1
|
Shi X, Wu Y, Ni H, Li M, Qi B, Xu Y. Macrophage migration inhibitory factor (MIF) inhibitor iSO-1 promotes staphylococcal protein A-induced osteogenic differentiation by inhibiting NF-κB signaling pathway. Int Immunopharmacol 2023; 115:109600. [PMID: 36577150 DOI: 10.1016/j.intimp.2022.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Osteomyelitis is among the most difficult to treat diseases in the field of orthopedics, and there is a lack of effective treatment modalities. Exploring the mechanisms of its development is beneficial for finding molecular targets for treatment. Increasing evidence suggests that macrophage migration inhibitory factor (MIF), as a proinflammatory mediator, is not only involved in various pathophysiological processes of inflammation but also plays an important role in osteogenic differentiation, while its specific regulatory mechanism in osteomyelitis remains unclear. METHODS In the present study, staphylococcal protein A (SPA)-treated rat bone marrow mesenchymal stem cells (rBMSCs) were used to construct cell models of osteomyelitis. Rat and cell models of osteomyelitis were used to validate the expression levels of MIF, and to further explore the regulatory mechanisms of the MIF inhibitor methyl ester of (S, R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid (iSO-1) and MIF knockdown on cell model of osteomyelitis toward osteogenic differentiation. RESULTS We found that the expression level of MIF was upregulated in rat and cell models of osteomyelitis and subsequently demonstrated by the GSE30119 dataset that the expression level of MIF was also significantly upregulated in patients with osteomyelitis. Furthermore, SPA promotes MIF expression in rBMSCs while inhibiting the expression of osteogenic-related genes such as Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN) and collagen type-1 (COL-1) through activation of the nuclear factor kappa-B (NF-κB) pathway. In vivo, we further demonstrated that local injection of iSO-1 significantly increased the osteogenic activity in rat model of osteomyelitis. Importantly, we also demonstrated that MIF knockdown and the MIF inhibitor iSO-1 reversed the SPA-mediated inhibition of osteogenic differentiation of rBMSCs by inhibiting the activation of the NF-κB pathway, as evidenced by the upregulation of osteogenic-related gene expression and enhanced bone mineralization. CONCLUSION ISO-1 and MIF knockdown can reverse the SPA-mediated inhibition of osteogenic differentiation in the rBMSCs model of osteomyelitis by inhibiting the NF-κB signaling pathway, providing a potential target for the treatment of osteomyelitis.
Collapse
Affiliation(s)
| | - Yipeng Wu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Haonan Ni
- Kunming Medical University, Kunming, China
| | - Mingjun Li
- Kunming Medical University, Kunming, China
| | | | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China.
| |
Collapse
|
2
|
Kusuda M, Haroon N, Nakamura A. Complexity of enthesitis and new bone formation in ankylosing spondylitis: current understanding of the immunopathology and therapeutic approaches. Mod Rheumatol 2021; 32:484-492. [PMID: 34918137 DOI: 10.1093/mr/roab057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/20/2023]
Abstract
Despite increasing availability of treatments for spondyloarthritis (SpA) including tumour necrosis factor (TNF) and interleukin-17 (IL-17) inhibitors, there is no established treatment that abates new bone formation (NBF) in ankylosing spondylitis (AS), a subset of SpA. Recent research on TNF has revealed the increased level of transmembrane TNF in the joint tissue of SpA patients compared to that of rheumatoid arthritis patients, which appears to facilitate TNF-driven osteo-proliferative changes in AS. In addition, there is considerable interest in the central role of IL-23/IL-17 axis in type 3 immunity and the therapeutic potential of blocking this axis to ameliorate enthesitis and NBF in AS. AS immunopathology involves a variety of immune cells, including both innate and adoptive immune cells, to orchestrate the immune response driving type 3 immunity. In response to external stimuli of inflammatory cytokines, local osteo-chondral progenitor cells activate intra-cellular anabolic molecules and signals involving hedgehog, bone morphogenetic proteins, receptor activator of nuclear factor kappa-B ligand, and Wnt pathways to promote NBF in AS. Here, we provide an overview of the current immunopathology and future directions for the treatment of enthesitis and NBF associated with AS.
Collapse
Affiliation(s)
- Masaki Kusuda
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Spondylitis Program, Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Akihiro Nakamura
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Spondylitis Program, Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Jin K, Zheng L, Ye L, Xie Z, Gao J, Lou C, Pan W, Pan B, Liu S, Chen Z, He D. Chicago sky blue 6B (CSB6B), an allosteric inhibitor of macrophage migration inhibitory factor (MIF), suppresses osteoclastogenesis and promotes osteogenesis through the inhibition of the NF-κB signaling pathway. Biochem Pharmacol 2021; 192:114734. [PMID: 34411569 DOI: 10.1016/j.bcp.2021.114734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory mediator involved in various pathophysiological and inflammatory states. Accumulating line of evidence suggests a role for MIF in regulating bone metabolism and therefore a prime candidate for therapeutic targeting. In this study, we showed that Chicago sky blue 6B (CSB6B) suppresses RANKL-induced osteoclast and bone resorption in vitro via the inhibition of NF-κB signaling activation and promoting proteasome-mediated degradation of MIF. Consequently, the induction of NFATc1 was impaired resulting in downregulation of NFATc1-responsive osteoclast genes. We also demonstrated that CSB6B treatment enhanced primary calvarial osteoblast differentiation and bone mineralization in vitro via the suppression of NF-κB activation and upregulation of Runx expression. Using two murine models of osteolytic bone disorders, we further showed that administration of CSB6B protected mice against pathological inflammatoryc calvarial bone destruction induced by titanium particles mice as well as estrogen-deficiency induced bone loss as a result of ovariectomy. Together, as an MIF inhibitor, CSB6B can inhibit osteoclast differentiation and bone resorption function and enhance the mineralization of osteoblasts through the inhibition of NF-κB pathway. MIF is a prime target for therapeutic targeting for the treatment of osteolytic bone disorders and the MIF inhibitor CSB6B could be potential anti-osteoporosis drug.
Collapse
Affiliation(s)
- Kangtao Jin
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/Lishui Central Hospital, Lishui, China
| | - Lin Zheng
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/Lishui Central Hospital, Lishui, China; Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lin Ye
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/Lishui Central Hospital, Lishui, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiawei Gao
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/Lishui Central Hospital, Lishui, China
| | - Chao Lou
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/Lishui Central Hospital, Lishui, China
| | - Wenzheng Pan
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/Lishui Central Hospital, Lishui, China
| | - Bin Pan
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/Lishui Central Hospital, Lishui, China
| | - Shijie Liu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/Lishui Central Hospital, Lishui, China
| | - Zhenzhong Chen
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/Lishui Central Hospital, Lishui, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Dengwei He
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/Lishui Central Hospital, Lishui, China.
| |
Collapse
|
4
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
5
|
Qin D, Jiang Y, Jin X. Effect of macrophage migration inhibitory factor on inflammatory cytokines and fibrogenic gene expression in human RPE cells. Mol Med Rep 2019; 20:830-836. [PMID: 31180524 DOI: 10.3892/mmr.2019.10277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 04/24/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dong Qin
- Henan Eye Institute, Henan Provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| | - Yanrong Jiang
- Department of Ophthalmology, People's Hospital of Peking University, Beijing 100044, P.R. China
| | - Xuemin Jin
- Henan Eye Institute, Henan Provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
6
|
Zheng L, Gao J, Jin K, Chen Z, Yu W, Zhu K, Huang W, Liu F, Mei L, Lou C, He D. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway. FASEB J 2019; 33:7667-7683. [PMID: 30893559 DOI: 10.1096/fj.201802364rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current pharmacological intervention for the treatment of osteolytic bone diseases such as osteoporosis focuses on the prevention of excessive osteoclastic bone resorption but does not enhance osteoblast-mediated bone formation. In our study, we have shown that 4-iodo-6-phenylpyrimidine (4-IPP), an irreversible inhibitor of macrophage migration inhibitory factor (MIF), can inhibit receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and potentiate osteoblast-mediated mineralization and bone nodule formation in vitro. Mechanistically, 4-IPP inhibited RANKL-induced p65 phosphorylation and nuclear translocation by preventing the interaction of MIF with thioredoxin-interacting protein-p65 complexes. This led to the suppression of late osteoclast marker genes such as nuclear factor of activated T cells cytoplasmic 1, resulting in impaired osteoclast formation. In contrast, 4-IPP potentiated osteoblast differentiation and mineralization also through the inhibition of the p65/NF-κB signaling cascade. In the murine model of pathologic osteolysis induced by titanium particles, 4-IPP protected against calvarial bone destruction. Similarly, in the murine model of ovariectomy-induced osteoporosis, 4-IPP treatment ameliorated the bone loss associated with estrogen deficiency by reducing osteoclastic activities and enhancing osteoblastic bone formation. Collectively, these findings provide evidence for the pharmacological targeting of MIF for the treatment of osteolytic bone disorders.-Zheng, L., Gao, J., Jin, K., Chen, Z., Yu, W., Zhu, K., Huang, W., Liu, F., Mei, L., Lou, C., He, D. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Jiawei Gao
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Kangtao Jin
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Zhenzhong Chen
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Weiyang Yu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Kejun Zhu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Wenjun Huang
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Feijun Liu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Liangwei Mei
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Chao Lou
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Dengwei He
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| |
Collapse
|
7
|
Ranganathan V, Ciccia F, Zeng F, Sari I, Guggino G, Muralitharan J, Gracey E, Haroon N. Macrophage Migration Inhibitory Factor Induces Inflammation and Predicts Spinal Progression in Ankylosing Spondylitis. Arthritis Rheumatol 2017; 69:1796-1806. [PMID: 28597514 DOI: 10.1002/art.40175] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/06/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the role of macrophage migration inhibitory factor (MIF) in the pathogenesis of ankylosing spondylitis (AS). METHODS Patients who met the modified New York criteria for AS were recruited for the study. Healthy volunteers, rheumatoid arthritis patients, and osteoarthritis patients were included as controls. Based on the annual rate of increase in modified Stoke AS Spine Score (mSASSS), AS patients were classified as progressors or nonprogressors. MIF levels in serum and synovial fluid were quantitated by enzyme-linked immunosorbent assay. Predictors of AS progression were evaluated using logistic regression analysis. Immunohistochemical analysis of ileal tissue was performed to identify MIF-producing cells. Flow cytometry was used to identify MIF-producing subsets, expression patterns of the MIF receptor (CD74), and MIF-induced tumor necrosis factor (TNF) production in the peripheral blood. MIF-induced mineralization of osteoblast cells (SaOS-2) was analyzed by alizarin red S staining, and Western blotting was used to quantify active β-catenin levels. RESULTS Baseline serum MIF levels were significantly elevated in AS patients compared to healthy controls and were found to independently predict AS progression. MIF levels were higher in the synovial fluid of AS patients, and MIF-producing macrophages and Paneth cells were enriched in their gut. MIF induced TNF production in monocytes, activated β-catenin in osteoblasts, and promoted the mineralization of osteoblasts. CONCLUSION Our findings indicate an unexplored pathogenic role of MIF in AS and a link between inflammation and new bone formation.
