1
|
Modestino L, Tumminelli M, Mormile I, Cristinziano L, Ventrici A, Trocchia M, Ferrara AL, Palestra F, Loffredo S, Marone G, Rossi FW, de Paulis A, Galdiero MR. Neutrophil exhaustion and impaired functionality in psoriatic arthritis patients. Front Immunol 2024; 15:1448560. [PMID: 39308858 PMCID: PMC11412820 DOI: 10.3389/fimmu.2024.1448560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Background Neutrophils (polymorphonuclear leukocytes, PMNs) are the most abundant subtype of white blood cells and are among the main actors in the inflammatory response. Psoriatic arthritis (PsA) is a chronic inflammatory disease affecting both the axial and peripheral joints. Typically associated with psoriasis, PsA can also affect multiple systems and organs, including the nails and entheses. Despite the involvement of PMNs in PsA, their specific role in the disease remains poorly understood. This study aimed to characterize the biological functions of PMNs and neutrophil-related mediators in PsA patients. Materials and methods 31 PsA patients and 22 healthy controls (HCs) were prospectively recruited. PMNs were isolated from peripheral blood and subjected to in vitro stimulation with lipopolysaccharide (LPS), N-Formylmethionyl-leucyl-phenylalanine (fMLP), tumor necrosis factor (TNF), phorbol 12-myristate 13-acetate (PMA), or control medium. Highly purified peripheral blood PMNs (>99%) were evaluated for activation status, reactive oxygen species (ROS) production, phagocytic activity, granular enzyme and neutrophil extracellular traps (NETs) release. Serum levels of matrix metalloproteinase-9 (MMP-9), myeloperoxidase (MPO), TNF, interleukin 23 (IL-23), and interleukin 17 (IL-17) were measured by ELISA. Serum Citrullinated histone H3 (CitH3) was measured as a NET biomarker. Results Activated PMNs from PsA patients displayed reduced activation, decreased ROS production, and impaired phagocytic activity upon stimulation with TNF, compared to HCs. PMNs from PsA patients also displayed reduced granular enzyme (MPO) and NET release. Serum analyses revealed elevated levels of MMP-9, MPO, TNF, IL-23, IL-17, and CitH3 in PsA patients compared to HCs. Serum CitH3 levels positively correlated with MPO and TNF concentrations, and IL-17 concentrations were positively correlated with IL-23 levels in PsA patients. These findings indicate that PMNs from PsA patients show reduced in vitro activation and function, and an increased presence of neutrophil-derived mediators (MMP-9, MPO, TNF, IL-23, IL-17, and CitH3) in their serum. Conclusions Taken together, our findings suggest that PMNs from PsA patients exhibit an "exhausted" phenotype, highlighting their plasticity and multifaceted roles in PsA pathophysiology.
Collapse
Affiliation(s)
- Luca Modestino
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
| | - Manuela Tumminelli
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
| | - Ilaria Mormile
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Naples, Italy
| | - Francesca Wanda Rossi
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Viola H, Chen LH, Jo S, Washington K, Selva C, Li A, Feng D, Giacalone V, Stephenson ST, Cottrill K, Mohammed A, Williams E, Qu X, Lam W, Ng NL, Fitzpatrick A, Grunwell J, Tirouvanziam R, Takayama S. HIGH THROUGHPUT QUANTITATION OF HUMAN NEUTROPHIL RECRUITMENT AND FUNCTIONAL RESPONSES IN AN AIR-BLOOD BARRIER ARRAY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593624. [PMID: 38798413 PMCID: PMC11118313 DOI: 10.1101/2024.05.10.593624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress towards therapeutics. Namely, high throughput therapeutic screening systems typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well Leukocyte recruitment in an Air-Blood Barrier Array (L-ABBA-96) that enables in vivo -like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 (IL-8) and found a dose dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently FDA-approved for severe COVID-19 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.
Collapse
|
3
|
Influenza Virus Infection Increases Host Susceptibility To Secondary Infection with Pseudomonas aeruginosa, and This Is Attributed To Neutrophil Dysfunction through Reduced Myeloperoxidase Activity. Microbiol Spectr 2023; 11:e0365522. [PMID: 36475755 PMCID: PMC9927171 DOI: 10.1128/spectrum.03655-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Secondary bacterial infection greatly increased the morbidity and mortality of influenza virus infection. To investigate the underlying mechanism by which influenza impairs the pulmonary defense against secondary Pseudomonas aeruginosa (P. aeruginosa) infection, we established a lethal mouse model in which to study secondary P. aeruginosa infection after influenza virus infection. We found a significant increase in host susceptibility to a secondary infection with P. aeruginosa in mice after an influenza virus infection, and this was accompanied by severe immunopathology and pulmonary inflammation. Importantly, we demonstrated that neutrophils were essential for P. aeruginosa clearance in secondarily infected mice. Further, we revealed that influenza impaired the phagocytosis and digestion functions of pulmonary neutrophils for P. aeruginosa clearance. We identified that the activity of reactive oxygen species (ROS) and the myeloperoxidase (MPO) activity of neutrophils in the lungs played an important role in antibacterial host defense in influenza-infected lungs. Hereby, influenza virus infection causes deficient MPO activity in neutrophils, and this contributes to the increased susceptibility to secondary P. aeruginosa infection. Treatment with Bacillus Calmette-Guerin polysaccharide nucleic acid (BCG-PSN) prior to secondary P. aeruginosa infection may improve the function of neutrophils, resulting in significantly reduced lethality during secondary P. aeruginosa infection. We also demonstrated that treatment with anti-influenza immune serum during the early stage of an influenza virus infection could decrease the disease severity of secondary P. aeruginosa infection. Our findings suggest that improving the MPO activity of neutrophils may provide a therapeutic strategy for viral-bacterial coinfection. IMPORTANCE A secondary bacterial infection, such as that of P. aeruginosa, often occurs after a pulmonary virus infection and contributes to severe disease. However, the underlying mechanisms responsible for viral-bacterial synergy in the lung remain largely unknown. In this study, we reported that influenza virus infection increases a host’s susceptibility to secondary infection by P. aeruginosa by reducing the MPO activity of neutrophils. We also demonstrated that treatment with BCG-PSN or anti-influenza immune serum prior to secondary P. aeruginosa infection can reduce the disease severity. Our findings suggest that improving the MPO activity of neutrophils may provide a therapeutic strategy for viral-bacterial coinfection.
Collapse
|
4
|
Linde IL, Prestwood TR, Qiu J, Pilarowski G, Linde MH, Zhang X, Shen L, Reticker-Flynn NE, Chiu DKC, Sheu LY, Van Deursen S, Tolentino LL, Song WC, Engleman EG. Neutrophil-activating therapy for the treatment of cancer. Cancer Cell 2023; 41:356-372.e10. [PMID: 36706760 PMCID: PMC9968410 DOI: 10.1016/j.ccell.2023.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.
Collapse
Affiliation(s)
- Ian L Linde
- Program in Immunology, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Tyler R Prestwood
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jingtao Qiu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Genay Pilarowski
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Miles H Linde
- Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Xiangyue Zhang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lei Shen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Lauren Y Sheu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Simon Van Deursen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lorna L Tolentino
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edgar G Engleman
- Program in Immunology, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Effects of Cannabidiol on Innate Immunity: Experimental Evidence and Clinical Relevance. Int J Mol Sci 2023; 24:ijms24043125. [PMID: 36834537 PMCID: PMC9964491 DOI: 10.3390/ijms24043125] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Cannabidiol (CBD) is the main non-psychotropic cannabinoid derived from cannabis (Cannabis sativa L., fam. Cannabaceae). CBD has received approval by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of seizures associated with Lennox-Gastaut syndrome or Dravet syndrome. However, CBD also has prominent anti-inflammatory and immunomodulatory effects; evidence exists that it could be beneficial in chronic inflammation, and even in acute inflammatory conditions, such as those due to SARS-CoV-2 infection. In this work, we review available evidence concerning CBD's effects on the modulation of innate immunity. Despite the lack so far of clinical studies, extensive preclinical evidence in different models, including mice, rats, guinea pigs, and even ex vivo experiments on cells from human healthy subjects, shows that CBD exerts a wide range of inhibitory effects by decreasing cytokine production and tissue infiltration, and acting on a variety of other inflammation-related functions in several innate immune cells. Clinical studies are now warranted to establish the therapeutic role of CBD in diseases with a strong inflammatory component, such as multiple sclerosis and other autoimmune diseases, cancer, asthma, and cardiovascular diseases.
Collapse
|
6
|
Mal’tseva VN, Gudkov SV, Turovsky EA. Modulation of the Functional State of Mouse Neutrophils by Selenium Nanoparticles In Vivo. Int J Mol Sci 2022; 23:13651. [PMID: 36362436 PMCID: PMC9655531 DOI: 10.3390/ijms232113651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 08/13/2023] Open
Abstract
This study aimed to discover the immunomodulatory effect of selenium nanoparticles (SeNPs) on the functional state of neutrophils in vivo. Intraperitoneal injections of SeNPs (size 100 nm) 2.5 mg/kg/daily to BALB/c mice for a duration of 7-28 days led to the development of an inflammatory reaction, which was registered by a significant increase in the number of neutrophils released from the peritoneal cavity, as well as their activated state, without additional effects. At the same time, subcutaneous injections of the same SeNPs preparations at concentrations of 0.1, 0.5, and 2.5 mg/kg, on the contrary, modulated the functional state of neutrophils depending on the concentration and duration of SeNPs administration. With the use of fluorescence spectroscopy, chemiluminescence, biochemical methods, and PCR analysis, it was found that subcutaneous administration of SeNPs (0.1, 0.5, and 2.5 mg/kg) to mice for a short period of time (7-14 days) leads to modification of important neutrophil functions (adhesion, the number of migrating cells into the peritoneal cell cavity, ROS production, and NET formation). The obtained results indicated the immunostimulatory and antioxidant effects of SeNPs in vivo during short-term administration, while the most pronounced immunomodulatory effects of SeNPs were observed with the introduction of a low concentration of SeNPs (0.1 mg/kg). Increase in the administration time of SeNPs (0.1 mg/kg or 2.5 mg/kg) up to 28 days led to a decrease in the adhesive abilities of neutrophils and suppression of the expression of mRNA of adhesive molecules, as well as proteins involved in the generation of ROS, with the exception of NOX2; there was a tendency to suppress gene expression pro-inflammatory factors, which indicates the possible manifestation of immunosuppressive and anti-inflammatory effects of SeNPs during their long-term administration. Changes in the expression of selenoproteins also had features depending on the concentration and duration of the administered SeNPs. Selenoprotein P, selenoprotein M, selenoprotein S, selenoprotein K, and selenoprotein T were the most sensitive to the introduction of SeNPs into the mouse organism, which indicates their participation in maintaining the functional status of neutrophils, and possibly mediated the immunomodulatory effect of SeNPs.
