1
|
Rivas M, Serantes D, Peña F, González J, Ferreira A, Torterolo P, Benedetto L. Role of Hypocretin in the Medial Preoptic Area in the Regulation of Sleep, Maternal Behavior and Body Temperature of Lactating Rats. Neuroscience 2021; 475:148-162. [PMID: 34500018 DOI: 10.1016/j.neuroscience.2021.08.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/11/2022]
Abstract
Hypocretins (HCRT), also known as orexins, includes two neuroexcitatory peptides, HCRT-1 and HCRT-2 (orexin A y B, respectively), synthesized by neurons located in the postero-lateral hypothalamus, whose projections and receptors are widely distributed throughout the brain, including the medial preoptic area (mPOA). HCRT have been associated with a wide range of physiological functions including sleep-wake cycle, maternal behavior and body temperature, all regulated by the mPOA. Previously, we showed that HCRT in the mPOA facilitates certain active maternal behaviors, while the blockade of HCRT-R1 increases the time spent in nursing. As mother rats mainly sleep while they nurse, we hypothesize that HCRT in the mPOA of lactating rats reduce sleep and nursing, while intra-mPOA administration of a dual orexin receptor antagonist (DORA) would cause the opposite effect. Therefore, the aim of this study was to determine the role of HCRT within the mPOA, in the regulation and integration of the sleep-wake cycle, maternal behavior and body temperature of lactating rats. For that purpose, we assessed the sleep-wake states, maternal behavior and body temperature of lactating rats following microinjections of HCRT-1 (100 and 200 µM) and DORA (5 mM) into the mPOA. As expected, our data show that HCRT-1 in mPOA promote wakefulness and a slightly increase in body temperature, whereas DORA increases both NREM and REM sleep together with an increment of nursing and milk ejection. Taken together, our results strongly suggest that the endogenous reduction of HCRT within the mPOA contribute to the promotion of sleep, milk ejection and nursing behavior in lactating rats.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Serantes
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Peña
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquín González
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
2
|
Ciccimarra R, Bussolati S, Grasselli F, Grolli S, Ragionieri L, Ravanetti F, Botti M, Gazza F, Cacchioli A, Di Lecce R, Cantoni AM, Basini G. Orexin system in swine ovarian follicles. Domest Anim Endocrinol 2018; 62:49-59. [PMID: 29053993 DOI: 10.1016/j.domaniend.2017.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/17/2022]
Abstract
Successful reproduction is strictly linked to metabolic cues. The orexins are a family of hypothalamic neurohormones, well known for their key role in the control of food intake and the involvement in several aspects of the reproductive process. The biological actions of both orexins are carried out through binding to the related Orexin 1 (OX1R) and Orexin 2 (OX2R) G-protein-coupled receptors. The purpose of this study was to investigate the presence of orexin system components in the porcine ovaries, to contribute to expand the knowledge about their pleiotropic role. First, we investigated the localization of orexin A (OXA) and its receptors by immunochemistry in different ovarian districts. Thereafter, we evaluated the expression of the prepro-orexin (PPO) gene and OXA effects on granulosa cell functions. Immunohistochemical study revealed the presence of orexinergic system components in porcine ovarian follicles. Moreover, our data show the expression of PPO messenger RNA in swine ovarian follicles >5 mm. In addition, OXA influences proliferation (P < 0.05), steroidogenic activity (P < 0.05), and redox status of granulosa cells (P < 0.05). Therefore, we hypothesize that OXA could exert a local physiological role in swine ovarian follicles even if further studies are required to deeply define the function of this pleiotropic system.
Collapse
Affiliation(s)
- R Ciccimarra
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - L Ragionieri
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Ravanetti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - M Botti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Gazza
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - A Cacchioli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - R Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - A M Cantoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
3
|
Zaghloul H, Pallayova M, Al-Nuaimi O, Hovis KR, Taheri S. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions. Diabet Med 2018; 35:41-52. [PMID: 29108100 DOI: 10.1111/dme.13542] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 12/28/2022]
Abstract
The increasing global prevalence of diabetes mellitus presents a significant challenge to healthcare systems today. Although diabetic retinopathy, nephropathy and neuropathy are well-established complications of diabetes, there is a paucity of research examining the impact of dysglycaemia on the olfactory system. Olfaction is an important sense, playing a role in the safety, nutrition and quality of life of an individual, but its importance is often overlooked when compared with the other senses. As a result, olfactory dysfunction is often underdiagnosed. The present review article aims to present and discuss the available evidence on the relationship between diabetes and olfaction. It also explores the associations between olfactory dysfunction and diabetes complications that could explain the underlying pathogenesis. Finally, it summarizes the putative pathological mechanisms underlying olfactory dysfunction in diabetes that require further investigation.