Collapse
Affiliation(s)
| | | | - Fanxing Zeng
- University Health Network and Krembil Research Institute, Toronto, Ontario, Canada
| | - Ismail Sari
- University Health Network and University of Toronto, Toronto, Ontario, Canada, and Dokuz Eylul University, Izmir, Turkey
| | | | - Janogini Muralitharan
- Krembil Research Institute, Toronto, Ontario, Canada, and McMaster University, Hamilton, Ontario, Canada
| | - Eric Gracey
- University Health Network and Krembil Research Institute, Toronto, Ontario, Canada
| | - Nigil Haroon
- University Health Network, Krembil Research Institute, and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Gu R, Santos LL, Ngo D, Fan H, Singh PP, Fingerle-Rowson G, Bucala R, Xu J, Quinn JMW, Morand EF. Macrophage migration inhibitory factor is essential for osteoclastogenic mechanisms in vitro and in vivo mouse model of arthritis. Cytokine 2015; 72:135-45. [PMID: 25647268 DOI: 10.1016/j.cyto.2014.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/27/2014] [Accepted: 11/16/2014] [Indexed: 01/21/2023]
Abstract
Macrophage migration inhibitory factor (MIF) enhances activation of leukocytes, endothelial cells and fibroblast-like synoviocytes (FLS), thereby contributing to the pathogenesis of rheumatoid arthritis (RA). A MIF promoter polymorphism in RA patients resulted in higher serum MIF concentration and worsens bone erosion; controversially current literature reported an inhibitory role of MIF in osteoclast formation. The controversial suggested that the precise role of MIF and its putative receptor CD74 in osteoclastogenesis and RA bone erosion, mediated by locally formed osteoclasts in response to receptor activator of NF-κB ligand (RANKL), is unclear. We reported that in an in vivo K/BxN serum transfer arthritis, reduced clinical and histological arthritis in MIF(-/-) and CD74(-/-) mice were accompanied by a virtual absence of osteoclasts at the synovium-bone interface and reduced osteoclast-related gene expression. Furthermore, in vitro osteoclast formation and osteoclast-related gene expression were significantly reduced in MIF(-/-) cells via decreasing RANKL-induced phosphorylation of NF-κB-p65 and ERK1/2. This was supported by a similar reduction of osteoclastogenesis observed in CD74(-/-) cells. Furthermore, a MIF blockade reduced RANKL-induced osteoclastogenesis via deregulating RANKL-mediated NF-κB and NFATc1 transcription factor activation. These data indicate that MIF and CD74 facilitate RANKL-induced osteoclastogenesis, and suggest that MIF contributes directly to bone erosion, as well as inflammation, in RA.
Collapse
Affiliation(s)
- Ran Gu
- Centre for Inflammatory Disease, Monash University, Clayton, Australia
| | - Leilani L Santos
- Centre for Inflammatory Disease, Monash University, Clayton, Australia
| | - Devi Ngo
- Centre for Inflammatory Disease, Monash University, Clayton, Australia
| | - HuaPeng Fan
- Centre for Inflammatory Disease, Monash University, Clayton, Australia
| | | | | | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | - Julian M W Quinn
- Prince Henry's Institute, Clayton, Australia; Dept of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Eric F Morand
- Centre for Inflammatory Disease, Monash University, Clayton, Australia.
| |
Collapse
|
9
|
Mun SH, Oh D, Lee SK. Macrophage migration inhibitory factor down-regulates the RANKL-RANK signaling pathway by activating Lyn tyrosine kinase in mouse models. Arthritis Rheumatol 2014; 66:2482-93. [PMID: 24891319 PMCID: PMC4146704 DOI: 10.1002/art.38723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/20/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) is an important modulator of innate and adaptive immunity as well as local inflammatory responses. We previously reported that MIF down-regulated osteoclastogenesis through a mechanism that requires CD74. The aim of the current study was to examine whether MIF modulates osteoclastogenesis through Lyn phosphorylation, and whether down-regulation of RANKL-mediated signaling requires the association of CD74, CD44, and Lyn. METHODS CD74-knockout (CD74-KO), CD44-KO, and Lyn-KO mouse models were used to investigate whether Lyn requires these receptors and coreceptors. The effects of MIF on osteoclastogenesis were assessed using Western blot analysis, small interfering RNA (siRNA)-targeted down-regulation of Lyn, Lyn-KO mice, and real-time imaging of Lyn molecules to surface proteins. RESULTS MIF treatment induced Lyn expression, and MIF down-regulated RANKL-induced activator protein 1 (AP-1) and the Syk/phospholipase Cγ cascade during osteoclastogenesis through activated Lyn tyrosine kinase. The results of immunoprecipitation studies revealed that MIF receptors associated with Lyn in response to MIF treatment. Studies using Lyn-specific siRNA and Lyn-KO mice confirmed our findings. CONCLUSION Our findings indicate that the tyrosine kinase Lyn is activated when MIF binds to its receptor CD74 and its coreceptor CD44 and, in turn, down-regulates the RANKL-mediated signaling cascade by suppressing NF-ATc1 protein expression through down-regulation of AP-1 and calcium signaling components.
Collapse
Affiliation(s)
- Se Hwan Mun
- UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT 06030
| | - Dongmyung Oh
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Sun-Kyeong Lee
- UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
10
|
Spies CM, Wiebe E, Tu J, Li A, Gaber T, Huscher D, Seibel MJ, Zhou H, Buttgereit F. Acute murine antigen-induced arthritis is not affected by disruption of osteoblastic glucocorticoid signalling. BMC Musculoskelet Disord 2014; 15:31. [PMID: 24491163 PMCID: PMC3922092 DOI: 10.1186/1471-2474-15-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/29/2014] [Indexed: 01/04/2023] Open
Abstract
Background The role of endogenous glucocorticoids (GC) in the initiation and maintenance of rheumatoid arthritis (RA) remains unclear. We demonstrated previously that disruption of GC signalling in osteoblasts results in a profound attenuation of K/BxN serum-induced arthritis, a mouse model of RA. To determine whether or not the modulation of the inflammatory response by osteoblasts involves T cells, we studied the effects of disrupted osteoblastic GC-signalling in the T cell-dependent model of antigen-induced arthritis (AIA). Methods Acute arthritis was induced in pre-immunised 11-week-old male 11β-hydroxysteroid dehydrogenase type 2 transgenic (tg) mice and their wild-type (WT) littermates by intra-articular injection of methylated bovine serum albumine (mBSA) into one knee joint. Knee diameter was measured every 1–2 days until euthanasia on day 14 post injection. In a separate experiment, arthritis was maintained for 28 days by weekly reinjections of mBSA. Tissues were analysed by histology, histomorphometry and microfocal-computed tomography. Serum cytokines levels were determined by multiplex suspension array. Results In both short and long term experiments, arthritis developed in tg and WT mice with no significant difference between both groups. Histological indices of inflammation, cartilage damage and bone erosion were similar in tg and WT mice. Bone volume and turnover at the contralateral tibia and systemic cytokine levels were not different. Conclusions Acute murine AIA is not affected by a disruption in osteoblastic GC signalling. These data indicate that osteoblasts do not modulate the T cell-mediated inflammatory response via a GC-dependent pathway.