Collapse
Affiliation(s)
- Valentina N. Mal’tseva
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
7
|
Cristinziano L, Modestino L, Capone M, Madonna G, Mallardo D, Giannarelli D, D’Angelo G, Ferrara AL, Loffredo S, Varricchi G, Vanella V, Festino L, Ascierto PA, Galdiero MR. PD-L1+ neutrophils as novel biomarkers for stage IV melanoma patients treated with nivolumab. Front Immunol 2022; 13:962669. [PMID: 36016960 PMCID: PMC9398490 DOI: 10.3389/fimmu.2022.962669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Melanoma displays a rising incidence, and the mortality associated with metastatic form remains high. Monoclonal antibodies that block programmed death (PD-1) and PD Ligand 1 (PD-L1) network have revolutionized the history of metastatic disease. PD-L1 is expressed on several immune cells and can be also expressed on human neutrophils (PMNs). The role of peripheral blood PMNs as predictive biomarkers in anti-PD-1 therapy of melanoma is largely unknown. In this study, we aimed to determine activation status and PD-L1 expression on human neutrophils as possible novel biomarkers in stage IV melanoma patients (MPs). We found that PMNs from MPs displayed an activated phenotype and increased PD-L1 levels compared to healthy controls (HCs). Patients with lower PD-L1+ PMN frequencies displayed better progression-free survival (PFS) and overall survival (OS) compared to patients with high PD-L1+ PMN frequencies. Multivariate analysis showed that PD-L1+ PMNs predicted patient outcome in BRAF wild type MP subgroup but not in BRAF mutated MPs. PD-L1+ PMN frequency emerges as a novel biomarker in stage IV BRAF wild type MPs undergoing anti-PD-1 immunotherapy. Our findings suggest further evaluation of the role of neutrophil subsets and their mediators in melanoma patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Leonardo Cristinziano
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research, Interdipartimental Center for basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research, Interdipartimental Center for basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Domenico Mallardo
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Diana Giannarelli
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Scientific Direction, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Grazia D’Angelo
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research, Interdipartimental Center for basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS), National Research Council (CNR), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research, Interdipartimental Center for basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS), National Research Council (CNR), Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research, Interdipartimental Center for basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS), National Research Council (CNR), Naples, Italy
| | - Vito Vanella
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Lucia Festino
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research, Interdipartimental Center for basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS), National Research Council (CNR), Naples, Italy
- *Correspondence: Maria Rosaria Galdiero,
| |
Collapse
|
8
|
Niklaus M, Klingler P, Weber K, Koessler A, Kuhn S, Boeck M, Kobsar A, Koessler J. Platelet toll-like-receptor 2 and 4 mediate different immune-related responses to bacterial ligands. TH OPEN 2022; 6:e156-e167. [PMID: 36046205 PMCID: PMC9273317 DOI: 10.1055/a-1827-7365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background
Like immune cells, platelets express toll-like receptors (TLRs) on their surface membrane. TLR2 and TLR4 are able to recognize bacterial antigens and have the potential to influence hemostatic functions and classical intracellular signaling pathways. This study investigated the role of TLR2 and TLR4 for immune-related functions in human platelets.
Materials and Methods
Washed platelets and neutrophils were prepared from fresh human peripheral blood. Basal-, Pam3CSK4- (as TLR2 agonist) and Lipopolysaccharides (LPS; as TLR4 agonist) -induced CD62P expression, fibrinogen binding and TLR2 or TLR4 expression, intracellular reactive oxygen species (ROS) production in H
2
DCFDA-loaded platelets and uptake of fluorescence-labeled TLR ligands, and fluorophore-conjugated fibrinogen were evaluated by flow cytometry. Analysis of platelet–neutrophil complexes was performed after coincubation of washed platelets and neutrophils in the presence and absence of TLR2 or TLR4 agonists on poly-L-lysine coated surfaces, followed by immunostaining and immunofluorescence imaging.
Results
Pam3CSK4 rapidly and transiently increased TLR2 and TLR4 expression. Over the course of 30 minutes after activation with Pam3CSK4 and LPS, the expression of both receptors decreased. Pam3CSK4-stimulated intracellular ROS production and the uptake of TLR ligands or fibrinogen much stronger than LPS. Besides, TLR4 activation led to a significant increase of platelet–neutrophil contacts.
Conclusion
Stimulation leads to rapid mobilization of TLR2 or TLR4 to the platelet surface, presumably followed by receptor internalization along with bound TLR ligands. After activation, platelet TLR2 and TLR4 mediate different immune-related reactions. In particular, TLR2 induces intracellular responses in platelets, whereas TLR4 initiates interactions with other immune cells such as neutrophils.
Collapse
Affiliation(s)
- Marius Niklaus
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Philipp Klingler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Katja Weber
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Angela Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Sabine Kuhn
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Markus Boeck
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Anna Kobsar
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Juergen Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Adapen C, Réot L, Nunez N, Cannou C, Marlin R, Lemaître J, d’Agata L, Gilson E, Ginoux E, Le Grand R, Nugeyre MT, Menu E. Local Innate Markers and Vaginal Microbiota Composition Are Influenced by Hormonal Cycle Phases. Front Immunol 2022; 13:841723. [PMID: 35401577 PMCID: PMC8990777 DOI: 10.3389/fimmu.2022.841723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background The female reproductive tract (FRT) mucosa is the first line of defense against sexually transmitted infection (STI). FRT environmental factors, including immune-cell composition and the vaginal microbiota, interact with each other to modulate susceptibility to STIs. Moreover, the menstrual cycle induces important modifications within the FRT mucosa. Cynomolgus macaques are used as a model for the pathogenesis and prophylaxis of STIs. In addition, their menstrual cycle and FRT morphology are similar to women. The cynomolgus macaque vaginal microbiota is highly diverse and similar to dysbiotic vaginal microbiota observed in women. However, the impact of the menstrual cycle on immune markers and the vaginal microbiota in female cynomolgus macaques is unknown. We conducted a longitudinal study covering three menstrual cycles in cynomolgus macaques. The evolution of the composition of the vaginal microbiota and inflammation (cytokine/chemokine profile and neutrophil phenotype) in the FRT and blood was determined throughout the menstrual cycle. Results Cervicovaginal cytokine/chemokine concentrations were affected by the menstrual cycle, with a peak of production during menstruation. We observed three main cervicovaginal neutrophil subpopulations: CD11bhigh CD101+ CD10+ CD32a+, CD11bhigh CD101+ CD10- CD32a+, and CD11blow CD101low CD10- CD32a-, of which the proportion varied during the menstrual cycle. During menstruation, there was an increase in the CD11bhigh CD101+ CD10+ CD32a+ subset of neutrophils, which expressed higher levels of CD62L. Various bacterial taxa in the vaginal microbiota showed differential abundance depending on the phase of the menstrual cycle. Compilation of the factors that vary according to hormonal phase showed the clustering of samples collected during menstruation, characterized by a high concentration of cytokines and an elevated abundance of the CD11bhigh CD101+ CD10+ CD32a+ CD62L+ neutrophil subpopulation. Conclusions We show a significant impact of menstruation on the local environment (cytokine production, neutrophil phenotype, and vaginal microbiota composition) in female cynomolgus macaques. Menstruation triggers increased production of cytokines, shift of the vaginal microbiota composition and the recruitment of mature/activated neutrophils from the blood to the FRT. These results support the need to monitor the menstrual cycle and a longitudinal sampling schedule for further studies in female animals and/or women focusing on the mucosal FRT environment.
Collapse
Affiliation(s)
- Cindy Adapen
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | - Louis Réot
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | | | - Claude Cannou
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | - Julien Lemaître
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | | | | | | | - Roger Le Grand
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | - Marie-Thérèse Nugeyre
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
10
|
Lemaitre J, Desjardins D, Gallouët AS, Gomez-Pacheco M, Bourgeois C, Favier B, Sáez-Cirión A, Le Grand R, Lambotte O. Expansion of Immature Neutrophils During SIV Infection Is Associated With Their Capacity to Modulate T-Cell Function. Front Immunol 2022; 13:781356. [PMID: 35185880 PMCID: PMC8851599 DOI: 10.3389/fimmu.2022.781356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/14/2022] [Indexed: 01/13/2023] Open
Abstract
In spite of the efficacy of combinational antiretroviral treatment (cART), HIV-1 persists in the host and infection is associated with chronic inflammation, leading to an increased risk of comorbidities, such as cardiovascular diseases, neurocognitive disorders, and cancer. Myeloid cells, mainly monocytes and macrophages, have been shown to be involved in the immune activation observed in HIV-1 infection. However, less attention has been paid to neutrophils, the most abundant circulating myeloid cell, even though neutrophils are strongly involved in tissue damage and inflammation in several chronic diseases, in particular, autoimmune diseases. Herein, we performed a longitudinal characterization of neutrophil phenotype and we evaluated the interplay between neutrophils and T cells in the model of pathogenic SIVmac251 experimental infection of cynomolgus macaques. We report that circulating granulocytes consists mainly of immature CD10- neutrophils exhibiting a prime phenotype during primary and chronic infection. We found that neutrophil priming correlates with CD8+ T cell activation. Moreover, we provide the evidence that neutrophils are capable of modulating CD4+ and CD8+ T-cell proliferation and IFN-γ production in different ways depending on the time of infection. Thus, our study emphasizes the role of primed immature neutrophils in the modulation of T-cell responses in SIV infection.
Collapse
Affiliation(s)
- Julien Lemaitre
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Mario Gomez-Pacheco
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Christine Bourgeois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
- Assistance Publique - Hôpitaux de Paris, Université Paris Saclay, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, Paris, France
| | - Benoit Favier
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Unité HIV inflammation and persistance, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
| | - Olivier Lambotte
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral and Autoimmune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Paris, France
- Assistance Publique - Hôpitaux de Paris, Université Paris Saclay, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, Paris, France
- *Correspondence: Olivier Lambotte,
| |
Collapse
|
11
|
Nichols BE, Hook JS, Weng K, Ahn C, Moreland JG. Novel neutrophil phenotypic signature in pediatric patients with type 1 diabetes and diabetic ketoacidosis. J Leukoc Biol 2021; 111:849-856. [PMID: 34342036 DOI: 10.1002/jlb.3a1220-826r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic inflammatory condition sometimes complicated by acute diabetic ketoacidosis (DKA). A subset of patients with T1D develop DKA independent of known risk factors. This study tested the hypothesis that circulating polymorphonuclear leukocytes (PMN) from children with T1D and DKA would exhibit a primed phenotype and that the signature would be unique in patients predisposed to have DKA. Using a prospective cohort study design, neutrophil phenotype was assessed in 30 patients with T1D seen in endocrinology clinic for routine care, 30 patients with acute DKA, and 36 healthy donors. Circulating PMN from patients with DKA display a primed phenotype with increased basal cell-surface CD11b, L-selectin shedding, and enhanced fMLF-elicited reactive oxygen species (ROS) production. Moreover, PMN from T1D patients both with and without DKA lack the capacity to be further primed by incubation with TNF-α, a classic priming stimulus. Primed PMN phenotypic signatures demonstrated are independent of hemoglobin A1c, the premier biological marker for DKA risk, and are consistent with a hyperinflammatory state. A single nucleotide polymorphism in TLR-1 (1805G>T), known to be associated with a hyperinflammatory PMN phenotype, correlated with DKA. This study elucidated a novel phenotypic signature in circulating PMN from children with T1D with and without DKA, and suggests the possibility of a previously unrecognized PMN phenotype with potential clinical implications. Immunophenotype and genotype may be applicable as biomarkers for DKA risk stratification in patients with T1D.