Collapse
Affiliation(s)
- H Zaghloul
- Clinical Research Core, Weill Cornell Medicine, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, Doha, Qatar
- Weill Cornell Medicine, New York, NY, USA
| | - M Pallayova
- Clinical Research Core, Weill Cornell Medicine, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, Doha, Qatar
- Weill Cornell Medicine, New York, NY, USA
| | - O Al-Nuaimi
- Carnegie Mellon University, Doha, Qatar
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - K R Hovis
- Carnegie Mellon University, Doha, Qatar
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - S Taheri
- Clinical Research Core, Weill Cornell Medicine, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, Doha, Qatar
- Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
|
5
|
Rivas M, Torterolo P, Ferreira A, Benedetto L. Hypocretinergic system in the medial preoptic area promotes maternal behavior in lactating rats. Peptides 2016; 81:9-14. [PMID: 27083313 DOI: 10.1016/j.peptides.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Hypocretin-1 and 2 (HCRT-1 and HCRT-2, respectively) are neuropeptides synthesized by neurons located in the postero-lateral hypothalamus, whose projections are widely distributed throughout the brain. The hypocretinergic (HCRTergic) system has been associated with the generation and maintenance of wakefulness, as well as with the promotion of motivated behaviors. In lactating rats, intra-cerebroventricular HCRT-1 administration stimulates maternal behavior, whilst lactation per se increases the expression of HCRT type 1 receptor (HCRT-R1). Due to the fact that HCRTergic receptors are expressed in the medial preoptic area (mPOA), a region critically involved in maternal behavior, we hypothesize that HCRT-1 promotes maternal behavior acting on this region. In order to evaluate this hypothesis, we assessed the maternal behavior of lactating rats following microinjections of HCRT-1 (10 or 100μM) and the selective HCRT-R1 antagonist SB-334867 (250μM) into the mPOA, during the first and second postpartum weeks. While intra-mPOA microinjections of HCRT-1 (100μM) increased corporal pup licking during the second postpartum week, the blockade of HCRT-R1 significantly decreased active components of maternal behavior, such as retrievals, corporal and ano-genital lickings, and increased the time spent in nursing postures in both postpartum periods. We conclude that HCRTergic system in the mPOA may stimulate maternal behavior, suggesting that endogenous HCRT-1 is necessary for the natural display of this behavior.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
6
|
Abstract
Pre-diabetes and diabetes occur secondary to a constellation of pathophysiological abnormalities that culminate in insulin resistance, which results in reduced cellular glucose uptake and increased glucose production. Although pre-diabetes and diabetes have a strong genetic basis, they are largely environmentally driven through lifestyle factors. Traditional lifestyle factors such as diet and physical activity do not fully explain the dramatic rise in the incidence and prevalence of diabetes mellitus. Sleep has emerged as an additional lifestyle behavior, important for metabolic health and energy homeostasis. In this article, we review the current evidence surrounding the sleep-diabetes association.
Collapse
Affiliation(s)
- Teresa Arora
- Department of Medicine, Weill Cornell Medical College in Qatar, Room C008, Qatar Foundation, Education City, PO Box 24144, Doha, Qatar
- Department of Medicine, Weill Cornell Medical College, New York, USA
| | - Shahrad Taheri
- Department of Medicine, Weill Cornell Medical College in Qatar, Room C008, Qatar Foundation, Education City, PO Box 24144, Doha, Qatar.