Collapse
Affiliation(s)
- Cornelia M Spies
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu L, Peng B. The Expression of Macrophage Migration Inhibitory Factor Is Correlated with Receptor Activator of Nuclear Factor Kappa B Ligand in Induced Rat Periapical Lesions. J Endod 2013; 39:984-9. [DOI: 10.1016/j.joen.2013.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/02/2013] [Accepted: 03/03/2013] [Indexed: 01/02/2023]
|
12
|
Mun SH, Won HY, Hernandez P, Aguila HL, Lee SK. Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass. J Bone Miner Res 2013; 28:948-59. [PMID: 23044992 PMCID: PMC3563845 DOI: 10.1002/jbmr.1787] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/26/2012] [Accepted: 10/01/2012] [Indexed: 12/24/2022]
Abstract
CD74 is a type II transmembrane protein that can act as a receptor for macrophage migration inhibitory factor (MIF) and plays a role in MIF-regulated responses. We reported that MIF inhibited osteoclast formation and MIF knockout (KO) mice had decreased bone mass. We therefore examined if CD74 was involved in the ability of MIF to alter osteoclastogenesis in cultured bone marrow (BM) from wild-type (WT) and CD74-deficient (KO) male mice. We also measured the bone phenotype of CD74 KO male mice. Bone mass in the femur of 8-week-old mice was measured by micro-computed tomography and histomorphometry. Bone marrow cells from CD74 KO mice formed 15% more osteoclast-like cells (OCLs) with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) (both at 30 ng/mL) compared to WT. Addition of MIF to WT cultures inhibited OCL formation by 16% but had no effect on CD74KO cultures. The number of colony forming unit granulocyte-macrophage (CFU-GM) in the bone marrow of CD74 KO mice was 26% greater than in WT controls. Trabecular bone volume (TBV) in the femurs of CD74 KO male mice was decreased by 26% compared to WT. In addition, cortical area and thickness were decreased by 14% and 11%, respectively. Histomorphometric analysis demonstrated that tartrate-resistant acid phosphatase (TRAP)(+) osteoclast number and area were significantly increased in CD74 KO by 35% and 43%, respectively compared to WT. Finally, we examined the effect of MIF on RANKL-induced-signaling pathways in bone marrow macrophage (BMM) cultures. MIF treatment decreased RANKL-induced nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) and c-Fos protein in BMM cultures by 70% and 41%, respectively. Our data demonstrate that CD74 is required for MIF to affect in vitro osteoclastogenesis. Further, the bone phenotype of CD74 KO mice is similar to that of MIF KO mice. MIF treatment of WT cultures suppressed RANKL-induced activator protein 1 (AP-1) expression, which resulted in decreased osteoclast differentiation in vitro. We propose that CD74 plays a critical role in the MIF inhibition of osteoclastogenesis.
Collapse
Affiliation(s)
- Se Hwan Mun
- UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT 06030-1835, USA
| | | | | | | | | |
Collapse
|
13
|
Lizotte J, Abed E, Signor C, Malu DT, Cuevas J, Kevorkova O, Sanchez-Dardon J, Satoskar A, Scorza T, Jumarie C, Moreau R. Expression of macrophage migration inhibitory factor by osteoblastic cells: protection against cadmium toxicity. Toxicol Lett 2012; 215:167-73. [PMID: 23085580 DOI: 10.1016/j.toxlet.2012.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/01/2022]
Abstract
Exposition to cadmium (Cd) has been linked to bone metabolism alterations and occurrence of osteoporosis. Despite its known renal toxicity which indirectly disrupts bone metabolism through impairment of vitamin D synthesis, increasing evidence argues for the direct action of Cd on bone-forming osteoblasts. Indeed, accumulation of Cd in osteoblasts and metal-induced cell death has been documented but little is known about the intracellular mechanisms of protection against this stress. In this work, we investigated the protection afforded by thiol-containing proteins against Cd cytotoxicity in MC3T3 osteoblastic cells. Viability of MC3T3 cells was reduced by Cd in a concentration-dependent manner with a LC(50) of 7.6±1.1μM. Depletion of glutathione by l-buthionine sulphoximine (BSO) increased cell sensitivity to Cd cytotoxicity, suggesting the involvement of thiol-containing peptides as a mechanism of protection. Accordingly, Cd was shown to promote progressive depletion of reduced thiol content and to stimulate the production of reactive oxygen species (ROS). Interestingly, low non cytotoxic concentrations of Cd increased the gene expression of macrophage migration inhibitory factor (MIF), also a thiol-containing protein. Inhibition of the transcription factor NFκB prevented Cd-dependent upregulation of MIF expression and consequently, increased Cd cytotoxicity in osteoblasts. Moreover, MIF deficient mouse osteoblasts were more sensitive to Cd cytotoxicity than the corresponding control cells. By gel-filtration chromatography, we demonstrated that MIF acts as a thiol-containing protein and thereby promotes Cd complexation. In accordance with its binding ability, addition of recombinant MIF to the culture medium reduced Cd cytotoxicity. Overall, upregulation of MIF expression by Cd may protect against the cytotoxicity of this metal in the osteoblasts.
Collapse
Affiliation(s)
- Jérôme Lizotte
- Laboratoire du Métabolisme Osseux, Centre BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Beaulieu E, Green L, Elsby L, Alourfi Z, Morand EF, Ray DW, Donn R. Identification of a novel cell type-specific intronic enhancer of macrophage migration inhibitory factor (MIF) and its regulation by mithramycin. Clin Exp Immunol 2010; 163:178-88. [PMID: 21087445 PMCID: PMC3043308 DOI: 10.1111/j.1365-2249.2010.04289.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to determine the genetic regulation of macrophage migration inhibitory factor (MIF). DNase I hypersensitivity was used to identify potential hypersensitive sites (HS) across the MIF gene locus. Reporter gene assays were performed in different human cell lines with constructs containing the native or mutated HS element. Following phylogenetic and transcription factor binding profiling, electrophoretic mobility shift assay (EMSA) and RNA interference were performed and the effects of incubation with mithramycin, an antibiotic that binds GC boxes, were also studied. An HS centred on the first intron of MIF was identified. The HS acted as an enhancer in human T lymphoblasts (CEMC7A), human embryonic kidney cells (HEK293T) and human monocytic cells (THP-1), but not in a fibroblast-like synoviocyte (FLS) cell line (SW982) or cultured FLS derived from rheumatoid arthritis (RA) patients. Two cis-elements within the first intron were found to be responsible for the enhancer activity. Mutation of the consensus Sp1 GC box on each cis-element abrogated enhancer activity and EMSA indicated Sp1 binding to one of the cis-elements contained in the intron. SiRNA knock-down of Sp1 alone or Sp1 and Sp3 together was incomplete and did not alter the enhancer activity. Mithramycin inhibited expression of MIF in CEMC7A cells. This effect was specific to the intronic enhancer and was not seen on the MIF promoter. These results identify a novel, cell type-specific enhancer of MIF. The enhancer appears to be driven by Sp1 or related Sp family members and is highly sensitive to inhibition via mithramycin.
Collapse
|
15
|
Jacquin C, Koczon-Jaremko B, Aguila HL, Leng L, Bucala R, Kuchel GA, Lee SK. Macrophage migration inhibitory factor inhibits osteoclastogenesis. Bone 2009; 45:640-9. [PMID: 19591967 DOI: 10.1016/j.bone.2009.06.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/17/2009] [Accepted: 06/28/2009] [Indexed: 11/18/2022]
Abstract
MIF is an important regulator of innate and adaptive immunity, which is produced by a variety of cell types including activated T cells and macrophages. We examined the effects of MIF on osteoclastogenesis in bone marrow (BM) cultures from WT and MIF-deficient (KO) mice as well as the bone mass of MIF KO mice. Exogenous MIF inhibited osteoclast formation in BM cultures by decreasing fusion in cells that were treated with M-CSF and RANKL. However, inhibition of OCL formation by MIF treatment was not mediated by fusion-related molecules in heterogeneous bone marrow cultures. BM cultures from MIF KO mice that were treated with M-CSF and RANKL, PTH or vitamin D had significantly increased OCL number compared to cells from WT mice. MIF also significantly inhibited OCL formation in cultures of RAW 264.7 cells that were treated with RANKL. In addition, the number of CFU-GM and Mac-1(+) cells in the BM of MIF KO mice was greater than in WT controls. Trabecular bone volume (TBV) in the femurs and vertebrae of MIF KO mice was decreased compared to WT mice. In addition, serum bone resorption and formation markers were decreased in MIF KO mice compared to WT mice. These results demonstrate that MIF has inhibitory effects on OCL formation in vitro. We also found that BM cell cultures from MIF KO mice had an increased capacity to form osteoclasts. Furthermore, MIF KO animals had significantly decreased TBV with low turnover. We conclude that MIF is an inhibitor of osteoclastogenesis in vitro, which may regulate bone turnover via indirect mechanism in vivo.
Collapse
Affiliation(s)
- Claire Jacquin
- Center for Immunotherapy, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Nattee P, Honsawek S, Chongsrisawat V, Vejchapipat P, Thamboonlers A, Poovorawan Y. Elevated serum macrophage migration inhibitory factor levels in post-operative biliary atresia. Asian J Surg 2009; 32:109-13. [PMID: 19423458 DOI: 10.1016/s1015-9584(09)60020-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Biliary atresia (BA) is one of the most common causes of neonatal cholestasis. Macrophage migration inhibitory factor (MIF) is an important mediator of inflammation and immune response in various diseases. The objective of this study was to examine the possible roles of MIF in BA. METHODS Forty-eight BA paediatric patients who had undergone a Kasai operation and 22 healthy children were recruited. The mean ages of the patients and controls were 8.47 +/- 0.74 and 7.64 +/- 0.41 years, respectively. The patients were categorised into two groups according to their serum levels of total bilirubin (TB) (TB < 2 mg/dL; no jaundice, and TB >/= 2 mg/dL; persistent jaundice). The serum MIF levels were determined using commercially available enzyme-linked immunosorbent assay. RESULTS The mean serum MIF level of the BA children was higher than that of healthy controls (0.43 +/- 0.04 ng/mL [corrected] vs. 0.27 +/- 0.02 ng/mL; [corrected] p < 0.001). However, there was no difference in serum MIF levels between BA patients with jaundice and those without jaundice. Further analysis revealed that there was no difference in serum MIF levels of BA patients without portal hypertension compared to that of BA patients with portal hypertension. CONCLUSION MIF production was elevated in BA patients compared to normal controls. It is likely that MIF plays a role in the pathophysiology of post-operative BA patients. However, the elevated MIF levels are not associated with either jaundice status or portal hypertension.