Collapse
Affiliation(s)
- Blake E Nichols
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kayson Weng
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chul Ahn
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Varricchi G, Modestino L, Poto R, Cristinziano L, Gentile L, Postiglione L, Spadaro G, Galdiero MR. Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma. Clin Exp Med 2021; 22:285-300. [PMID: 34342773 PMCID: PMC9110438 DOI: 10.1007/s10238-021-00750-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022]
Abstract
Neutrophils (PMNs) contain and release a powerful arsenal of mediators, including several granular enzymes, reactive oxygen species (ROS) and neutrophil extracellular traps (NETs). Although airway neutrophilia is associated with severity, poor response to glucocorticoids and exacerbations, the pathophysiological role of neutrophils in asthma remains poorly understood. Twenty-four patients with asthma and 22 healthy controls (HCs) were prospectively recruited. Highly purified peripheral blood neutrophils (> 99%) were evaluated for ROS production and activation status upon stimulation with lipopolysaccharide (LPS), N-formylmethionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA). Plasma levels of myeloperoxidase (MPO), CXCL8, matrix metalloproteinase-9 (MMP-9), granulocyte–monocyte colony-stimulating factor (GM-CSF) and vascular endothelial growth factor (VEGF-A) were measured by ELISA. Plasma concentrations of citrullinated histone H3 (CitH3) and circulating free DNA (dsDNA) were evaluated as NET biomarkers. Activated PMNs from asthmatics displayed reduced ROS production and activation status compared to HCs. Plasma levels of MPO, MMP-9 and CXCL8 were increased in asthmatics compared to HCs. CitH3 and dsDNA plasma levels were increased in asthmatics compared to controls and the CitH3 concentrations were inversely correlated to the % decrease in FEV1/FVC in asthmatics. These findings indicate that neutrophils and their mediators could have an active role in asthma pathophysiology.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Luca Gentile
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy
| | - Loredana Postiglione
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
13
|
Belchamber KBR, Hughes MJ, Spittle DA, Walker EM, Sapey E. New Pharmacological Tools to Target Leukocyte Trafficking in Lung Disease. Front Immunol 2021; 12:704173. [PMID: 34367163 PMCID: PMC8334730 DOI: 10.3389/fimmu.2021.704173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023] Open
Abstract
Infection and inflammation of the lung results in the recruitment of non-resident immune cells, including neutrophils, eosinophils and monocytes. This swift response should ensure clearance of the threat and resolution of stimuli which drive inflammation. However, once the threat is subdued this influx of immune cells should be followed by clearance of recruited cells through apoptosis and subsequent efferocytosis, expectoration or retrograde migration back into the circulation. This cycle of cell recruitment, containment of threat and then clearance of immune cells and repair is held in exquisite balance to limit host damage. Advanced age is often associated with detrimental changes to the balance described above. Cellular functions are altered including a reduced ability to traffic accurately towards inflammation, a reduced ability to clear pathogens and sustained inflammation. These changes, seen with age, are heightened in lung disease, and most chronic and acute lung diseases are associated with an exaggerated influx of immune cells, such as neutrophils, to the airways as well as considerable inflammation. Indeed, across many lung diseases, pathogenesis and progression has been associated with the sustained presence of trafficking cells, with examples including chronic diseases such as Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis and acute infections such as Pneumonia and Pneumonitis. In these instances, there is evidence that dysfunctional and sustained recruitment of cells to the airways not only increases host damage but impairs the hosts ability to effectively respond to microbial invasion. Targeting leukocyte migration in these instances, to normalise cellular responses, has therapeutic promise. In this review we discuss the current evidence to support the trafficking cell as an immunotherapeutic target in lung disease, and which potential mechanisms or pathways have shown promise in early drug trials, with a focus on the neutrophil, as the quintessential trafficking immune cell.
Collapse
Affiliation(s)
- Kylie B. R. Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Michael J. Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Daniella A. Spittle
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Eloise M. Walker
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- NIHR Clinical Research Facility Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
14
|
Hug S, Bernhard S, Stratmann AEP, Erber M, Wohlgemuth L, Knapp CL, Bauer JM, Vidoni L, Fauler M, Föhr KJ, Radermacher P, Hoffmann A, Huber-Lang M, Messerer DAC. Activation of Neutrophil Granulocytes by Platelet-Activating Factor Is Impaired During Experimental Sepsis. Front Immunol 2021; 12:642867. [PMID: 33796110 PMCID: PMC8007865 DOI: 10.3389/fimmu.2021.642867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Platelet-activating factor (PAF) is an important mediator of the systemic inflammatory response. In the case of sepsis, proper activation and function of neutrophils as the first line of cellular defense are based on a well-balanced physiological response. However, little is known about the role of PAF in cellular changes of neutrophils during sepsis. Therefore, this study investigates the reaction patterns of neutrophils induced by PAF with a focus on membrane potential (MP), intracellular pH, and cellular swelling under physiological and pathophysiological conditions and hypothesizes that the PAF-mediated response of granulocytes is altered during sepsis. The cellular response of granulocytes including MP, intracellular pH, cellular swelling, and other activation markers were analyzed by multiparametric flow cytometry. In addition, the chemotactic activity and the formation of platelet-neutrophil complexes after exposure to PAF were investigated. The changes of the (electro-)physiological response features were translationally verified in a human ex vivo whole blood model of endotoxemia as well as during polymicrobial porcine sepsis. In neutrophils from healthy human donors, PAF elicited a rapid depolarization, an intracellular alkalization, and an increase in cell size in a time- and dose-dependent manner. Mechanistically, the alkalization was dependent on sodium-proton exchanger 1 (NHE1) activity, while the change in cellular shape was sodium flux- but only partially NHE1-dependent. In a pathophysiological altered environment, the PAF-induced response of neutrophils was modulated. Acidifying the extracellular pH in vitro enhanced PAF-mediated depolarization, whereas the increases in cell size and intracellular pH were largely unaffected. Ex vivo exposure of human whole blood to lipopolysaccharide diminished the PAF-induced intracellular alkalization and the change in neutrophil size. During experimental porcine sepsis, depolarization of the MP was significantly impaired. Additionally, there was a trend for increased cellular swelling, whereas intracellular alkalization remained stable. Overall, an impaired (electro-)physiological response of neutrophils to PAF stimulation represents a cellular hallmark of those cells challenged during systemic inflammation. Furthermore, this altered response may be indicative of and causative for the development of neutrophil dysfunction during sepsis.
Collapse
Affiliation(s)
- Stefan Hug
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Stefan Bernhard
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | | | - Maike Erber
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Lisa Wohlgemuth
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christiane Leonie Knapp
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Jonas Martin Bauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Laura Vidoni
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Karl Josef Föhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Development, University Hospital of Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institute of Anesthesiological Pathophysiology and Process Development, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany.,Institute of Anesthesiological Pathophysiology and Process Development, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
15
|
Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity 2021; 54:468-483.e5. [PMID: 33484643 DOI: 10.1016/j.immuni.2020.12.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/10/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Tissue resident mast cells (MCs) rapidly initiate neutrophil infiltration upon inflammatory insult, yet the molecular mechanism is still unknown. Here, we demonstrated that MC-derived tumor necrosis factor (TNF) was crucial for neutrophil extravasation to sites of contact hypersensitivity-induced skin inflammation by promoting intraluminal crawling. MC-derived TNF directly primed circulating neutrophils via TNF receptor-1 (TNFR1) while being dispensable for endothelial cell activation. The MC-derived TNF was infused into the bloodstream by directional degranulation of perivascular MCs that were part of the vascular unit with access to the vessel lumen. Consistently, intravenous administration of MC granules boosted neutrophil extravasation. Pronounced and rapid intravascular MC degranulation was also observed upon IgE crosslinking or LPs challenge indicating a universal MC potential. Consequently, the directional MC degranulation of pro-inflammatory mediators into the bloodstream may represent an important target for therapeutic approaches aimed at dampening cytokine storm syndromes or shock symptoms, or intentionally pushing immune defense.
Collapse
|
16
|
Evans SJ, Roberts AEL, Morris AC, Simpson AJ, Harris LG, Mack D, Jenkins RE, Wilkinson TS. Contrasting effects of linezolid on healthy and dysfunctional human neutrophils: reducing C5a-induced injury. Sci Rep 2020; 10:16377. [PMID: 33009444 PMCID: PMC7532177 DOI: 10.1038/s41598-020-72454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of ventilator-associated pneumonia (VAP). Patients with VAP have poorly functioning neutrophils, related to increased levels of the complement fragment C5a. The antibiotic linezolid has been useful in controlling MRSA-related VAP infections; however clinical benefit does not always correlate with antimicrobial effect, suggesting the possibility of immunomodulatory properties. Here the effects of linezolid on healthy and dysfunctional neutrophils (modelled by C5a-induced injury) was investigated. Functional assays (killing, phagocytosis, transmigration, and respiratory burst) were used to assess the effects of pre-, co- and post-incubating linezolid (0.4-40 mg/L) with healthy neutrophils relative to those with C5a-induced injury. C5a decreased neutrophil killing, and phagocytosis of MRSA. Furthermore, C5a significantly decreased neutrophil transmigration to IL-8, but did not affect respiratory burst. Co-incubation of linezolid significantly improved killing of MRSA by dysfunctional neutrophils, which was supported by concomitant increases in phagocytosis. Conversely linezolid impaired killing responses in healthy neutrophils. Pre- or post-incubation of linezolid prior or following C5a induced injury had no effect on neutrophil function. This study suggests that linezolid has immunomodulatory properties that protect human neutrophils from injury and provides insight into its mode of action beyond a basic antibiotic.
