminergic C1 neurons, using inhibitory Drosophila allatostatin receptors, for the enhanced expiratory-related oscillations in sympathetic activity in rats submitted to chronic intermittent hypoxia (CIH) and following activation of both peripheral (hypoxia) and central chemoreceptors (hypercapnia). Pharmacogenetic inhibition of C1 neurons bilaterally resulted in reductions of their firing frequency and amplitude of inspiratory-related sympathetic activity in rats in normocapnia, hypercapnia or after CIH. In contrast, hypercapnia or hypoxia-induced enhanced expiratory-related sympathetic oscillations were unaffected by C1 neuronal inhibition. Inhibition of C1 neurons also resulted in a significant fall in arterial pressure and heart rate that was similar in magnitude between normotensive and CIH hypertensive rats, but basal arterial pressure in CIH rats remained higher compared to controls. C1 neurons play a key role in regulating inspiratory modulation of sympathetic activity and arterial pressure in both normotensive and CIH hypertensive rats, but they are not involved in the enhanced late-expiratory-related sympathetic activity triggered by activation of peripheral or central chemoreceptors.
Collapse
|
48
|
Lanfranconi F, Pollastri L, Corna G, Bartesaghi M, Novarina M, Ferri A, Miserocchi GA. The Elusive Path of Brain Tissue Oxygenation and Cerebral Perfusion in Harness Hang Syncope in Mountain Climbers. High Alt Med Biol 2017; 18:363-371. [PMID: 28981369 DOI: 10.1089/ham.2017.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lanfranconi, Francesca, Luca Pollastri, Giovanni Corna, Manuela Bartesaghi, Massimiliano Novarina, Alessandra Ferri, and Giuseppe Andrea Miserocchi. The elusive path of brain tissue oxygenation and cerebral perfusion in harness hang syncope in mountain climbers. High Alt Med Biol. 18:363-371, 2017. AIM Harness hang syncope (HHS) is a risk that specifically affects wide ranges of situations requiring safety harnesses in mountains. An irreversible orthostatic stasis could lead to death if a prompt rescue is not performed. We aimed at evaluating the risk of developing HHS and at identifying the characteristics related to the pathogenesis of HHS. RESULTS Forty adults (aged 39.1 [8.2] years) were enrolled in a suspension test lasting about 28.7 (11.4) minutes. We measured cardiovascular parameters, and near infrared spectroscopy (NIRS) was used to assess cerebral hypoxia by changes in the concentration of oxyhemoglobin (Δ[HbO2]) and de-oxyhemoglobin (Δ[HHb]). In the four participants who developed HHS: (1) systolic and diastolic blood pressure showed ample oscillations with a final abrupt drop (∼30 mmHg); (2) Δ[HbO2] increased after 8-12 minutes of suspension and reached a plateau before HHS; and (3) Δ[HHb] decreased with a final abrupt increase before syncope. CONCLUSIONS Participants who developed HHS failed to activate cardiovascular reflexes that usually safeguard O2 availability to match the metabolic needs of the brain tissue. Since cerebral hypoxia was detected as an early phenomenon by Δ[HbO2] and Δ[HHb] changes, NIRS measurement appears to be the most important parameter to monitor the onset of HHS.
Collapse
Affiliation(s)
- Francesca Lanfranconi
- 1 Laboratory of Clinical Physiology and Sport Medicine, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | | | - Giovanni Corna
- 1 Laboratory of Clinical Physiology and Sport Medicine, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | | | | | - Alessandra Ferri
- 1 Laboratory of Clinical Physiology and Sport Medicine, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy .,3 Clinical Exercise Science Research Program, Institute of Sport Exercise and Active Living (ISEAL), Victoria University , Melbourne, Australia
| | - Giuseppe Andrea Miserocchi
- 1 Laboratory of Clinical Physiology and Sport Medicine, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| |
Collapse
|
49
|
Grisk O. Caudal medullary and cervical spinal cord neurons in cardiovascular regulation. J Hypertens 2017; 35:1950-1951. [PMID: 28858195 DOI: 10.1097/hjh.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Olaf Grisk
- Department of Physiology, University of Greifswald, Greifswald-Karlsburg, Karlsburg, Germany
| |
Collapse
|
50
|
Under What Circumstances Do Rostral Ventrolateral Medulla Neurons Support Blood Pressure? J Neurosci 2017; 37:8048-8050. [PMID: 28842507 DOI: 10.1523/jneurosci.1508-17.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/18/2017] [Accepted: 07/23/2017] [Indexed: 11/21/2022] Open
|