1
|
Quinones D, Barrow M, Seidler K. Investigating the Impact of Ashwagandha and Meditation on Stress Induced Obesogenic Eating Behaviours. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024:1-21. [PMID: 39254702 DOI: 10.1080/27697061.2024.2401054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Obesity has been identified as a rapidly rising pandemic within the developed world, potentially increasing the risks of type 2 diabetes and cardiovascular disease. Various studies have identified a positive association between stress, elevated cortisol levels and obesity. Mechanisms of the stress response lead to hyperpalatable food preference and increased appetite through the activation of the HPA axis, elevated cortisol and the resulting interactions with the dopaminergic system, neuropeptide Y, ghrelin, leptin and insulin. The methodology of this review involved a Systematic Search of the Literature with a Critical Appraisal of papers considering ashwagandha, mediation and mindfulness in relation to mechanisms of the stress response. It incorporated 12 searches yielding 330 hits. A total of 51 studies met the inclusion criteria and were critically appraised with ARRIVE, SIGN50 and Strobe checklists. Data from the 51 studies was extracted, coded into key themes and summarized in a narrative analysis. Thematic analysis identified 4 key themes related to ashwagandha and 2 key themes related to meditation. Results provide an overview of evidence assessing the efficacy of ashwagandha and meditation in relation to weight loss interventions by supporting the stress response and the pathways highlighted. Results of Clinical studies indicate that ashwagandha supports weight loss through reduced stress, cortisol and food cravings. Pre-clinical studies also suggest that ashwagandha possesses the capacity to regulate food intake by improving leptin and insulin sensitivity and reducing addictive behaviors through dopamine regulation. Clinical studies on meditation indicate it may enhance a weight loss protocol by reducing the stress response, cortisol release and blood glucose and improving eating behaviors.
Collapse
Affiliation(s)
- Daniel Quinones
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| | - Michelle Barrow
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| | - Karin Seidler
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| |
Collapse
|
2
|
Güvel MC, Aykan U, Paykal G, Uluoğlu C. Chronic administration of caffeine, modafinil, AVL-3288 and CX516 induces time-dependent complex effects on cognition and mood in an animal model of sleep deprivation. Pharmacol Biochem Behav 2024; 241:173793. [PMID: 38823543 DOI: 10.1016/j.pbb.2024.173793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVE Caffeine and modafinil are used to reverse effects of sleep deprivation. Nicotinic alpha-7 receptor and AMPA receptor positive allosteric modulators (PAM) are also potential substances in this context. Our objective is to evaluate the effects of caffeine, modafinil, AVL-3288 (nicotinic alpha-7 PAM) and CX516 (AMPA receptor PAM) on cognition and mood in a model of sleep deprivation. METHOD Modified multiple platform model is used to sleep-deprive mice for 24 days, for 8 h/day. Vehicle, Modafinil (40 mg/kg), Caffeine (5 mg/kg), CX516 (10 mg/kg), and AVL3288 (1 mg/kg) were administered intraperitoneally daily. A cognitive test battery was applied every six days for four times. The battery that included elevated plus maze, novel object recognition, and sucrose preference tests was administered on consecutive days. RESULTS Sleep deprivation decreased novel object recognition skill, but no significant difference was found in anxiety and depressive mood. Caffeine administration decreased anxiety-like behavior in short term, but this effect disappeared in chronic administration. Caffeine administration increased memory performance in chronic period. AVL group showed better memory performance in short term, but this effect disappeared in the rest of experiment. Although, in the modafinil group, no significant change in mood and memory was observed, anhedonia was observed in the chronic period in vehicle, caffeine and modafinil groups, but not in AVL-3288 and CX-516 groups. CONCLUSION Caffeine has anxiolytic effect in acute administration. The improvement of memory in chronic period may be associated with the neuroprotective effects of caffeine. AVL-3288 had a short-term positive effect on memory, but tolerance to these effects developed over time. Furthermore, no anhedonia was observed in AVL-3288 and CX516 groups in contrast to vehicle, caffeine and modafinil groups. This indicates that AVL-3288 and CX516 may show protective effect against depression.
Collapse
Affiliation(s)
- Muhammed Cihan Güvel
- Department of Medical Pharmacology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Utku Aykan
- Department of Medical Pharmacology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Gökçen Paykal
- Department of Medical Pharmacology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Canan Uluoğlu
- Department of Medical Pharmacology, Gazi University Faculty of Medicine, Ankara, Turkey; Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.
| |
Collapse
|
3
|
Murata Y, Yoshimitsu S, Senoura C, Araki T, Kanayama S, Mori M, Ohe K, Mine K, Enjoji M. Sleep rebound leads to marked recovery of prolonged sleep deprivation-induced adversities in the stress response and hippocampal neuroplasticity of male rats. J Affect Disord 2024; 355:478-486. [PMID: 38574868 DOI: 10.1016/j.jad.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Sleep disturbances are not only frequent symptoms, but also risk factors for major depressive disorder. We previously reported that depressed patients who experienced "Hypersomnia" showed a higher and more rapid response rate under paroxetine treatment, but the underlying mechanism remains unclear. The present study was conducted to clarify the beneficial effects of sleep rebound through an experimental "Hypersomnia" rat model on glucocorticoid and hippocampal neuroplasticity associated with antidepressive potency. METHODS Thirty-four male Sprague-Dawley rats were subjected to sham treatment, 72-h sleep deprivation, or sleep deprivation and subsequent follow-up for one week. Approximately half of the animals were sacrificed to evaluate adrenal weight, plasma corticosterone level, hippocampal content of mRNA isoforms, and protein of the brain-derived neurotrophic factor (Bdnf) gene. In the other half of the rats, Ki-67- and doublecortin (DCX)-positive cells in the hippocampus were counted via immunostaining to quantify adult neurogenesis. RESULTS Prolonged sleep deprivation led to adrenal hypertrophy and an increase in the plasma corticosterone level, which had returned to normal after one week follow-up. Of note, sleep deprivation-induced decreases in hippocampal Bdnf transcripts containing exons II, IV, VI, and IX and BDNF protein levels, Ki-67-(+)-proliferating cells, and DCX-(+)-newly-born neurons were not merely reversed, but overshot their normal levels with sleep rebound. LIMITATIONS The present study did not record electroencephalogram or assess behavioral changes of the sleep-deprived rats. CONCLUSIONS The present study demonstrated that prolonged sleep deprivation-induced adversities are reversed or recovered by sleep rebound, which supports "Hypersomnia" in depressed patients as having a beneficial pharmacological effect.
Collapse
Affiliation(s)
- Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Sakuya Yoshimitsu
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Chiyo Senoura
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Toshiki Araki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Saki Kanayama
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazunori Mine
- Faculty of Neurology and Psychiatry, BOOCS CLINIC FUKUOKA, 6F Random Square Bldg., 6-18, Tenya-Machi, Hakata-ku, Fukuoka 812-0025, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
4
|
Faniyan OO, Marcotulli D, Simayi R, Del Gallo F, De Carlo S, Ficiarà E, Caramaschi D, Richmond R, Franchini D, Bellesi M, Ciccocioppo R, de Vivo L. Adolescent chronic sleep restriction promotes alcohol drinking in adulthood: evidence from epidemiological and preclinical data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.11.561858. [PMID: 38659740 PMCID: PMC11042206 DOI: 10.1101/2023.10.11.561858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Epidemiological investigations have indicated that insufficient sleep is prevalent among adolescents, posing a globally underestimated health risk. Sleep fragmentation and sleep loss during adolescence have been linked to concurrent emotional dysregulation and an increase in impulsive, risk-taking behaviors, including a higher likelihood of substance abuse. Among the most widely used substances, alcohol stands as the primary risk factor for deaths and disability among individuals aged 15-49 worldwide. While the association between sleep loss and alcohol consumption during adolescence is well documented, the extent to which prior exposure to sleep loss in adolescence contributes to heightened alcohol use later in adulthood remains less clearly delineated. Here, we analyzed longitudinal epidemiological data spanning 9 years, from adolescence to adulthood, including 5497 participants of the Avon Longitudinal Study of Parents And Children cohort. Sleep and alcohol measures collected from interviews and questionnaires at 15 and 24 years of age were analyzed with multivariable linear regression and a cross-lagged autoregressive path model. Additionally, we employed a controlled preclinical experimental setting to investigate the causal relationship underlying the associations found in the human study and to assess comorbid behavioral alterations. Preclinical data were collected by sleep restricting Marchigian Sardinian alcohol preferring rats (msP, n=40) during adolescence and measuring voluntary alcohol drinking concurrently and in adulthood. Polysomnography was used to validate the efficacy of the sleep restriction procedure. Behavioral tests were used to assess anxiety, risky behavior, and despair. In humans, after adjusting for covariates, we found a cross-sectional association between all sleep parameters and alcohol consumption at 15 years of age but not at 24 years. Notably, alcohol consumption (Alcohol Use Disorder Identification Test for Consumption) at 24 years was predicted by insufficient sleep at 15 years whilst alcohol drinking at 15 years could not predict sleep problems at 24. In msP rats, adolescent chronic sleep restriction escalated alcohol consumption and led to increased propensity for risk-taking behavior in adolescence and adulthood. Our findings demonstrate that adolescent insufficient sleep causally contributes to higher adult alcohol consumption, potentially by promoting risky behavior.
