1
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. Nat Commun 2024; 15:2021. [PMID: 38448421 PMCID: PMC10918175 DOI: 10.1038/s41467-024-46416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics. Parasitemia explains much of the variation in host and parasite gene expression, and infections with higher parasitemia display proportionally more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age also strongly correlates with variations in gene expression: Plasmodium falciparum genes associated with age suggest that older children carry more male gametocytes, while variations in host gene expression indicate a stronger innate response in younger children and stronger adaptive response in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563751. [PMID: 37961701 PMCID: PMC10634788 DOI: 10.1101/2023.10.24.563751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| |
Collapse
|
3
|
Chauhan R, Awasthi V, Thakur RS, Pande V, Chattopadhyay D, Das J. CD4 +ICOS +Foxp3 +: a sub-population of regulatory T cells contribute to malaria pathogenesis. Malar J 2022; 21:32. [PMID: 35109868 PMCID: PMC8812217 DOI: 10.1186/s12936-022-04055-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Regulatory T cells are known to play a key role to counter balance the protective immune response and immune mediated pathology. However, the role of naturally occurring regulatory cells CD4+CD25+Foxp3+ in malaria infection during the disease pathogenesis is controversial. Beside this, ICOS molecule has been shown to be involved in the development and function of regulatory T cell enhance IL-10 production. Therefore, possible involvement of the ICOS dependent regulatory CD4+ICOS+Foxp3+ T cells in resistance/susceptibility during malaria parasite is explored in this study. METHODS 5 × 105 red blood cells infected with non-lethal and lethal parasites were inoculated in female Balb/c mice by intra-peritoneal injection. Infected or uninfected mice were sacrificed at early (3rd day post infection) and later stage (10th day post infection) of infection. Harvested cells were analysed by using flow cytometer and serum cytokine by Bioplex assay. RESULTS Thin blood films show that percentages of parasitaemia increases with disease progression in infections with the lethal malaria parasite and mice eventually die by day 14th post-infection. Whereas in case of non-lethal malaria parasite, parasitaemia goes down by 7th day post infection and gets cleared within 13th day. The number of CD4+ ICOS+ T cells increases in lethal infection with disease progression. Surprisingly, in non-lethal parasite, ICOS expression decreases after day 7th post infection as parasitaemia goes down. The frequency of CD4+ICOS+FoxP3+ Tregs was significantly higher in lethal parasitic infection as compared to the non-lethal parasite. The level of IL-12 cytokine was remarkably higher in non-lethal infection compared to the lethal infection. In contrast, the level of IL-10 cytokines was higher in lethal parasite infection compared to the non-lethal parasite. CONCLUSION Taken together, these data suggest that lethal parasite induce immunosuppressive environment, protecting from host immune responses and help the parasite to survive whereas non-lethal parasite leads to low frequencies of Treg cells seldom impede immune response that allow the parasite to get self-resolved.
Collapse
Affiliation(s)
- Rubika Chauhan
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Vikky Awasthi
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Reva Sharan Thakur
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Veena Pande
- Biotechnology Department, Kumaun University, Nainital, India
| | - Debprasad Chattopadhyay
- ICMR Virus Unit, ID and BG Hospital, Kolkata, 700010, India.,ICMR-National Institute of Traditional Medicine (NITM), Belagavi, 590010, India
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
4
|
Enders MH, Bayarsaikhan G, Ghilas S, Chua YC, May R, de Menezes MN, Ge Z, Tan PS, Cozijnsen A, Mollard V, Yui K, McFadden GI, Lahoud MH, Caminschi I, Purcell AW, Schittenhelm RB, Beattie L, Heath WR, Fernandez-Ruiz D. Plasmodium berghei Hsp90 contains a natural immunogenic I-Ab-restricted antigen common to rodent and human Plasmodium species. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:79-92. [PMID: 35492393 PMCID: PMC9040146 DOI: 10.1016/j.crimmu.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/13/2023] Open
Abstract
Thorough understanding of the role of CD4 T cells in immunity can be greatly assisted by the study of responses to defined specificities. This requires knowledge of Plasmodium-derived immunogenic epitopes, of which only a few have been identified, especially for the mouse C57BL/6 background. We recently developed a TCR transgenic mouse line, termed PbT-II, that produces CD4+ T cells specific for an MHC class II (I-Ab)-restricted Plasmodium epitope and is responsive to both sporozoites and blood-stage P. berghei. Here, we identify a peptide within the P. berghei heat shock protein 90 as the cognate epitope recognised by PbT-II cells. We show that C57BL/6 mice infected with P. berghei blood-stage induce an endogenous CD4 T cell response specific for this epitope, indicating cells of similar specificity to PbT-II cells are present in the naïve repertoire. Adoptive transfer of in vitro activated TH1-, or particularly TH2-polarised PbT-II cells improved control of P. berghei parasitemia in C57BL/6 mice and drastically reduced the onset of experimental cerebral malaria. Our results identify a versatile, potentially protective MHC-II restricted epitope useful for exploration of CD4 T cell-mediated immunity and vaccination strategies against malaria. Identification of a novel MHC-II-restricted epitope in P. berghei Hsp90 that is the cognate antigen of PbT-II CD4+ T cells. This epitope is conserved among mouse malaria parasites and in Plasmodium falciparum, which causes human malaria. Exposure to liver or blood stage P. berghei infection expands a population of endogenous Hsp90-specific CD4+ T cells. Dendritic cell-targeted vaccination generates memory PbT-II cells and endogenous Hsp90-specific CD4+ T cells. TH1- and TH2-polarised PbT-II cells reduce P. berghei parasitaemia and mitigate development of experimental cerebral malaria.
Collapse
|
5
|
Pamplona A, Silva-Santos B. γδ T cells in malaria: a double-edged sword. FEBS J 2020; 288:1118-1129. [PMID: 32710527 PMCID: PMC7983992 DOI: 10.1111/febs.15494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022]
Abstract
Malaria remains a devastating global health problem, resulting in many annual deaths due to the complications of severe malaria. However, in endemic regions, individuals can acquire ‘clinical immunity’ to malaria, characterized by a decrease in severe malaria episodes and an increase of asymptomatic Plasmodium falciparum infections. Recently, it has been reported that tolerance to ‘clinical malaria’ and reduced disease severity correlates with a decrease in the numbers of circulating Vγ9Vδ2 T cells, the major subset of γδ T cells in the human peripheral blood. This is particularly interesting as this population typically undergoes dramatic expansions during acute Plasmodium infections and was previously shown to play antiparasitic functions. Thus, regulated γδ T‐cell responses may be critical to balance immune protection with severe pathology, particularly as both seem to rely on the same pro‐inflammatory cytokines, most notably TNF and IFN‐γ. This has been clearly demonstrated in mouse models of experimental cerebral malaria (ECM) based on Plasmodium berghei ANKA infection. Furthermore, our recent studies suggest that the natural course of Plasmodium infection, mimicked in mice through mosquito bite or sporozoite inoculation, includes a major pathogenic component in ECM that depends on γδ T cells and IFN‐γ production in the asymptomatic liver stage, where parasite virulence is seemingly set and determines pathology in the subsequent blood stage. Here, we discuss these and other recent advances in our understanding of the complex—protective versus pathogenic—functions of γδ T cells in malaria.