Collapse
Affiliation(s)
- Stephen J Evans
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Aled E L Roberts
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Andrew Conway Morris
- Division of Anaesthesia, Department of Medicine, School of Clinical Medicine, University of Cambridge, Level 4, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Box 93, Cambridge, CB2, 0QQ, UK
| | - A John Simpson
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Llinos G Harris
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Dietrich Mack
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK.,Bioscientia Labor Ingelheim, Institut für Medizinische Diagnostik GmbH, Konrad-Adenauer-Str. 17, 55218, Ingelheim, Germany
| | - Rowena E Jenkins
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Thomas S Wilkinson
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
17
|
van Elsas M, Kleinovink JW, Moerland M, Feiss G, Beyrend G, Arens R, Mei H, Nibbering PH, Jirka SM, van Hall T, van der Burg SH. Host genetics and tumor environment determine the functional impact of neutrophils in mouse tumor models. J Immunother Cancer 2020; 8:jitc-2020-000877. [PMID: 32998952 PMCID: PMC7528431 DOI: 10.1136/jitc-2020-000877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 01/06/2023] Open
Abstract
Background Neutrophils have been reported to have protumor, antitumor or neutral effects in cancer progression. The underlying causes for this functional variability are not clear. Methods We studied the role of neutrophils in six different mouse tumor models by intratumoral injection of antimicrobial peptides or vaccination. Changes in systemic and intratumoral immune cells were analyzed by flow-cytometry and mass-cytometry. The role of neutrophils was studied by antibody-mediated neutrophil depletion. Neutrophils from different mouse strains were compared by RNA sequencing. Results The antimicrobial peptide Omiganan reduced the growth of TC-1 tumors in BL/6 mice and CT26 tumors in BALB/c mice. No significant effects were observed in B16F10, MC38 and 4T1 tumors. Growth delay was associated with increased abundance of neutrophils in TC-1 but not CT26 tumors. Systemic neutrophil depletion abrogated Omiganan efficacy in TC-1 but further reduced growth of CT26, indicating that neutrophils were required for the antitumor effect in TC-1 but suppressed tumor control in CT26. Neutrophils were also required for a therapeutic vaccine-induced T-cell mediated control of RMA tumors in BL/6 mice. Clearly, the circulating and intratumoral neutrophils differed in the expression of Ly6G and CD62L, between TC-1 and CT26 and between blood neutrophils of tumor-naïve BL/6 and BALB/c mice. RNA-sequencing revealed that neutrophils from BL/6 mice but not BALB/c mice displayed a robust profile of immune activation, matching their opposing roles in TC-1 and RMA versus CT26. Conclusions Neutrophil functionality differs strongly between mouse strains and tumor types, with consequences for tumor progression and therapy.
Collapse
Affiliation(s)
- Marit van Elsas
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Willem Kleinovink
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Gary Feiss
- Cutanea Life Sciences, Wayne, Pennsylvania, USA
| | - Guillaume Beyrend
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ramon Arens
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter H Nibbering
- Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Thorbald van Hall
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
18
|
Stockfelt M, Christenson K, Andersson A, Björkman L, Padra M, Brundin B, Ganguly K, Asgeirsdottir H, Lindén S, Qvarfordt I, Bylund J, Lindén A. Increased CD11b and Decreased CD62L in Blood and Airway Neutrophils from Long-Term Smokers with and without COPD. J Innate Immun 2020; 12:480-489. [PMID: 32829330 PMCID: PMC7734395 DOI: 10.1159/000509715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/10/2020] [Indexed: 01/23/2023] Open
Abstract
There is incomplete mechanistic understanding of the mobilization of neutrophils in the systemic and local compartment in smokers with chronic obstructive pulmonary disease (COPD). In this pilot study, we characterized how the adhesion molecules CD11b and CD62L, surface markers indicative of priming, are altered as neutrophils extravasate, and whether surface density of CD11b and CD62L differs between long-term tobacco smokers (LTS) with and without COPD compared with healthy never-smokers (HNS). Unstimulated blood neutrophils from LTS with (n = 5) and without (n = 9) COPD displayed lower surface density of CD62L compared with HNS (n = 8). In addition, surface density of CD11b was higher in bronchoalveolar lavage (BAL) neutrophils from LTS without COPD compared with those with COPD and HNS. Moreover, in BAL neutrophils from all study groups, CD62L was lower compared with matched blood neutrophils. In addition, BAL neutrophils responded with a further decrease in CD62L to ex vivo TNF stimulation. Thus, neutrophils in the airway lumen display a higher state of priming than systemic neutrophils and bear the potential to be further primed by local cytokines even with no smoking or the presence of COPD, findings that may represent a universal host defense mechanism against local bacteria. Moreover, systemic neutrophils are primed in LTS regardless of COPD. Further studies in larger materials are warranted to determine whether the priming of neutrophils is protective against COPD or merely preceding it.
Collapse
Affiliation(s)
- Marit Stockfelt
- Section of Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden,
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden,
| | - Karin Christenson
- Department of Oral Microbiology & Immunology, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anders Andersson
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
- COPD Center, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Médea Padra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bettina Brundin
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Koustav Ganguly
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Helga Asgeirsdottir
- Section of Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sara Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Qvarfordt
- Section of Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology & Immunology, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Fastrès A, Pirottin D, Fievez L, Marichal T, Desmet CJ, Bureau F, Clercx C. Characterization of the Bronchoalveolar Lavage Fluid by Single Cell Gene Expression Analysis in Healthy Dogs: A Promising Technique. Front Immunol 2020; 11:1707. [PMID: 32849601 PMCID: PMC7406785 DOI: 10.3389/fimmu.2020.01707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Single-cell mRNA-sequencing (scRNA-seq) is a technique which enables unbiased, high throughput and high-resolution transcriptomic analysis of the heterogeneity of cells within a population. This recent technique has been described in humans, mice and other species in various conditions to cluster cells in populations and identify new subpopulations, as well as to study the gene expression of cells in various tissues, conditions and origins. In dogs, a species for which markers of cell populations are often limiting, scRNA-seq presents with elevated yet untested potential for the study of tissue composition. As a proof of principle, we used scRNA-seq to identify cellular populations of the bronchoalveolar lavage fluid (BALF) in healthy dogs (n = 4). A total of 5,710 cells were obtained and analyzed by scRNA-seq. Fourteen distinct clusters of cells were identified, further identified as macrophages/monocytes (4 clusters), T cells (2 clusters) and B cells (1 cluster), neutrophils (1 cluster), mast cells (1 cluster), mature or immature dendritic cells (1 cluster each), ciliated or non-ciliated epithelial cells (1 cluster each) and cycling cells (1 cluster). We used for the first time in dogs the scRNA-seq to investigate cellular subpopulations of the BALF of dog. This study hence expands our knowledge on dog lung immune cell populations, paves the way for the investigation at single-cell level of lower respiratory diseases in dogs, and establishes that scRNA-seq is a powerful tool for the study of dog tissue composition.
Collapse
Affiliation(s)
- Aline Fastrès
- Department of Clinical Sciences, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Dimitri Pirottin
- Laboratory of Cellular and Molecular Immunology, Department of Functional Sciences and GIGA-Inflammation, Infection and Immunity, University of Liège, Liège, Belgium
| | - Laurence Fievez
- Laboratory of Cellular and Molecular Immunology, Department of Functional Sciences and GIGA-Inflammation, Infection and Immunity, University of Liège, Liège, Belgium
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, Department of Functional Sciences and GIGA-Inflammation, Infection and Immunity, University of Liège, Liège, Belgium
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, Department of Functional Sciences and GIGA-Inflammation, Infection and Immunity, University of Liège, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, Department of Functional Sciences and GIGA-Inflammation, Infection and Immunity, University of Liège, Liège, Belgium
| | - Cécile Clercx
- Department of Clinical Sciences, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
20
|
Combes F, Meyer E, Sanders NN. Immune cells as tumor drug delivery vehicles. J Control Release 2020; 327:70-87. [PMID: 32735878 DOI: 10.1016/j.jconrel.2020.07.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022]
Abstract
This review article describes the use of immune cells as potential candidates to deliver anti-cancer drugs deep within the tumor microenvironment. First, the rationale of using drug carriers to target tumors and potentially decrease drug-related side effects is discussed. We further explain some of the current limitations when using nanoparticles for this purpose. Next, a comprehensive step-by-step description of the migration cascade of immune cells is provided as well as arguments on why immune cells can be used to address some of the limitations associated with nanoparticle-mediated drug delivery. We then describe the benefits and drawbacks of using red blood cells, platelets, granulocytes, monocytes, macrophages, myeloid-derived suppressor cells, T cells and NK cells for tumor-targeted drug delivery. An additional section discusses the versatility of nanoparticles to load anti-cancer drugs into immune cells. Lastly, we propose increasing the circulatory half-life and development of conditional release strategies as the two main future pillars to improve the efficacy of immune cell-mediated drug delivery to tumors.
Collapse
Affiliation(s)
- Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Evelyne Meyer
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| |
Collapse
|
21
|
Braile M, Cristinziano L, Marcella S, Varricchi G, Marone G, Modestino L, Ferrara AL, De Ciuceis A, Scala S, Galdiero MR, Loffredo S. LPS-mediated neutrophil VEGF-A release is modulated by cannabinoid receptor activation. J Leukoc Biol 2020; 109:621-631. [PMID: 32573828 DOI: 10.1002/jlb.3a0520-187r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Neutrophils (PMNs) are innate immune cells with primary roles in inflammation and in host defense against infections. Both inflammatory and tumor angiogenesis are modulated by a sequential, coordinated production of angiogenic factors such as vascular endothelial growth factors (VEGFs), angiopoietins, hepatocyte growth factor (HGF), and chemokines. These factors are produced by several immune cells, including PMNs. Activation of cannabinoid receptor type-1 (CB1 ) and -2 (CB2 ) has been suggested as a new strategy to modulate in vitro and in vivo angiogenesis. We sought to investigate whether activation of CB1 and CB2 by CB agonists modulate LPS-mediated angiogenic activity of human PMNs. Highly purified PMNs were isolated from buffy coats of healthy donors. Cells were stimulated with CB1 and CB2 agonists/antagonists alone and/or in combination with LPS. Angiogenic factors in cell-free supernatants were measured by ELISA. The modulation of activation markers of PMNs by CB agonists was evaluated by flow cytometry. Angiogenesis in vitro was measured as tube formation by optical microscopy. Endothelial cell permeability was assessed by an in vitro vascular permeability assay. LPS-activated PMNs released VEGF-A, CXCL8, and HGF. Preincubation of PMNs with low concentrations of CB1 and CB2 agonists inhibited VEGF-A release induced by LPS, but did not affect CXCL8 and HGF production. The effects of CB agonists on VEGF-A release induced by LPS were reversed by preincubation with CB antagonists. CB agonists modulated in vitro angiogenesis and endothelial permeability induced by supernatants of LPS-activated PMNs through the reduction of VEGF-A. Neutrophils play a central role in the control of bacterial infections and in the outcome of sepsis. The latter condition is associated with an increase in circulating levels of VEGF-A. We demonstrated that low concentrations of CB agonists inhibit VEGF-A release from LPS-activated PMNs. These results suggest that CB agonists might represent a novel therapeutic strategy in patients with sepsis.
Collapse
Affiliation(s)
- Mariantonia Braile
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Simone Marcella
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Italy.,Azienda Ospedaliera Ospedali dei Colli-Monaldi Hospital Pharmacy, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Agnese De Ciuceis
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Sara Scala
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| |
Collapse
|
22
|
Kralova J, Drobek A, Prochazka J, Spoutil F, Fabisik M, Glatzova D, Borna S, Pokorna J, Skopcova T, Angelisova P, Gregor M, Kovarik P, Sedlacek R, Brdicka T. Dysregulated NADPH Oxidase Promotes Bone Damage in Murine Model of Autoinflammatory Osteomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1607-1620. [PMID: 32024700 DOI: 10.4049/jimmunol.1900953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Autoinflammatory diseases are characterized by dysregulation of the innate immune system, leading to spontaneous inflammation. Pstpip2cmo mouse strain is a well-characterized model of this class of disorders. Because of the mutation leading to the lack of adaptor protein PSTPIP2, these animals suffer from autoinflammatory chronic multifocal osteomyelitis similar to several human syndromes. Current evidence suggests that it is driven by hyperproduction of IL-1β by neutrophil granulocytes. In this study, we show that in addition to IL-1β, PSTPIP2 also negatively regulates pathways governing reactive oxygen species generation by neutrophil NOX2 NADPH oxidase. Pstpip2cmo neutrophils display highly elevated superoxide production in response to a range of stimuli. Inactivation of NOX2 NADPH oxidase in Pstpip2cmo mice did not affect IL-1β levels, and the autoinflammatory process was initiated with similar kinetics. However, the bone destruction was almost completely alleviated, suggesting that dysregulated NADPH oxidase activity is a key factor promoting autoinflammatory bone damage in Pstpip2cmo mice.