Collapse
Affiliation(s)
- Oluwatomisin O. Faniyan
- International School of Advanced Studies, University of Camerino, 62032 Camerino (MC), Italy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino (MC), Italy
| | - Daniele Marcotulli
- Department of Sciences of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy
| | - Reyila Simayi
- International School of Advanced Studies, University of Camerino, 62032 Camerino (MC), Italy
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino (MC), Italy
| | - Federico Del Gallo
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino (MC), Italy
| | - Sara De Carlo
- International School of Advanced Studies, University of Camerino, 62032 Camerino (MC), Italy
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino (MC), Italy
| | - Eleonora Ficiarà
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino (MC), Italy
| | - Doretta Caramaschi
- Faculty of Health and Life Sciences, Department of Psychology, University of Exeter, Washington Singer Laboratories, Perry Road, Exeter EX4 4QG, UK
| | - Rebecca Richmond
- Bristol Medical School, Bristol Population Health Science Institute, University of Bristol, BS8 2BN Bristol, UK
| | - Daniela Franchini
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD Bristol, UK
| | - Michele Bellesi
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD Bristol, UK
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino (MC), Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino (MC), Italy
| | - Luisa de Vivo
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|
5
|
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. BIOLOGY 2022; 11:1621. [PMID: 36358321 PMCID: PMC9687170 DOI: 10.3390/biology11111621] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder. All animal models of depression have certain advantages and disadvantages. We often hear that the main drawback of the chronic unpredictable mild stress (CUMS) model of depression is its poor reproducibility, but rarely does anyone try to find the real causes and sources of such poor reproducibility. Analyzing the articles available in the PubMed database, we tried to identify the factors that may be the sources of the poor reproducibility of CUMS. Among such factors, there may be chronic sleep deprivation, painful stressors, social stress, the difference in sex and age of animals, different stress susceptibility of different animal strains, handling quality, habituation to stressful factors, various combinations of physical and psychological stressors in the CUMS protocol, the influence of olfactory and auditory stimuli on animals, as well as the possible influence of various other factors that are rarely taken into account by researchers. We assume that careful inspection of these factors will increase the reproducibility of the CUMS model between laboratories and allow to make the interpretation of the obtained results and their comparison between laboratories to be more adequate.
Collapse
|
6
|
Moraes DA, Machado RB, Koban M, Hoffman GE, Suchecki D. The Pituitary-Adrenal Response to Paradoxical Sleep Deprivation Is Similar to a Psychological Stressor, Whereas the Hypothalamic Response Is Unique. Front Endocrinol (Lausanne) 2022; 13:885909. [PMID: 35880052 PMCID: PMC9308007 DOI: 10.3389/fendo.2022.885909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Stressors of different natures induce activation of the hypothalamic-pituitary-adrenal (HPA) axis at different magnitudes. Moreover, the HPA axis response to repeated exposure is usually distinct from that elicited by a single session. Paradoxical sleep deprivation (PSD) augments ACTH and corticosterone (CORT) levels, but the nature of this stimulus is not yet defined. The purpose of the present study was to qualitatively compare the stress response of animals submitted to PSD to that of rats exposed once or four times to cold, as a physiological stress, movement restraint (RST) as a mixed stressor and predator odour (PRED) as the psychological stressor, whilst animals were submitted for 1 or 4 days to PSD and respective control groups. None of the stressors altered corticotropin releasing factor immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN), median eminence (ME) or central amygdala, compared to control groups, whereas vasopressin immunoreactivity in PSD animals was decreased in the PVN and increased in the ME, indicating augmented activity of this system. ACTH levels were higher after repeated stress or prolonged PSD than after single- or 1 day-exposure and control groups, whereas the CORT response was habituated by repeated stress, but not by 4-days PSD. This dissociation resulted in changes in the CORT : ACTH ratio, with repeated cold and RST decreasing the ratio compared to single exposure, but no change was seen in PRED and PSD groups. Comparing the magnitude and pattern of pituitary-adrenal response to the different stressors, PSD-induced responses were closer to that shown by PRED-exposed rats. In contrast, the hypothalamic response of PSD-exposed rats was unique, inasmuch as this was the only stressor which increased the activity of the vasopressin system. In conclusion, we propose that the pituitary-adrenal response to PSD is similar to that induced by a psychological stressor.
Collapse
Affiliation(s)
- Danilo A. Moraes
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo B. Machado
- Grupo de Pesquisa em Psicossomática, Universidade Ibirapuera, São Paulo, Brazil
| | - Michael Koban
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Deborah Suchecki,
| |
Collapse
|
7
|
Fourman S, Buesing D, Girvin S, Nashawi H, Ulrich-Lai YM. Limited cheese intake reduces HPA axis and behavioral stress responses in male rats. Physiol Behav 2021; 242:113614. [PMID: 34600921 PMCID: PMC8768985 DOI: 10.1016/j.physbeh.2021.113614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Eating palatable foods reduces behavioral and hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress - an idea referred to by the colloquial term "comfort" food. To study the underlying stress-relieving mechanisms of palatable foods, we previously developed a paradigm of limited sucrose feeding in which male rats are given twice-daily access to a small amount of sucrose drink and subsequently have reduced stress responses. Prior research in humans and rodents implicates high dietary sugars/carbohydrates with reduced stress responsivity. However, it is not clear whether the stress-relieving effects of the limited sucrose paradigm depend upon its macronutrient content. To test this idea, the current work measures stress responses in male rats following the limited intermittent intake of cheese - a highly palatable food that is low in sugar and other carbohydrates. The data show that a history of limited cheese intake (LCI) reduced HPA axis responses to acute psychological (restraint) and physiological (hypoxia) stressors. LCI also reduced behavioral struggling during restraint, increased sociability during a social interaction test, and increased open arm activity in the elevated plus-maze test. Z-score analyses evaluated the extent to which these behavioral effects extended within and across assays, and indicated that there was an overall reduction in stress-related behaviors following LCI. Finally, LCI increased immunolabeling for FosB/deltaFosB (a protein associated with repeated or chronic neuronal activation) in the nucleus accumbens. These results indicate that palatable foods can provide stress blunting regardless of their sugar/carbohydrate composition, and support the idea that food reward per se contributes to stress relief.
Collapse
Affiliation(s)
- Sarah Fourman
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati OH, 45237, USA
| | - Dana Buesing
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati OH, 45237, USA; Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati OH, 45237, USA
| | - Sean Girvin
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati OH, 45237, USA
| | - Houda Nashawi
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati OH, 45237, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati OH, 45237, USA; Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati OH, 45237, USA.
| |
Collapse
|
8
|
Smith C, Trageser KJ, Wu H, Herman FJ, Iqbal UH, Sebastian-Valverde M, Frolinger T, Zeng E, Pasinetti GM. Anxiolytic effects of NLRP3 inflammasome inhibition in a model of chronic sleep deprivation. Transl Psychiatry 2021; 11:52. [PMID: 33446652 PMCID: PMC7809257 DOI: 10.1038/s41398-020-01189-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Sleep deprivation is a form of stress that provokes both inflammatory responses and neuropsychiatric disorders. Because persistent inflammation is implicated as a physiological process in anxiety disorders, we investigated the contributions of NLRP3 inflammasome signaling to anxiety and anxiolytic properties of flavanol diets in a model of chronic sleep deprivation. The results show a flavanol-rich dietary preparation (FDP) exhibits anxiolytic properties by attenuating markers of neuroimmune activation, which included IL-1β upregulation, NLRP3 signaling, and microglia activation in the cortex and hippocampus of sleep-deprived mice. Production of IL-1β and NLRP3 were critical for both anxiety phenotypes and microglia activation. Individual FDP metabolites potently inhibited IL-1β production from microglia following stimulation with NLRP3-specific agonists, supporting anxiolytic properties of FDP observed in models of sleep deprivation involve inhibition of the NLRP3 inflammasome. The study further showed sleep deprivation alters the expression of the circadian gene Bmal1, which critically regulated NLRP3 expression and IL-1β production.