Collapse
Affiliation(s)
- Ana Pamplona
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
6
|
Gbedande K, Carpio VH, Stephens R. Using two phases of the CD4 T cell response to blood-stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunol Rev 2020; 293:88-114. [PMID: 31903675 PMCID: PMC7540220 DOI: 10.1111/imr.12835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum infection and malaria remain a risk for millions of children and pregnant women. Here, we seek to integrate knowledge of mouse and human T helper cell (Th) responses to blood-stage Plasmodium infection to understand their contribution to protection and pathology. Although there is no complete Th subset differentiation, the adaptive response occurs in two phases in non-lethal rodent Plasmodium infection, coordinated by Th cells. In short, cellular immune responses limit the peak of parasitemia during the first phase; in the second phase, humoral immunity from T cell-dependent germinal centers is critical for complete clearance of rapidly changing parasite. A strong IFN-γ response kills parasite, but an excess of TNF compared with regulatory cytokines (IL-10, TGF-β) can cause immunopathology. This common pathway for pathology is associated with anemia, cerebral malaria, and placental malaria. These two phases can be used to both understand how the host responds to rapidly growing parasite and how it attempts to control immunopathology and variation. This dual nature of T cell immunity to Plasmodium is discussed, with particular reference to the protective nature of the continuous generation of effector T cells, and the unique contribution of effector memory T cells.
Collapse
Affiliation(s)
- Komi Gbedande
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
7
|
Good MF, Stanisic DI. Whole parasite vaccines for the asexual blood stages ofPlasmodium. Immunol Rev 2019; 293:270-282. [DOI: 10.1111/imr.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Michael F. Good
- Institute for Glycomics Griffith University Gold Coast Qld. Australia
| | | |
Collapse
|
8
|
γδ-T cells promote IFN-γ-dependent Plasmodium pathogenesis upon liver-stage infection. Proc Natl Acad Sci U S A 2019; 116:9979-9988. [PMID: 31028144 DOI: 10.1073/pnas.1814440116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αβ-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αβ-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.
Collapse
|
9
|
Controlled Infection Immunization Using Delayed Death Drug Treatment Elicits Protective Immune Responses to Blood-Stage Malaria Parasites. Infect Immun 2018; 87:IAI.00587-18. [PMID: 30323025 PMCID: PMC6300636 DOI: 10.1128/iai.00587-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/23/2018] [Indexed: 01/27/2023] Open
Abstract
Naturally acquired immunity to malaria is robust and protective against all strains of the same species of Plasmodium. This develops as a result of repeated natural infection, taking several years to develop. Naturally acquired immunity to malaria is robust and protective against all strains of the same species of Plasmodium. This develops as a result of repeated natural infection, taking several years to develop. Evidence suggests that apoptosis of immune lymphocytes due to uncontrolled parasite growth contributes to the slow acquisition of immunity. To hasten and augment the development of natural immunity, we studied controlled infection immunization (CII) using low-dose exposure to different parasite species (Plasmodium chabaudi, P. yoelii, or P. falciparum) in two rodent systems (BALB/c and C57BL/6 mice) and in human volunteers, with drug therapy commencing at the time of initiation of infection. CIIs with infected erythrocytes and in conjunction with doxycycline or azithromycin, which are delayed death drugs targeting the parasite’s apicoplast, allowed extended exposure to parasites at low levels. In turn, this induced strong protection against homologous challenge in all immunized mice. We show that P. chabaudi/P. yoelii infection initiated at the commencement of doxycycline therapy leads to cellular or antibody-mediated protective immune responses in mice, with a broad Th1 cytokine response providing the best correlate of protection against homologous and heterologous species of Plasmodium. P. falciparum CII with doxycycline was additionally tested in a pilot clinical study (n = 4) and was found to be well tolerated and immunogenic, with immunological studies primarily detecting increased cell-associated immune responses. Furthermore, we report that a single dose of the longer-acting drug, azithromycin, given to mice (n = 5) as a single subcutaneous treatment at the initiation of infection controlled P. yoelii infection and protected all mice against subsequent challenge.
Collapse
|
10
|
Ademolue TW, Awandare GA. Evaluating antidisease immunity to malaria and implications for vaccine design. Immunology 2017; 153:423-434. [PMID: 29211303 PMCID: PMC5838420 DOI: 10.1111/imm.12877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Immunity to malaria could be categorized broadly as antiparasite or antidisease immunity. While most vaccine research efforts have focused on antiparasite immunity, the evidence from endemic populations suggest that antidisease immunity is an important component of natural immunity to malaria. The processes that mediate antidisease immunity have, however, attracted little to no attention, and most interests have been directed towards the antibody responses. This review evaluates the evidence for antidisease immunity in endemic areas and discusses the possible mechanisms responsible for it. Given the key role that inflammation plays in the pathogenesis of malaria, regulation of the inflammatory response appears to be a major mechanism for antidisease immunity in naturally exposed individuals.
Collapse
Affiliation(s)
- Temitope W Ademolue
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gordon A Awandare
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
11
|
Chemically Attenuated Blood-Stage Plasmodium yoelii Parasites Induce Long-Lived and Strain-Transcending Protection. Infect Immun 2016; 84:2274-2288. [PMID: 27245410 PMCID: PMC4962623 DOI: 10.1128/iai.00157-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/20/2016] [Indexed: 11/30/2022] Open
Abstract
The development of a vaccine is essential for the elimination of malaria. However, despite many years of effort, a successful vaccine has not been achieved. Most subunit vaccine candidates tested in clinical trials have provided limited efficacy, and thus attenuated whole-parasite vaccines are now receiving close scrutiny. Here, we test chemically attenuated Plasmodium yoelii 17X and demonstrate significant protection following homologous and heterologous blood-stage challenge. Protection against blood-stage infection persisted for at least 9 months. Activation of both CD4+ and CD8+ T cells was shown after vaccination; however, in vivo studies demonstrated a pivotal role for both CD4+ T cells and B cells since the absence of either cell type led to loss of vaccine-induced protection. In spite of significant activation of circulating CD8+ T cells, liver-stage immunity was not evident. Neither did vaccine-induced CD8+ T cells contribute to blood-stage protection; rather, these cells contributed to pathogenesis, since all vaccinated mice depleted of both CD4+ and CD8+ T cells survived a challenge infection. This study provides critical insight into whole-parasite vaccine-induced immunity and strong support for testing whole-parasite vaccines in humans.
Collapse
|
12
|
Abstract
Naturally acquired immunity to the blood-stage of the malaria parasite develops slowly in areas of high endemicity, but is not sterilizing. It manifests as a reduction in parasite density and clinical symptoms. Immunity as a result of blood-stage vaccination has not yet been achieved in humans, although there are many animal models where vaccination has been successful. The development of a blood-stage vaccine has been complicated by a number of factors including limited knowledge of human-parasite interactions and which antigens and immune responses are critical for protection. Opinion is divided as to whether this vaccine should aim to accelerate the acquisition of responses acquired following natural exposure, or whether it should induce a different response. Animal and experimental human models suggest that cell-mediated immune responses can control parasite growth, but these responses can also contribute to significant immunopathology if unregulated. They are largely ignored in most blood-stage malaria vaccine development strategies. Here, we discuss key observations relating to cell-mediated immune responses in the context of experimental human systems and field studies involving naturally exposed individuals and how this may inform the development of a blood-stage malaria vaccine.
