1
|
Xing H, Bai Y, Ding Q, Wang H, Gao G, Hu Z, Yu Y, Fan H, Meng X, Cui N. Transcriptomic analysis of regulating the growth and development of tomato seedlings by the crosstalk between JA and TOR signaling. PLANT CELL REPORTS 2025; 44:82. [PMID: 40126670 DOI: 10.1007/s00299-025-03476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
KEY MESSAGE Transcription factors MYB, WRKY, bHLH, bZIP and NAC were identified as key candidate genes for JA and TOR regulation of tomato seedling growth and development. Jasmonic acid (JA) and Target of Rapamycin (TOR) signaling pathways interact to regulate plant growth, development, and stress responses. In this study, transcriptomic and weighted gene co-expression network analysis (WGCNA) were conducted on tomato wild-type (WT) and spr2 mutant lines treated with the TOR inhibitor RAP and activator MHY1485. We identified key roles of MAPK kinase and ethylene signaling in mediating JA-TOR interaction. Core transcription factors, including MYB, WRKY, bHLH, bZIP, and NAC, were highlighted as central regulators within the interaction between JA and TOR signaling network. These findings advance our understanding of how JA and TOR signaling coordinate plant growth and stress adaptation.
Collapse
Affiliation(s)
- Hongyun Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yipeng Bai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qi Ding
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haoran Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Guorui Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqiang Hu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Si J, Zhou X, Chen X, Ming H, Liu H, Hui M. Identification and characterization of a key gene controlling purple leaf coloration in non-heading Chinese cabbage (Brassica rapa). PLANTA 2025; 261:80. [PMID: 40048003 DOI: 10.1007/s00425-025-04630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/18/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION Chalcone isomerase (BraCHI, BraA03g059660.3C) is the candidate gene controlling purple leaf coloration in non-heading Chinese cabbage. A 10-bp deletion in its promoter enhances gene expression in purple plants, likely by disrupting MYB transcription factor binding, leading to anthocyanin accumulation. Leaf color is a critical trait influencing the commercial and nutritional value of leafy vegetables, with purple-leafed varieties prized for their high anthocyanin content. In this study, we investigated the genetic basis of purple leaf coloration in non-heading Chinese cabbage (Brassica rapa). Using a recombinant inbred line (RIL) population derived from a cross between purple-leafed S45P and green-leafed S45G lines, bulked segregant analysis sequencing (BSA-seq) and fine mapping were performed. The analysis identified BraP2, a locus on chromosome A03 associated with purple leaf coloration. Within the 65.31 kb candidate region, BraA03g059660.3C, encoding chalcone isomerase (CHI), was identified as the strongest candidate gene. Quantitative real-time PCR (qRT-PCR) revealed significantly higher expression of BraA03g059660.3C in purple-leafed S45P plants compared to green-leafed S45G plants. Further sequence analysis uncovered a 10-bp deletion in the promoter region of BraA03g059660.3C in S45P plants. This deletion likely disrupts a MYB transcription factor binding site, enhancing gene expression and promoting anthocyanin accumulation. Our findings demonstrate that BraA03g059660.3C plays a pivotal role in controlling purple leaf coloration in non-heading Chinese cabbage. This discovery advances the understanding of anthocyanin biosynthesis regulation and provides valuable genetic resources for breeding Brassica crops with improved esthetic and nutritional qualities.
Collapse
Affiliation(s)
- Jia Si
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaoqing Zhou
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xinyu Chen
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huilin Ming
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanqiang Liu
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Maixia Hui
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling Demonstration Zone, Xianyang, Shaanxi, China.