Collapse
Affiliation(s)
- Chad Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Francis J Herman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Umar Haris Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Maria Sebastian-Valverde
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Tal Frolinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Emma Zeng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
9
|
Menezes L, de Moraes DA, Ribeiro-Silva N, Silva SMA, Suchecki D, Luz J. Chronic REM sleep restriction in young rats increases energy expenditure with no change in food intake. Exp Physiol 2020; 105:1339-1348. [PMID: 32589295 DOI: 10.1113/ep088474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the effects of different periods of REM sleep restriction (7, 14 and 21 days) on metabolic parameters in young rats? What is the main finding and its importance? Animals submitted to each period of REM sleep deprivation showed a negative energy balance, with reduced body weight gain, body energy gain and gross food efficiency, less body fat content, and increased energy expenditure. There was no increase in food intake after any of the REM sleep restriction periods. In young rats, negative energy balance is not compensated by increased dietary intake as observed in adult rats. ABSTRACT Reduced sleep is associated with metabolic alterations, not only in adults, but also in children and adolescents. Several studies have shown that sleep restricted (SR) adult rats exhibit metabolic changes, followed by increased food intake, but few have evaluated these functions in young animals. The aim of the present study was to establish the metabolic parameters of young rats subjected to different periods of REM sleep restriction and to propose a correction factor for the correct measurement of food intake. Young male Wistar rats were distributed in control and SR groups for 7, 14 or 21 days. Sleep restriction was performed by the single platform method for 18 h. Regardless of the length of sleep restriction, all SR rats had a negative energy balance, evidenced by reduction in body weight gain, body energy gain and gross food efficiency, accompanied by increased energy expenditure. In addition, sleep restriction reduced body fat content throughout the entire period. Discounting food spillage, there was no increase in food intake by SR rats. In conclusion, the present study revealed metabolic changes in SR young rats after different lengths of REM sleep restriction and that weight loss and increased energy expenditure were not compensated by increased dietary intake as occurs in adult rats, indicating that young rats use other mechanisms to cope with the negative energy balance caused by sleep restriction. In addition, we propose a correction factor for food intake, to prevent overestimation of this parameter, due to food spillage in the water containers.
Collapse
Affiliation(s)
- Letícia Menezes
- Department of Phisiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Neila Ribeiro-Silva
- Department of Phisiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jacqueline Luz
- Department of Phisiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Ma B, Chen J, Mu Y, Xue B, Zhao A, Wang D, Chang D, Pan Y, Liu J. Proteomic analysis of rat serum revealed the effects of chronic sleep deprivation on metabolic, cardiovascular and nervous system. PLoS One 2018; 13:e0199237. [PMID: 30235220 PMCID: PMC6147403 DOI: 10.1371/journal.pone.0199237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Sleep is an essential and fundamental physiological process that plays crucial roles in the balance of psychological and physical health. Sleep disorder may lead to adverse health outcomes. The effects of sleep deprivation were extensively studied, but its mechanism is still not fully understood. The present study aimed to identify the alterations of serum proteins associated with chronic sleep deprivation, and to seek for potential biomarkers of sleep disorder mediated diseases. A label-free quantitative proteomics technology was used to survey the global changes of serum proteins between normal rats and chronic sleep deprivation rats. A total of 309 proteins were detected in the serum samples and among them, 117 proteins showed more than 1.8-folds abundance alterations between the two groups. Functional enrichment and network analyses of the differential proteins revealed a close relationship between chronic sleep deprivation and several biological processes including energy metabolism, cardiovascular function and nervous function. And four proteins including pyruvate kinase M1, clusterin, kininogen1 and profilin-1were identified as potential biomarkers for chronic sleep deprivation. The four candidates were validated via parallel reaction monitoring (PRM) based targeted proteomics. In addition, protein expression alteration of the four proteins was confirmed in myocardium and brain of rat model. In summary, the comprehensive proteomic study revealed the biological impacts of chronic sleep deprivation and discovered several potential biomarkers. This study provides further insight into the pathological and molecular mechanisms underlying sleep disorders at protein level.
Collapse
Affiliation(s)
- Bo Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jincheng Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongying Mu
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Bingjie Xue
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aimei Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daoping Wang
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
| | - Yinghong Pan
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Science, Beijing, China
- * E-mail: (JL); (YP)
| | - Jianxun Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
- * E-mail: (JL); (YP)
| |
Collapse
|
11
|
Multiple trial inhibitory avoidance acquisition and retrieval are resistant to chronic stress. Behav Processes 2018; 147:28-32. [DOI: 10.1016/j.beproc.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/22/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022]
|
12
|
da Silva Rocha-Lopes J, Machado RB, Suchecki D. Chronic REM Sleep Restriction in Juvenile Male Rats Induces Anxiety-Like Behavior and Alters Monoamine Systems in the Amygdala and Hippocampus. Mol Neurobiol 2017; 55:2884-2896. [DOI: 10.1007/s12035-017-0541-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
|
13
|
Dispersyn G, Sauvet F, Gomez-Merino D, Ciret S, Drogou C, Leger D, Gallopin T, Chennaoui M. The homeostatic and circadian sleep recovery responses after total sleep deprivation in mice. J Sleep Res 2017; 26:531-538. [DOI: 10.1111/jsr.12541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Garance Dispersyn
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
- VIFASOM EA 7330 Université Paris Descartes; Paris France
| | - Fabien Sauvet
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
- VIFASOM EA 7330 Université Paris Descartes; Paris France
| | - Danielle Gomez-Merino
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
- VIFASOM EA 7330 Université Paris Descartes; Paris France
| | - Sylvain Ciret
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
| | - Catherine Drogou
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
- VIFASOM EA 7330 Université Paris Descartes; Paris France
| | - Damien Leger
- VIFASOM EA 7330 Université Paris Descartes; Paris France
- Centre du Sommeil et de la Vigilance; Paris France
| | | | - Mounir Chennaoui
- Institut de Recherche Biomédicale des Armées (IRBA); Brétigny sur Orge France
- VIFASOM EA 7330 Université Paris Descartes; Paris France
| |
Collapse
|
14
|
Hoffman GE, Koban M. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats. PLoS One 2016; 11:e0152252. [PMID: 27997552 PMCID: PMC5172538 DOI: 10.1371/journal.pone.0152252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.
Collapse
Affiliation(s)
- Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, Maryland, United States of America
| | - Michael Koban
- Department of Biology, Morgan State University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Packard AEB, Egan AE, Ulrich-Lai YM. HPA Axis Interactions with Behavioral Systems. Compr Physiol 2016; 6:1897-1934. [PMID: 27783863 DOI: 10.1002/cphy.c150042] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Perhaps the most salient behaviors that individuals engage in involve the avoidance of aversive experiences and the pursuit of pleasurable experiences. Engagement in these behaviors is regulated to a significant extent by an individual's hormonal milieu. For example, glucocorticoid hormones are produced by the hypothalamic-pituitary-adrenocortical (HPA) axis, and influence most aspects of behavior. In turn, many behaviors can influence HPA axis activity. These bidirectional interactions not only coordinate an individual's physiological and behavioral states to each other, but can also tune them to environmental conditions thereby optimizing survival. The present review details the influence of the HPA axis on many types of behavior, including appetitively-motivated behaviors (e.g., food intake and drug use), aversively-motivated behaviors (e.g., anxiety-related and depressive-like) and cognitive behaviors (e.g., learning and memory). Conversely, the manuscript also describes how engaging in various behaviors influences HPA axis activity. Our current understanding of the neuronal and/or hormonal mechanisms that underlie these interactions is also summarized. © 2016 American Physiological Society. Compr Physiol 6:1897-1934, 2016.
Collapse
Affiliation(s)
- Amy E B Packard
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ann E Egan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Ulrich-Lai YM, Christiansen AM, Wang X, Song S, Herman JP. Statistical modeling implicates neuroanatomical circuit mediating stress relief by 'comfort' food. Brain Struct Funct 2016; 221:3141-56. [PMID: 26246177 PMCID: PMC4744589 DOI: 10.1007/s00429-015-1092-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/24/2015] [Indexed: 01/09/2023]
Abstract
A history of eating highly palatable foods reduces physiological and emotional responses to stress. For instance, we have previously shown that limited sucrose intake (4 ml of 30 % sucrose twice daily for 14 days) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress. However, the neural mechanisms underlying stress relief by such 'comfort' foods are unclear, and could reveal an endogenous brain pathway for stress mitigation. As such, the present work assessed the expression of several proteins related to neuronal activation and/or plasticity in multiple stress- and reward-regulatory brain regions of rats after limited sucrose (vs. water control) intake. These data were then subjected to a series of statistical analyses, including Bayesian modeling, to identify the most likely neurocircuit mediating stress relief by sucrose. The analyses suggest that sucrose reduces HPA activation by dampening an excitatory basolateral amygdala-medial amygdala circuit, while also potentiating an inhibitory bed nucleus of the stria terminalis principle subdivision-mediated circuit, resulting in reduced HPA activation after stress. Collectively, the results support the hypothesis that sucrose limits stress responses via plastic changes to the structure and function of stress-regulatory neural circuits. The work also illustrates that advanced statistical methods are useful approaches to identify potentially novel and important underlying relationships in biological datasets.