| |
Collapse
|
7
|
Effects of hypocretin and norepinephrine interaction in bed nucleus of the stria terminalis on arterial pressure. Neuroscience 2013; 255:278-91. [PMID: 24070630 DOI: 10.1016/j.neuroscience.2013.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 11/20/2022]
Abstract
Forebrain neuronal circuits containing hypocretin-1 (hcrt-1) and norepinephrine (NE) are important components of central arousal-related processes. Recently, these two systems have been shown to have an overlapping distribution within the bed nucleus of the stria terminalis (BST), a limbic structure activated by stressful challenges, and which functions to adjust arterial pressure (AP) and heart rate (HR) to the stressor. However, whether hcrt-1 and NE interact in BST to alter cardiovascular function is unknown. Experiments were done in urethane-α-chloralose anesthetized, paralyzed, and artificially ventilated male Wistar rats to investigate the effect of hcrt-1 and NE on the cardiovascular responses elicited by l-glutamate (Glu) stimulation of BST neurons. Microinjections of hcrt-1, NE or tyramine into BST attenuated the decrease in AP and HR to Glu stimulation of BST. Additionally, combined injections of hcrt-1 with NE or tyramine did not elicit a greater attenuation than either compound alone. Furthermore, injections into BST of the α2-adrenergic receptor (α2-AR) antagonist yohimbine, but not the α1-AR antagonist 2-{[β-(4-hydroxyphenyl)ethyl]aminomethyl}-1-tetralone hydrochloride, blocked both the hcrt-1 and NE-induced inhibition of the BST cardiovascular depressors responses. Finally, injections into BST of the GABAA receptor antagonist bicuculline, but not the GABAB receptor antagonist phaclofen, blocked the hcrt-1 and NE attenuation of the BST Glu-induced depressor and bradycardia responses. These data suggest that hcrt-1 effects in BST are mediated by NE neurons, and hcrt-1 likely acts to facilitate the synaptic release of NE. NE neurons, acting through α2-AR may activate Gabaergic neurons in BST, which in turn through the activation of GABAA receptors inhibit a BST sympathoinhibitory pathway. Taken together, these data suggest that hcrt-1 pathways to BST through their interaction with NE and Gabaergic neurons may function in the coordination of cardiovascular responses associated with different behavioral states.
Collapse
|
8
|
Different levels in orexin concentrations and risk factors associated with higher orexin levels: comparison between detoxified opiate and methamphetamine addicts in 5 Chinese cities. BIOMED RESEARCH INTERNATIONAL 2013; 2013:282641. [PMID: 24102051 PMCID: PMC3786501 DOI: 10.1155/2013/282641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/01/2013] [Indexed: 11/17/2022]
Abstract
This study sought to explore the degree of orexin levels in Chinese opiate and methamphetamine addicts and the differences between them. The cross-sectional study was conducted among detoxified drug addicts from Mandatory Detoxification Center (MDC) in five Chinese cities. Orexin levels were assayed with radioimmunoassay (RIA). Mann-Whitney U test and Kruskal-Wallis test were used to detect differences across groups, and logistic regression was used to explore the association between orexin levels and characteristics of demographic and drug abuse. Between November 2009 and January 2011, 285 opiates addicts, 112 methamphetamine addicts, and 79 healthy controls were enrolled. At drug withdrawal period, both opiate and methamphetamine addicts had lower median orexin levels than controls, and median orexin levels in opiate addicts were higher than those in methamphetamine addicts (all above P < 0.05). Adjusted odds of the above median concentration of orexin were higher for injection than "chasing the dragon" (AOR = 3.1, 95% CI = 1.2-7.9). No significant factors associated with orexin levels of methamphetamine addicts were found. Development of intervention method on orexin system by different administration routes especially for injected opiate addicts at detoxification phase may be significant and was welcome.
Collapse
|
9
|
Boss C, Brisbare-Roch C, Jenck F. Biomedical application of orexin/hypocretin receptor ligands in neuroscience. J Med Chem 2009; 52:891-903. [PMID: 19199652 DOI: 10.1021/jm801296d] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christoph Boss
- Drug Discovery and Preclinical Research & Development, Actelion Pharmaceuticals Ltd., CH-4123 Allschwil, Switzerland.
| | | | | |
Collapse
|
10
|
Papakonstantinou P, Tziris N, Kesisoglou I, Gotzamani-Psarrakou A, Tsonidis C, Patsikas M, Papazoglou L. Impact of Porcine Orexin a on Glucagon Plasma Concentrations in Pigs. Int J Immunopathol Pharmacol 2008; 21:527-38. [DOI: 10.1177/039463200802100306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In 1998, Orexin A was added to the long list of orexigenic neuropeptides of the brain's physiology. Orexin A is involved in the central control of appetite and in energy homeostasis, as well as in the regulation of many other physiological functions. It is produced by a small cluster of the brain's neurons, located mainly in and around the lateral hypothalamic area. This site is known to be involved in regulating feeding in mammals. An intracerebroventricular injection of Orexin A into the rat's brain causes an impressive increase in the consumption of food, while an intravenous injection induces changes on glucagon plasma concentrations in rats. In addition, there are signs of changes on glucagon plasma concentrations when Orexin A acts on individual pancreatic islets of rats. In this study, we investigated the potential effects of the central administration of porcine Orexin A on glucagon plasma concentrations in pigs, and examined whether these changes are associated with the possible effect of the neuropeptide on the enteroinsular axis.