| |
Collapse
|
3
|
Yu M, Ma C, Tai B, Fu X, Liu Q, Zhang G, Zhou X, Du L, Jin Y, Han Y, Zheng H, Huang L. Unveiling the regulatory mechanisms of nodules development and quality formation in Panax notoginseng using multi-omics and MALDI-MSI. J Adv Res 2025; 69:463-475. [PMID: 38588849 PMCID: PMC11954826 DOI: 10.1016/j.jare.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Renowned for its role in traditional Chinese medicine, Panax notoginseng exhibits healing properties including bidirectional regulatory effects on hematological system diseases. However, the presence of nodular structures near the top of the main root, known as nail heads, may impact the quality of the plant's valuable roots. OBJECTIVES In this paper, we aim to systematically analyze nail heads to identify their potential correlation with P. notoginseng quality. Additionally, we will investigate the molecular mechanisms behind nail head development. METHODS Morphological characteristics and anatomical features were analyzed to determine the biological properties of nail heads. Active component analysis and MALDI mass spectrometry imaging (MALDI-MSI) were performed to determine the correlation between nail heads and P. notoginseng quality. Phytohormone quantitation, MALDI-MSI, RNA-seq, and Arabidopsis transformation were conducted to elucidate the mechanisms of nail head formation. Finally, protein-nucleic acid and protein-protein interactions were investigated to construct a transcriptional regulatory network of nodule development and quality formation. RESULTS Our analyses have revealed that nail heads originate from an undeveloped lateral root. The content of ginsenosides was found to be positively associated with the amount of nail heads. Ginsenoside Rb1 specifically accumulated in the cortex of nail heads, while IAA, tZR and JAs also showed highest accumulation in the nodule. RNA-seq analysis identified PnIAA14 and PnCYP735A1 as inhibitors of lateral root development. PnMYB31 and PnMYB78 were found to form binary complexes with PnbHLH31 to synergistically regulate the expression of PnIAA14, PnCYP735A1, PnSS, and PnFPS. CONCLUSION Our study details the major biological properties of nodular structures in P. notoginseng and outlines their impact on the quality of the herb. It was also determined that PnMYB31- and PnMYB78-PnbHLH31 regulate phytohormones and ginsenosides accumulation, further affecting plant development and quality. This research provides insights for quality evaluation and clinical applications of P. notoginseng.
Collapse
Affiliation(s)
- Muyao Yu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Badalahu Tai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Mongolian Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xueqing Fu
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanhua Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiuteng Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liyuan Du
- Create (Beijing) Technology Co., Limited, Beijing 102200, China
| | - Yan Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Han
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Han Zheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Ru X, You W, Zhang J, Xu F, Wu Z, Jin P, Zheng Y, Cao S. LsMYB44 and LsWRKY12 regulate endogenous γ-aminobutyric acid (GABA) accumulation in fresh-cut stem lettuce. Int J Biol Macromol 2024; 283:137729. [PMID: 39551293 DOI: 10.1016/j.ijbiomac.2024.137729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
GABA is able to increase resistance to biotic and abiotic stresses in fresh-cut fruits and vegetables. Therefore, the objective of this research was to explore the potential regulatory mechanisms of γ-aminobutyric acid (GABA) accumulation in fresh-cut stem lettuce following GABA treatment. The evidence showed that exogenous GABA stimulated the GABA shunt by elevating glutamate levels, the activities of GABA transaminase (GABA-T) and glutamate decarboxylase (GAD). Similarly, GABA stimulated polyamine metabolism by increasing the activities of 4-amino aldehyde dehydrogenase (AMADH), polyamine oxidase (PAO) and diamine oxidase (DAO), as well as elevating free polyamines, arginine and ornithine levels. Subsequently, GABA application up-regulated the expression of GABA shunt genes and polyamine metabolism genes. Additionally, GABA treatment resulted in the down-regulation of LsMYB44 and LsWRKY12 expressions. Notably, LsMYB44 bound to MYB binding sites in the LsGAD, LsGABAT1, LsADC1, LsPAO2, LsALDH7B4 promoters and repressed transcription of these genes. The interaction between LsMYB44 and LsWRKY12 was associated with the transcriptional repression of polyamine metabolism and GABA shunt genes by LsMYB44. In conclusion, LsMYB44 and LsWRKY12 downregulated the transcription of key genes of GABA shunt and polyamine metabolism in fresh-cut lettuce. This downregulation, however, was alleviated by the application of GABA, thereby promoting endogenous GABA accumulation.
Collapse
Affiliation(s)
- Xueyin Ru
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wanli You
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jinglin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Shifeng Cao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China.