Collapse
Affiliation(s)
- Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, 2170 East Galbraith Rd- ML 0506, Cincinnati, OH, 45237, USA.
| | - Anne M Christiansen
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, 2170 East Galbraith Rd- ML 0506, Cincinnati, OH, 45237, USA
| | - Xia Wang
- Department of Mathematical Sciences, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, 45237, USA
| | - Seongho Song
- Department of Mathematical Sciences, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, 45237, USA
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, 2170 East Galbraith Rd- ML 0506, Cincinnati, OH, 45237, USA
| |
Collapse
|
17
|
Abstract
For many individuals, stress promotes the consumption of sweet, high-sugar foods relative to healthier alternatives. Daily life stressors stimulate the overeating of highly-palatable foods through multiple mechanisms, including altered glucocorticoid, relaxin-3, ghrelin and serotonin signaling in brain. In turn, a history of consuming high-sugar foods attenuates the psychological (anxiety and depressed mood) and physiological (HPA axis) effects of stress. Together the metabolic and hedonic properties of sucrose contribute to its stress relief, possibly via actions in both the periphery (e.g., glucocorticoid receptor signaling in adipose tissue) and in the brain (e.g., plasticity in brain reward regions). Emerging work continues to reveal the bidirectional mechanisms that underlie the use of high-sugar foods as 'self-medication' for stress relief.
Collapse
|
18
|
Brianza-Padilla M, Bonilla-Jaime H, Almanza-Pérez JC, López-López AL, Sánchez-Muñoz F, Vázquez-Palacios G. Effects of different periods of paradoxical sleep deprivation and sleep recovery on lipid and glucose metabolism and appetite hormones in rats. Appl Physiol Nutr Metab 2016; 41:235-43. [DOI: 10.1139/apnm-2015-0337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sleep has a fundamental role in the regulation of energy balance, and it is an essential and natural process whose precise impacts on health and disease have not yet been fully elucidated. The aim of this study was to assess the consequences of different periods of paradoxical sleep deprivation (PSD) and recovery from PSD on lipid profile, oral glucose tolerance test (OGTT) results, and changes in insulin, corticosterone, ghrelin, and leptin concentrations. Three-month-old male Wistar rats weighing 250–350 g were submitted to 24, 96, or 192 h of PSD or 192 h of PSD with 480 h of recovery. The PSD was induced by the multiple platforms method. Subsequently, the animals were submitted to an OGTT. One day later, the animals were killed and the levels of triglycerides, total cholesterol, lipoproteins (low-density lipoprotein, very-low-density lipoprotein, and high-density lipoprotein), insulin, ghrelin, leptin, and corticosterone in plasma were quantified. There was a progressive decrease in body weight with increasing duration of PSD. The PSD induced basal hypoglycemia over all time periods evaluated. Evaluation of areas under the curve revealed progressive hypoglycemia only after 96 and 192 h of PSD. There was an increase in corticosterone levels after 192 h of PSD. We conclude that PSD induces alterations in metabolism that are reversed after a recovery period of 20 days.
Collapse
Affiliation(s)
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Área de Biología Conductual y Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, CP 09340, Mexico
| | - Julio César Almanza-Pérez
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana-Iztapalapa, CP 09340, Mexico
| | - Ana Laura López-López
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, CP 09340, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiologia (Ignacio Chávez), Juan Badiano No. 1, Col. Sección XVI, Del. Tlalpan, CP 14080, Mexico
| | - Gonzalo Vázquez-Palacios
- Colegio de Ciencias y Humanidades, Universidad Autónoma de la Ciudad de México-San Lorenzo Tezonco, Av. Prolongación San Isidro No. 151, Col. San Lorenzo Tezonco, Del. Iztapalapa, CP 09790, Mexico
| |
Collapse
|
19
|
Ribeiro-Silva N, Nejm MB, da Silva SMA, Suchecki D, Luz J. Restriction of rapid eye movement sleep during adolescence increases energy gain and metabolic efficiency in young adult rats. Exp Physiol 2016; 101:308-18. [PMID: 26663203 DOI: 10.1113/ep085323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Sleep curtailment in infancy and adolescence may lead to long-term risk for obesity, but the mechanisms involved have not yet been determined. This study examined the immediate and long-term metabolic effects produced by sleep restriction in young rats. What is the main finding and its importance? Prolonged sleep restriction reduced weight gain (body fat stores) in young animals. After prolonged recovery, sleep-restricted rats tended to save more energy and to store more fat, possibly owing to increased gross food efficiency. This could be the first step to understand this association. Sleep curtailment is associated with obesity and metabolic changes in adults and children. The aim of the present study was to evaluate the immediate and long-term metabolic alterations produced by sleep restriction in pubertal male rats. Male Wistar rats (28 days old) were allocated to a control (CTL) group or a sleep-restricted (SR) group. This was accomplished by the single platform technique for 18 h per day for 21 days. These groups were subdivided into the following four time points for assessment: sleep restriction and 1, 2 and 4 months of recovery. Body weight and food intake were monitored throughout the experiment. At the end of each time period, blood was collected for metabolic profiling, and the carcasses were processed for measurement of body composition and energy balance. During the period of sleep restriction, SR animals consumed less food in the home cages. This group also displayed lower body weight, body fat, triglycerides and glucose levels than CTL rats. At the end of the first month of recovery, despite eating as much as CTL rats, SR animals showed greater energy and body weight gain, increased gross food efficiency and decreased energy expenditure. At the end of the second and fourth months of recovery, the groups were no longer different, except for energy gain and gross food efficiency, which remained higher in SR animals. In conclusion, sleep restriction affected weight gain of young animals, owing to reduction of fat stores. Two months were sufficient to recover this deficit and to reveal that SR rats tended to save more energy and to store more fat.
Collapse
Affiliation(s)
- Neila Ribeiro-Silva
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Bocca Nejm
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jacqueline Luz
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Chronical sleep interruption-induced cognitive decline assessed by a metabolomics method. Behav Brain Res 2015; 302:60-8. [PMID: 26747207 DOI: 10.1016/j.bbr.2015.12.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/06/2015] [Accepted: 12/25/2015] [Indexed: 01/20/2023]
Abstract
Good sleep is necessary for optimal health, especially for mental health. Insomnia, sleep deprivation will make your ability to learn and memory impaired. Nevertheless, the underlying pathophysiological mechanism of sleep disorders-induced cognitive decline is still largely unknown. In this study, the sleep deprivation of animal model was induced by chronical sleep interruption (CSI), the behavioral tests, biochemical index determinations, and a liquid chromatography-mass spectrometry (LC-MS) based serum metabolic profiling analysis were performed to explore the effects of CSI on cognitive function and the underlying mechanisms. After 14-days CSI, the cognitive function of the mice was evaluated by new objects preference (NOP) task and temporal order judgment (TOJ) task. Serum corticosterone (CORT), and brain Malondialdehyde (MDA), Superoxide Dismutase (SOD), and Catalase (CAT) levels were determined by ELISA kits. Data were analyzed by Principal Component Analysis (PCA), Partial Least Squares project to latent structures-Discriminant Analysis (PLS-DA), and Student's t-test. We found that the cognitive function of the mice was significantly affected by CSI. Besides, levels of CORT and MDA were higher, and SOD and CAT were lower in CSI mice than those of control. Obvious body weight loss of CSI mice was also observed. Thirteen potential serum biomarkers including choline, valine, uric acid, allantoic acid, carnitines, and retinoids were identified. Affected metabolic pathways involve metabolism of purine, retinoid, lipids, and amino acid. These results showed that CSI can damage the cognitive performance notably. The cognitive decline may ascribe to excessive oxidative stress and a series of disturbed metabolic pathways.
Collapse
|
21
|
Venancio DP, Suchecki D. Prolonged REM sleep restriction induces metabolic syndrome-related changes: Mediation by pro-inflammatory cytokines. Brain Behav Immun 2015; 47:109-17. [PMID: 25532784 DOI: 10.1016/j.bbi.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 12/30/2022] Open
Abstract
Chronic sleep restriction in human beings results in metabolic abnormalities, including changes in the control of glucose homeostasis, increased body mass and risk of cardiovascular disease. In rats, 96h of REM sleep deprivation increases caloric intake, but retards body weight gain. Moreover, this procedure increases the expression of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), which may be involved with the molecular mechanism proposed to mediate insulin resistance. The goal of the present study was to assess the effects of a chronic protocol of sleep restriction on parameters of energy balance (food intake and body weight), leptin plasma levels and its hypothalamic receptors and mediators of the immune system in the retroperitoneal adipose tissue (RPAT). Thirty-four Wistar rats were distributed in control (CTL) and sleep restriction groups; the latter was kept onto individual narrow platforms immersed in water for 18h/day (from 16:00h to 10:00h), for 21days (SR21). Food intake was assessed daily, after each sleep restriction period and body weight was measured daily, after the animals were taken from the sleep deprivation chambers. At the end of the 21day of sleep restriction, rats were decapitated and RPAT was obtained for morphological and immune functional assays and expression of insulin receptor substrate 1 (IRS-1) was assessed in skeletal muscle. Another subset of animals was used to evaluate blood glucose clearance. The results replicated previous findings on energy balance, e.g., increased food intake and reduced body weight gain. There was a significant reduction of RPAT mass (p<0.001), of leptin plasma levels and hypothalamic leptin receptors. Conversely, increased levels of TNF-α and IL-6 and expression of phosphorylated NFκ-β in the RPAT of SR21 compared to CTL rats (p<0.01, for all parameters). SR21 rats also displayed reduced glucose clearance and IRS-1 expression than CTL rats (p<0.01). The present results indicated that 21days of sleep restriction by the platform method induced metabolic syndrome-related alterations that may be mediated by inflammation of the RPAT.