Collapse
Affiliation(s)
| | | | - I. Kesisoglou
- Department of Nuclear Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - A. Gotzamani-Psarrakou
- 2nd Neurosurgical Clinic A. U. T., Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Chr. Tsonidis
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | | | | |
Collapse
|
11
|
Papakonstantinou P, Tziris N, Kesisoglou I, Gotzamani-Psarrakou A, Tsonidis C, Patsikas M, Papazoglou L. The Effect of Porcine Orexin a on C-Peptide Plasma Concentrations in Pigs. EUR J INFLAMM 2007. [DOI: 10.1177/1721727x0700500303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The hypothalamus and the neuropeptides that are produced and act within its neuronal circuits constitute an area of extensive laboratory research. In 1998, the neuropeptide, Orexin A, was discovered and isolated from the hypothalamus of the rat. An i.c.v. injection of Orexin A into the lateral ventricle of the rat's brain causes an increase in the consumption of food, and, apart from appetite, it also seems to be regulating many other normal functions of the organism, whose regulatory and metabolic mechanisms remain unknown to date. The neuropeptide is produced by a small cluster located in and round the lateral hypothalamic area. It has been known for decades that this area is involved in the regulation of feeding and energy homeostasis in mammals. The intravenous, subcutaneous, or i.c.v. injection of Orexin A causes changes in insulin and glucagon concentrations. The same effect is also seen under in vitro experimental conditions. In this study, we investigated the potential effects of i.c.v. administration of porcine Orexin A on c-peptide concentrations in the peripheral blood of pigs, and tested whether these changes are associated with the potential effect of the neuropeptide on the function of the pancreas.
Collapse
Affiliation(s)
| | | | - I. Kesisoglou
- 3rd Surgical Clinic, Aristotle University of Thessaloniki, Macedonia, Thessaloniki, Greece
| | - A. Gotzamani-Psarrakou
- Department of Nuclear Medicine, Aristotle University of Thessaloniki, Macedonia, Thessaloniki, Greece
| | - C. Tsonidis
- 2nd Neurosurgical Clinic A. U. T., Aristotle University of Thessaloniki, Macedonia, Thessaloniki, Greece
| | | | - L.G. Papazoglou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Macedonia, Thessaloniki, Greece
| |
Collapse
|
12
|
Abstract
Increases in neuronal activity of hypocretin (HCRT), a peptide involved in arousal, and in HCRT-1 receptor mRNA expression have recently been identified in association with lactation. HCRT is released within brain regions regulating maternal behaviour and it is possible that increased HCRT neurotransmission during lactation supports maternal care. The present study examined for the first time the behavioural effects of HCRT on lactating mice. At intermediate doses, intracerebroventricular (i.c.v.) injections of HCRT-1 (0.06 and 0.1 microg) elevated levels of licking and grooming of pups (but not self-grooming) and number of nursing bouts without affecting other behaviours. At the highest dose, HCRT-1 (0.3 microg, i.c.v) delayed latency to nurse, decreased nursing, increased time off nest, and decreased maternal aggression. Intraperitoneal injections of the HCRT-1 receptor antagonist, SB-334867, exhibited a general trend towards increasing time spent low-arched back nursing (P = 0.053) and decreasing licking and grooming of pups while high-arched back nursing (P = 0.052). This suggests that the endogenous release of HCRT, working independently or dependently with other neuromodulators, may be necessary for full maternal behaviour expression. Possible sites of HCRT action in enhancing and impairing maternal care were identified via examinations of c-Fos immunoreactivity in association with i.c.v. HCRT injections. Together, these finding support the idea of HCRT modulating maternal behaviour, with intermediate levels (0.06 and 0.1 microg) supporting (even augmenting) some behaviours, but with levels that are too high (0.3 microg HCRT, i.c.v.), maternal behaviour and aggression are suppressed.