Collapse
|
13
|
Freitas do Rosario AP, Langhorne J. T cell-derived IL-10 and its impact on the regulation of host responses during malaria. Int J Parasitol 2012; 42:549-55. [PMID: 22549022 DOI: 10.1016/j.ijpara.2012.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 03/02/2012] [Accepted: 03/24/2012] [Indexed: 02/04/2023]
Abstract
Despite intense research, malaria still is the one of the most devastating diseases killing more people than any other parasitic infection. In an attempt to control the infection, the host immune system produces a potent pro-inflammatory response. However, this response is also associated with complications, such as severe anaemia, hypoglycaemia and cerebral malaria. This pronounced production of pro-inflammatory cytokines response is a common feature of malaria caused by parasites infecting humans as well as rodents and primates. A balance between pro- and anti-inflammatory responses may be fundamental to the elimination of the parasite without inducing excessive host pathology. IL-10 is a key cytokine that has been shown to have an important regulatory function in establishing this balance in malaria. Here we discuss which cells can produce IL-10 during infection, and present an overview of the evidence showing that T-cell derived IL-10 plays an important role in regulating malaria pathology. Many different subsets of T cells can produce IL-10, however, evidence is accumulating that it is effector Th1 CD4(+) T cells which provide the crucial source that down-regulates inflammatory pathology during blood-stage malaria infections.
Collapse
|
14
|
Nie CQ, Bernard NJ, Norman MU, Amante FH, Lundie RJ, Crabb BS, Heath WR, Engwerda CR, Hickey MJ, Schofield L, Hansen DS. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathog 2009; 5:e1000369. [PMID: 19343215 PMCID: PMC2658824 DOI: 10.1371/journal.ppat.1000369] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 03/06/2009] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis. About 2.5 million people die of severe Plasmodium falciparum malaria every year. Experimental evidence from human studies and animal models indicates that severe disease syndromes arise in many organs through the sequestration of parasitized erythrocytes in vascular beds and the resulting recruitment of inflammatory leukocytes. Thus in this infection, cell-mediated immune responses appear to play a dual role by mediating protection against the parasite and also contributing to pathogenesis. Using a rodent model of cerebral malaria, we have previously found that during infection, inflammatory leukocytes are recruited to the brain via the CXCR3 trafficking pathway. Here we investigated whether blockade of the CXCR3 ligand, IP-10, alleviates brain intravascular inflammation and has an impact on the development of parasite-specific cellular immune responses involved in the control of parasitemia. We found that mice lacking IP-10 or receiving anti-IP-10 neutralizing antibodies had reduced cerebral intravascular inflammation and were protected against fatality. Inhibition of IP-10-mediated trafficking also resulted in retention of parasite-specific T cells in the spleen, facilitating control of parasite burden. Thus, IP-10-dependent trafficking critically controls the balance between pathogenic organ-specific inflammation and spleen-mediated protective immunity to malaria.
Collapse
Affiliation(s)
- Catherine Q. Nie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J. Bernard
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - M. Ursula Norman
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Fiona H. Amante
- Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Rachel J. Lundie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - William R. Heath
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Diana S. Hansen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
15
|
Yamada S, Konnai S, Imamura S, Simuunza M, Chembensofu M, Chota A, Nambota A, Onuma M, Ohashi K. Quantitative analysis of cytokine mRNA expression and protozoan DNA load in Theileria parva-infected cattle. J Vet Med Sci 2009; 71:49-54. [PMID: 19194076 DOI: 10.1292/jvms.71.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Theileria parva (T. parva) causes a highly serious bovine disease called East Coast fever (ECF), which is characterized by pyrexia, dyspnea and cachexia and is of great economic importance in African countries. We hypothesize that the clinical symptoms of ECF could be explained by a cytokine dysregulation. In this study, we investigated the relationship between T. parva DNA load and expression levels of cytokine mRNAs in leukocytes from experimentally infected calves by quantitative PCR. The p104 gene, which encodes the T. parva 104 kDa microneme-rhoptry protein, was detected in cattle blood from day 10 after T. parva-infected tick infestation, and the protozoan DNA load was increased together with severity of disease. The mRNA expressions of pro-inflammatory cytokines, such as interleukin (IL)-1beta and IL-6, were up-regulated with protozoan DNA load increasing. In addition, the level of a type-2 cytokine (IL-10) transcript was also increased during the acute phase. In contrast, the down-regulation or no detectable levels of the expression of type-1 cytokines, such as IL-2 and interferon (IFN)-gamma were observed in T. parva-infected animals. Thus, our observations indicated that high protozoan load and resulting intense inflammatory responses might be involved in the severity of clinical signs observed in T. parva-infection.
Collapse
Affiliation(s)
- Shinji Yamada
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Long GH, Chan BHK, Allen JE, Read AF, Graham AL. Blockade of TNF receptor 1 reduces disease severity but increases parasite transmission during Plasmodium chabaudi chabaudi infection. Int J Parasitol 2007; 38:1073-81. [PMID: 18226816 DOI: 10.1016/j.ijpara.2007.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 11/21/2007] [Accepted: 12/06/2007] [Indexed: 11/28/2022]
Abstract
Reducing host carriage of transmission-stage malaria parasites (gametocytes) is expected to decrease the population-wide burden of malaria. Some malaria disease severity is attributed to the induction of the pro-inflammatory cytokines TNF-alpha and lymphotoxin-alpha (LT-alpha), and we are interested in whether anti-malaria interventions which ameliorate the symptoms induced by those cytokines may have the capacity to alter malaria transmission. As many functions of TNF-alpha and LT-alpha are exerted through TNF receptor 1 (TNFR1), we investigated the effect TNFR1 blockade exerted on parasite transmission using the rodent malaria Plasmodium chabaudi chabaudi. We found that blocking TNFR1 simultaneously increased gametocyte density and infectivity to mosquitoes, whilst reducing disease severity (weight loss). These transmission-enhancing and severity-reducing effects of TNFR1 blockade were independent of asexual parasite load and were observed for several P. c. chabaudi genotypes. These results suggest that the effects of candidate malaria interventions on infectivity should be examined alongside effects on disease severity so that the epidemiological consequences of such interventions can be evaluated.
Collapse
Affiliation(s)
- Gráinne H Long
- Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Malaria remains an important public health problem throughout the tropical world causing immense human suffering and impeding economic development. Despite extensive research for > 100 years, options for preventing malaria remain limited to vector control and chemoprophylaxis. The complexity of the organism and its life cycle have, thus far, thwarted vaccine development and exacerbated the perennial problems of drug resistance. Nevertheless, development of a vaccine against malaria that reduces morbidity and mortality, and ideally also reduces transmission, has long been seen as an essential component of a sustainable malaria control strategy. In this article the authors review the biological challenges of malaria vaccine development, summarise some of the recent advances and offer some immunological insights which might facilitate further research.
Collapse
Affiliation(s)
- Jiraprapa Wipasa
- Chiang Mai University, Research Institute for Health Sciences, PO Box 80 CMU, Chiang Mai 50202, Thailand
| | | |
Collapse
|
18
|
Wykes MN, Liu XQ, Jiang S, Hirunpetcharat C, Good MF. Systemic tumor necrosis factor generated during lethal Plasmodium infections impairs dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2007; 179:3982-7. [PMID: 17785836 DOI: 10.4049/jimmunol.179.6.3982] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) initiate innate and adaptive immune responses including those against malaria. Although several studies have shown that DC function is normal during malaria, other studies have shown compromised function. To establish why these studies had different findings, we examined DCs from mice infected with two lethal species of parasite, Plasmodium berghei or P. vinckei, and compared them to DCs from nonlethal P. yoelii 17XNL or P. chabaudi infections. These studies found that DCs from only the lethal infections became uniformly mature 7 days after infection and were functionally impaired as they were unable to endocytose latex particles, secrete IL-12, or present OVA to transgenic OTII T cells. These changes coincided with a peak in levels of systemic TNF-alpha. Because TNF-alpha is known to mature DCs, we used TNF-KO mice to determine the role of this cytokine in the loss of DC function. In the TNF-KO mice, phenotype, Ag presentation, and IL-12 secretion by DCs were restored to normal following both lethal infections. This study shows that the systemic production of TNF-alpha contributes to poor DC function during lethal infections. These studies may explain, at least in part, immunosuppression that is associated with malaria.