Collapse
Affiliation(s)
- Jarmila Kralova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Ales Drobek
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Daniela Glatzova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Simon Borna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Jana Pokorna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Tereza Skopcova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Pavla Angelisova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; and
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| |
Collapse
|
23
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
24
|
Lokwani R, Wark PA, Baines KJ, Fricker M, Barker D, Simpson JL. Blood Neutrophils In COPD But Not Asthma Exhibit A Primed Phenotype With Downregulated CD62L Expression. Int J Chron Obstruct Pulmon Dis 2019; 14:2517-2525. [PMID: 31814717 PMCID: PMC6863133 DOI: 10.2147/copd.s222486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/23/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose To characterize neutrophils in obstructive airway disease by measuring their surface adhesion molecules and oxidative burst along with characterizing them into different subsets as per their adhesion molecule expression. Patients and methods Peripheral blood from adults with COPD (n=17), asthma (n=20), and healthy participants (n=19) was examined for expression of CD16, CD62L, CD11b, CD11c, and CD54, and analyzed by flow cytometry. For oxidative burst and CD62L shedding analysis, CD16 and CD62L stained leukocytes were loaded with Dihydrorhodamine-123 (DHR-123) and stimulated with N-Formylmethionine-leucyl-phenylalanine (fMLF). Neutrophil subsets were characterized based on CD16 and CD62L expression. Marker surface expression was recorded on CD16+ neutrophils as median fluorescence intensity (MFI). Results Neutrophil surface expression of CD62L was significantly reduced in COPD (median (IQR) MFI: 1156 (904, 1365)) compared with asthma (1865 (1157, 2408)) and healthy controls (2079 (1054, 2960)); p=0.028. COPD neutrophils also demonstrated a significant reduction in CD62L expression with and without fMLF stimulation. Asthma participants had a significantly increased proportion and number of CD62Lbright/CD16dim neutrophils (median: 5.4% and 0.14 × 109/L, respectively), in comparison with healthy (3.54% and 0.12 × 109/L, respectively); p<0.017. Conclusion Reduced CD62L expression suggests blood neutrophils have undergone priming in COPD but not in asthma, which may be the result of systemic inflammation. The increased shedding of CD62L receptor by COPD blood neutrophils suggests a high sensitivity for activation.
Collapse
Affiliation(s)
- Ravi Lokwani
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Peter Ab Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Daniel Barker
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
25
|
Lemaitre J, Cosma A, Desjardins D, Lambotte O, Le Grand R. Mass Cytometry Reveals the Immaturity of Circulating Neutrophils during SIV Infection. J Innate Immun 2019; 12:170-181. [PMID: 31230057 DOI: 10.1159/000499841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
The infected host fails to eradicate HIV-1, despite significant control of viral replication by combinational antiretroviral therapy. Here, we assessed the impact of HIV infection on immune-cell compartments in a SIVmac251 nonhuman primate infection model, which allowed the choice of contamination route, time of infection, and treatment follow-up. We performed high-throughput multiparameter single-cell phenotyping by mass cytometry to obtain a global vision of the immune system in blood and bone marrow. Circulating polymorphonuclear neutrophils (PMNs) with impaired phagocytosis had altered surface expression of CD62L and CD11b during early chronic infection. The initiation of combinational antiretroviral treatment during primary infection did not restore PMN function. The maturation state of PMNs was highly altered during late chronic SIV infection, showing a primarily immature phenotype. Our results provide new insights into PMN involvement in the pathogenesis of HIV infection and may play a role in the establishment and maintenance of chronic immune activation.
Collapse
Affiliation(s)
- Julien Lemaitre
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA - Université Paris-Sud 11, Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Antonio Cosma
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA - Université Paris-Sud 11, Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Delphine Desjardins
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA - Université Paris-Sud 11, Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Olivier Lambotte
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA - Université Paris-Sud 11, Fontenay-aux-Roses/Le Kremlin-Bicêtre, France.,Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA - Université Paris-Sud 11, Fontenay-aux-Roses/Le Kremlin-Bicêtre, France,
| |
Collapse
|
26
|
Mai N, Miller-Rhodes K, Knowlden S, Halterman MW. The post-cardiac arrest syndrome: A case for lung-brain coupling and opportunities for neuroprotection. J Cereb Blood Flow Metab 2019; 39:939-958. [PMID: 30866740 PMCID: PMC6547189 DOI: 10.1177/0271678x19835552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic inflammation and multi-organ failure represent hallmarks of the post-cardiac arrest syndrome (PCAS) and predict severe neurological injury and often fatal outcomes. Current interventions for cardiac arrest focus on the reversal of precipitating cardiac pathologies and the implementation of supportive measures with the goal of limiting damage to at-risk tissue. Despite the widespread use of targeted temperature management, there remain no proven approaches to manage reperfusion injury in the period following the return of spontaneous circulation. Recent evidence has implicated the lung as a moderator of systemic inflammation following remote somatic injury in part through effects on innate immune priming. In this review, we explore concepts related to lung-dependent innate immune priming and its potential role in PCAS. Specifically, we propose and investigate the conceptual model of lung-brain coupling drawing from the broader literature connecting tissue damage and acute lung injury with cerebral reperfusion injury. Subsequently, we consider the role that interventions designed to short-circuit lung-dependent immune priming might play in improving patient outcomes following cardiac arrest and possibly other acute neurological injuries.
Collapse
Affiliation(s)
- Nguyen Mai
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Kathleen Miller-Rhodes
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Sara Knowlden
- 2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,3 Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Marc W Halterman
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,3 Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| |
Collapse
|
27
|
Kroon EE, Coussens AK, Kinnear C, Orlova M, Möller M, Seeger A, Wilkinson RJ, Hoal EG, Schurr E. Neutrophils: Innate Effectors of TB Resistance? Front Immunol 2018; 9:2637. [PMID: 30487797 PMCID: PMC6246713 DOI: 10.3389/fimmu.2018.02637] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Certain individuals are able to resist Mycobacterium tuberculosis infection despite persistent and intense exposure. These persons do not exhibit adaptive immune priming as measured by tuberculin skin test (TST) and interferon-γ (IFN-γ) release assay (IGRA) responses, nor do they develop active tuberculosis (TB). Genetic investigation of individuals who are able to resist M. tuberculosis infection shows there are likely a combination of genetic variants that contribute to the phenotype. The contribution of the innate immune system and the exact cells involved in this phenotype remain incompletely elucidated. Neutrophils are prominent candidates for possible involvement as primers for microbial clearance. Significant variability is observed in neutrophil gene expression and DNA methylation. Furthermore, inter-individual variability is seen between the mycobactericidal capacities of donor neutrophils. Clearance of M. tuberculosis infection is favored by the mycobactericidal activity of neutrophils, apoptosis, effective clearance of cells by macrophages, and resolution of inflammation. In this review we will discuss the different mechanisms neutrophils utilize to clear M. tuberculosis infection. We discuss the duality between neutrophils' ability to clear infection and how increasing numbers of neutrophils contribute to active TB severity and mortality. Further investigation into the potential role of neutrophils in innate immune-mediated M. tuberculosis infection resistance is warranted since it may reveal clinically important activities for prevention as well as vaccine and treatment development.
Collapse
Affiliation(s)
- Elouise E Kroon
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anna K Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Division of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Craig Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,McGill International TB Centre, McGill University, Montreal, QC, Canada.,Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Allison Seeger
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Eileen G Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,McGill International TB Centre, McGill University, Montreal, QC, Canada.,Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Vogt KL, Summers C, Chilvers ER, Condliffe AM. Priming and de-priming of neutrophil responses in vitro and in vivo. Eur J Clin Invest 2018; 48 Suppl 2:e12967. [PMID: 29896919 DOI: 10.1111/eci.12967] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022]
Abstract
The activation status of neutrophils can cycle from basal through primed to fully activated ("green-amber-red"), and at least in vitro, primed cells can spontaneously revert to a near basal phenotype. This broad range of neutrophil responsiveness confers extensive functional flexibility, allowing neutrophils to respond rapidly and appropriately to varied and evolving threats throughout the body. Primed and activated cells display dramatically enhanced bactericidal capacity (including augmented respiratory burst activity, degranulation and longevity), but this enhancement also confers the capacity for significant unintended tissue injury. Neutrophil priming and its consequences have been associated with adverse outcomes in a range of disease states, hence understanding the signalling processes that regulate the transition between basal and primed states (and back again) may offer new opportunities for therapeutic intervention in pathological settings. A wide array of host- and pathogen-derived molecules is able to modulate the functional status of these versatile cells. Reflecting this extensive repertoire of potential mediators, priming can be established by a range of signalling pathways (including mitogen-activated protein kinases, phosphoinositide 3-kinases, phospholipase D and calcium transients) and intracellular processes (including endocytosis, vesicle trafficking and the engagement of adhesion molecules). The signalling pathways engaged, and the exact cellular phenotype that results, vary according to the priming agent(s) to which the neutrophil is exposed and the precise environmental context. Herein we describe the signals that establish priming (in particular for enhanced respiratory burst, degranulation and prolonged lifespan) and describe the recently recognised process of de-priming, correlating in vitro observations with in vivo significance.
Collapse
Affiliation(s)
- Katja L Vogt
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK.,Bateson Institute, University of Sheffield, Sheffield, UK
| | | | | | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK.,Bateson Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Galdiero MR, Varricchi G, Loffredo S, Bellevicine C, Lansione T, Ferrara AL, Iannone R, di Somma S, Borriello F, Clery E, Triassi M, Troncone G, Marone G. Potential involvement of neutrophils in human thyroid cancer. PLoS One 2018; 13:e0199740. [PMID: 29953504 PMCID: PMC6023126 DOI: 10.1371/journal.pone.0199740] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022] Open
Abstract
Background Neutrophil functions have long been regarded as limited to acute inflammation and the defense against microbes. The role(s) of neutrophils in cancer remain poorly understood. Neutrophils infiltrate tumors and are key effector cells in the orchestration of inflammatory responses. Thyroid cancer (TC) is the most recurrent endocrine malignant tumor and is responsible for 70% of deaths due to endocrine cancers. No studies are so far available on the role of neutrophils in TC. Objective Our purpose was to study the involvement of tumor-associated neutrophils in TC. Methods Highly purified human neutrophils (>99%) from healthy donors were stimulated in vitro with conditioned media derived from TC cell lines TPC1 and 8505c (TC-CMs). Neutrophil functions (e.g., chemotaxis, activation, plasticity, survival, gene expression, and protein release) were evaluated. Results TC-derived soluble factors promoted neutrophil chemotaxis and survival. Neutrophil chemotaxis toward a TC-CM was mediated, at least in part, by CXCL8/IL-8, and survival was mediated by granulocyte-macrophage colony-stimulating factor (GM-CSF). In addition, each TC-CM induced morphological changes and activation of neutrophils (e.g., CD11b and CD66b upregulation and CD62L shedding) and modified neutrophils’ kinetic properties. Furthermore, each TC-CM induced production of reactive oxygen species, expression of proinflammatory and angiogenic mediators (CXCL8/IL-8, VEGF-A, and TNF-α), and a release of matrix metalloproteinase 9 (MMP-9). Moreover, in TC patients, tumor-associated neutrophils correlated with larger tumor size. Conclusions TC cell lines produce soluble factors able to “educate” neutrophils toward an activated functional state. These data will advance the understanding of the molecular and cellular mechanisms of innate immunity in TC.