Collapse
Affiliation(s)
- K L D'Anna
- Department of Zoology, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
13
|
Spinazzi R, Andreis PG, Rossi GP, Nussdorfer GG. Orexins in the regulation of the hypothalamic-pituitary-adrenal axis. Pharmacol Rev 2006; 58:46-57. [PMID: 16507882 DOI: 10.1124/pr.58.1.4] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Orexin-A and orexin-B are hypothalamic peptides that act via two G protein-coupled receptors, named orexin type 1 and type 2 receptors (OX1-Rs and OX2-Rs). The most studied biological functions of orexins are the central control of feeding and sleep, but in the past few years findings that orexin system modulates the hypothalamic-pituitary-adrenal (HPA) axis, acting on both its central and peripheral branches, have accumulated. Orexins and their receptors are expressed in the hypothalamic paraventricular nucleus and median eminence and orexin receptors in pituitary corticotropes, adrenal cortex, and medulla. Whereas the effects of orexins on adrenal aldosterone secretion are doubtful, compelling evidence indicates that these peptides enhance glucocorticoid production in rats and humans. This effect involves a 2-fold mechanism: 1) stimulation of the adrenocorticotropin-releasing hormone-mediated pituitary release of adrenocorticotropin, which in turn raises adrenal glucocorticoid secretion; and 2) direct stimulation of adrenocortical cells via OX1-Rs coupled to the adenylate cyclase-dependent cascade. The effects of orexins on catecholamine release from adrenal medulla are unclear and probably of minor relevance, but there are indications that orexins can stimulate in vitro secretion of human pheochromocytoma cells via OX2-Rs coupled to the phospholipase C-dependent cascade. Evidence is also available that orexins enhance the growth in vitro of adrenocortical cells, mainly acting via OX2-Rs. Moreover, findings suggest that the orexin system may favor HPA axis responses to stresses and play a role in the pathophysiology of cortisol-secreting adrenal adenomas.
Collapse
Affiliation(s)
- Raffaella Spinazzi
- Department of Human Anatomy and Physiology, School of Medicine, University of Padua, Italy
| | | | | | | |
Collapse
|
14
|
Ford GK, Al-Barazanji KA, Wilson S, Jones DNC, Harbuz MS, Jessop DS. Orexin expression and function: glucocorticoid manipulation, stress, and feeding studies. Endocrinology 2005; 146:3724-31. [PMID: 15961555 DOI: 10.1210/en.2005-0496] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the effects of glucocorticoid manipulation on orexin-A-induced feeding and prepro-orexin mRNA levels in the lateral hypothalamic area (LHA) of the rat brain. Adrenalectomy (ADX) reduced orexin-A-induced feeding over 4 h by about 60%, compared with shams, an effect that was reversed by corticosterone (CORT) replacement. ADX had no effect on prepro-orexin mRNA levels in the LHA in either the morning or the evening; however, message was up-regulated by CORT in the morning but not the evening. An increased number of emulsion grains per cell in the LHA suggests that this is a specific increase in prepro-orexin mRNA and is not due to an increased number of cells expressing message. Prepro-orexin mRNA levels in the LHA were elevated 4 h after injection of lipopolysaccharide, compared with saline-injected controls. Partial but not complete abolition of orexin-A-induced feeding by ADX suggests that orexin-A-induced feeding may be mediated through glucocorticoid-dependent and glucocorticoid-independent pathways. In the morning increased prepro-orexin mRNA after CORT replacement demonstrates that orexin expression is sensitive to increased concentrations of glucocorticoids. However, the lack of effect of ADX on prepro-orexin mRNA levels suggests that endogenous glucocorticoids are not involved in tonic regulation of basal prepro-orexin expression. Overall our data constitute a body of evidence for an integrated relationship between central orexin expression, stress, glucocorticoid manipulation, and feeding patterns in the rat.