Collapse
Affiliation(s)
- Michelle N Wykes
- The Molecular Immunology Laboratory, The Queensland Institute of Medical Research, The Bancroft Centre, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
19
|
Wykes MN, Liu XQ, Beattie L, Stanisic DI, Stacey KJ, Smyth MJ, Thomas R, Good MF. Plasmodium strain determines dendritic cell function essential for survival from malaria. PLoS Pathog 2007; 3:e96. [PMID: 17616976 PMCID: PMC1904473 DOI: 10.1371/journal.ppat.0030096] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 05/21/2007] [Indexed: 11/19/2022] Open
Abstract
The severity of malaria can range from asymptomatic to lethal infections involving severe anaemia and cerebral disease. However, the molecular and cellular factors responsible for these differences in disease severity are poorly understood. Identifying the factors that mediate virulence will contribute to developing antiparasitic immune responses. Since immunity is initiated by dendritic cells (DCs), we compared their phenotype and function following infection with either a nonlethal or lethal strain of the rodent parasite, Plasmodium yoelii, to identify their contribution to disease severity. DCs from nonlethal infections were fully functional and capable of secreting cytokines and stimulating T cells. In contrast, DCs from lethal infections were not functional. We then transferred DCs from mice with nonlethal infections to mice given lethal infections and showed that these DCs mediated control of parasitemia and survival. IL-12 was necessary for survival. To our knowledge, our studies have shown for the first time that during a malaria infection, DC function is essential for survival. More importantly, the functions of these DCs are determined by the strain of parasite. Our studies may explain, in part, why natural malaria infections may have different outcomes.
Collapse
Affiliation(s)
- Michelle N Wykes
- The Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Xue Q Liu
- The Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Lynette Beattie
- The Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- Immunology and Infection Unit, University of York, York, United Kingdom
| | - Danielle I Stanisic
- The Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Katryn J Stacey
- Institute for Molecular Bioscience, CRC for Chronic Inflammatory Diseases, University of Queensland, Brisbane, Queensland, Australia
| | - Mark J Smyth
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Ranjeny Thomas
- Centre for Immunology and Cancer Research, University of Queensland, Woolloongabba, Queensland, Australia
| | - Michael F Good
- The Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Hansen DS, Bernard NJ, Nie CQ, Schofield L. NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. THE JOURNAL OF IMMUNOLOGY 2007; 178:5779-88. [PMID: 17442962 DOI: 10.4049/jimmunol.178.9.5779] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are cytotoxic lymphocytes that also secrete regulatory cytokines and can therefore influence adaptive immune responses. NK cell function is largely controlled by genes present in a genomic region named the NK complex. It has been shown that the NK complex is a genetic determinant of murine cerebral malaria pathogenesis mediated by Plasmodium berghei ANKA. In this study, we show that NK cells are required for cerebral malaria disease induction and the control of parasitemia. NK cells were found infiltrating brains of cerebral malaria-affected mice. NK cell depletion resulted in inhibition of T cell recruitment to the brain of P. berghei-infected animals. NK cell-depleted mice displayed down-regulation of CXCR3 expression and a significant reduction of T cells migrating in response to IFN-gamma-inducible protein 10, indicating that this chemokine pathway plays an essential role in leukocyte trafficking leading to cerebral disease and fatalities.
Collapse
MESH Headings
- Animals
- Brain/immunology
- Brain/pathology
- Chemokine CXCL10
- Chemokines, CX3C/metabolism
- Chemokines, CX3C/pharmacology
- Chemokines, CXC/metabolism
- Chemokines, CXC/pharmacology
- Disease Models, Animal
- Down-Regulation
- Killer Cells, Natural/immunology
- Lymphocyte Depletion
- Malaria, Cerebral/immunology
- Malaria, Cerebral/pathology
- Mice
- Mice, Inbred C57BL
- Plasmodium berghei
- Receptors, CXCR3
- Receptors, Chemokine/analysis
- Receptors, Chemokine/metabolism
- Spleen/immunology
- T-Lymphocyte Subsets/chemistry
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | |
Collapse
|
21
|
Schofield L. Intravascular infiltrates and organ-specific inflammation in malaria pathogenesis. Immunol Cell Biol 2007; 85:130-7. [PMID: 17344907 DOI: 10.1038/sj.icb.7100040] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malaria infects 5-10% of humanity and causes around two million deaths annually, mostly in children. The disease is of significant interest to immunologists, as acquired host immunity can limit the clinical impact of infection and partially reduces parasite replication; however, immunological reactions also contribute significantly to pathogenesis and fatalities. This review addresses the view that immunopathology in severe malaria arises predominantly from intravascular lesions resulting from a pathogen-initiated cascade of activated immune effector and regulatory cells infiltrating the vascular beds of diverse target organs, including bone marrow, spleen, brain, placenta and lungs. The main feature distinguishing these processes from classical cellular inflammation is the absence of extravasation, resulting from the intravascular location of the pathogen. Clinical and epidemiological observations combined with experimental infections in animal models suggest that parasite 'molecular patterns' or toxins cause cytokine and chemokine enhancement of infiltrates, composed of macrophages, neutrophils, natural killer (NK) cells, invariant natural killer T (iNKT) cells, gamma/delta T cells and both CD4(+) and CD8(+) effector T cells, leading to local vascular and organ derangement. Diverse pattern recognition and NK receptors crucially regulate these responding cell populations. Thus, innate immune mechanisms lie at the heart of this massive global public health problem.
Collapse
Affiliation(s)
- Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Long GH, Chan BHK, Allen JE, Read AF, Graham AL. Parasite genetic diversity does not influence TNF-mediated effects on the virulence of primary rodent malaria infections. Parasitology 2006; 133:673-84. [PMID: 16978451 DOI: 10.1017/s003118200600117x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 06/17/2006] [Accepted: 06/21/2006] [Indexed: 12/20/2022]
Abstract
The pro-inflammatory cytokine tumour necrosis factor alpha (TNF-alpha) is associated with malaria virulence (disease severity) in both rodents and humans. We are interested in whether parasite genetic diversity influences TNF-mediated effects on malaria virulence. Here, primary infections with genetically distinct Plasmodium chabaudi chabaudi (P.c.c.) clones varied in the virulence and cytokine responses induced in female C57BL/6 mice. Even when parasitaemia was controlled for, a greater day 7 TNF-alpha response was induced by infection with more virulent P.c.c. clones. Since many functions of TNF-alpha are exerted through TNF receptor 1 (TNFR1), a TNFR-1 fusion protein (TNFR-Ig) was used to investigate whether TNFR1 blockade eliminated clone virulence differences. We found that TNFR-1 blockade ameliorated the weight loss but not the anaemia induced by malaria infection, regardless of P.c.c. clone. We show that distinct P.c.c. infections induced significantly different plasma interferon gamma (IFN-gamma), interleukin 6 (IL-6) and interleukin 10 (IL-10) levels. Our results demonstrate that regardless of P.c.c. genotype, blocking TNFR1 signalling protected against weight loss, but had negligible effects on both anaemia and asexual parasite kinetics. Thus, during P.c.c. infection, TNF-alpha is a key mediator of weight loss, independent of parasite load and across parasite genotypes.