Collapse
Affiliation(s)
- Papit Nattee
- Center of Excellence in Clinical Virology, Department of Pediatrics, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
17
|
Gorskaya UF, Tretyakov OU, Suslov AP, Nesterenko VG. Effect of macrophage migration inhibition factor on the content of stromal precursor cells in mouse bone marrow and efficiency of bone marrow precursor cell cloning in vitro. Bull Exp Biol Med 2009; 146:759-62. [PMID: 19513377 DOI: 10.1007/s10517-009-0377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The content of stromal precursor cells in the bone marrow of mice decreased 2-5.7 times 24 h after injection of macrophage migration inhibition factor in doses of 0.1-50 ng/kg, this reduction depending on the dose of inhibition factor. The content of precursor cells in the bone marrow of mice increased 2-fold 24 h after injection of S. typhimurium bacterial mass. One day after injection of S. typhimurium bacterial mass, the count of precursor cells in mouse spleen was 7-fold higher than 24 h after injection of macrophage migration inhibition factor. The efficiency of cloning of mouse bone marrow stromal precursor cells in vitro was suppressed 1.7-2.8 times in the presence of macrophage migration inhibition factor in doses of 0.1 to 50 ng/ml culture medium. The effect of cloning inhibition was preserved, if macrophage migration inhibition factor was added to the culture medium after 2 days of bone marrow cell culturing. In general, macrophage migration inhibition factor inhibits stromal precursor cells in vivo and in vitro. The data also indicate that macrophage migration inhibition factor is not responsible for rapid and sharp increase in the count of stromal precursor cells after immunization of animals.
Collapse
Affiliation(s)
- U F Gorskaya
- Laboratory of Immunity Regulation, N. F. Gamaleya Institute of Epidemiology and Microbiology, the Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
18
|
Santos LL, Morand EF. Macrophage migration inhibitory factor: a key cytokine in RA, SLE and atherosclerosis. Clin Chim Acta 2008; 399:1-7. [PMID: 18838066 DOI: 10.1016/j.cca.2008.09.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/12/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
Originally discovered and named as an in vitro inhibitor of macrophage migration, the cytokine macrophage migration inhibitory factor (MIF) has now been shown to be a key regulator of acute and chronic immuno-inflammatory conditions including rheumatoid arthritis (RA), atherosclerosis, and more recently systemic lupus erythematosus (SLE). Common inflammatory events in these diseases include activation of cells and infiltration by immune cells at the site of injury. MIF actively participates in multiple stages of the inflammatory response, acting on cells directly and/or potentiating the effects entrained by other stimuli. The overlap of inflammatory processes operating in these diseases, the known activities of MIF, and the observation of atherosclerosis as a major comorbidity of RA and SLE, make MIF a strong candidate for therapeutic targeting in these diseases. Moreover, the unique relationship between MIF and glucocorticoids, commonly used in the treatment of RA and SLE but associated with significant side effects, highlights the potential of MIF as a 'steroid sparing' therapeutic target encompassing all three conditions.
Collapse
Affiliation(s)
- Leilani L Santos
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | | |
Collapse
|
19
|
El-Turk F, Cascella M, Ouertatani-Sakouhi H, Narayanan RL, Leng L, Bucala R, Zweckstetter M, Rothlisberger U, Lashuel HA. The conformational flexibility of the carboxy terminal residues 105-114 is a key modulator of the catalytic activity and stability of macrophage migration inhibitory factor. Biochemistry 2008; 47:10740-56. [PMID: 18795803 DOI: 10.1021/bi800603x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional protein and a major mediator of innate immunity. Although X-ray crystallography revealed that MIF exists as a homotrimer, its oligomerization state in vivo and the factors governing its oligomerization and stability remain poorly understood. The C-terminal region of MIF is highly conserved and participates in several intramolecular interactions that suggest a role in modulating the stability and biochemical activity of MIF. To determine the importance of these interactions, point mutations (A48P, L46A), insertions (P107) at the monomer-monomer interfaces, and C-terminal deletion (Delta 110-114NSTFA and Delta 105-114NVGWNNSTFA) variants were designed and their structural properties, thermodynamic stability, oligomerization state, catalytic activity and receptor binding were characterized using a battery of biophysical methods. The C-terminal deletion mutants DeltaC5 huMIF 1-109 and DeltaC10 huMIF 1-104 were enzymatically inactive and thermodynamically less stable than wild type MIF. Analytical ultracentrifugation studies demonstrate that both C-terminal mutants sediment as trimers and exhibit similar binding to CD74 as the wild type protein. Disrupting the conformation of the C-terminal region 105-114 and increasing its conformational flexibility through the insertion of a proline residue at position 107 was sufficient to reproduce the structural, biochemical and thermodynamic properties of the deletion mutants. P107 MIF forms an enzymatically inactive trimer and exhibits reduced thermodynamic stability relative to the wild type protein. To provide a rationale for the changes induced by these mutations at the molecular level, we also performed molecular dynamics simulations on these mutants in comparison to the wild type MIF. Together, our studies demonstrate that intersubunit interactions involving the C-terminal region 105-114, including a salt-bridge interaction between Arg73 of one monomer and the carboxy terminus of a neighboring monomer, play critical roles in modulating tertiary structure stabilization, enzymatic activity, and thermodynamic stability of MIF, but not its oligomerization state and receptor binding properties. Our results suggest that targeting the C-terminal region could provide new strategies for allosteric modulation of MIF enzymatic activity and the development of novel inhibitors of MIF tautomerase activity.
Collapse
Affiliation(s)
- Farah El-Turk
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev 2008; 29:403-40. [PMID: 18451259 PMCID: PMC2528852 DOI: 10.1210/er.2007-0038] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/01/2008] [Indexed: 12/20/2022]
Abstract
Bone and the immune system are both complex tissues that respectively regulate the skeleton and the body's response to invading pathogens. It has now become clear that these organ systems often interact in their function. This is particularly true for the development of immune cells in the bone marrow and for the function of bone cells in health and disease. Because these two disciplines developed independently, investigators in each don't always fully appreciate the significance that the other system has on the function of the tissue they are studying. This review is meant to provide a broad overview of the many ways that bone and immune cells interact so that a better understanding of the role that each plays in the development and function of the other can develop. It is hoped that an appreciation of the interactions of these two organ systems will lead to better therapeutics for diseases that affect either or both.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Department of Medicine, The University of Connecticut Health Center, N4054, MC5456, 263 Farmington Avenue, Farmington, Connecticut 06030-5456, USA.
| | | | | |
Collapse
|
21
|
Onodera S, Sasaki S, Ohshima S, Amizuka N, Li M, Udagawa N, Irie K, Nishihira J, Koyama Y, Shiraishi A, Tohyama H, Yasuda K. Transgenic mice overexpressing macrophage migration inhibitory factor (MIF) exhibit high-turnover osteoporosis. J Bone Miner Res 2006; 21:876-85. [PMID: 16753018 DOI: 10.1359/jbmr.060310] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED The bone phenotype of mice overexpressing MIF was studied. These mice showed decreased trabecular bone, increased bone formation rate, and increased MMP-3, -9, and -13 mRNA expression in the femora and tibias. This model provides evidence of the role played by MIF in bone remodeling and balance in vivo. INTRODUCTION The role of macrophage migration inhibitory factor (MIF) in in vivo bone remodeling remains unelucidated. We describe disordered bone metabolism in transgenic mice overexpressing MIF. MATERIALS AND METHODS For in vivo study, muCT, bone histomorphometry, blood and urine biochemical data, and gene expression of MIF transgenic (MIF Tg) mice and littermate wildtype (WT) mice were examined. For in vitro study, osteoclastogenesis in the co-culture of bone marrow cells and osteoblasts from MIF Tg and WT were assessed. RESULTS muCT analyses revealed a significant reduction in the trabecular bone of distal femur in MIF Tg at 8-12 weeks of age. Histomorphometric analysis revealed increase in several measures of bone formation. Osteoclastogenesis was not influenced by the origin of bone marrow cells or osteoblasts. Urine level of deoxypyridinoline/creatinine and the mRNA levels of matrix metalloproteinase (MMP) -3, -9, and -13 in femurs were elevated in MIF Tg. CONCLUSIONS Overexpression of MIF causes high-turnover osteoporosis in mice. The increased expression of MMPs in bone was suggested, at least in part, as one cause of this phenotype, because MMPs plays important roles for bone resorption without affecting the formation of osteoclasts. This model provides evidence of the role played by MIF in bone remodeling and balance.