Collapse
Affiliation(s)
- Daniel Paulino Venancio
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Deborah Suchecki
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
22
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
23
|
Rodrigues NC, da Cruz NS, de Paula Nascimento C, da Conceição RR, da Silva ACM, Olivares EL, Marassi MP. Sleep deprivation alters thyroid hormone economy in rats. Exp Physiol 2015; 100:193-202. [DOI: 10.1113/expphysiol.2014.083303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/01/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Nayana Coutinho Rodrigues
- Multicenter Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biology; Federal Rural University of Rio de Janeiro; Seropedica Brazil
| | - Natália Santos da Cruz
- Multicenter Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biology; Federal Rural University of Rio de Janeiro; Seropedica Brazil
| | - Cristine de Paula Nascimento
- Multicenter Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biology; Federal Rural University of Rio de Janeiro; Seropedica Brazil
| | - Rodrigo Rodrigues da Conceição
- Multicenter Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biology; Federal Rural University of Rio de Janeiro; Seropedica Brazil
| | - Alba Cenélia Matos da Silva
- Multicenter Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biology; Federal Rural University of Rio de Janeiro; Seropedica Brazil
| | - Emerson Lopes Olivares
- Multicenter Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biology; Federal Rural University of Rio de Janeiro; Seropedica Brazil
| | - Michelle Porto Marassi
- Multicenter Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biology; Federal Rural University of Rio de Janeiro; Seropedica Brazil
| |
Collapse
|
24
|
Abstract
This manuscript summarizes the proceedings of the symposium entitled, "Stress, Palatable Food and Reward", that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr Mark Wilson describes his group's research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Finally, Dr Gorica Petrovich discusses her research program that is aimed at defining cortical-amygdalar-hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e. fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential and environmental factors on these interactions.
Collapse
Affiliation(s)
- Yvonne M. Ulrich-Lai
- Dept. of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219
| | - Stephanie Fulton
- CRCHUM, Dept. of Nutrition, Université de Montréal, Montreal, QC, Canada, H1W 4A4
| | - Mark Wilson
- Division of Developmental and Cognitive Neuroscience, Emory, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322
| | | | - Linda Rinaman
- Dept. of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
25
|
Azogu I, de la Tremblaye PB, Dunbar M, Lebreton M, LeMarec N, Plamondon H. Acute sleep deprivation enhances avoidance learning and spatial memory and induces delayed alterations in neurochemical expression of GR, TH, DRD1, pCREB and Ki67 in rats. Behav Brain Res 2014; 279:177-90. [PMID: 25433096 DOI: 10.1016/j.bbr.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
The current study investigated the effects of acute versus repeated periods of sleep deprivation on avoidance learning and spatial memory and on the expression of discrete biochemical brain signals involved in stress regulation, motivation and brain plasticity. Male Long-Evans rats were sleep deprived using the platform-over-water method for a single 4 h period (ASD) or for daily 4h RSD period on five consecutive days (CSD). The Y maze passive avoidance task (YM-PAT) and the Morris water maze (MWM) were used to determine learning and memory 1h following the last SD period. Region-specific changes in glucocorticoid receptors (GR), tyrosine hydroxylase (TH), dopamine 1 receptors (DRD1), phospho-CREB (pCREB) and Ki-67 expression were assessed in the hippocampal formation, hypothalamus and mesolimbic regions 72 h following RSD. Behaviorally, our findings revealed increased latency to re-enter the aversive arm in the YM-PAT and reduced distance traveled and latency to reach the platform in the MWM in ASD rats compared to all other groups, indicative of improved avoidance learning and spatial memory, respectively. Acute SD enhanced TH expression in the ventral tegmental area, nucleus accumbens and A11 neurons of the hypothalamus and DRD1 expression in the lateral hypothalamus. Cell proliferation in the subventricular zone and pCREB expression in the dentate gyrus and CA3 regions was also enhanced following acute SD. In contrast, repeated SD significantly elevated GR-ir at the hypothalamic paraventricular nucleus and CA1 and CA3 layers of the hippocampus compared to all other groups. Our study supports that a brief 4h sleep deprivation period is sufficient to induce delayed neurochemical changes.
Collapse
Affiliation(s)
- Idu Azogu
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Patricia Barra de la Tremblaye
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Megan Dunbar
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Marianne Lebreton
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Nathalie LeMarec
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Hélène Plamondon
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
26
|
Moraes DA, Venancio DP, Suchecki D. Sleep deprivation alters energy homeostasis through non-compensatory alterations in hypothalamic insulin receptors in Wistar rats. Horm Behav 2014; 66:705-12. [PMID: 25304978 DOI: 10.1016/j.yhbeh.2014.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/09/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
Abstract
Studies have shown a gradual reduction of sleep time in the general population, accompanied by increased food intake, representing a risk for developing obesity, type II diabetes and cardiovascular disease. Rats subjected to paradoxical sleep deprivation (PSD) exhibit feeding and metabolic alterations, both of which are regulated by the communication between peripheral signals and the hypothalamus. This study aimed to investigate the daily change of 96 h of PSD-induced food intake, body weight, blood glucose, plasma insulin and leptin concentrations and the expression of their receptors in the hypothalamus of Wistar rats. Food intake was assessed during the light and dark phases and was progressively increased in sleep-deprived animals, during the light phase. PSD produced body weight loss, particularly on the first day, and decreased plasma insulin and leptin levels, without change in blood glucose levels. Reduced leptin levels were compensated by increased expression of leptin receptors in the hypothalamus, whereas no compensations occurred in insulin receptors. The present results on body weight loss and increased food intake replicate previous studies from our group. The fact that reduced insulin levels did not lead to compensatory changes in hypothalamic insulin receptors, suggests that this hormone may be, at least in part, responsible for PSD-induced dysregulation in energy metabolism.
Collapse
Affiliation(s)
| | | | - Deborah Suchecki
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
27
|
Siran R, Ahmad AH, Abdul Aziz CB, Ismail Z. REM sleep deprivation induces changes of Down Regulatory Antagonist Modulator (DREAM) expression in the ventrobasal thalamic nuclei of Sprague–Dawley rats. J Physiol Biochem 2014; 70:877-89. [DOI: 10.1007/s13105-014-0356-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/02/2014] [Indexed: 01/24/2023]
|
28
|
Mavanji V, Teske JA, Billington CJ, Kotz CM. Partial sleep deprivation by environmental noise increases food intake and body weight in obesity-resistant rats. Obesity (Silver Spring) 2013; 21:1396-405. [PMID: 23666828 PMCID: PMC3742663 DOI: 10.1002/oby.20182] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 11/08/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Sleep restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight gain. It was hypothesized that sleep disruption by a less-stressful method would increase body weight, and the effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats was examined. DESIGN AND METHODS OR and SD rats (n = 12/group) were implanted with transmitters to record sleep/wake. After baseline recording, six SD and six OR rats underwent 8 h PSD during light phase for 9 days. Sleep was reduced using recordings of random noise. Sleep/wake states were scored as wakefulness (W), slow-wave-sleep (SWS), and rapid-eye-movement-sleep (REMS). Total number of transitions between stages, SWS-delta-power, food intake, and body weight were documented. RESULTS Exposure to noise decreased SWS and REMS time, while increasing W time. Sleep-deprivation increased the number of transitions between stages and SWS-delta-power. Further, PSD during the rest phase increased recovery sleep during the active phase. The PSD SD and OR rats had greater food intake and body weight compared to controls CONCLUSIONS PSD by less-stressful means increases body weight in rats. Also, PSD during the rest phase increases active period sleep.
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Minnesota Obesity Prevention Training Program, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | |
Collapse
|
29
|
Machado RB, Tufik S, Suchecki D. Role of corticosterone on sleep homeostasis induced by REM sleep deprivation in rats. PLoS One 2013; 8:e63520. [PMID: 23667630 PMCID: PMC3646744 DOI: 10.1371/journal.pone.0063520] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/03/2013] [Indexed: 01/17/2023] Open
Abstract
Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM) sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitoring and submitted to four days of REM sleep deprivation under repeated corticosterone or metyrapone (an inhibitor of corticosterone synthesis) administration. Sleep parameters were continuously recorded throughout the sleep deprivation period and during 3 days of sleep recovery. Plasma levels of adrenocorticotropic hormone and corticosterone were also evaluated. Metyrapone treatment prevented the elevation of corticosterone plasma levels induced by REM sleep deprivation, whereas corticosterone administration to REM sleep-deprived rats resulted in lower corticosterone levels than in non-sleep deprived rats. Nonetheless, both corticosterone and metyrapone administration led to several alterations on sleep homeostasis, including reductions in the amount of non-REM and REM sleep during the recovery period, although corticosterone increased delta activity (1.0-4.0 Hz) during REM sleep deprivation. Metyrapone treatment of REM sleep-deprived rats reduced the number of REM sleep episodes. In conclusion, reduction of corticosterone levels during REM sleep deprivation resulted in impairment of sleep rebound, suggesting that physiological elevation of corticosterone levels resulting from REM sleep deprivation is necessary for plentiful recovery of sleep after this stressful event.