Collapse
Affiliation(s)
- G H Long
- Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JT, Scotland.
| | | | | | | | | |
Collapse
|
23
|
Good MF. Identification of early cellular immune factors regulating growth of malaria parasites in humans. Immunity 2005; 23:241-2. [PMID: 16169495 DOI: 10.1016/j.immuni.2005.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In many host-parasite systems, regulatory T cells (CD4+, CD25+, FOXP3+) have been shown to modulate cellular immunity and pathology. In this issue of Immunity, Walther et al. have now shown that following experimental malaria infection of human volunteers, enhanced TGF-beta and T reg responses are associated with a faster parasite growth rate. The study demonstrates that regulation of cellular immunity must be addressed if we are to develop successful interventions.
Collapse
|
24
|
Evans KJ, Hansen DS, van Rooijen N, Buckingham LA, Schofield L. Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood 2005; 107:1192-9. [PMID: 16210332 PMCID: PMC1895912 DOI: 10.1182/blood-2005-08-3460] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe malarial anemia (SMA) is the most frequent life-threatening complication of malaria and may contribute to the majority of malarial deaths worldwide. To explore the mechanisms of pathogenesis, we developed a novel murine model of SMA in which parasitemias peaked around 1.0% of circulating red blood cells (RBCs) and yet hemoglobin levels fell to 47% to 56% of baseline. The severity of anemia was independent of the level of peak or cumulative parasitemia, but was linked kinetically to the duration of patent infection. In vivo biotinylation analysis of the circulating blood compartment revealed that anemia arose from accelerated RBC turnover. Labeled RBCs were reduced to 1% of circulating cells by 8 days after labeling, indicating that the entire blood compartment had been turned over in approximately one week. The survival rate of freshly transfused RBCs was also markedly reduced in SMA animals, but was not altered when RBCs from SMA donors were transferred into naive recipients, suggesting few functional modifications to target RBCs. Anemia was significantly alleviated by depletion of either phagocytic cells or CD4+ T lymphocytes. This study demonstrates that immunologic mechanisms may contribute to SMA by promoting the accelerated turnover of uninfected RBCs.
Collapse
Affiliation(s)
- Krystal J Evans
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
25
|
Abstract
Malaria is possibly the most serious infectious disease of humans, infecting 5-10% of the world's population, with 300-600 million clinical cases and more than 2 million deaths annually. Adaptive immune responses in the host limit the clinical impact of infection and provide partial, but incomplete, protection against pathogen replication; however, these complex immunological reactions can contribute to disease and fatalities. So, appropriate regulation of immune responses to malaria lies at the heart of the host-parasite balance and has consequences for global public health. This Review article addresses the innate and adaptive immune mechanisms elicited during malaria that either cause or prevent disease and fatalities, and it considers the implications for vaccine design.
Collapse
Affiliation(s)
- Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
26
|
Good MF, Xu H, Wykes M, Engwerda CR. DEVELOPMENT AND REGULATION OF CELL-MEDIATED IMMUNE RESPONSES TO THE BLOOD STAGES OF MALARIA: Implications for Vaccine Research. Annu Rev Immunol 2005; 23:69-99. [PMID: 15771566 DOI: 10.1146/annurev.immunol.23.021704.115638] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immune response to the malaria parasite is complex and poorly understood. Although antibodies and T cells can control parasite growth in model systems, natural immunity to malaria in regions of high endemicity takes several years to develop. Variation and polymorphism of antibody target antigens are known to impede immune responses, but these factors alone cannot account for the slow acquisition of immunity. In human and animal model systems, cell-mediated responses can control parasite growth effectively, but such responses are regulated by parasite load via direct effects on dendritic cells and possibly on T and B cells as well. Furthermore, high parasite load is associated with pathology, and cell-mediated responses may also harm the host. Inflammatory cytokines have been implicated in the pathogenesis of cerebral malaria, anemia, weight loss, and respiratory distress in malaria. Immunity without pathology requires rapid parasite clearance, effective regulation of the inflammatory anti-parasite effects of cellular responses, and the eventual development of a repertoire of antibodies effective against multiple strains. Data suggest that this may be hastened by exposure to malaria antigens in low dose, leading to augmented cellular immunity and rapid parasite clearance.
Collapse
Affiliation(s)
- Michael F Good
- The Queensland Institute of Medical Research, Brisbane, 4029, Australia.
| | | | | | | |
Collapse
|
27
|
Onwuamaegbu ME, Henein M, Coats AJ. Cachexia in malaria and heart failure: therapeutic considerations in clinical practice. Postgrad Med J 2005; 80:642-9. [PMID: 15537847 PMCID: PMC1743137 DOI: 10.1136/pgmj.2004.020891] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cachexia is an independent prognostic marker of survival in many chronic diseases including heart failure and malaria. Morbidity and mortality from malaria is high in most of the third world where it presents a very challenging public health problem. Malaria may present in the UK as fever in the returning traveller or as fever in overseas visitors. How and why cachexia develops in malaria in a manner similar to the cachexia of chronic heart failure and the treatment strategies that would alter outcomes in both diseases are discussed in this review.
Collapse
Affiliation(s)
- M E Onwuamaegbu
- Department of Clinical Cardiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK.
| | | | | |
Collapse
|
28
|
McGuire K, Manuja A, Russell GC, Springbett A, Craigmile SC, Nichani AK, Malhotra DV, Glass EJ. Quantitative analysis of pro-inflammatory cytokine mRNA expression in Theileria annulata-infected cell lines derived from resistant and susceptible cattle. Vet Immunol Immunopathol 2004; 99:87-98. [PMID: 15113657 DOI: 10.1016/j.vetimm.2004.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/28/2003] [Accepted: 01/19/2004] [Indexed: 11/26/2022]
Abstract
The pathogenic mechanisms involved in tropical theileriosis, caused by the tick-borne protozoan parasite Theileria annulata, are unclear. Pathology is associated with the schizont stage of the parasite, which resides within bovine macrophages. Breed-specific differences in pathology have been observed in cattle, several Bos indicus breeds are relatively resistant to tropical theileriosis whilst Bos taurus cattle are highly susceptible. Infected cells express pro-inflammatory cytokines and it has been hypothesized that these cytokines play a major role in the pathology of the disease. Therefore, using quantitative RT-PCR we investigated the expression of the key candidates, interleukin 1 beta (IL-1beta), IL-6 and tumour necrosis factor alpha (TNF-alpha), in T. annulata low passage infected cell lines derived ex vivo from experimental infection of resistant and susceptible cattle. mRNA for each cytokine was detected in all cell lines investigated at levels higher than those observed in resting monocytes. However, the analyses did not identify any breed-specific differences. Therefore, these results are not consistent with the hypothesis that differential regulation of infected cell derived pro-inflammatory cytokines (IL-1beta, IL-6 and TNF-alpha) accounts for the breed-related differences in resistance and susceptibility to T. annulata infection. Other, currently unknown mechanisms may be of greater importance.