Collapse
Affiliation(s)
- Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
- * E-mail: (MRG); (GM)
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Tiziana Lansione
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Raffaella Iannone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Sarah di Somma
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eduardo Clery
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
- * E-mail: (MRG); (GM)
| |
Collapse
|
30
|
Neutrophil Phenotype Correlates With Postoperative Inflammatory Outcomes in Infants Undergoing Cardiopulmonary Bypass. Pediatr Crit Care Med 2017; 18:1145-1152. [PMID: 29068910 DOI: 10.1097/pcc.0000000000001361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Infants with congenital heart disease frequently require cardiopulmonary bypass, which causes systemic inflammation. The goal of this study was to determine if neutrophil phenotype and activation status predicts the development of inflammatory complications following cardiopulmonary bypass. DESIGN Prospective cohort study. SETTING Tertiary care PICU with postoperative cardiac care. PATIENTS Thirty-seven patients 5 days to 10 months old with congenital heart disease requiring cardiopulmonary bypass. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Laboratory and clinical data collected included length of mechanical ventilation, acute kidney injury, and fluid overload. Neutrophils were isolated from whole blood at three time points surrounding cardiopulmonary bypass. Functional analyses included measurement of cell surface protein expression and nicotinamide adenine dinucleotide phosphate oxidase activity. Of all patients studied, 40.5% displayed priming of nicotinamide adenine dinucleotide phosphate oxidase activity in response to N-formyl-Met-Leu-Phe stimulation 24 hours post cardiopulmonary bypass as compared to pre bypass. Neonates who received steroids prior to bypass demonstrated enhanced priming of nicotinamide adenine dinucleotide phosphate oxidase activity at 48 hours. Patients who displayed priming post cardiopulmonary bypass were 8.8 times more likely to develop severe acute kidney injury as compared to nonprimers. Up-regulation of neutrophil surface CD11b levels pre- to postbypass occurred in 51.4% of patients, but this measure of neutrophil priming was not associated with acute kidney injury. Subsequent analyses of the basal neutrophil phenotype revealed that those with higher basal CD11b expression were significantly less likely to develop acute kidney injury. CONCLUSIONS Neutrophil priming occurs in a subset of infants undergoing cardiopulmonary bypass. Acute kidney injury was more frequent in those patients who displayed priming of nicotinamide adenine dinucleotide phosphate oxidase activity after cardiopulmonary bypass. This pilot study suggests that neutrophil phenotypic signature could be used to predict inflammatory organ dysfunction.
Collapse
|
31
|
Lok LSC, Farahi N, Juss JK, Loutsios C, Solanki CK, Peters AM, Donaldson F, Porter-Brown B, Chilvers ER. Effects of tocilizumab on neutrophil function and kinetics. Eur J Clin Invest 2017; 47:736-745. [PMID: 28796316 DOI: 10.1111/eci.12799] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 08/06/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Decreases in circulating neutrophils (polymorphonuclear leucocytes, PMNs) have been reported in patients treated with the anti-interleukin-6 receptor (IL-6R) antibody tocilizumab (TCZ); the mechanism for this is unclear. We hypothesize that TCZ reduces circulating neutrophils by affecting margination and/or bone marrow trafficking without affecting neutrophil function or apoptosis. MATERIALS AND METHODS Eighteen healthy subjects were randomized to single intravenous dose of TCZ 8 mg/kg (n = 12) or placebo (n = 6) on day 0. On day 4, each subject had autologous indium-111-labelled neutrophils re-injected, and their kinetics quantified with longitudinal profiling in a whole body gamma-counter. TCZ-treated subjects were divided into two groups according to the extent of reduction in neutrophil count. RESULTS Mean day 4 neutrophil counts, as % baseline, were 101·9%, 68·3% and 44·2% in the placebo, TCZ-PMN-'high' and TCZ-PMN-'low' groups, respectively (P < 0·001). Following TCZ, neutrophil function, activation and apoptosis ex vivo were all unaffected. In vivo, there were no differences in early blood recovery or margination to liver/spleen and bone marrow; however, later neutrophil re-distribution to bone marrow was markedly reduced in the TCZ-PMN-low group (peak pelvic count as % day 4 count on: day 5, 188% placebo vs. 127% TCZ-PMN-low, P < 0·001; day 10, 180% placebo vs. 132% TCZ-PMN-low, P < 0·01), with a trend towards higher liver/spleen neutrophil retention. CONCLUSIONS We have demonstrated for the first time in humans that IL-6R blockade affects neutrophil trafficking to the bone marrow without influencing neutrophil functional capacity.
Collapse
Affiliation(s)
| | - Neda Farahi
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jatinder K Juss
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Chandra K Solanki
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Adrien M Peters
- Division of Clinical and Laboratory Investigation, Brighton and Sussex Medical School, Brighton, UK
| | | | | | | |
Collapse
|
32
|
Mycobacterium tuberculosis Multidrug-Resistant Strain M Induces Low IL-8 and Inhibits TNF- α Secretion by Bronchial Epithelial Cells Altering Neutrophil Effector Functions. Mediators Inflamm 2017; 2017:2810606. [PMID: 28852268 PMCID: PMC5568625 DOI: 10.1155/2017/2810606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 12/17/2022] Open
Abstract
M strain, the most prevalent multidrug-resistant strain of Mycobacterium tuberculosis (Mtb) in Argentina, has mounted mechanisms to evade innate immune response. The role of human bronchial epithelium in Mtb infection remains unknown as well as its crosstalk with neutrophils (PMN). In this work, we evaluate whether M and H37Rv strains invade and replicate within bronchial epithelial cell line Calu-6 and how conditioned media (CM) derived from infected cells alter PMN responses. We demonstrated that M infects and survives within Calu-6 without promoting death. CM from M-infected Calu-6 (M-CM) did not attract PMN in correlation with its low IL-8 content compared to H37Rv-CM. Also, PMN activation and ROS production in response to irradiated H37Rv were impaired after treatment with M-CM due to the lack of TNF-α. Interestingly, M-CM increased H37Rv replication in PMN which would allow the spreading of mycobacteria upon PMN death and sustain IL-8 release. Thus, our results indicate that even at low invasion/replication rate within Calu-6, M induces the secretion of factors altering the crosstalk between these nonphagocytic cells and PMN, representing an evasion mechanism developed by M strain to persist in the host. These data provide new insights on the role of bronchial epithelium upon M infection.
Collapse
|
33
|
Ekpenyong AE, Toepfner N, Fiddler C, Herbig M, Li W, Cojoc G, Summers C, Guck J, Chilvers ER. Mechanical deformation induces depolarization of neutrophils. SCIENCE ADVANCES 2017; 3:e1602536. [PMID: 28630905 PMCID: PMC5470826 DOI: 10.1126/sciadv.1602536] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The transition of neutrophils from a resting state to a primed state is an essential requirement for their function as competent immune cells. This transition can be caused not only by chemical signals but also by mechanical perturbation. After cessation of either, these cells gradually revert to a quiescent state over 40 to 120 min. We use two biophysical tools, an optical stretcher and a novel microcirculation mimetic, to effect physiologically relevant mechanical deformations of single nonadherent human neutrophils. We establish quantitative morphological analysis and mechanical phenotyping as label-free markers of neutrophil priming. We show that continued mechanical deformation of primed cells can cause active depolarization, which occurs two orders of magnitude faster than by spontaneous depriming. This work provides a cellular-level mechanism that potentially explains recent clinical studies demonstrating the potential importance, and physiological role, of neutrophil depriming in vivo and the pathophysiological implications when this deactivation is impaired, especially in disorders such as acute lung injury.
Collapse
Affiliation(s)
- Andrew E. Ekpenyong
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Physics, Creighton University, Omaha, NE 68178, USA
| | - Nicole Toepfner
- Klinik und Poliklinik für Kinder-und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Christine Fiddler
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Maik Herbig
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wenhong Li
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gheorghe Cojoc
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Charlotte Summers
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Jochen Guck
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Corresponding author.
| | - Edwin R. Chilvers
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| |
Collapse
|
34
|
Miralda I, Uriarte SM, McLeish KR. Multiple Phenotypic Changes Define Neutrophil Priming. Front Cell Infect Microbiol 2017; 7:217. [PMID: 28611952 PMCID: PMC5447094 DOI: 10.3389/fcimb.2017.00217] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
Exposure to pro-inflammatory cytokines, chemokines, mitochondrial contents, and bacterial and viral products induces neutrophils to transition from a basal state into a primed one, which is currently defined as an enhanced response to activating stimuli. Although, typically associated with enhanced generation of reactive oxygen species (ROS) by the NADPH oxidase, primed neutrophils show enhanced responsiveness of exocytosis, NET formation, and chemotaxis. Phenotypic changes associated with priming also include activation of a subset of functions, including adhesion, transcription, metabolism, and rate of apoptosis. This review summarizes the breadth of phenotypic changes associated with priming and reviews current knowledge of the molecular mechanisms behind those changes. We conclude that the current definition of priming is too restrictive. Priming represents a combination of enhanced responsiveness and activated functions that regulate both adaptive and innate immune responses.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Microbiology, University of Louisville School of MedicineLouisville, KY, United States
| | - Silvia M Uriarte
- Department of Microbiology, University of Louisville School of MedicineLouisville, KY, United States.,Department of Medicine, University of Louisville School of MedicineLouisville, KY, United States
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of MedicineLouisville, KY, United States.,Robley Rex VA Medical CenterLouisville, KY, United States
| |
Collapse
|
35
|
Shah R, Thomas R, Mehta DS. Neutrophil priming: Implications in periodontal disease. J Indian Soc Periodontol 2017; 21:180-185. [PMID: 29440782 PMCID: PMC5803871 DOI: 10.4103/jisp.jisp_385_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Periodontal disease is a well-regulated response to bacterial infection directed by the inflammatory cells of the host immune system. The host response to injury or insult is implicated to be a vital feature of the majority of periodontal diseases. The excessive activation of neutrophils plays a role in the pathogenesis in diseases such as acute respiratory distress syndrome, rheumatoid arthritis, and periodontitis by contributing to inflammatory tissue injury. In the recent times, there has been a shift of paradigm from a hypo- to hyper-responsive/primed model of neutrophil dysfunction in periodontal etiopathogenesis. The aim of this review is to outline the mechanisms and effects of neutrophil priming, and thereafter, discuss the current controversy that exists regarding the role of primed neutrophils in periodontal etiopathogenesis.