Collapse
Affiliation(s)
- Shin Onodera
- Department of Sports Medicine and Joint Recontruction Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sakamoto W, Isomura H, Fujie K, Iizuka T, Nishihira J, Tatebe G, Takahashi K, Osaki Y, Komai M, Tamai H. The effect of vitamin K2 on bone metabolism in aged female rats. Osteoporos Int 2005; 16:1604-10. [PMID: 15856362 DOI: 10.1007/s00198-005-1881-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 02/08/2005] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) may contribute to aging and osteoporosis resulting from marked decreases in plasma antioxidants in aged osteoporotic women. On the other hand, high-dose vitamin K2 (menaquinone-4: menatrenone, MK-4) supplementation has been reported to reduce ovariectomy-induced bone loss in rats and to decrease osteoporotic fracture in postmenopausal women. However, the mechanism by which vitamin K2 prevents osteoporosis is unclear. Recently, vitamin K2 has been suggested to preserve antioxidant activity as a novel function. Therefore, we investigated the effect of vitamin K2 on the osteoporosis of aged rats by evaluating the relationships between serum antioxidant levels and bone metabolism. Aged female rats exhibited significantly lower serum alkaline phosphatase activity and osteocalcin level, together with lower serum levels of antioxidants such as 17beta-estradiol, macrophage migration inhibitory factor (MIF) and glutathione peroxidase (GPx) activity, as compared with young female rats. On the other hand, vitamin K2 supplementation (500 mg/kg, food intake) for 98 days led to a significantly increased serum vitamin K2 level (3,045+/-915 ng/ml in the vitamin K2 supplemented group vs. 4.6+/-3.4 ng/ml in the control diet group; P<0.0001) with increased serum alkaline phosphatase activity and MIF level (P<0.05). Unexpectedly, however, it failed to increase the serum level of antioxidants such as GPx. Nor did it affect bone metabolism markers such as osteocalcin and osteopontin, which were significantly lower than in the young female rats (P<0.05). Finally, the histomorphometric properties of the proximal tibia in the femur were not altered by vitamin K2. These results suggest that high-dose vitamin K2 supplementation neither improves lowered antioxidant levels nor stimulates bone formation in aged rats.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Department of Biochemistry, School of Dentistry, Hokkaido University, 060-8586, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shimizu T, Ogata A, Honda A, Nishihira J, Watanabe H, Abe R, Zhao Y, Shimizu H. Expression of macrophage migration inhibitory factor in rat skin during embryonic development. Exp Dermatol 2005; 14:819-23. [PMID: 16232303 DOI: 10.1111/j.1600-0625.2005.00357.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown that human epidermal keratinocytes express macrophage migration inhibitory factor (MIF) mRNA, and immunohistochemical studies showed that MIF is expressed in human epidermis. To explore the possible pathophysiological roles of MIF in skin during rat fetal development, we examined the expression patterns of MIF during rat epidermal development using Northern blot analysis and in situ hybridization. Expression of MIF mRNA was first detected by in situ hybridization in the developing epidermis and hair germ cells from embryonic day (ED) 16. From ED 19, moderate levels of MIF expression were detected in the epidermis and epithelial sheath cells of growing hair follicles. In postnatal rat skin, higher MIF expression was detected in the epidermis and hair follicles on postnatal day 3. These observations were also confirmed by Northern blot analysis. Immunohistochemical analysis with an anti-MIF antibody showed a similar distribution to that of the mRNA. Our results suggest that MIF is associated with epidermal and hair follicle development.
Collapse
Affiliation(s)
- Tadamichi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Morand EF, Leech M, Iskander MN. Therapeutic opportunities for antagonism of macrophage migration inhibitory factor. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.8.1189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Onodera S, Nishihira J, Koyama Y, Majima T, Aoki Y, Ichiyama H, Ishibashi T, Minami A. Macrophage migration inhibitory factor up-regulates the expression of interleukin-8 messenger RNA in synovial fibroblasts of rheumatoid arthritis patients: common transcriptional regulatory mechanism between interleukin-8 and interleukin-1beta. ACTA ACUST UNITED AC 2004; 50:1437-47. [PMID: 15146413 DOI: 10.1002/art.20190] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Interleukin-8 (IL-8) plays an important role in the migration of inflammatory cells into the synovium and joint fluids in rheumatoid arthritis (RA). This study was undertaken to investigate the IL-8 inductive activity of the macrophage migration inhibitory factor (MIF) in RA synovial fibroblasts. The regulatory mechanism of IL-8 was compared with that of IL-1beta. METHODS MIF-induced IL-8 and IL-1beta transcriptional activation was studied in RA synovial fibroblasts by Northern blot analysis, enzyme-linked immunosorbent assay, and electromobility shift assay. The effect of anti-MIF antibody administration on murine passive collagen-induced arthritis (CIA) was also evaluated by histologic examination and reverse transcriptase-polymerase chain reaction. RESULTS MIF up-regulated the IL-8 messenger RNA (mRNA) and protein levels in a dose-dependent manner. The IL-8 mRNA up-regulation started 1 hour poststimulation by MIF, and reached a maximum level at 6 hours. IL-1beta mRNA was also up-regulated by MIF. The mRNA up-regulation of IL-8 and IL-1beta by MIF was inhibited by 2 tyrosine kinase inhibitors, a protein kinase C (PKC) inhibitor, an activator protein 1 (AP-1) inhibitor, and by an NF-kappaB inhibitor. A cAMP-dependent kinase inhibitor did not inhibit it. MIF enhanced AP-1 and NF-kappaB binding activities in a dose-dependent manner. Passive CIA enhanced mRNA levels of macrophage inflammatory protein 2 and cytokine-induced neutrophil chemoattractants and, moreover, migration and proliferation of inflammatory cells within the synovium, which were suppressed by administration of an anti-MIF antibody. CONCLUSION MIF may play an important role in the migration of inflammatory cells into the synovium of rheumatoid joints via induction of IL-8. MIF up-regulates IL-8 and IL-1beta mRNA via tyrosine kinase-, PKC-, AP-1-, and NF-kappaB-dependent pathways.
Collapse
Affiliation(s)
- Shin Onodera
- Department of Molecular Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Selvi E, Tripodi SA, Catenaccio M, Lorenzini S, Chindamo D, Manganelli S, Romagnoli R, Ietta F, Paulesu L, Miracco C, Cintorino M, Marcolongo R. Expression of macrophage migration inhibitory factor in diffuse systemic sclerosis. Ann Rheum Dis 2003; 62:460-4. [PMID: 12695161 PMCID: PMC1754538 DOI: 10.1136/ard.62.5.460] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate whether, in patients with the diffuse form of systemic sclerosis (dSSc), macrophage migration inhibitory factor (MIF) production is dysregulated. METHODS 10 patients with dSSc and 10 healthy controls, matched for age and sex, were studied. MIF expression was evaluated by immunohistochemistry on formalin fixed skin biopsies of patients with dSSc and controls. MIF levels were assayed in the sera and in the supernatants of skin cultured fibroblasts by a colorimetric sandwich enzyme linked immunosorbent assay (ELISA). MIF concentrations in culture medium samples and in serum samples were compared by Student's two tailed t test for unpaired data. RESULTS Anti-MIF antibody immunostained the basal and mainly suprabasal keratinocytes. Small perivascular clusters of infiltrating mononuclear cells were positive; scattered spindle fibroblast-like cells were immunostained in superficial and deep dermal layers. The serum concentrations of MIF in patients with dSSc (mean (SD) 10705.6 (9311) pg/ml) were significantly higher than in controls (2157.5 (1288.6) pg/ml; p=0.011); MIF levels from dSSc fibroblast cultures (mean (SD) 1.74 (0.16) ng/2 x 10(5) cells) were also significantly higher than in controls (0.6 (0.2) ng/2 x 10(5) cells; p=0.008). CONCLUSION These results suggest that MIF may be involved in the amplifying proinflammatory loop leading to scleroderma tissue remodelling.
Collapse
Affiliation(s)
- E Selvi
- Institute of Rheumatology, University of Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Matsuura T, Sugimura M, Iwaki T, Ohashi R, Kanayama N, Nishihira J. Anti-macrophage inhibitory factor antibody inhibits PMSG-hCG-induced follicular growth and ovulation in mice. J Assist Reprod Genet 2002; 19:591-5. [PMID: 12503892 PMCID: PMC3455831 DOI: 10.1023/a:1021219317155] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To investigate the effect of an anti-MIF antibody on PMSG-hCG-induced murine follicular growth and ovulation and to determine whether MIF plays an essential role in this process. METHODS Mice were primed with an intraperitoneal injection of pregnant mare serum gonadotropin (PMSG) and were treated with an anti-rat MIF antibody and human chorionic gonadotropin (hCG) to induce ovulation. After that, the ovulated ova were counted. The ovaries were studied using standard histological procedures. RESULTS Ovaries treated with the anti-MIF antibody showed reduced numbers of growing follicles surrounded by granulosa cells and theca cells with a little proliferation compared with the control. The average numbers of ova collected from mice treated with the anti-MIF antibody were reduced compared with those collected from control mice. CONCLUSIONS Anti-MIF antibody inhibits the follicular growth and ovulation in mice, and MIF may play an important role in the inflammatory reactions during follicle growth and ovulation.
Collapse
Affiliation(s)
- Toshiki Matsuura
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu-shi, Shizuoka 431-3192, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Ohkawara T, Nishihira J, Takeda H, Hige S, Kato M, Sugiyama T, Iwanaga T, Nakamura H, Mizue Y, Asaka M. Amelioration of dextran sulfate sodium-induced colitis by anti-macrophage migration inhibitory factor antibody in mice. Gastroenterology 2002; 123:256-70. [PMID: 12105854 DOI: 10.1053/gast.2002.34236] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS We investigated the effects of macrophage migration inhibitory factor (MIF) antibodies in experimental colitis-induced dextran sulfate sodium (DSS) and trinitrobenzenesulfonic acid (TNBS) and examined whether plasma levels of MIF were elevated in patients with inflammatory bowel disease (IBD). METHODS BALB/c or C57BL/6 mice were fed 4% DSS in their drinking water for up to 7 days with and without administration of an anti-MIF antibody every 2 days. The severity of inflammation in the cecum and colon was assessed by clinical signs and histologic scoring. Tissue levels of MIF, tumor necrosis factor (TNF)-alpha, interferon gamma (IFN-gamma), interleukin (IL)-4, and matrix metalloproteinase (MMP)-13 messenger RNA (mRNA) were measured. The effects of anti-MIF antibody on chronic colitis induced by TNBS was assessed in BALB/c mice. Plasma MIF concentrations were assayed in patients with Crohn's disease, ulcerative colitis, and healthy controls. RESULTS During DSS-induced colitis, colonic MIF mRNA expression was increased. Clinical signs and histopathologic features were significantly improved in animals given anti-MIF antibody. DSS-induced up-regulation of colonic TNF-alpha and IFN-gamma were significantly suppressed in animals given the anti-MIF antibody. Colonic IL-4 was decreased during DSS but restored to baseline by the anti-MIF antibody. The anti-MIF antibody prevented MMP-13 up-regulation by DSS and ameliorated TNBS colitis. Plasma MIF was elevated in patients with Crohn's disease or ulcerative colitis compared with healthy controls. CONCLUSIONS We conclude that anti-MIF antibodies reduce the severity of experimental colitis and limit the up-regulation of Th1-type cytokines. Anti-MIF antibodies are of potential therapeutic use in IBD.