Collapse
Affiliation(s)
- Kirsty McGuire
- Department of Genomics and Bioinformatics, Roslin Institute, Roslin, Midlothian, Edinburgh EH25 9PS, UK. kirsty.mcguirebbsrc.ac.uk
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. THE JOURNAL OF IMMUNOLOGY 2004; 171:3655-67. [PMID: 14500663 DOI: 10.4049/jimmunol.171.7.3655] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T helper 1 responses are typically proinflammatory, while Th2 responses have been considered regulatory. Interestingly, Th2 responses characterize a number of pulmonary diseases, many of which terminate in tissue remodeling and fibrosis. We developed a mouse model using Schistosoma mansoni eggs and cytokine-deficient mice to induce highly polarized Th1- or Th2-type inflammation in the lung. In this study, we examined the pathology and cytokine profiles in Th1- and Th2-polarized environments and used oligonucleotide microarray analysis to decipher the genes responsible for these effects. We further elaborated on the results using IL-10- and IL-13-deficient mice because these cytokines are believed to be the central regulators of Th2-associated pathology. We found that the Th1-polarized mice developed small granulomas with less fibrosis while expressing genes characteristic of tissue damage. Th2-polarized mice, in contrast, formed large granulomas with massive collagen deposition and up-regulated genes associated with wound healing, specifically, arginase, collagens, matrix metalloproteinases (MMPs), and tissue inhibitors of MMP. In addition, several members of the chitinase-like family were up-regulated in the lung following egg challenge. We also developed a method of defining the net collagen deposition using the expression profiles of several collagen, MMP, and tissue inhibitors of MMP genes. We found that Th1-polarized mice did not elaborate collagens or MMPs and therefore did not have a significant capacity for repair in this model. Thus, Th1-mediated inflammation is characterized by tissue damage, while Th2 directs wound healing and fibrosis.
Collapse
Affiliation(s)
- Netanya G Sandler
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
30
|
Mahanty S, Saul A, Miller LH. Progress in the development of recombinant and synthetic blood-stage malaria vaccines. J Exp Biol 2003; 206:3781-8. [PMID: 14506213 DOI: 10.1242/jeb.00646] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe use of asexual blood-stage proteins as malaria vaccines is strongly supported by experimental data directly implicating antibodies induced by these antigens in parasite clearance and protection from re-challenge. The selection of blood-stage antigens is based on their ability to interfere with the pathogenesis of clinical malaria by reducing parasitemias. These vaccines could complement other vaccines aimed at preventing infection, such as those targeted at pre-erythrocytic or mosquito stages of the parasite. Asexual blood-stage vaccines may reduce disease by blockade of red blood cell invasion, inhibition of parasite growth in red cells or interference in cytoadherence of infected red cells. Clearance of blood-stage parasites is dependent primarily on antibody-mediated mechanisms, but CD4 T cells may also play an important role in help for B cells and probably have a direct effector function in the clearance of blood-stage parasites. Since asexual blood-stage parasites reside within erythrocytes, they are accessible to immune clearance mechanisms only for a short time, which imposes special requirements on vaccines. For example, immunity that induces high titers of antibody will be required. Antigenic variation and extensive polymorphism of malarial proteins also needs to be addressed. Several recombinant antigens derived from blood-stage proteins have moved beyond basic research and are now poised for phase I trials in endemic countries. In this review we discuss the state of asexual blood-stage vaccines, focusing on recombinant antigens from Plasmodium falciparum. The significance of polymorphism and antigenic variation, the relevance of parasite immune evasion mechanisms, the need for reliable measures of successful intervention and new adjuvants are reviewed. Results from trials of asexual blood stage vaccine that support the continued effort to develop these antigens as key ingredients of multicomponent,multistage malaria vaccines are documented.
Collapse
Affiliation(s)
- Siddhartha Mahanty
- Malaria Vaccine Development Unit, NIAID, NIH, Twin Brook I, 5640 Fishers Lane, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
31
|
Clark IA, Awburn MM, Whitten RO, Harper CG, Liomba NG, Molyneux ME, Taylor TE. Tissue distribution of migration inhibitory factor and inducible nitric oxide synthase in falciparum malaria and sepsis in African children. Malar J 2003; 2:6. [PMID: 12716455 PMCID: PMC154094 DOI: 10.1186/1475-2875-2-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 04/08/2003] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The inflammatory nature of falciparum malaria has been acknowledged since increased circulating levels of tumour necrosis factor (TNF) were first measured, but precisely where the mediators downstream from this prototype inflammatory mediator are generated has not been investigated. Here we report on the cellular distribution, by immunohistochemistry, of migration inhibitory factor (MIF) and inducible nitric oxide synthase (iNOS) in this disease, and in sepsis. METHODS We stained for MIF and iNOS in tissues collected during 44 paediatric autopsies in Blantyre, Malawi. These comprised 42 acutely ill comatose patients, 32 of whom were diagnosed clinically as cerebral malaria and the other 10 as non-malarial diseases. Another 2 were non-malarial, non-comatose deaths. Other control tissues were from Australian adults. RESULTS Of the 32 clinically diagnosed cerebral malaria cases, 11 had negligible histological change in the brain, and no or scanty intravascular sequestration of parasitised erythrocytes, another 7 had no histological changes in the brain, but sequestered parasitised erythrocytes were present (usually dense), and the remaining 14 brains showed micro-haemorrhages and intravascular mononuclear cell accumulations, plus sequestered parasitised erythrocytes. The vascular walls of the latter group stained most strongly for iNOS. Vascular wall iNOS staining was usually of low intensity in the second group (7 brains) and was virtually absent from the cerebral vascular walls of 8 of the 10 comatose patients without malaria, and also from control brains. The chest wall was chosen as a typical non-cerebral site encompassing a range of tissues of interest. Here pronounced iNOS staining in vascular wall and skeletal muscle was present in some 50% of the children in all groups, including septic meningitis, irrespective of the degree of staining in cerebral vascular walls. Parasites or malarial pigment were rare to absent in all chest wall sections. While MIF was common in chest wall vessels, usually in association with iNOS, it was absent in brain vessels. CONCLUSIONS These results agree with the view that clinically diagnosed cerebral malaria in African children is a collection of overlapping syndromes acting through different organ systems, with several mechanisms, not necessarily associated with cerebral vascular inflammation and damage, combining to cause death.
Collapse
Affiliation(s)
- Ian A Clark
- Dept of Biochemistry, Australian National University, Canberra, Australia
| | - Melissa M Awburn
- Dept of Biochemistry, Australian National University, Canberra, Australia
| | | | | | - N George Liomba
- Dept of Histopathology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Malcolm E Molyneux
- Wellcome Trust Laboratories and Malaria Project, College of Medicine, University of Malawi
- School of Tropical Medicine, University of Liverpool, UK
| | - Terrie E Taylor
- School of Tropical Medicine, University of Liverpool, UK
- Michigan State University, E. Lansing MI, USA
| |
Collapse
|
32
|
Makobongo MO, Riding G, Xu H, Hirunpetcharat C, Keough D, de Jersey J, Willadsen P, Good MF. The purine salvage enzyme hypoxanthine guanine xanthine phosphoribosyl transferase is a major target antigen for cell-mediated immunity to malaria. Proc Natl Acad Sci U S A 2003; 100:2628-33. [PMID: 12594331 PMCID: PMC151391 DOI: 10.1073/pnas.0337629100] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 12/13/2002] [Indexed: 11/18/2022] Open
Abstract
Although there is good evidence that immunity to the blood stages of malaria parasites can be mediated by different effector components of the adaptive immune system, target antigens for a principal component, effector CD4(+) T cells, have never been defined. We generated CD4(+) T cell lines to fractions of native antigens from the blood stages of the rodent parasite, Plasmodium yoelii, and identified fraction-specific T cells that had a Th1 phenotype (producing IL-2, IFN-gamma, and tumor necrosis factor-alpha, but not IL-4, after antigenic stimulation). These T cells could inhibit parasite growth in recipient severe combined immunodeficient mice. N-terminal sequencing of the fraction showed identity with hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT). Recombinant HGXPRT from the human malaria parasite, Plasmodium falciparum, activated the T cells in vitro, and immunization of normal mice with recombinant HGXPRT reduced parasite growth rates in all mice after challenge.