| |
Collapse
|
5
|
Chatti K, Kmeli N, Bettaieb I, Hamdi J, Gaaied S, Mlouka R, Mars M, Bouktila D. Genome-Wide Analysis of the Common Fig (Ficus carica L.) R2R3-MYB Genes Reveals Their Structure, Evolution, and Roles in Fruit Color Variation. Biochem Genet 2024:10.1007/s10528-024-10960-w. [PMID: 39508995 DOI: 10.1007/s10528-024-10960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
The R2R3-MYB transcription factor (TF) family is crucial for regulating plant growth, stress response, and fruit ripening. Although this TF family has been examined in a multitude of plants, the R2R3-MYB TFs in Ficus carica, a Mediterranean fruit species, have yet to be characterized. This study identified and classified 63 R2R3-MYB genes (FcMYB1 to FcMYB63) in the F. carica genome. We analyzed these genes for physicochemical properties, conserved motifs, phylogenetic relationships, gene architecture, selection pressure, and gene expression profiles and networks. The genes were classified into 29 clades, with members of the same clade showing similar exon-intron structures and motif compositions. Of the 54 orthologous gene pairs shared with mulberry (Morus notabilis), 52 evolved under negative selection, while two pairs (FcMYB55/MnMYB20 and FcMYB59/MnMYB31) experienced diversifying selection. RNA-Seq analysis showed that FcMYB26, FcMYB33, and FcMYB34 were significantly overexpressed in fig fruit peel during maturation phase III. Weighted gene co-expression network analysis (WGCNA) indicated that these genes are part of an expression module associated with the anthocyanin pathway. RT-qPCR validation confirmed these findings and revealed that the Tunisian cultivars 'Zidi' and 'Soltani' have cultivar-specific R2R3-FcMYB genes highly overexpressed during the final stage of fruit maturation and color acquisition. These genes likely influence cultivar-specific pigment synthesis. This study provides a comprehensive overview of the R2R3-MYB TF family in fig, offering a framework for selecting genes related to fruit peel color in breeding programs.
Collapse
Affiliation(s)
- Khaled Chatti
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Narjes Kmeli
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Inchirah Bettaieb
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Jihen Hamdi
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Rania Mlouka
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Messaoud Mars
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Dhia Bouktila
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia.
| |
Collapse
|
6
|
Liu X, Ban Z, Yang Y, Xu H, Cui Y, Wang C, Bi Q, Yu H, Wang L. The yellowhorn MYB transcription factor MYB30 is required for wax accumulation and drought tolerance. TREE PHYSIOLOGY 2024; 44:tpae111. [PMID: 39190879 DOI: 10.1093/treephys/tpae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 08/29/2024]
Abstract
Yellowhorn (Xanthoceras sorbifolium Bunge) is an economically important tree species in northern China, mainly distributed in arid and semi-arid areas where water resources are scarce. Drought affects its yield and the expansion of its suitable growth area. It was found that the wax content in yellowhorn leaves varied significantly among different germplasms, which had a strong correlation with the drought resistance of yellowhorn. In this study, XsMYB30 was isolated from 'Zhongshi 4' of yellowhorn, a new highly waxy variety. DAP-Seq technology revealed that the pathways associated with fatty acids were significantly enriched in the target genes of XsMYB30. Moreover, the results of electrophoretic mobility shift assay, yeast one hybrid assay and dual-luciferase assay demonstrated that XsMYB30 could directly and specifically bind with the promoters of genes involved in wax biosynthesis (XsFAR4, XsCER1 and XsKCS1), lipid transfer (XsLTPG1 and XsLTP1) and fatty acid synthesis (XsKASIII), thus enhancing their expression. In addition, the overexpression of XsMYB30 in poplar promoted the expression levels of these target genes and increased the wax deposition on poplar leaves leading to a notable improvement in the plant's ability to withstand drought. These findings indicate that XsMYB30 is an important regulatory factor in cuticular wax biosynthesis and the drought resistance of yellowhorn.