Collapse
Affiliation(s)
- Gemma K Ford
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Akanmu MA, Honda K. Selective stimulation of orexin receptor type 2 promotes wakefulness in freely behaving rats. Brain Res 2005; 1048:138-45. [PMID: 15919057 DOI: 10.1016/j.brainres.2005.04.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 04/20/2005] [Accepted: 04/22/2005] [Indexed: 10/25/2022]
Abstract
Orexins A and B are a pair of neuropeptides implicated in the regulation of feeding and arousal behavior mediated through two orexin receptors type 1 and type 2. We have determined the arousal effects of newly developed selective orexin receptor type 2 agonist, [Ala11]orexin-B, on the sleep-wake cycle in rats. The effects of third ventricle intracerebroventricular (ICV) infusion of the novel orexin receptor type 2 selective agonist, [Ala11]orexin-B, on the sleep-wake cycle were investigated. ICV infusion of [Ala11]orexin-B (1, 10 and 40 nmol) during the light period (11:00-16:00) dose-dependently resulted in a significant increase in wake duration by 46.9% (n = 5, P < 0.05), 159.2% (n = 4, P < 0.01) and 163.6% (n = 7, P < 0.01)), respectively, and a significant decrease in rapid eye movement (REM) (P < 0.01) and non-REM sleep (P < 0.01) for all doses. In contrast, ICV infusion of orexin B at the same doses (1, 10 and 40 nmol) caused a 16.6% (n = 6, non-significant), 99.8% (n = 6, P < 0.05) and 72.0% (n = 4, P < 0.05) increase in wakefulness, respectively. Moreover, orexin-A, which exerts its effects through orexin receptor type 1 and orexin receptor type 2 with similar potency, resulted in a significant increase in wakefulness duration by 17.1% (n = 6, P < 0.05), 184.0% (n = 6, P < 0.01) and 228.6% (n = 6, P < 0.01) at doses of 0.1, 1 and 10 nmol, respectively. Further, the enhancement of wakefulness was accompanied by a marked reduction in REM and non-REM sleep. These findings suggest that orexin receptor type 2 plays an important role in the modulation of sleep-wake state and behavioral responses.
Collapse
Affiliation(s)
- Moses A Akanmu
- Department of Biosystem Regulation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | |
Collapse
|
16
|
Fabris C, Cozzi B, Hay-Schmidt A, Naver B, Møller M. Demonstration of an orexinergic central innervation of the pineal gland of the pig. J Comp Neurol 2004; 471:113-27. [PMID: 14986306 DOI: 10.1002/cne.20007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Orexins/hypocretins, two isoforms of the same prepropeptide, are widely distributed throughout the brain and are involved in several physiological and neuroendocrine regulatory patterns, mostly related to feeding, sleep, arousal, and cyclic sleep-wake behaviors. Orexin-A and orexin-B bind with different affinities to two G-protein-coupled transmembrane receptors, orexin-1 and orexin-2 receptors (OR-R1 and OR-R2, respectively). Because of the similarities between the human and the swine brain, we have studied the pig to investigate the orexinergic system in the diencephalon, with special emphasis on the neuroanatomical projections to the epithalamic region. By using antibodies against orexin-A and orexin-B, immunoreactive large multipolar perikarya were detected in the hypothalamic periventricular and perifornical areas at the light and electron microscopic levels. In the region of the paraventricular nucleus, the orexinergic neurons extended all the way to the lateral hypothalamic area. Immunoreactive nerve fibers, often endowed with large varicosities, were found throughout the hypothalamus and the epithalamus. Some periventricular immunoreactive nerve fibers entered the epithalamic region and continued into the pineal stalk and parenchyma to disperse among the pinealocytes. Immunoelectron microscopy confirmed the presence of orexinergic nerve fibers in the pig pineal gland. After extraction of total mRNA from the hypothalamus and pineal gland, we performed RT-PCR and nested PCR using primers specific for porcine orexin receptors. PCR products were sequenced, verifying the presence of both OR-R1 and OR-R2 in the tissues investigated. These findings, supported by previous studies on rodents, suggest a hypothalamic regulation of the pineal gland via central orexinergic nervous inputs.