Collapse
|
30
|
Metabolic consequences of chronic sleep restriction in rats: Changes in body weight regulation and energy expenditure. Physiol Behav 2012; 107:322-8. [DOI: 10.1016/j.physbeh.2012.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/21/2012] [Accepted: 09/11/2012] [Indexed: 01/26/2023]
|
31
|
Neurochemical and electrophysiological changes induced by paradoxical sleep deprivation in rats. Behav Brain Res 2011; 225:39-46. [PMID: 21729722 DOI: 10.1016/j.bbr.2011.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/12/2011] [Accepted: 06/18/2011] [Indexed: 12/26/2022]
Abstract
The present study aims to investigate the effects of paradoxical sleep deprivation (PSD) on the waking EEG and amino acid neurotransmitters in the hippocampus and cortex of rats. Animals were deprived of paradoxical sleep for 72h by using the multiple platform method. The EEG power spectral analysis was carried out to assess the brain's electrophysiological changes due to sleep deprivation. The concentrations of amino acid neurotransmitters were assessed in the hippocampus and cortex using HPLC. Control data showed slight differences from normal animals in the delta, theta and alpha waves while an increase in the beta wave was obtained. After 24h of PSD, delta relative power increased and the rest of EEG wave's power decreased with respect to control. After 48h and 72h the spectral power analysis showed non-significant changes to control. The amino acid neurotransmitter analysis revealed a significant increase in cortical glutamate, glycine and taurine levels while in the hippocampus, glutamate, aspartate, glutamine and glycine levels increased significantly. Both the waking EEG and neurotransmitter analyses suggest that PSD induced neurochemical and electrophysiological changes that may affect brain proper functionality.
Collapse
|
32
|
Yoo SB, Lee JH, Ryu V, Jahng JW. Effects of oropharyngeal taste stimuli in the restoration of the fasting-induced activation of the HPA axis in rats. J Korean Assoc Oral Maxillofac Surg 2011. [DOI: 10.5125/jkaoms.2011.37.3.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Sang-Bae Yoo
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Korea
| | - Jong-Ho Lee
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Korea
| | - Vitaly Ryu
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA, United States
| | - Jeong-Won Jahng
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Korea
| |
Collapse
|
33
|
Ulrich-Lai YM, Ostrander MM, Herman JP. HPA axis dampening by limited sucrose intake: reward frequency vs. caloric consumption. Physiol Behav 2010; 103:104-10. [PMID: 21168428 DOI: 10.1016/j.physbeh.2010.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 11/10/2010] [Accepted: 12/10/2010] [Indexed: 12/26/2022]
Abstract
Individuals often cope with stress by consuming calorically-dense, highly-palatable 'comfort' foods. The present work explores the stress-relieving properties of palatable foods in a rat model of limited sucrose intake. In this model, adult male rats with free access to chow and water are given additional access to a small amount of sucrose drink (or water as a control). A history of such limited sucrose intake reduces the collective (HPA axis, sympathetic, and behavioral-anxiety) stress response. Moreover, the stress-dampening by sucrose appears to be mediated primarily by its rewarding properties, since beneficial effects are reproduced by the noncaloric sweetener saccharin but not oral intragastric gavage of sucrose. The present work uses an alternate strategy to address the hypothesis that the rewarding properties of sucrose mediate its stress-dampening. This work varies the duration, frequency, and/or volume of sucrose and assesses the ability to attenuate HPA axis stress responses. The data indicate that HPA-dampening is optimal with a greater duration and/or frequency of sucrose, whereas increasing the volume of sucrose consumed is without effect. This finding suggests that the primary factor mediating stress-dampening is the number/rate of reward (i.e., sucrose) exposures, rather than the total sucrose calories consumed. Collectively, these data support the hypothesis that stress relief by limited palatable food intake is mediated primarily by its hedonic/rewarding properties. Moreover, the results support the contention that naturally rewarding behaviors are a physiological means to produce stress relief.
Collapse
Affiliation(s)
- Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA.
| | | | | |
Collapse
|
34
|
Xu A, Sakurai E, Kuramasu A, Zhang J, Li J, Okamura N, Zhang D, Yoshikawa T, Watanabe T, Yanai K. Roles of Hypothalamic Subgroup Histamine and Orexin Neurons on Behavioral Responses to Sleep Deprivation Induced by the Treadmill Method in Adolescent Rats. J Pharmacol Sci 2010; 114:444-53. [DOI: 10.1254/jphs.10177fp] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
35
|
Galvão MDOL, Sinigaglia-Coimbra R, Kawakami SE, Tufik S, Suchecki D. Paradoxical sleep deprivation activates hypothalamic nuclei that regulate food intake and stress response. Psychoneuroendocrinology 2009; 34:1176-83. [PMID: 19346078 DOI: 10.1016/j.psyneuen.2009.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 01/26/2009] [Accepted: 03/09/2009] [Indexed: 11/28/2022]
Abstract
A large body of evidence has shown that prolonged paradoxical sleep deprivation (PSD) results in hypothalamic-pituitary-adrenal (HPA) axis activation, and in loss of body weight despite an apparent increase of food intake, reflecting increased energy expenditure. The flowerpot technique for PSD is an efficient paradigm for investigating the relationships among metabolic regulation and stress response. The purpose of the present study was to examine the mechanisms involved in the effects of 96 h of PSD on metabolism regulation, feeding behaviour and stress response by studying corticotrophin-releasing hormone (CRH) and orexin (ORX) immunoreactivity in specific hypothalamic nuclei. Once-daily assessments of body weight, twice-daily measurements of (spillage-corrected) food intake, and once-daily determinations of plasma adrenocorticotropic hormone (ACTH) and corticosterone were made throughout PSD or at corresponding times in control rats (CTL). Immunoreactivity for CRH in the paraventricular nucleus of the hypothalamus and for ORX in the hypothalamic lateral area was evaluated at the end of the experimental period. PSD resulted in increased diurnal, but not nocturnal, food intake, producing no significant changes in global food intake. PSD augmented the immunoreactivity for CRH and plasma ACTH and corticosterone levels, characterizing activation of the HPA axis. PSD also markedly increased the ORX immunoreactivity. The average plasma level of corticosterone correlated negatively with body weight gain throughout PSD. These results indicate that augmented ORX and CRH immunoreactivity in specific hypothalamic nuclei may underlie some of the metabolic changes consistently described in PSD.
Collapse
Affiliation(s)
- Milene de Oliveira Lara Galvão
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, São Paulo, SP 04024-002, Brazil
| | | | | | | | | |
Collapse
|
36
|
Andersen ML, Hoshino K, Tufik S. Increased susceptibility to development of anhedonia in rats with chronic peripheral nerve injury: involvement of sleep deprivation? Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:960-6. [PMID: 19414057 DOI: 10.1016/j.pnpbp.2009.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 12/23/2022]
Abstract
The main purpose of the present study was to evaluate whether REM sleep deprivation (RSD) influences the development of anhedonia in rats in a peripheral neuropathy model induced by sciatic nerve constriction injury (CCI). Anhedonia was measured by assessing daily water/sucrose intake. Four groups were assessed: control (CTRL), CCI, RSD, and CCI+RSD (n=8/group). Intake data were collected at baseline (mean of 3 days), on the 1st and 2nd days after a CCI or SHAM procedure, during 4 days of RSD, and during an additional 10 days (rebound period or equivalent in home-cage rats). Control rats spontaneously and progressively increased sucrose intake, reaching final daily volumes significantly greater than respective initial baseline amounts. RSD promoted an additional and immediate significant increase in sucrose intake during sleep deprivation days. The CCI group did not display a spontaneous, progressive increase in sucrose intake. When CCI was combined with RSD, the increase in sucrose intake induced by RSD was significantly lower than in animals submitted to RSD alone; the (CCI+RSD) group also failed to show a spontaneous and progressive increase in sucrose intake. The present findings indicate that animal model of chronic neuropathy exhibits reduced sucrose ingestion. Accordingly, this anhedonic condition that constitutes to the core manifestation of depressive states did not occur in response to a single episode of total RSD.
Collapse
Affiliation(s)
- Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), Brazil.
| | | | | |
Collapse
|
37
|
Abstract
The survival and well-being of all species requires appropriate physiological responses to environmental and homeostatic challenges. The re- establishment and maintenance of homeostasis entails the coordinated activation and control of neuroendocrine and autonomic stress systems. These collective stress responses are mediated by largely overlapping circuits in the limbic forebrain, the hypothalamus and the brainstem, so that the respective contributions of the neuroendocrine and autonomic systems are tuned in accordance with stressor modality and intensity. Limbic regions that are responsible for regulating stress responses intersect with circuits that are responsible for memory and reward, providing a means to tailor the stress response with respect to prior experience and anticipated outcomes.