Collapse
Affiliation(s)
- Xiaojuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Zhuo Ban
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Yingying Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Huihui Xu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Yifan Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Chenxue Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Quanxin Bi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Haiyan Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Libing Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| |
Collapse
|
7
|
Ning K, Huai H, Li M, Xu Y, Wei F, Chen Z, Wang Y, Huang P, Yu Y, Chen S, Dong L. Transcriptomics and metabolomics revealed the molecular basis of the color formation in the roots of Panax notoginseng. Heliyon 2024; 10:e37532. [PMID: 39381219 PMCID: PMC11459398 DOI: 10.1016/j.heliyon.2024.e37532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Panax notoginseng is a traditional Chinese medicine rich in many pharmacological components. The root of the 'Miaoxiang Sanqi No. 2' is yellow or greenish yellow, while a novel cultivar-'Wenyuan Ziqi No. 1' shows purple root and is thought to have high medicinal value. Little information is available about the anthocyanin biosynthesis in P. notoginseng root. In this study, we compared the 'Miaoxiang Sanqi No. 2' and 'Wenyuan Ziqi No. 1' in morphological, transcriptional and metabolic levels. The results showed that purple rich in the periderm, rhizome and phloem around cambium of the 'Wenyuan Ziqi No. 1' root and cyanidin 3-O-galactoside was the main anthocyanin causing purple. Moreover, 'Wenyuan Ziqi No. 1' highly accumulated in 155 metabolites, including flavones, phenylpropanoids and lipids. Transcriptome data showed that phenylpropanoid biosynthesis pathway genes are highly expressed in 'Wenyuan Ziqi No. 1'. Conjoint analysis showed that anthocyanin biosynthesis pathway substances were highly accumulated in 'Wenyuan Ziqi No. 1', and the expression level of structural genes involved in anthocyanin biosynthesis pathway was higher in 'Wenyuan Ziqi No. 1'. Meanwhile, eight R2R3-MYB genes that might be involved in anthocyanin biosynthesis were identified. The comprehensive analysis of two cultivars provides new insights into the understanding of root coloration in P. notoginseng.
Collapse
Affiliation(s)
- Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hao Huai
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yuli Xu
- Zhangzhou Pianzaihuang Pharmaceutical Co., Ltd., 363099, Fujian, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., 663000, Wenshan, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, 663000, Wenshan, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, 663000, Wenshan, China
| | - Pengcheng Huang
- Zhangzhou Pianzaihuang Pharmaceutical Co., Ltd., 363099, Fujian, China
| | - Yuqi Yu
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., 663000, Wenshan, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| |
Collapse
|
8
|
Kim JS, Chae S, Jo JE, Kim KD, Song SI, Park SH, Choi SB, Jun KM, Shim SH, Jeon JS, Lee GS, Kim YK. OsMYB14, an R2R3-MYB transcription factor, regulates plant height through the control of hormone metabolism in rice. Mol Cells 2024; 47:100093. [PMID: 39004308 PMCID: PMC11342784 DOI: 10.1016/j.mocell.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Plant growth must be regulated throughout the plant life cycle. The myeloblastosis (MYB) transcription factor (TF) family is one of the largest TF families and is involved in metabolism, lignin biosynthesis, and developmental processes. Here, we showed that OsMYB14, a rice R2R3-MYB TF, was expressed in leaves and roots, especially in rice culm and panicles, and that it localized to the nucleus. Overexpression of OsMYB14 (OsMYB14-ox) in rice resulted in a 30% reduction in plant height compared to that of the wild type (WT), while the height of the osmyb14-knockout (osmyb14-ko) mutant generated using the CRISPR/Cas9 system was not significantly different. Microscopic observations of the first internode revealed that the cell size did not differ significantly among the lines. RNA sequencing analysis revealed that genes associated with plant development, regulation, lipid metabolism, carbohydrate metabolism, and gibberellin (GA) and auxin metabolic processes were downregulated in the OsMYB14-ox line. Hormone quantitation revealed that inactive GA19 accumulated in OsMYB14-ox but not in the WT or knockout plants, suggesting that GA20 generation was repressed. Indole-3-acetic acid (IAA) and IAA-aspartate accumulated in OsMYB14-ox and osmyb14-ko, respectively. Indeed, real-time PCR analysis revealed that the expression of OsGA20ox1, encoding GA20 oxidase 1, and OsGH3-2, encoding IAA-amido synthetase, was downregulated in OsMYB14-ox and upregulated in osmyb14-ko. A protein-binding microarray revealed the presence of a consensus DNA-binding sequence, the ACCTACC-like motif, in the promoters of the OsGA20ox1 and GA20ox2 genes. These results suggest that OsMYB14 may act as a negative regulator of biological processes affecting plant height in rice by regulating GA biosynthesis and auxin metabolism.