Collapse
Affiliation(s)
- Tatsuya Ohkawara
- Department of Gastroenterology and Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Onodera S, Nishihira J, Iwabuchi K, Koyama Y, Yoshida K, Tanaka S, Minami A. Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and -13 in rat osteoblasts. Relevance to intracellular signaling pathways. J Biol Chem 2002; 277:7865-74. [PMID: 11751895 DOI: 10.1074/jbc.m106020200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neutral matrix metalloproteinases (MMPs) play an important role in bone matrix degradation accompanied by bone remodeling. We herein show for the first time that macrophage migration inhibitory factor (MIF) up-regulates MMP-13 (collagenase-3) mRNA of rat calvaria-derived osteoblasts. The mRNA up-regulation was seen at 3 h in response to MIF (10 microg/ml), reached the maximum level at 6-12 h, and returned to the basal level at 36 h. MMP-13 mRNA up-regulation was preceded by up-regulation of c-jun and c-fos mRNA. Tissue inhibitor of metalloproteinase (TIMP)-1 and MMP-9 (92-kDa type IV collagenase) were also up-regulated, but to a lesser extent. The MMP-13 mRNA up-regulation was significantly suppressed by genistein, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine. Similarly, a selective mitogen-activated protein kinase (MAPK) kinase (MEK)1/2 inhibitor (PD98059) and c-jun/activator protein (AP)-1 inhibitor (curcumin) suppressed MMP-13 mRNA up-regulation induced by MIF. The mRNA levels of c-jun and c-fos in response to MIF were also inhibited by PD98059. Consistent with these results, MIF stimulated phosphorylation of tyrosine, autophosphorylation of Src, activation of Ras, activation of extracellular signal-regulated kinases (ERK) 1/2, a MAPK, but not c-Jun N-terminal kinase or p38, and phosphorylation of c-Jun. Osteoblasts obtained from calvariae of newborn JunAA mice, defective in phosphorylation of c-Jun, or newborn c-Fos knockout (Fos -/- ) mice, showed much less induction of MMP-13 with the addition of MIF than osteoblasts obtained from wild-type or littermate control mice. Taken together, these results suggest that MIF increases the MMP-13 mRNA level of rat osteoblasts via the Src-related tyrosine kinase-, Ras-, ERK1/2-, and AP-1-dependent pathway.
Collapse
Affiliation(s)
- Shin Onodera
- Department of Orthopaedics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Yin M, Bradford BU, Wheeler MD, Uesugi T, Froh M, Goyert SM, Thurman RG. Reduced early alcohol-induced liver injury in CD14-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4737-42. [PMID: 11254735 DOI: 10.4049/jimmunol.166.7.4737] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activation of Kupffer cells by gut-derived endotoxin is associated with alcohol-induced liver injury. Recently, it was shown that CD14-deficient mice are more resistant to endotoxin-induced shock than wild-type controls. Therefore, this study was designed to investigate the role of CD14 receptors in early alcohol-induced liver injury using CD14 knockout and wild-type BALB/c mice in a model of enteral ethanol delivery. Animals were given a high-fat liquid diet continuously with ethanol or isocaloric maltose-dextrin as control for 4 wk. The liver to body weight ratio in wild-type mice (5.8 +/- 0.3%) was increased significantly by ethanol (7.3 +/- 0.2%) but was not altered by ethanol in CD14-deficient mice. Ethanol elevated serum alanine aminotransferase levels nearly 3-fold in wild-type mice, but not in CD14-deficient mice. Wild-type and knockout mice given the control high-fat diet had normal liver histology, whereas ethanol caused severe liver injury (steatosis, inflammation, and necrosis; pathology score = 3.8 +/- 0.4). In contrast, CD14-deficient mice given ethanol showed minimal hepatic changes (score = 1.6 +/- 0.3, p < 0.05). Additionally, NF-kappa B, TGF-beta, and TNF-alpha were increased significantly in wild-type mice fed ethanol but not in the CD14 knockout. Thus, chronic ethanol feeding caused more severe liver injury in wild-type than CD14 knockouts, supporting the hypothesis that endotoxin acting via CD14 plays a major role in the development of early alcohol-induced liver injury.
Collapse
Affiliation(s)
- M Yin
- Department of Pharmacology, Laboratory of Hepatobiology and Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Meyer-Siegler K. Increased stability of macrophage migration inhibitory factor (MIF) in DU-145 prostate cancer cells. J Interferon Cytokine Res 2000; 20:769-78. [PMID: 11032396 DOI: 10.1089/10799900050151030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been localized to the glandular epithelium of the prostate and stimulates the in vitro growth of prostate epithelial cells. [35S]Methionine labeling of MIF protein was used to determine if prostate cells synthesize and secrete this cytokine. The results demonstrated that the DU-145 prostate cancer cells secrete about twice the amount of a more stable protein compared with normal prostate epithelial cells. To investigate if differences in MIF mRNA levels account for the differences in MIF protein secreted by these cells, mRNA stability was analyzed by [3H]uridine incorporation. Following a 12-h pulse, DU-145 cells were found to contain four times the amount of [3H]uridine-labeled MIF mRNA, and this message exhibited a longer half-life than the message found in normal cells (33 h and 19 h, respectively). Nuclear run-on experiments confirmed that the MIF gene is transcribed at a greater rate (1.8-fold) in the DU-145 prostate cancer cells. This study documents, for the first time, that human prostate epithelial cells synthesize and secrete this cytokine. These results indicate that the increased levels of MIF found in prostate cancer cells is likely due to the increased protein and mRNA stability as exhibited by DU-145 cells.
Collapse
Affiliation(s)
- K Meyer-Siegler
- Department of Urology, Bay Pines VA Medical Center, Bay Pines, FL 33744, USA
| |
Collapse
|
32
|
Nishihira J. Macrophage migration inhibitory factor (MIF): its essential role in the immune system and cell growth. J Interferon Cytokine Res 2000; 20:751-62. [PMID: 11032394 DOI: 10.1089/10799900050151012] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) functions as a pleiotropic protein, participating in inflammatory and immune responses. MIF was originally discovered as a lymphokine involved in delayed hypersensitivity and various macrophage functions, including phagocytosis, spreading, and tumoricidal activity. Recently, MIF was reevaluated as a proinflammatory cytokine and pituitary-derived hormone potentiating endotoxemia. This protein is ubiquitously expressed in various organs, such as the brain and kidney. Among cytokines, MIF is unique in terms of its abundant expression and storage within the cytoplasm and, further, for its counteraction against glucocorticoids. MIF has unexpectedly been found to convert D-dopachrome, an enantiomer of naturally occurring L-dopachrome, to 5,6-dihydroxyindole. However, its physiologic significance remains to be elucidated. It was demonstrated that anti-MIF antibodies effectively suppress tumor growth and tumor-associated angiogenesis, suggesting that MIF is involved not only in inflammatory and immune responses but also in tumor cell growth. At present, MIF cannot be clearly categorized as either a cytokine, hormone, or enzyme. This review presents the latest findings on the role of MIF in the immune system and in cell growth, with regard to tumorigenesis and wound repair, and discusses its potential functions in various pathophysiologic states.
Collapse
Affiliation(s)
- J Nishihira
- Central Research Institute, Hokkaido University School of Medicine, Sapporo, Japan.
| |
Collapse
|
33
|
Ogawa H, Nishihira J, Sato Y, Kondo M, Takahashi N, Oshima T, Todo S. An antibody for macrophage migration inhibitory factor suppresses tumour growth and inhibits tumour-associated angiogenesis. Cytokine 2000; 12:309-14. [PMID: 10805210 DOI: 10.1006/cyto.1999.0562] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To verify the role of macrophage migration inhibitory factor (MIF) in tumourigenesis, we examined the effect of an anti-MIF antibody on tumour growth and angiogenesis. We inoculated murine colon adenocarcinoma cell line colon 26 cells subcutaneously into the flank in BALB/c mice. After nine days, we treated tumour-bearing mice with an anti-rat MIF antibody by intraperitoneal injection on days 9, 11, 13, 15, 17, 19 and 21. We found significant inhibition of tumour growth by this treatment from day 15 to day 22. Next, we implanted a chamber filled with colon 26 cells, which only passes soluble factors, in the subcutaneous fascia of the flank, and treated mice with the anti-rat MIF antibody at days 1, 3 and 5. By histological examination at day 6, angiogenesis within the subcutaneous fascia in contact with the chamber was markedly suppressed. In vitro, we added an anti-human MIF antibody to human umbilical vein endothelial cells (HUVEC) to evaluate its effect on cell growth by measurement of [3H]thymidine incorporation. We observed that the anti-MIF antibody significantly suppressed [3H]thymidine uptake by HUVEC. These results suggest the possibility that MIF is involved in tumourigenesis via promotion of angiogenesis.