Collapse
Affiliation(s)
- Rucha Shah
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| | - Raison Thomas
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| | - Dhoom Singh Mehta
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
36
|
Maini AA, George MJ, Motwani MP, Day RM, Gilroy DW, O’Brien AJ. A Comparison of Human Neutrophils Acquired from Four Experimental Models of Inflammation. PLoS One 2016; 11:e0165502. [PMID: 27780229 PMCID: PMC5079626 DOI: 10.1371/journal.pone.0165502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Defects in neutrophil function have been implicated in a wide spectrum of clinical conditions. Several models are employed to study activated human neutrophils akin to those found at a site of inflammation. These include whole blood (WB) ex vivo stimulation with lipopolysaccharide (LPS) and in vivo techniques: cantharidin blister, skin windows and intra-dermal injection of UV-killed E.coli (UVKEc). Neutrophils obtained from these have never been compared. We compared the activation status of neutrophils from each technique in order to inform the optimal model for use in human studies. Healthy male volunteers were randomised to undergo one of the four techniques (n = 5/group). LPS: WB stimulated with 1ng/ml of LPS for 4 hours. Cantharidin: 12.5μl of 0.1% cantharidin elicited a single blister, aspirated at 24 hours. Skin windows: four 6mm mechanical-suction blisters created, de-roofed and an exudate-collection chamber placed over the windows for 4 hours before aspiration. UVKEc: 1.5 x 107 UVKEc injected intra-dermally. A single 10mm mechanical-suction blister formed and aspirated at 4 hours. Unstimulated WB used as the control. Flow cytometry was used to determine activation status using CD16, CD11b, CD54, CD62L and CD88. Functional status was assessed with a phagocytosis assay. The pattern of neutrophil activation was similar in all models. Neutrophil CD11b was elevated in all models, most markedly in UVKEc (p<0.0001), and CD54 was also elevated but only significant in the LPS model (p = 0.001). CD62L was significantly reduced in all 4 models (p<0.0001) and CD88 was also suppressed in all. There were no changes in CD16 in any model, neither was there any significant difference in the phagocytic capacity of the neutrophils. In summary, there are no significant differences in activation marker expression or phagocytic capacity in the neutrophils obtained from each technique. Therefore we believe whole blood stimulation is the best model in experimentally challenging inpatient populations.
Collapse
Affiliation(s)
- Alexander A. Maini
- Centre for Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
- * E-mail:
| | - Marc J. George
- Centre for Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| | - Madhur P. Motwani
- Centre for Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| | - Richard M. Day
- UCL Applied Biomechanical Engineering Group, Division of Medicine, University College London, London, United Kingdom
| | - Derek W. Gilroy
- Centre for Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| | - Alastair J. O’Brien
- Centre for Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
37
|
Evaluation of the murine immune response to Xenopsylla cheopis flea saliva and its effect on transmission of Yersinia pestis. PLoS Negl Trop Dis 2014; 8:e3196. [PMID: 25255317 PMCID: PMC4177749 DOI: 10.1371/journal.pntd.0003196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/18/2014] [Indexed: 01/20/2023] Open
Abstract
Background/Aims Arthropod-borne pathogens are transmitted into a unique intradermal microenvironment that includes the saliva of their vectors. Immunomodulatory factors in the saliva can enhance infectivity; however, in some cases the immune response that develops to saliva from prior uninfected bites can inhibit infectivity. Most rodent reservoirs of Yersinia pestis experience fleabites regularly, but the effect this has on the dynamics of flea-borne transmission of plague has never been investigated. We examined the innate and acquired immune response of mice to bites of Xenopsylla cheopis and its effects on Y. pestis transmission and disease progression in both naïve mice and mice chronically exposed to flea bites. Methods/Principal Findings The immune response of C57BL/6 mice to uninfected flea bites was characterized by flow cytometry, histology, and antibody detection methods. In naïve mice, flea bites induced mild inflammation with limited recruitment of neutrophils and macrophages to the bite site. Infectivity and host response in naïve mice exposed to flea bites followed immediately by intradermal injection of Y. pestis did not differ from that of mice infected with Y. pestis without prior flea feeding. With prolonged exposure, an IgG1 antibody response primarily directed to the predominant component of flea saliva, a family of 36–45 kDa phosphatase-like proteins, occurred in both laboratory mice and wild rats naturally exposed to X. cheopis, but a hypersensitivity response never developed. The incidence and progression of terminal plague following challenge by infective blocked fleas were equivalent in naïve mice and mice sensitized to flea saliva by repeated exposure to flea bites over a 10-week period. Conclusions Unlike what is observed with many other blood-feeding arthropods, the murine immune response to X. cheopis saliva is mild and continued exposure to flea bites leads more to tolerance than to hypersensitivity. The immune response to flea saliva had no detectable effect on Y. pestis transmission or plague pathogenesis in mice. The saliva of blood-feeding arthropods contains a variety of components that prevent blood clotting and interfere with the immune system of the vertebrate host. These properties have been shown to enhance or inhibit the transmission of different pathogens transmitted by arthropods. Yersinia pestis, the bacterial agent of plague, is maintained in nature by flea to rodent transmission cycles. Most rodents live in close association with fleas and are constantly being bitten by them, but the influence this has on plague transmission is unknown - previous studies used laboratory animals which have never experienced a flea bite. We found that flea bites caused a mild inflammatory response in mice, and eventually an antibody response to components of flea saliva, but did not significantly affect pathogenesis. The transmission of Y. pestis by infected fleas and the incidence rate of bubonic plague mortality were the same in mice that had been exposed to frequent uninfected flea bites and mice with no prior exposure to fleas. Therefore, in contrast to what has been shown for many other arthropod-borne disease systems, vector saliva did not enhance or inhibit Y. pestis infection in mice, regardless of the immune status of the host to flea saliva.
Collapse
|
38
|
Nace EL, Nickerson SC, Kautz FM, Breidling S, Wochele D, Ely LO, Hurley DJ. Modulation of innate immune function and phenotype in bred dairy heifers during the periparturient period induced by feeding an immunostimulant for 60 days prior to delivery. Vet Immunol Immunopathol 2014; 161:240-50. [PMID: 25219783 DOI: 10.1016/j.vetimm.2014.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to evaluate the effect of a feed additive (OmniGen-AF(®), reported to have immune modulating activity) on innate immunity and health events during the periparturient period in dairy heifers when immunity is suppressed. From 60 days prepartum through calving, supplemented heifers (n=20) received OmniGen-AF(®) daily and were compared with unsupplemented controls (n=20). Blood leukocyte innate immune activity (phenotype markers, phagocytic activity, and reactive oxygen species--ROS production) was measured prior to feeding (60 days prepartum), 30 days later, and on days 1, 7, 14, and 30 postpartum. Adverse health events (udder edema, ketosis, displaced abomasum, and death) and milk production were measured at calving and into early lactation. The fraction of leukocytes with measurable CD62L (L-selectin) on their surface from supplemented heifers tended to be greater during the periparturient period in treated heifers than controls (p=0.100). Likewise, leukocyte phagocytosis of Escherichia coli and Staphylococcus aureus during this time period tended to be greater in heifers supplemented with OmniGen-AF(®) (p=0.100). Conversely, ROS production in response to phorbol myristate acetate or when leukocytes were stimulated with killed S. aureus lysate tended to be greater among control heifers compared with supplemented animals (p=0.100). Supplemented heifers exhibited fewer incidents of udder edema than controls (p=0.030) and tended to exhibit a lower rate of new cases of mastitis (p=0.098); however, no differences were observed in milk somatic cell counts or level of milk production. Results demonstrate a positive role of OmniGen-AF(®) in amplifying leukocyte function consistent with antibacterial activity during the periparturient period, and support the continued study of dietary supplementation to enhance mammary gland health in dairy cows.
Collapse
Affiliation(s)
- E L Nace
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - S C Nickerson
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - F M Kautz
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - S Breidling
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - D Wochele
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - L O Ely
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - D J Hurley
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
39
|
Summers C, Singh NR, White JF, Mackenzie IM, Johnston A, Solanki C, Balan KK, Peters AM, Chilvers ER. Pulmonary retention of primed neutrophils: a novel protective host response, which is impaired in the acute respiratory distress syndrome. Thorax 2014; 69:623-9. [PMID: 24706039 PMCID: PMC4055272 DOI: 10.1136/thoraxjnl-2013-204742] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rationale Acute respiratory distress syndrome (ARDS) affects over 200 000 people annually in the USA. Despite causing severe, and often refractory, hypoxaemia, the high mortality and long-term morbidity of ARDS results mainly from extra-pulmonary organ failure; however the mechanism for this organ crosstalk has not been determined. Methods Using autologous radiolabelled neutrophils we investigated the pulmonary transit of primed and unprimed neutrophils in humans. Flow cytometry of whole blood samples was used to assess transpulmonary neutrophil priming gradients in patients with ARDS, sepsis and perioperative controls. Main results Unprimed neutrophils passed through the lungs with a transit time of 14.2 s, only 2.3 s slower than erythrocytes, and with <5% first-pass retention. Over 97% of neutrophils primed ex vivo with granulocyte macrophage colony-stimulating factor were retained on first pass, with 48% still remaining in the lungs at 40 min. Neutrophils exposed to platelet-activating factor were initially retained but subsequently released such that only 14% remained in the lungs at 40 min. Significant transpulmonary gradients of neutrophil CD62L cell surface expression were observed in ARDS compared with perioperative controls and patients with sepsis. Conclusions We demonstrated minimal delay and retention of unprimed neutrophils transiting the healthy human pulmonary vasculature, but marked retention of primed neutrophils; these latter cells then ‘deprime’ and are re-released into the systemic circulation. Further, we show that this physiological depriming mechanism may fail in patients with ARDS, resulting in increased numbers of primed neutrophils within the systemic circulation. This identifies a potential mechanism for the remote organ damage observed in patients with ARDS.