Collapse
Affiliation(s)
- Morris O Makobongo
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane 4029, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dascombe MJ, Nahrevanian H. Pharmacological assessment of the role of nitric oxide in mice infected with lethal and nonlethal species of malaria. Parasite Immunol 2003; 25:149-59. [PMID: 12911523 DOI: 10.1046/j.1365-3024.2003.00618.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This pharmacological investigation sought to determine whether nitric oxide (NO) had an antiparasitic effect and/or mediated pathology in mice infected with nonlethal P. chabaudi or lethal P. berghei. Nitric oxide synthase (NOS) inhibitors were evaluated for their ability to inhibit the rise in reactive nitrogen intermediates (RNI) induced by bacterial lipopolysaccharide (LPS) in mice. The more effective compound, aminoguanidine (AG) inhibited the rise in RNI induced by P. chabaudi and increased mortality, but had no effect on parasitaemia. Inducers and donors of NO were screened for their ability to increase RNI and the most effective agents evaluated for their ability to modify P. berghei infection. S-Nitrosoglutathione had little effect, but LPS decreased parasitaemia and mortality. An inconsistent relationship is evident between the abilities of these agents to modify NO activity and their effects on malaria in mice. Increased mortality in mice with P. chabaudi treated with AG indicates a reduction in resistance. The absence of an effect on parasitaemia by a NOS inhibitor or NO donor indicates either RNI have insignificant antimalarial action in vivo or the efficacy of the compounds is inadequade. Resistance to P. berghei in LPS-treated mice demonstrates an antiparasitic effect, but this may be attributable to factors other than NO.
Collapse
|
34
|
Abstract
The development of a malaria vaccine seems to be a definite possibility despite the fact that even individuals with a life time of endemic exposure do not develop sterile immunity. An effective malaria vaccine would be invaluable in preventing malaria-associated deaths in endemic areas, especially amongst children less than 5 years of age and pregnant women. This review discusses our current understanding of immunity against the asexual blood stage of malaria - the stage that is responsible for the symptoms of the disease - and approaches to the design of an asexual blood stage vaccine.
Collapse
Affiliation(s)
- Jiraprapa Wipasa
- The Cooperative Research Centre for Vaccine Technology, The Queensland Institute of Medical Research, Australia
| | | | | | | |
Collapse
|
35
|
Jacobs T, Graefe SEB, Niknafs S, Gaworski I, Fleischer B. Murine malaria is exacerbated by CTLA-4 blockade. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2323-9. [PMID: 12193697 DOI: 10.4049/jimmunol.169.5.2323] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytolytic T lymphocyte-associated Ag-4 (CD152) is a negatively regulating molecule, which is primarily expressed on T cells following their activation. In this study, we have examined the role of CTLA-4 expression in experimental blood-stage malaria. Similar to human malaria, CTLA-4 is expressed on CD4(+) T cells of C57BL/6 mice after infection with Plasmodium berghei. A kinetic analysis revealed that CTLA-4 expression was increased on day 5 postinfection and reached a peak on day 9 postinfection, when almost 10% of splenic CD4(+) T cells expressed CTLA-4. Blockade of CTLA-4 in vivo by a specific mAb and subsequent challenge with P. berghei caused neurological signs reminiscent of murine cerebral malaria and earlier death. Histologic examination of brain sections from anti-CTLA-4-treated mice revealed pathologic changes such as hemorrhages and edema, which were absent in control mice. Furthermore, treatment with anti-CTLA-4 also reversed the extensive loss of CD4(+) T cells and the suppressed T cell response occurring during blood-stage malaria. Our data suggest that CTLA-4 expression prevents immune pathology by restricting T cell activation during malaria. They also indicate that the development of cerebral malaria is mediated by a failure to down-regulate T cell activation.
Collapse
MESH Headings
- Abatacept
- Animals
- Antibodies, Blocking/administration & dosage
- Antibodies, Monoclonal/administration & dosage
- Antigens, CD
- Antigens, Differentiation/analysis
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/immunology
- Antigens, Differentiation/physiology
- Brain/pathology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CTLA-4 Antigen
- Cells, Cultured
- Immunoconjugates
- Injections, Intraperitoneal
- Liver/pathology
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Malaria/etiology
- Malaria/immunology
- Malaria/pathology
- Malaria, Cerebral/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Plasmodium berghei/immunology
- Spleen/immunology
- Spleen/pathology
Collapse
Affiliation(s)
- Thomas Jacobs
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
36
|
Wipasa J, Hirunpetcharat C, Mahakunkijcharoen Y, Xu H, Elliott S, Good MF. Identification of T cell epitopes on the 33-kDa fragment of Plasmodium yoelii merozoite surface protein 1 and their antibody-independent protective role in immunity to blood stage malaria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:944-51. [PMID: 12097400 DOI: 10.4049/jimmunol.169.2.944] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Merozoite surface protein 1 (MSP1) of malaria parasites undergoes proteolytic processing at least twice before invasion into a new RBC. The 42-kDa fragment, a product of primary processing, is cleaved by proteolytic enzymes giving rise to MSP1(33), which is shed from the merozoite surface, and MSP1(19), which is the only fragment carried into a new RBC. In this study, we have identified T cell epitopes on MSP1(33) of Plasmodium yoelii and have examined their function in immunity to blood stage malaria. Peptides 20 aa in length, spanning the length of MSP1(33) and overlapping each other by 10 aa, were analyzed for their ability to induce T cell proliferation in immunized BALB/c and C57BL/6 mice. Multiple epitopes were recognized by these two strains of mice. Effector functions of the dominant epitopes were then investigated. Peptides Cm15 and Cm21 were of particular interest as they were able to induce effector T cells capable of delaying growth of lethal P. yoelii YM following adoptive transfer into immunodeficient mice without inducing detectable Ab responses. Homologs of these epitopes could be candidates for inclusion in a subunit vaccine.
Collapse
MESH Headings
- Adoptive Transfer
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/physiology
- Cell Line/transplantation
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/therapeutic use
- Female
- Immunity, Innate
- Immunodominant Epitopes/administration & dosage
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/therapeutic use
- Injections, Subcutaneous
- Malaria/blood
- Malaria/immunology
- Malaria/parasitology
- Malaria/prevention & control
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/immunology
- Malaria Vaccines/therapeutic use
- Merozoite Surface Protein 1/administration & dosage
- Merozoite Surface Protein 1/analysis
- Merozoite Surface Protein 1/immunology
- Merozoite Surface Protein 1/therapeutic use
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Mice, SCID
- Molecular Sequence Data
- Molecular Weight
- Peptide Fragments/administration & dosage
- Peptide Fragments/analysis
- Peptide Fragments/immunology
- Peptide Fragments/therapeutic use
- Plasmodium yoelii/growth & development
- Plasmodium yoelii/immunology
- T-Lymphocyte Subsets/transplantation
Collapse
Affiliation(s)
- Jiraprapa Wipasa
- Cooperative Research Center for Vaccine Technology, Queensland Institute of Medical Research, Royal Brisbane Hospital, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Although the malaria parasite was discovered more than 120 years ago, it is only during the past 20 years, following the cloning of malaria genes, that we have been able to think rationally about vaccine design and development. Effective vaccines for malaria could interrupt the life cycle of the parasite at different stages in the human host or in the mosquito. The purpose of this review is to outline the challenges we face in developing a vaccine that will limit growth of the parasite during the stage within red blood cells--the stage responsible for all the symptoms and pathology of malaria. More than 15 vaccine trials have either been completed or are in progress, and many more are planned. Success in current trials could lead to a vaccine capable of saving more than 2 million lives per year.