Collapse
Affiliation(s)
- H Ogawa
- First Department of Surgery, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Abe R, Shimizu T, Ohkawara A, Nishihira J. Enhancement of macrophage migration inhibitory factor (MIF) expression in injured epidermis and cultured fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1500:1-9. [PMID: 10564712 DOI: 10.1016/s0925-4439(99)00080-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After the cDNA of human macrophage migration inhibitory factor (MIF) was cloned in 1989, this protein has been re-evaluated as a pro-inflammatory cytokine, pituitary hormone and glucocorticoid-induced immunoregulatory protein. We previously reported the expression of MIF in the basal cell layers of the epidermis, but its pathophysiological function in the skin has not been well understood. In this study, we examined the expression of MIF during the wound healing of rat skin injured by excision. Reverse transcription-polymerase chain reaction in combination with Southern blot analysis revealed that the increase of MIF mRNA expression was biphasic. The maximum peaks were observed at 3 and 24 h after the injury. Similarly, maximal increases of the serum MIF level were observed at 3 and 24 h after the injury. Immunohistochemical analysis at 12 h after injury demonstrated enhanced expression of MIF protein in the whole epidermal lesion of the wound tissue. By the Boyden chamber assay, we demonstrated that MIF had a chemotactic effect on freshly prepared keratinocytes from rat skin. Additionally, cultured fibroblasts from the skin wound lesion secreted a higher amount of MIF in response to lipopolysaccharide compared to those of the normal skin. Furthermore, administration of anti-MIF antibodies induced a delay of wound healing in vivo. Taken together, these results suggest that MIF contributes to the wound healing process of skin tissue.
Collapse
Affiliation(s)
- R Abe
- Department of Dermatology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
35
|
Shimizu T, Abe R, Nakamura H, Ohkawara A, Suzuki M, Nishihira J. High expression of macrophage migration inhibitory factor in human melanoma cells and its role in tumor cell growth and angiogenesis. Biochem Biophys Res Commun 1999; 264:751-8. [PMID: 10544003 DOI: 10.1006/bbrc.1999.1584] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is known to function as a cytokine, hormone, and glucocorticoid-induced immunoregulator. In this study, we reported for the first time that human melanocytes and melanoma cells express MIF mRNA and produce MIF protein. Immunohistochemical analysis demonstrated that MIF was mostly localized in the cytoplasm of melanocytes and G361 cells, a widely available human melanoma cell line. In particular, strong positive staining was observed at the dendrites of these cells. Expression of MIF mRNA and production of MIF protein were much higher in human melanoma cells such as G361, A375, and L32 than in normal cultured melanocytes. To assess the role of MIF overexpression in melanoma cells, G361 cells were transfected with an antisense human MIF plasmid. The results demonstrated that the cell growth rate of the transfected cells was markedly suppressed, suggesting that MIF participates in the mechanism of proliferation of melanoma cells. To further evaluate the function of MIF, we employed the Boyden chamber method to examine the effect on tumor cell migration and found that MIF enhanced the migration of G361 cells in a dose-dependent manner. Furthermore, we administered anti-MIF antibody into tumor (G361 cells in a Millipore chamber)-bearing mice to assess the effect on tumor-associated angiogenesis. The anti-MIF antibody significantly suppressed tumor-induced angiogenesis. Taken together, these results indicated that it is likely that MIF may function as a novel growth factor that stimulates incessant growth and invasion of melanoma concomitant with neovascularization.
Collapse
Affiliation(s)
- T Shimizu
- Department of Dermatology, Hokkaido University School of Medicine, Sapporo, 060, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Kobayashi S, Nishihira J, Watanabe S, Todo S. Prevention of lethal acute hepatic failure by antimacrophage migration inhibitory factor antibody in mice treated with bacille Calmette-Guerin and lipopolysaccharide. Hepatology 1999; 29:1752-9. [PMID: 10347118 DOI: 10.1002/hep.510290610] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
During the past few years, the biological functions of macrophage migration inhibitory factor (MIF) have been extensively re-evaluated. This has been found to be protein involved in broad-spectrum pathophysiological states as an inflammatory cytokine, pituitary-derived hormone, and glucocorticoid-induced immunomodulator. In this study, we investigated the involvement of this cytokine in the pathogenesis of lethal liver injury. Injecting a small dose of lipopolysaccharide (LPS) into bacille Calmette-Guerin (BCG)-primed Jcl:ICR mice caused a lethal hepatic injury mimicking fulminant hepatitis, in which 8 of 11 mice died within 48 hours (27% survival rate). Massive necrosis of parenchymal hepatocytes with marked mononuclear cell infiltration was observed by histological examination. Immunohistochemical analysis showed that most of the infiltrating mononuclear cells were Kupffer cells, macrophages, and, to a lesser extent, T cells. In parallel, serum aminotransferase and tumor necrosis factor-alpha (TNF-alpha) levels were increased. When an anti-MIF polyclonal antibody (0.3 mg IgG fraction/mouse) was intraperitoneally injected into mice primed with BCG, it protected them from acute hepatic failure (90% survival rate) with concomitant improvement of histological features. Injection of the antibody also suppressed the up-regulation of TNF-alpha and T-cell infiltration induced by LPS. Taken together, these results suggested that treatment with the anti-MIF antibody suppresses the endotoxin-induced fatal hepatic failure by regulating production of inflammatory cytokines and T-cell infiltration.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Surgery, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
37
|
Takahashi A, Iwabuchi K, Suzuki M, Ogasawara K, Nishihira J, Onoé K. Antisense macrophage migration inhibitory factor (MIF) prevents anti-IgM mediated growth arrest and apoptosis of a murine B cell line by regulating cell cycle progression. Microbiol Immunol 1999; 43:61-7. [PMID: 10100748 DOI: 10.1111/j.1348-0421.1999.tb02373.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is involved in the generation of cell-mediated immune responses. Recently it has been reported that MIF also plays a role in cell proliferation and differentiation. In the present study, using a B-cell line, WEHI-231, and its stable MIF-antisense transfectant, WaM2, as a representative transfectant, we investigated the mechanism underlying regulation of the cell growth by MIF. WaM2 cells produced less MIF than vector control or parental WEHI-231 cells. Reduced and increased proportions were seen in G1 and S-phase cells, respectively, in WaM2 as compared with WEHI-231. Growth arrest and apoptosis after stimulation via surface Ig (sIg) were less prominent in WaM2 cells than those in WEHI-231. However, the addition of recombinant rat MIF did not reverse the inhibition of the growth arrest and apoptosis induced in WaM2 by cross-linking sIg. Almost the same amount of p27kip1 expression was detected in WaM2 cells as those in WEHI-231 and vector control cells. Cross-linking of sIg elevated the p27kip1 level equally in these cells irrespective of the MIF-antisense expression. Taken together, it seems that MIF plays a role in inducing apoptosis in B cells upon IgM cross-linking by regulating the cell cycle via a novel intracellular pathway.
Collapse
Affiliation(s)
- A Takahashi
- Section of Pathology, Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Shimizu T, Abe R, Ohkawara A, Nishihira J. Ultraviolet B radiation upregulates the production of macrophage migration inhibitory factor (MIF) in human epidermal keratinocytes. J Invest Dermatol 1999; 112:210-5. [PMID: 9989798 DOI: 10.1046/j.1523-1747.1999.00486.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human epidermal cells are capable of secreting various cytokines with immunologic, inflammatory, and proliferative properties. In a previous study, by reverse transcription-polymerase chain reaction and immunohistochemical analysis, we have shown that human epidermal keratinocytes express macrophage migration inhibitory factor and identified its presence in the cytoplasm. In this study, we detected an increased serum macrophage migration inhibitory factor level by enzyme-linked immunosorbent assay after a single total-body ultraviolet B exposure in vivo, indicating that human keratinocytes respond and release this cytokine in response to ultraviolet B irradiation. Moreover, we evaluated the effect of ultraviolet B on migration inhibitory factor production in cultured human epidermal keratinocytes and epidermal sheets. The results of enzyme-linked immunosorbent assay and northern blot analyses showed that migration inhibitory factor production of cultured keratinocytes was increased by ultraviolet B exposure. During the past few years, migration inhibitory factor was found to have a variety of biologic functions, such as being essential for T cell activation and induction of inflammatory cytokines. In this context, these results should encourage further investigation on the pathophysiologic role of migration inhibitory factor in cutaneous inflammatory reactions and immune responses.
Collapse
Affiliation(s)
- T Shimizu
- Department of Dermatology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
39
|
Nishio Y, Minami A, Kato H, Kaneda K, Nishihira J. Identification of macrophage migration inhibitory factor (MIF) in rat peripheral nerves: its possible involvement in nerve regeneration. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1453:74-82. [PMID: 9989247 DOI: 10.1016/s0925-4439(98)00086-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is known as a pluripotent immunoregulatory cytokine involved in T-cell activation and inflammatory responses; however, no study on this protein in the peripheral nervous systems has been carried out. We here demonstrated for the first time expression of MIF mRNA and MIF protein in rat sciatic nerves by reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry. Immunohistochemical analysis revealed positive staining of MIF, which was largely observed in Schwann cells. Furthermore, we examined MIF mRNA expression in the sciatic nerves by Northern blot analysis in the case of nerve transection. In both proximal and distal segments, the level of MIF mRNA started to increase 12 h after the nerve transection. The level remained high from 24 h up to day 7 after the injury. During the period from days 14 to 21, MIF mRNA sharply decreased to the pre-transection level. In immunohistochemistry, positive staining of MIF was largely observed in axons as well as non-neuronal cells in proximal segments at day 4 after transection. In the distal segments, contrastingly, endoneurial fibroblasts or Schwann cells migrating into neuronal fibers showed positive staining with Wallerian degeneration. Although the precise functions of MIF in the peripheral nerves remain to be elucidated, the present results could represent a major departure from the current state of knowledge, revealing a novel function in the degenerative-regenerative process.