Collapse
|
38
|
Crispim CA, Zalcman I, Dáttilo M, Padilha HG, Tufik S, Mello MTD. [Relation between sleep and obesity: a literature review]. ACTA ACUST UNITED AC 2008; 51:1041-9. [PMID: 18157377 DOI: 10.1590/s0004-27302007000700004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/28/2007] [Indexed: 11/21/2022]
Abstract
Reduction in sleep time has become an endemic condition in modern society and current literature has found important epidemiological associations between damage in the habitual standard of sleep and obesity. On this basis, the present revision analyzed the role of sleep and its alteration in the promotion of obesity. Diverse studies indicate that subjects that sleep less have greater possibility of becoming obese, and the shortening of sleep increases the leptin/ghrelin reason, generating increase of the appetite and hunger. This can be associated to the biggest caloric intake and promotion of obesity. An adequate standard of sleep becomes basic for the regulation of body mass and must be stimulated by health professionals.
Collapse
|
39
|
Mueller AD, Pollock MS, Lieblich SE, Epp JR, Galea LAM, Mistlberger RE. Sleep deprivation can inhibit adult hippocampal neurogenesis independent of adrenal stress hormones. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1693-703. [DOI: 10.1152/ajpregu.00858.2007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sleep deprivation (SD) can suppress cell proliferation in the hippocampal dentate gyrus of adult male rodents, suggesting that sleep may contribute to hippocampal functions by promoting neurogenesis. However, suppression of cell proliferation in rats by the platform-over-water SD method has been attributed to elevated corticosterone (Cort), a potent inhibitor of cell proliferation and nonspecific correlate of this procedure. We report here results that do not support this conclusion. Intact and adrenalectomized (ADX) male rats were subjected to a 96-h SD using multiple- and single-platform methods. New cells were identified by immunoreactivity for 5-bromo-2′-deoxyuridine (BrdU) or Ki67 and new neurons by immunoreactivity for BrdU and doublecortin. EEG recordings confirmed a 95% deprivation of rapid eye movement (REM) sleep and a 40% decrease of non-REM sleep. Cell proliferation in the dentate gyrus was suppressed by up to 50% in sleep-deprived rats relative to apparatus control or home cage control rats. This effect was also observed in ADX rats receiving continuous low-dose Cort replacement via subcutaneous minipumps but not in ADX rats receiving Cort replacement via drinking water. In these latter rats, Cort intake via water was reduced by 60% during SD; upregulation of cell proliferation by reduced Cort intake may obscure inhibitory effects of sleep loss on cell proliferation. SD had no effect on the percentage of new cells expressing a neuronal phenotype. These results demonstrate that the Cort replacement method is critical for detecting an effect of SD on cell proliferation and support a significant role for sleep in adult neurogenesis.
Collapse
|
40
|
Martins PJF, Nobrega JN, Tufik S, D'Almeida V. Sleep deprivation-induced gnawing—relationship to changes in feeding behavior in rats. Physiol Behav 2008; 93:229-34. [PMID: 17904170 DOI: 10.1016/j.physbeh.2007.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 07/09/2007] [Accepted: 08/29/2007] [Indexed: 11/26/2022]
Abstract
We have recently reported that food spillage increases during sleep deprivation in rats, which may lead to an overestimation of food intake in this condition. The objective of this study was to verify whether sleep deprivation induces an increase in gnawing behavior that could account for increased food spillage and apparent increase in food intake. We introduced wood blocks as objects for gnawing and determined the effects of their availability on food consumption and food spillage during sleep deprivation. Wood block availability reduced the amount of food removed from hoppers and decreased the amount of food spilled. However, weight loss still occurred during the sleep deprivation period, especially in the first 24 h, and it was related to a reduction in food intake. Sleep deprivation causes an increase in stereotyped gnawing behavior which largely accounts for increased food spillage observed during deprivation. Specifically, the observed increase in food removed from feeders seems to be due to an increase in gnawing and not to increased hunger. However, even when appropriately corrected for spillage, food intake decreased in the first 24 h of sleep deprivation, which accounted for most of the body weight loss seen during the 96 h of sleep deprivation.
Collapse
Affiliation(s)
- P J F Martins
- Department of Psychobiology of Universidade Federal de São Paulo-UNIFESP, São Paulo, SP 04024-002, Brazil.
| | | | | | | |
Collapse
|
41
|
Guzman-Marin R, Bashir T, Suntsova N, Szymusiak R, McGinty D. Hippocampal neurogenesis is reduced by sleep fragmentation in the adult rat. Neuroscience 2007; 148:325-33. [PMID: 17630219 PMCID: PMC2052925 DOI: 10.1016/j.neuroscience.2007.05.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 11/24/2022]
Abstract
The adult hippocampal dentate gyrus (DG) is a site of continuing neurogenesis. This process is influenced by a variety of physiological and experiential stimuli including total sleep deprivation (TSD). In humans, sleep fragmentation (SF) is a more common sleep condition than TSD. SF is associated with several prevalent diseases. We assessed a hypothesis that SF would suppress adult neurogenesis in the DG of the adult rat. An intermittent treadmill system was used; the treadmill was on for 3 s and off for 30 s (SF). For sleep fragmentation control (SFC), the treadmill was on for 15 min and off for 150 min. SF was conducted for three durations: 1, 4 and 7 days. To label proliferating cells, the thymidine analog, 5-bromo-2-deoxyuridine (BrdU), was injected 2 h prior to the end of each experiment. Expression of the intrinsic proliferative marker, Ki67, was also studied. SF rats exhibited an increased number of non-rapid eye movement (NREM) sleep bouts with no change in the percent of time spent in this stage. The numbers of both BrdU-positive cells and Ki67-positive cells were reduced by approximately 70% (P<0.05) in the SF groups after 4 and 7 days of experimental conditions whereas no differences were observed after 1 day. In a second experiment, we found that the percentage of new cells expressing a neuronal phenotype 3 weeks after BrdU administration was lower in the SF in comparison with the SFC group for all three durations of SF. We also examined the effects of SF on proliferation in adrenalectomized (ADX) animals, with basal corticosterone replacement. ADX SF animals exhibited a 55% reduction in the number of BrdU-positive cells when compared with ADX SFC. Thus, elevated glucocorticoids do not account for most of the reduction in cell proliferation induced by the SF procedure, although a small contribution of stress is not excluded. The results show that sustained SF induced marked reduction in hippocampal neurogenesis.
Collapse
Affiliation(s)
- R Guzman-Marin
- Research Service (151A3), V.A. Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | | | | | | | | |
Collapse
|
42
|
Ulrich-Lai YM, Ostrander MM, Thomas IM, Packard BA, Furay AR, Dolgas CM, Van Hooren DC, Figueiredo HF, Mueller NK, Choi DC, Herman JP. Daily limited access to sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses. Endocrinology 2007; 148:1823-34. [PMID: 17204558 PMCID: PMC4408907 DOI: 10.1210/en.2006-1241] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stress can promote palatable food intake, and consumption of palatable foods may dampen psychological and physiological responses to stress. Here we develop a rat model of daily limited sweetened drink intake to further examine the linkage between consumption of preferred foods and hypothalamic-pituitary-adrenocortical axis responses to acute and chronic stress. Adult male rats with free access to water were given additional twice-daily access to 4 ml sucrose (30%), saccharin (0.1%; a noncaloric sweetener), or water. After 14 d of training, rats readily learned to drink sucrose and saccharin solutions. Half the rats were then given chronic variable stress (CVS) for 14 d immediately after each drink exposure; the remaining rats (nonhandled controls) consumed their appropriate drinking solution at the same time. On the morning after CVS, responses to a novel restraint stress were assessed in all rats. Multiple indices of chronic stress adaptation were effectively altered by CVS. Sucrose consumption decreased the plasma corticosterone response to restraint stress in CVS rats and nonhandled controls; these reductions were less pronounced in rats drinking saccharin. Sucrose or saccharin consumption decreased CRH mRNA expression in the paraventricular nucleus of the hypothalamus. Moreover, sucrose attenuated restraint-induced c-fos mRNA expression in the basolateral amygdala, infralimbic cortex, and claustrum. These data suggest that limited consumption of sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses, and calories contribute but are not necessary for this effect. Collectively the results support the hypothesis that the intake of palatable substances represents an endogenous mechanism to dampen physiological stress responses.