Collapse
Affiliation(s)
- M F Good
- Cooperative Research Centre for Vaccine Technology, The Queensland Institute of Medical Research, Herston, Australia.
| |
Collapse
|
38
|
Nahrevanian H, Dascombe MJ. Nitric oxide and reactive nitrogen intermediates during lethal and nonlethal strains of murine malaria. Parasite Immunol 2001; 23:491-501. [PMID: 11589778 DOI: 10.1046/j.1365-3024.2001.00406.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The virulence of Plasmodia depends partly on the strain of parasite and partly on the host. In this study, Plasmodium berghei N/13/1A/4/203 caused the death of mice, whereas Plasmodium chabaudi chabaudi AS was not lethal. Current opinion is that nitric oxide (NO) and other reactive nitrogen intermediates (RNI) are produced in several host organs during malaria to resist infection or produce tissue damage. NO and RNI production in blood or plasma, brain, liver and spleen in MF1 mice was investigated during P. berghei and P. c. chabaudi infection, in order to help determine whether changes in NO production are beneficial or detrimental to the host in vivo. NO production was measured both directly and indirectly as nitrites and nitrates, to represent RNI. No changes in blood NO were detected in P. berghei infected mice, but increases were observed in brain, liver and spleen. In P. c. chabaudi infected mice, rises in NO concentration were observed in blood and spleen, whereas a decline in liver NO was seen, but there were no changes in brain. Liver contained the highest concentration of RNI, but increasing concentrations were seen in both plasma and spleen in both P. berghei and P. c. chabaudi infected mice. These results show that NO and RNI production alters during murine malaria. The changes depend upon the tissue, the day of infection, the degree of parasitaemia, the strain of Plasmodia and the method of measuring NO biosynthesis. Lethal P. berghei induced NO production in the mid and late stages of infection in mice when parasitaemia was high, whereas in nonlethal P. c. chabaudi infection, NO production was increased in the early and late stages when parasitaemia was low. These data are consistent with a role for NO in the protection of the MF1 mouse against Plasmodia. Failure to clear the parasite is associated with evidence of increased NO production in brain and liver, which may contribute to the pathology of malaria, but this hypothesis requires confirmation from other experimental approaches.
Collapse
Affiliation(s)
- H Nahrevanian
- School of Biological Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
39
|
Graham SP, Brown DJ, Vatansever Z, Waddington D, Taylor LH, Nichani AK, Campbell JD, Adamson RE, Glass EJ, Spooner RL. Proinflammatory cytokine expression by Theileria annulata infected cell lines correlates with the pathology they cause in vivo. Vaccine 2001; 19:2932-44. [PMID: 11282205 DOI: 10.1016/s0264-410x(00)00529-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Control of Theileria annulata is currently best achieved by the use of live attenuated cell line vaccines. However, the mechanisms underlying attenuation are unclear and there is a need to rapidly produce new cell line vaccines, which could safely and effectively vaccinate cattle against tropical theileriosis. There is increasing evidence to suggest that proinflammatory cytokines produced by T. annulata infected cells play a central role in both pathology and immune evasion. This study aimed to test this hypothesis and to evaluate cytokine expression as a marker of virulence. The pathogenicity and protective efficacy of cloned T. annulata cell lines that expressed different levels of proinflammatory cytokines were compared. In two independent trials using different stocks of T. annulata, cell lines that expressed higher levels of proinflammatory cytokines induced severe reactions, and in some cases death, when used to vaccinate groups of cattle. In contrast, low cytokine expressing lines induced low post-vaccinal reactions. The results clearly demonstrated that cytokine expression by T. annulata infected cells could be used as a marker of virulence and provided strong evidence to support a role for cytokines in the induction of pathology. Both high and low cytokine expressing cell lines protected cattle against heterologous challenge infection, offering the possibility of using cytokine expression to rapidly select new safe, potent vaccines against tropical theileriosis without the need for culture attenuation.
Collapse
Affiliation(s)
- S P Graham
- Centre for Tropical Veterinary Medicine, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin EH25 9RG, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Perlmann P, Björkman A. Malaria research: host-parasite interactions and new developments in chemotherapy, immunology and vaccinology. Curr Opin Infect Dis 2000; 13:431-443. [PMID: 11964811 DOI: 10.1097/00001432-200010000-00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Malaria remains the major parasitic disease, with 300-500 million new infections each year. This survey covers recent advances in the field of parasite-host interactions, focusing on Plasmodium falciparum, the most virulent of the human parasites. Rapid progress in genomic research is creating a basis for the development of new drugs and vaccines. Identification of drug-resistance mutations facilitates evaluation of improved drug policies, and attempts are being made to develop new compounds that inhibit metabolic pathways that are specific to the parasite. Cytoadherence of parasitized erythrocytes to microvascular endothelium is responsible for the sequestration of parasites, causing pathology and severe disease. Newly identified molecular fine structures that mediate cytoadherence may provide new targets for specific therapies. Humoral and cell-mediated immunity induced by the parasite may be protective, but may also be harmful by generating imbalance in cytokine responses. Efforts are made to determine the pathways that give rise to protection, with vaccination being the principal goal for achieving malaria control. Different vaccine constructs are being evaluated in preclinical and clinical trials, including modified viral vectors, synthetic peptides, DNA and new adjuvants.
Collapse
Affiliation(s)
- Peter Perlmann
- aDepartment of Immunology, Stockholm University, and bKarolinska Institute, Infectious Diseases Unit, Karolinska Hospital, Stockholm, Sweden
| | | |
Collapse
|
41
|
Abstract
As the mortality rate of 20-30% for severe falciparum malaria under even the best clinical conditions testifies, access to antimalarial drugs is not sufficient to prevent an appreciable mortality from this disease. Understanding the cause of death at a cellular level is essential if additional rational treatments are to be developed. Here, Ian Clark and Louis Schofield discuss recent work presented at the Molecular Approaches to Malaria conference, Lorne, Australia, 2-5 February 2000, that updates the cytokine-based concept of malarial disease.
Collapse
Affiliation(s)
- I A Clark
- Australian National University, ACT 0200, Canberra, Australia.
| | | |
Collapse
|
42
|
Abstract
Malaria, a disease responsible for immense human suffering, is caused by infection with Plasmodium spp. parasites, which have a very complex life cycle - antigenically unique stages infect different tissues of the body. This review details recent developments in our understanding of immunity both to pre-erythrocytic stage antigens and to erythrocytic stage antigens. The former is largely mediated via CD8(+) T cells and involves IFN-gamma, nitric oxide, IL-12 and natural killer cells; the latter varies (in different hosts and with different parasites) but is largely mediated by antibody, helper T cells, nitric oxide and gammadelta T cells. The recent progress towards clinical trials of vaccine candidates against both the pre-erythrocytic stage and erythrocytic stage is also summarized, in particular the use of heterologous prime/boost strategies for the former and the use of MSP1 as a candidate vaccine for the latter.
Collapse
Affiliation(s)
- M F Good
- The Cooperative Research Centre for Vaccine Technology, The Queensland Institute of Medical Research, PO Royal Brisbane Hospital 4029, Queensland, Australia.
| | | |
Collapse
|