Collapse
Affiliation(s)
- Y Nishio
- Department of Orthopaedic Surgery, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
40
|
Sakamoto W, Nishihira J, Fujie K, Iizuka T, Handa H, Ozaki M, Yukawa S. Effect of vitamin E on production of macrophage migration inhibitory factor (MIF) by macrophages. Biofactors 1999; 10:139-43. [PMID: 10609875 DOI: 10.1002/biof.5520100209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Macrophage migration inhibitory factor (MIF), a putative cytokine involved in inflammatory and immune responses, was identified in rat peritoneal macrophages by Western blot analysis and its secretion into culture medium by enzyme-linked immunosorbent assay. To clarify the possibility of vitamin E as an immune modulator, we investigated the effect of vitamin E on MIF production in macrophages in response to calcium ionophore A23187 and lipopolysaccharide (LPS). Intraperitoneal injections of vitamin E (5 mg per rat) for 6 successive days resulted in a significant increase of alpha-tocopherol content in peritoneal macrophages. Alpha-tocopherol content of macrophages in vitamin E-treated rats was 478.3 +/- 90.7 ng/10(6) cells, whereas in control rats it was 1.5 +/- 0.5 ng/10(6) cells. For the control macrophages, total MIF content of the medium (2.5 x 10(6) cells/18 ml) without stimulation was 40.7 +/- 3.6 ng after 14 h culture, whereas stimulation with calcium ionophore A23187 (400 nM) and LPS (5.0 microg/ml) induced the elevation of MIF content to 65.9 +/- 7.5 ng and 74.3 +/- 10.4 ng, respectively (p < 0.05, n = 3). On the other hand, vitamin E-enriched macrophages without stimulation showed less MIF content (14.0 +/- 4.2 ng) than the control (p < 0.05, n = 3). Similarly, the increase of MIF of vitamin E-treated macrophages was significantly suppressed after stimulation with calcium ionophore A23187 or LPS, compared with the control macrophages (p < 0.01, n = 3). From analysis of intracellular MIF content by Western blot, we found no alteration of intracellular MIF content of vitamin E-macrophages, in contrast to the decreased content of control stimulated-macrophages, showing that vitamin E suppressed MIF secretion into the culture medium. Taken together, these results indicate that vitamin E may contribute to the regulation of inflammatory and immune responses through regulation of MIF secretion, possibly by modulating macrophage-membrane architecture.
Collapse
Affiliation(s)
- W Sakamoto
- Department of Biochemistry, School of Dentistry, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Sakamoto W, Nishihira J, Fujie K, Handa H, Ozaki M, Yukawa S. Inhibition of macrophage migration inhibitory factor secretion from macrophages by vitamin E. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:427-34. [PMID: 9739171 DOI: 10.1016/s0167-4889(98)00070-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophage migration inhibitory factor (MIF) was identified in rat peritoneal macrophages by Western blot analysis and its secretion into culture medium by enzyme-linked immunosorbent assay. We investigated the effect of vitamin E on MIF production in macrophages in response to phorbol 12-myristate-13-acetate (PMA), calcium ionophore A23187, and lipopolysaccharide (LPS). Intraperitoneal injections of vitamin E (5 mg per rat) for 6 successive days resulted in a significant increase of alpha-tocopherol content in peritoneal macrophages (478.3+/-90.7 ng/106 cells) compared with the control (1.5+/-0.5 ng/10(6) cells). For the control macrophages, MIF content of the medium (2.5x10(6) cells/18 ml) without stimulation was 2.27+/-0.20 ng/ml after 14 h culture, whereas stimulation with calcium ionophore A23187 (400 nM) and LPS (5.0 microg/ml) induced the elevation of MIF content to 3. 66+/-0.41 and 4.12+/-0.58 ng/ml, respectively. On the other hand, vitamin E-enriched macrophages without stimulation showed less MIF content (0.77+/-0.23 ng/ml) than the control. Similarly, the increase of MIF of vitamin E-treated macrophages was significantly suppressed after stimulation with calcium ionophore A23187 or LPS, compared with the control macrophages. From analysis of intracellular MIF content by Western blot, we found no alteration of intracellular MIF content of vitamin E-macrophages, in contrast to the decreased content of control stimulated-macrophages. Taken together, these results indicate that vitamin E may contribute to the regulation of immune responses through regulation of MIF secretion.
Collapse
Affiliation(s)
- W Sakamoto
- Department of Biochemistry, School of Dentistry, Hokkaido University, Sapporo 060, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Shimizu T, Abe R, Ohkawara A, Mizue Y, Nishihira J. Macrophage migration inhibitory factor is an essential immunoregulatory cytokine in atopic dermatitis. Biochem Biophys Res Commun 1997; 240:173-8. [PMID: 9367905 DOI: 10.1006/bbrc.1997.7633] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is one of the immunoregulatory cytokines involved in T-cell activation and delayed-type hypersensitivity. To elucidate involvement of this cytokine in the pathogenesis of atopic dermatitis (AD), we examined serum MIF concentrations of patients with AD and non-atopic normal healthy individuals. The mean serum MIF concentration of the AD patients (n = 36) was 36.4 +/- 3.7 ng/ml (mean +/- SEM), whereas that of the non-atopic dermatitis patients (n = 17) or healthy individuals (n = 61) were 13.1 +/- 1.8 or 6.5 +/- 0.45 ng/ml, respectively. Accordingly, immunohistochemistry of the inflammatory skin lesion of an AD patient demonstrated that MIF protein was diffusely expressed throughout the whole epidermal layer. After 4-week steroid ointment treatment, the MIF concentration decreased as clinical symptoms improved. The serum level of TNF-alpha was also decreased in parallel with that of MIF. Considering the T-cell dysfunction and disordered cytokine-network reported in AD, it was strongly suggested that MIF was a critical protein for immunoregulation in the pathophysiological mechanism of AD. In this context, MIF may become a useful laboratory parameter to comprehend the clinical course of the disease.
Collapse
Affiliation(s)
- T Shimizu
- Department of Dermatology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
43
|
Onodera S, Suzuki K, Matsuno T, Kaneda K, Takagi M, Nishihira J. Macrophage migration inhibitory factor induces phagocytosis of foreign particles by macrophages in autocrine and paracrine fashion. Immunology 1997; 92:131-7. [PMID: 9370935 PMCID: PMC1363992 DOI: 10.1046/j.1365-2567.1997.00311.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Exposure to foreign particles sometimes causes inflammatory reactions through production of cytokines and chemoattractants by phagocytic cells. In this study, we focused on macrophage migration inhibitory factor (MIF) to evaluate its pathophysiological role in the phagocytic process. Immunohistochemical analysis of human pseudosynovial tissues retrieved at revision of total hip arthroplasty showed that infiltrating mononuclear and multinuclear cells were positively stained by both an anti-CD68 antibody and anti-human MIF antibody. For in vitro study, MIF was released from murine macrophage-like cells (RAW 264.7) in response to phagocytosis of fluorescent-latex beads in a particle dose-dependent manner. Northern blot analysis showed marked elevation of the MIF mRNA level in the phagocytic macrophage-like cells. Moreover, pretreatment of RAW 264.7 cells with rat recombinant MIF increased the extent of phagocytosis by 1.6-fold compared with the control. Taken together, these results suggest that MIF plays an important role by activating macrophages in autocrine and paracrine fashion to phagocytose foreign particles.
Collapse
Affiliation(s)
- S Onodera
- Department of Orthopaedic Surgery, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Hirokawa J, Sakaue S, Tagami S, Kawakami Y, Sakai M, Nishi S, Nishihira J. Identification of macrophage migration inhibitory factor in adipose tissue and its induction by tumor necrosis factor-alpha. Biochem Biophys Res Commun 1997; 235:94-8. [PMID: 9196042 DOI: 10.1006/bbrc.1997.6745] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Macrophage migration inhibitory factor (MIF) has been rediscovered as a proinflammatory cytokine, pituitary hormone, and glucocorticoid-induced immunoregulator. A survey of tissue distribution revealed that MIF expression is not limited to T lymphocytes, but exists in several other tissues; however, its presence in adipose tissue has never been investigated. In this study, we examined the expression of MIF in adipose tissue using the rat epididymal fat pad and murine 3T3-L1 adipocytes. Northern and Western blot analyses revealed the expression of MIF mRNA and MIF protein, respectively, in both the fat pad and the adipocyte cell line. In immunohistochemistry, a positive staining reaction with an anti-rat MIF antibody was detected largely in the cytosol of adipocytes of the epididymal fat pad. To examine the production and release of MIF by adipocytes, we examined its content in the culture medium of the 3T3-L1 adipocytes. The results showed that MIF content was 1.6 +/- 0.48 ng/ml (mean +/- SD) after 24 hr culture, and the content was increased up to 9.7 +/- 2.8 ng/ml by stimulation with TNF-alpha (50 nM). Since TNF-alpha produced in adipocytes is known to induce insulin resistance, the results suggest the possibility that MIF plays an important role in the mechanism of insulin resistance often observed in obesity and diabetes via regulation of TNF-alpha expression.
Collapse
Affiliation(s)
- J Hirokawa
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|