Collapse
Affiliation(s)
- Chiara Fabris
- Department of Experimental Veterinary Science, University of Padua, I-35020 Legnaro, Italy.
| | | | | | | | | |
Collapse
|
17
|
Abstract
The hypocretins (orexins) are two novel neuropeptides (Hcrt-1 and Hcrt-2), derived from the same precursor gene, that are synthesized by neurons located exclusively in the lateral, posterior, and perifornical hypothalamus. Hypocretin-containing neurons have widespread projections throughout the CNS with particularly dense excitatory projections to monoaminergic centers such as the noradrenergic locus coeruleus, histaminergic tuberomammillary nucleus, serotoninergic raphe nucleus, and dopaminergic ventral tegmental area. The hypocretins were originally believed to be primarily important in the regulation of appetite; however, a major function emerging from research on these neuropeptides is the regulation of sleep and wakefulness. Deficiency in hypocretin neurotransmission results in the sleep disorder narcolepsy in mice, dogs, and humans. The hypocretins are also uniquely positioned to link sleep, appetite, and neuroendocrine control. The aim of this review is to describe and discuss the current knowledge regarding the hypocretin neurotransmitter system in narcolepsy and normal sleep.
Collapse
Affiliation(s)
- Shahrad Taheri
- Stanford University Center for Narcolepsy, 701 Welch Road B, Basement, Palo Alto, California 94304-5742, USA.
| | | | | |
Collapse
|
18
|
Abstract
Adenosine is a putative sleep factor with effects mainly mediated by the A1 receptor. Recent studies have implicated the hypothalamic orexin/hypocretin-containing neurons in the control of sleep-wakefulness. To help determine if adenosine might play a role in the control of orexin neurons, immunohistochemistry was used to characterize the distribution of adenosine A1 receptor protein on the orexinergic neurons. About 30% of orexin-containing neurons were labeled. The data supports the presence of adenosine A1 receptors on orexinergic neurons and suggests a possible substrate for a functional role of adenosine in the regulation of orexinergic activity.
Collapse
Affiliation(s)
- Mahesh M Thakkar
- Department of Psychiatry, Harvard Medical School, VA Boston Healthcare System, Brockton VA Medical Center, Brockton, MA, USA.
| | | | | |
Collapse
|
19
|
Abstract
Orexin-A and -B are two peptides derived by proteolytic cleavage from a 130-amino acid precursor, prepro-orexin, which were recently isolated from the rat hypothalamus. Orexin-A is fully conserved across mammalian species, whilst rat and human orexin-B differ by two amino acids. These peptides bind to two Gq-coupled receptors, termed orexin-1 and orexin-2. The receptors are 64% homologous and highly conserved across species. Orexin-A is equipotent at orexin-1 and orexin-2 receptors, whilst orexin-B displays moderate (approximately 10 fold) selectivity for orexin-2 receptors. The distribution and pharmacology of the orexin peptides and their receptors indicate that they play a role in various regulatory systems including energy homeostasis and the regulation of feeding, the evidence for which is reviewed here.
Collapse
Affiliation(s)
- Darren Smart
- Neurology CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | | | |
Collapse
|
20
|
Abstract
Orexin-A and orexin-B are two peptides derived by proteolytic cleavage from a 130 amino acid precursor prepro-orexin, which recently were isolated from the rat hypothalamus. Orexin-A is fully conserved across mammalian species, whilst rat and human orexin-B differ by 2 amino acids. These peptides bind to two G(q)-coupled receptors, termed OX(1) and OX(2). The receptors are 64% homologous and highly conserved across species. Orexin-A is equipotent at OX(1) and OX(2), whilst orexin-B displays moderate ( approximately 10-fold) selectivity for OX(2). Prepro-orexin is found in the hypothalamus and, to a markedly lesser extent, the testes, adrenals, and myenteric plexus. However, orexin-A and orexin-B are found throughout the CNS, due to extrahypothalamic projections, as well as in the adrenals and small intestine. OX(1) is expressed mainly in the hypothalamus and locus coeruleus, as well as other brain regions and the spinal cord. OX(2) is expressed in the hypothalamus, cortex, spinal cord, and a few discrete brain nuclei. Both receptors are also expressed in the gut. The orexins modulate feeding behaviour and energy homeostasis, as well as associated drinking behaviours, and also regulate the sleep-wake cycle. Moreover, disruption of prepro-peptide expression or mutations in the gene encoding OX(2) result in a narcoleptic phenotye in various animal models, whilst several clinical studies have linked disruption of the orexin system to narcolepsy in humans. The orexins also have cardiovascular and neuroendocrine effects. This review further details the pharmacology and localisation of these peptides and summarises the evidence for their role in the physiology outlined above.
Collapse
Affiliation(s)
- Darren Smart
- Neurology CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, CM19 5AW, Essex, UK.
| | | |
Collapse
|