Collapse
Affiliation(s)
- Yvonne M Ulrich-Lai
- Department of Psychiatry, University of Cincinnati, 2170 East Galbraith Road, Reading, Ohio 45237-0506, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Machado RB, Suchecki D, Tufik S. Comparison of the sleep pattern throughout a protocol of chronic sleep restriction induced by two methods of paradoxical sleep deprivation. Brain Res Bull 2006; 70:213-20. [PMID: 16861105 DOI: 10.1016/j.brainresbull.2006.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 03/30/2006] [Accepted: 04/06/2006] [Indexed: 11/23/2022]
Abstract
The purpose of the present study was to evaluate the sleep homeostasis of rats submitted to a protocol of chronic sleep restriction by two methods and to evaluate the sleep characteristics during the recovery period. The sleep restriction protocol was accomplished by sleep depriving rats for 18 h everyday for 21 days, using the single platform method (SPM) or the modified multiple platform method (MMPM) of paradoxical sleep (PS) deprivation. Rats were allowed to sleep for 6 h (from 10:00 to 16:00; starting 3 h after lights on) in their individual home-cages, during which their sleep was recorded. At the end of the sleep restriction protocol, rats were recorded in their home-cages for 4 days, where they could sleep freely. Both methods used to induce chronic sleep restriction were effective, in sofar as they resulted in augmented sleep time during the 6h-sleep period, with very few bouts of wakening. Although comparison between the methods did not reveal differences, sleep restriction under MMPM produced a more consistent daily rebound, mainly of paradoxical sleep, with longer episodes. These results showed distinct sleep recovery patterns, suggesting a possible role of the waking experiences (i.e. immobilization stress, social interaction) acting on sleep consolidation.
Collapse
|
44
|
Hipólide DC, Suchecki D, Pimentel de Carvalho Pinto A, Chiconelli Faria E, Tufik S, Luz J. Paradoxical sleep deprivation and sleep recovery: effects on the hypothalamic-pituitary-adrenal axis activity, energy balance and body composition of rats. J Neuroendocrinol 2006; 18:231-8. [PMID: 16503918 DOI: 10.1111/j.1365-2826.2006.01412.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous studies indicate that sleep deprivation alters energy expenditure. However, this conclusion is drawn from indirect measurements. In the present study, we investigated alterations of energy expenditure, body composition, blood glucose levels, plasma insulin, adrenocorticotropic hormone (ACTH) and corticosterone levels immediately after 4 days of sleep deprivation or after 4 days of sleep recovery. Rats were sleep deprived or maintained in a control environment (groups sleep-deprived/deprivation and control/deprivation). One half of these animals were sacrificed at the end of the deprivation period and the other half was transported to metabolic cages, where they were allowed to sleep freely (groups sleep-deprived/recovery and control/recovery). At the end of the sleep recovery period, these rats were sacrificed. After sleep deprivation, sleep-deprived rats exhibited loss of body weight, augmented energy expenditure and reduced metabolic efficiency compared to control rats. These alterations were normalised during the sleep recovery period. The body composition of sleep-deprived rats was altered insofar as there was a loss of fat content and gain of protein content in the carcass compared to control rats. However, these alterations were not reversed by sleep recovery. Finally, plasma levels of insulin were reduced during the sleep deprivation period in both control and sleep deprived groups compared to the recovery period. After the deprivation period, plasma ACTH and corticosterone levels were increased in sleep-deprived rats compared to control rats, and although ACTH levels were similar between the groups after the sleep recovery period, corticosterone levels remained elevated in sleep-deprived rats after this period. By means of direct measurements of metabolism, our results showed that sleep deprivation produces increased energy expenditure and loss of fat content. Most of the alterations were reversed by sleep recovery, except for corticosterone levels and body composition.
Collapse
Affiliation(s)
- D C Hipólide
- Department of Psychobiology, Universidade Federal de Sao Paulo, Escola Paulista de Medicina, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Koban M, Le WW, Hoffman GE. Changes in hypothalamic corticotropin-releasing hormone, neuropeptide Y, and proopiomelanocortin gene expression during chronic rapid eye movement sleep deprivation of rats. Endocrinology 2006; 147:421-31. [PMID: 16210372 DOI: 10.1210/en.2005-0695] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic rapid eye movement (paradoxical) sleep deprivation (REM-SD) of rats leads to two conspicuous pathologies: hyperphagia coincident with body weight loss, prompted by elevated metabolism. Our goals were to test the hypotheses that 1) as a stressor, REM-SD would increase CRH gene expression in the hypothalamus and that 2) to account for hyperphagia, hypothalamic gene expression of the orexigen neuropeptide Y (NPY) would increase, but expression of the anorexigen proopiomelanocortin (POMC) would decrease. Enforcement of REM-SD of adult male rats for 20 d with the platform (flowerpot) method led to progressive hyperphagia, increasing to approximately 300% of baseline; body weight steadily declined by approximately 25%. Consistent with changes in food intake patterns, NPY expression rapidly increased in the hypothalamic arcuate nucleus by d 5 of REM-SD, peaking at d 20; by contrast, POMC expression decreased progressively during REM-SD. CRH expression was increased by d 5, both in mRNA and ability to detect neuronal perikaryal staining in paraventricular nucleus with immunocytochemistry, and it remained elevated thereafter with modest declines. Taken together, these data indicate that changes in hypothalamic neuropeptides regulating food intake are altered in a manner consistent with the hyperphagia seen with REM-SD. Changes in CRH, although indicative of REM-SD as a stressor, suggest that the anorexigenic actions of CRH are ineffective (or disabled). Furthermore, changes in NPY and POMC agree with current models of food intake behavior, but they are opposite to their acute effects on peripheral energy metabolism and thermogenesis.
Collapse
Affiliation(s)
- Michael Koban
- Department of Anatomy and Neurobiology, Richard N. Dixon Science Research Building Department of Biology, Morgan State University, Baltimore, Maryland 21251, USA
| | | | | |
Collapse
|
46
|
Hanlon EC, Andrzejewski ME, Harder BK, Kelley AE, Benca RM. The effect of REM sleep deprivation on motivation for food reward. Behav Brain Res 2005; 163:58-69. [PMID: 15967514 DOI: 10.1016/j.bbr.2005.04.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/08/2005] [Accepted: 04/11/2005] [Indexed: 12/14/2022]
Abstract
Prolonged sleep deprivation in rats produces a characteristic syndrome consisting of an increase in food intake yet a decrease in weight. Moreover, the increase in food intake generally precedes the weight loss, suggesting that sleep deprivation may affect appetitive behaviors. Using the multiple platform method to produce rapid eye movement (REM) sleep deprivation, we investigated the effect of REM sleep deprivation (REMSD) on motivation for food reward utilizing food-reinforced operant tasks. In acquisition or maintenance of an operant task, REM sleep-deprived rats, with or without simultaneous food restriction, decreased responding for sucrose pellet reward in comparison to controls, despite the fact that all REM sleep-deprived rats lost weight. Furthermore, the overall response deficit of the REM sleep-deprived rats was due to a within-session decline in responding. REM sleep-deprived rats showed evidence of understanding the contingency of the task comparable to controls throughout deprivation period, suggesting that the decrements in responding were not primarily related to deficits in learning or memory. Rather, REM sleep deprivation appears to alter systems involved in motivational processes, reward, and/or attention.
Collapse
Affiliation(s)
- Erin C Hanlon
- Neuroscience Training Program, University of Wisconsin-Madison, WI, USA
| | | | | | | | | |
Collapse
|
47
|
Koban M, Swinson KL. Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue. Am J Physiol Endocrinol Metab 2005; 289:E68-74. [PMID: 15727948 DOI: 10.1152/ajpendo.00543.2004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing approximately 11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.
Collapse
Affiliation(s)
- Michael Koban
- Laboratory of Physiology, Richard N. Dixon Science Research Bldg., Department of Biology, Morgan State University, 1700 E. Cold Spring Ln., Baltimore, MD 21251, USA.
| | | |
Collapse
|
48
|
Machado RB, Suchecki D, Tufik S. Sleep homeostasis in rats assessed by a long-term intermittent paradoxical sleep deprivation protocol. Behav Brain Res 2005; 160:356-64. [PMID: 15863232 DOI: 10.1016/j.bbr.2005.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 12/30/2004] [Accepted: 01/03/2005] [Indexed: 11/17/2022]
Abstract
Numerous studies have evaluated the sleep homeostasis of rats after short- or long-periods of sleep deprivation, but none has assessed the effects of prolonged sleep restriction on the rat's sleep pattern. The purpose of the present study, therefore, was to evaluate the sleep homeostasis of rats under a protocol of chronic sleep restriction. Male Wistar rats were implanted with electrodes for EEG and EMG recordings. Using the single platform method, the animals were submitted to 18 h of sleep restriction, beginning at 16:00 h (lights on at 07:00 h), followed by a 6 h sleep window (from 10:00 h to 16:00 h) for 21 days. Immediately after this period, rats were allowed to sleep freely for 4 days (recovery period). The sleep-wake cycle was recorded throughout the entire experiment and the results showed that during the 6h sleep window there was an increase on the percentage of sleep time, reflected by augmented time in high amplitude slow wave sleep and in paradoxical sleep, when compared to baseline sleep, whereas bouts of awakening longer than 1.5 min were greatly reduced, with the animals exhibiting a monophasic-type sleep pattern. During the deprivation period, paradoxical sleep was abolished. High amplitude slow wave sleep was also greatly affected by the protocol. Nonetheless, one day of recovery was sufficient to restore the normal sleep pattern. These findings indicate that this protocol was capable to induce many changes in the rat's sleep patterns, suggesting that during the 6h sleep window there is a sleep adaptive homeostatic process.
Collapse
|