Collapse
Affiliation(s)
- Charlotte Summers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nanak R Singh
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jessica F White
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Iain M Mackenzie
- Department of Anaesthesia, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrew Johnston
- Department of Anaesthesia, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Chandra Solanki
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - K K Balan
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - A Michael Peters
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
40
|
Futosi K, Fodor S, Mócsai A. Reprint of Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17:1185-97. [PMID: 24263067 DOI: 10.1016/j.intimp.2013.11.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 06/09/2013] [Indexed: 12/13/2022]
Abstract
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca(2+) signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | | | | |
Collapse
|
41
|
Malachowa N, Kobayashi SD, Freedman B, Dorward DW, DeLeo FR. Staphylococcus aureus leukotoxin GH promotes formation of neutrophil extracellular traps. THE JOURNAL OF IMMUNOLOGY 2013; 191:6022-9. [PMID: 24190656 DOI: 10.4049/jimmunol.1301821] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus secretes numerous virulence factors that facilitate evasion of the host immune system. Among these molecules are pore-forming cytolytic toxins, including Panton-Valentine leukocidin (PVL), leukotoxin GH (LukGH; also known as LukAB), leukotoxin DE, and γ-hemolysin. PVL and LukGH have potent cytolytic activity in vitro, and both toxins are proinflammatory in vivo. Although progress has been made toward elucidating the role of these toxins in S. aureus virulence, our understanding of the mechanisms that underlie the proinflammatory capacity of these toxins, as well as the associated host response toward them, is incomplete. To address this deficiency in knowledge, we assessed the ability of LukGH to prime human PMNs for enhanced bactericidal activity and further investigated the impact of the toxin on neutrophil function. We found that, unlike PVL, LukGH did not prime human neutrophils for increased production of reactive oxygen species nor did it enhance binding and/or uptake of S. aureus. Unexpectedly, LukGH promoted the release of neutrophil extracellular traps (NETs), which, in turn, ensnared but did not kill S. aureus. Furthermore, we found that electropermeabilization of human neutrophils, used as a separate means to create pores in the neutrophil plasma membrane, similarly induced formation of NETs, a finding consistent with the notion that NETs can form during nonspecific cytolysis. We propose that the ability of LukGH to promote formation of NETs contributes to the inflammatory response and host defense against S. aureus infection.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | | | | | | | | |
Collapse
|
42
|
Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17:638-50. [PMID: 23994464 PMCID: PMC3827506 DOI: 10.1016/j.intimp.2013.06.034] [Citation(s) in RCA: 443] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. Neutrophils are crucial players in innate and adaptive immunity. Neutrophils also participate in autoimmune and inflammatory diseases. Various neutrophil receptors recognize pathogens and the inflammatory environment. The various cell surface receptors trigger diverse intracellular signaling. Neutrophil receptors and signaling are potential targets in inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Szabina Fodor
- Department of Computer Science, Corvinus University of Budapest, 1093 Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
- Corresponding author at: Department of Physiology, Semmelweis University School of Medicine, Tűzoltó utca 37–47, 1094 Budapest, Hungary. Tel.: + 36 1 459 1500x60 409; fax: + 36 1 266 7480.
| |
Collapse
|
43
|
Maji AK, Samanta SK, Mahapatra S, Banerji P, Banerjee D. In-vivo immunomodulatory activity of standardized Stereospermum suaveolens (Roxb.) DC. root extract. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13596-013-0132-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Blidberg K, Palmberg L, James A, Billing B, Henriksson E, Lantz AS, Larsson K, Dahlén B. Adhesion molecules in subjects with COPD and healthy non-smokers: a cross sectional parallel group study. Respir Res 2013; 14:47. [PMID: 23635004 PMCID: PMC3669051 DOI: 10.1186/1465-9921-14-47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/24/2013] [Indexed: 01/13/2023] Open
Abstract
Background The aim of the study was to investigate how the expression of adhesion molecules changes as neutrophils migrate from the circulation to the lung and if these changes differ between non-smoking subjects and smokers with and without COPD. Methods Non-smoking healthy subjects (n=22), smokers without (n=21) and with COPD (n=18) were included. Neutrophils from peripheral blood, sputum and bronchial biopsies were analysed for cell surface expression of adhesion molecules (CD11b, CD62L, CD162). Serum, sputum supernatant and BAL-fluid were analysed for soluble adhesion molecules (ICAM-1, -3, E-selectin, P-selectin, VCAM-1, PECAM-1). Results Expression of CD11b was increased on circulating neutrophils from smokers with COPD. It was also increased on sputum neutrophils in both smokers groups, but not in non-smokers, as compared to circulating neutrophils. Serum ICAM-1 was higher in the COPD group compared to the other two groups (p<0.05) and PECAM-1 was lower in smokers without COPD than in non-smoking controls and the COPD group (p<0.05). In BAL-fluid ICAM-1 was lower in the COPD group than in the other groups (p<0.05). Conclusions Thus, our data strongly support the involvement of a systemic component in COPD and demonstrate that in smokers neutrophils are activated to a greater extent at the point of transition from the circulation into the lungs than in non-smokers.
Collapse
Affiliation(s)
- Kristin Blidberg
- Lung and Allergy Research, National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kikuchi-Ueda T, Ubagai T, Ono Y. Priming effects of tumor necrosis factor-α on production of reactive oxygen species during Toxoplasma gondii stimulation and receptor gene expression in differentiated HL-60 cells. J Infect Chemother 2013; 19:1053-64. [DOI: 10.1007/s10156-013-0619-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 05/13/2013] [Indexed: 01/05/2023]
|
46
|
Abdominal compartment syndrome: a decade of progress. J Am Coll Surg 2012; 216:135-46. [PMID: 23062520 DOI: 10.1016/j.jamcollsurg.2012.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/26/2012] [Accepted: 09/10/2012] [Indexed: 12/22/2022]
|
47
|
Kinetics of innate immune response to Yersinia pestis after intradermal infection in a mouse model. Infect Immun 2012; 80:4034-45. [PMID: 22966041 DOI: 10.1128/iai.00606-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A hallmark of Yersinia pestis infection is a delayed inflammatory response early in infection. In this study, we use an intradermal model of infection to study early innate immune cell recruitment. Mice were injected intradermally in the ear with wild-type (WT) or attenuated Y. pestis lacking the pYV virulence plasmid (pYV(-)). The inflammatory responses in ear and draining lymph node samples were evaluated by flow cytometry and immunohistochemistry. As measured by flow cytometry, total neutrophil and macrophage recruitment to the ear in WT-infected mice did not differ from phosphate-buffered saline (PBS) controls or mice infected with pYV(-), except for a transient increase in macrophages at 6 h compared to the PBS control. Limited inflammation was apparent even in animals with high bacterial loads (10(5) to 10(6) CFU). In addition, activation of inflammatory cells was significantly reduced in WT-infected mice as measured by CD11b and major histocompatibility complex class II (MHC-II) expression. When mice infected with WT were injected 12 h later at the same intradermal site with purified LPS, Y. pestis did not prevent recruitment of neutrophils. However, significant reduction in neutrophil activation remained compared to that of PBS and pYV(-) controls. Immunohistochemistry revealed qualitative differences in neutrophil recruitment to the skin and draining lymph node, with WT-infected mice producing a diffuse inflammatory response. In contrast, focal sites of neutrophil recruitment were sustained through 48 h postinfection in pYV(-)-infected mice. Thus, an important feature of Y. pestis infection is reduced activation and organization of inflammatory cells that is at least partially dependent on the pYV virulence plasmid.
Collapse
|
48
|
Graves SF, Kobayashi SD, Braughton KR, Whitney AR, Sturdevant DE, Rasmussen DL, Kirpotina LN, Quinn MT, DeLeo FR. Sublytic concentrations of Staphylococcus aureus Panton-Valentine leukocidin alter human PMN gene expression and enhance bactericidal capacity. J Leukoc Biol 2012; 92:361-74. [PMID: 22581932 DOI: 10.1189/jlb.1111575] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
CA-MRSA infections are often caused by strains encoding PVL, which can cause lysis of PMNs and other myeloid cells in vitro, a function considered widely as the primary means by which PVL might contribute to disease. However, at sublytic concentrations, PVL can function as a PMN agonist. To better understand this phenomenon, we investigated the ability of PVL to alter human PMN function. PMNs exposed to PVL had enhanced capacity to produce O(2)(-) in response to fMLF, but unlike priming by LPS, this response did not require TLR signal transduction. On the other hand, there was subcellular redistribution of NADPH oxidase components in PMNs following exposure of these cells to PVL--a finding consistent with priming. Importantly, PMNs primed with PVL had an enhanced ability to bind/ingest and kill Staphylococcus aureus. Priming of PMNs with other agonists, such as IL-8 or GM-CSF, altered the ability of PVL to cause formation of pores in the plasma membranes of these cells. Microarray analysis revealed significant changes in the human PMN transcriptome following exposure to PVL, including up-regulation of molecules that regulate the inflammatory response. Consistent with the microarray data, mediators of the inflammatory response were released from PMNs after stimulation with PVL. We conclude that exposure of human PMNs to sublytic concentrations of PVL elicits a proinflammatory response that is regulated in part at the level of gene expression. We propose that PVL-mediated priming of PMNs enhances the host innate immune response.
Collapse
Affiliation(s)
- Shawna F Graves
- Laboratory of Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bertram A, Zhang H, von Vietinghoff S, de Pablo C, Haller H, Shushakova N, Ley K. Protein kinase C-θ is required for murine neutrophil recruitment and adhesion strengthening under flow. THE JOURNAL OF IMMUNOLOGY 2012; 188:4043-51. [PMID: 22403440 DOI: 10.4049/jimmunol.1101651] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein kinase C (PKC)-θ is involved in T cell activation via regulating the avidity of the β(2) integrin LFA-1 in the immunological synapse. LFA-1 also mediates leukocyte adhesion. To investigate the role of PKC-θ in neutrophil adhesion, we performed intravital microscopy in cremaster venules of mice reconstituted with bone marrow from LysM-GFP(+) (wild-type [WT]) and PKC-θ gene-deficient (Prkcq(-/-)) mice. Following stimulation with CXCL1, both WT and Prkcq(-/-) cells became adherent. Although most WT neutrophils remained adherent for at least 180 s, 50% of Prkcq(-/-) neutrophils were detached after 105 s and most by 180 s. Upon CXCL1 injection, rolling of all WT neutrophils stopped for 90 s, but rolling of Prkcq(-/-) neutrophils started 30 s after CXCL1 stimulation. A similar neutrophil adhesion defect was seen in vitro, and spreading of Prkcq(-/-) neutrophils was delayed. Prkcq(-/-) neutrophil recruitment was impaired in fMLP-induced transmigration into the cremaster muscle, thioglycollate-induced peritonitis, and LPS-induced lung injury. We conclude that PKC-θ mediates integrin-dependent neutrophil functions and is required to sustain neutrophil adhesion in postcapillary venules in vivo. These findings suggest that the role of PKC-θ in outside-in signaling following engagement of neutrophil integrins is relevant for inflammation in vivo.
Collapse
Affiliation(s)
- Anna Bertram
- Department of Nephrology and Hypertensiology, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Naegele M, Tillack K, Reinhardt S, Schippling S, Martin R, Sospedra M. Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol 2011; 242:60-71. [PMID: 22169406 DOI: 10.1016/j.jneuroim.2011.11.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 12/22/2022]
Abstract
Neutrophils are armed with proteases with indiscriminate histotoxic potential, and to minimize tissue injury, their activation involves priming with inflammatory mediators before cells are fully activated in a second step. Here, we show that neutrophils in multiple sclerosis patients are more numerous and exhibit a primed state based on reduced apoptosis, higher expression of TLR-2, fMLP receptor, IL-8 receptor and CD43, enhanced degranulation and oxidative burst as well as higher levels of neutrophil extracellular traps in serum. The chronic inflammatory environment in multiple sclerosis probably underlies this inappropriate neutrophil priming, which may result in enhanced neutrophil activation during infection.
Collapse
Affiliation(s)
- Matthias Naegele
- Institute for Neuroimmunology and Clinical MS Research (inims), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center-Eppendorf, Falkenried 94, 20251 Hamburg (UKE), Germany
| | | | | | | | | | | |
Collapse
|