Collapse
Affiliation(s)
- Joung Sug Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jae Eun Jo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Kyung Do Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Sang-Ik Song
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Su Hyun Park
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Sang-Bong Choi
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene Biotech Inc, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, Jeollabuk-do 54875, Republic of Korea
| | - Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
9
|
Gao S, Xu J, Song W, Dong J, Xie L, Xu B. Overexpression of BnMYBL2-1 improves plant drought tolerance via the ABA-dependent pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108293. [PMID: 38181638 DOI: 10.1016/j.plaphy.2023.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Drought stress is a major environmental challenge that poses considerable threats to crop survival and growth. Previous research has indicated anthocyanins play a crucial role in alleviating oxidative damage, photoprotection, membrane stabilization, and water retention under drought stress. However, the presence of MYBL2 (MYELOBBLASTOSIS LIKE 2), an R3-MYB transcription factor (TF) which known to suppress anthocyanin biosynthesis. In this study, four BnMYBL2 members were cloned from Brassica napus L, and BnMYBL2-1 was overexpressed in Triticum aestivum L (No BnMYBL2 homologous gene was detected in wheat). Subsequently, the transgenic wheat lines were treated with drought, ABA and anthocyanin. Results showed that transgenic lines exhibited greater drought tolerance compared to the wild-type (WT), characterized by improved leaf water content (LWC), elevated levels of soluble sugars and chlorophyll, and increased antioxidant enzyme activity. Notably, transgenic lines also exhibited significant upregulation in abscisic acid (ABA) content, along with the transcriptional levels of key enzymes involved in ABA signalling under drought. Results also demonstrated that BnMYBL2-1 promoted the accumulation of ABA and anthocyanins in wheat. Overall, the study highlights the positive role of BnMYBL2-1 in enhancing crop drought tolerance through ABA signalling and establishes its close association with anthocyanin biosynthesis. These findings offer valuable insights for the development of drought-resistant crop varieties and enhance the understanding of the molecular mechanisms underlying plant responses to drought stress.
Collapse
Affiliation(s)
- Shaofan Gao
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, 434022, China
| | - Jinsong Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, 434022, China; College of Agriculture, Yangtze University, Hubei, 434022, China
| | - Wei Song
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan, 467036, China
| | - Jing Dong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, 430072, China
| | - Lingli Xie
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, 434022, China; College of Agriculture, Yangtze University, Hubei, 434022, China.
| | - Benbo Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, 434022, China; College of Agriculture, Yangtze University, Hubei, 434022, China.
| |
Collapse
|
10
|
Wang Z, Li X, Gao XR, Dai ZR, Peng K, Jia LC, Wu YK, Liu QC, Zhai H, Gao SP, Zhao N, He SZ, Zhang H. IbMYB73 targets abscisic acid-responsive IbGER5 to regulate root growth and stress tolerance in sweet potato. PLANT PHYSIOLOGY 2024; 194:787-804. [PMID: 37815230 DOI: 10.1093/plphys/kiad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.
Collapse
Affiliation(s)
- Zhen Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xu Li
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-Ru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhuo-Ru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li-Cong Jia
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yin-Kui Wu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qing-Chang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Pei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Zhen He
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Alsuhaimi NM, Al-Kaff NS. Molecular insights into the VIRESCENS amino acid sequence and its implication in anthocyanin production in red- and yellow-fruited cultivars of date palm. Sci Rep 2023; 13:20688. [PMID: 38001227 PMCID: PMC10673830 DOI: 10.1038/s41598-023-47604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
This study examined the amino acid sequence of the VIRESCENS gene (VIR), which regulates the production of anthocyanin in 12 cultivars of the date palm (Phoenix dactylifera L.), grown in Al-Madinah Al-Munawarah of the Kingdom of Saudi Arabia. The gene products were amplified via polymerase chain reactions, amplifying both exons and introns. The products were sequenced for the reconstruction of a phylogenetic tree, which used the associated amino acid sequences. The ripening stages of Khalal, Rutab, and Tamar varied among the cultivars. Regarding VIR genotype, the red date had the wild-type gene (VIR+), while the yellow date carried a dominant mutation (VIRIM), i.e., long terminal repeat retrotransposons (LTR-RTs). The DNA sequence of VIRIM revealed that the insertion length of the LTR-RTs ranged between 386 and 476 bp. The R2 and R3 motifs in both VIR+ and VIRIM were conserved. The C-terminus motifs S6A, S6B, and S6C were found in the VIR+ protein sequence. However, the amino acids at positions 123, 161, 166, and 168 differed between VIR+ and VIRIM, and were not included in the C-terminus motifs. Within the VIR+ allele, the lysine at position 187 in the C-terminus was located immediately after S6B, with a protein binding score of 0.3, which was unique to the dark, red-fruited cultivars Ajwah, Anbarah, and Safawi. In the lighter, red-fruited cultivars, the presence of glutamic acid at the same position suggested that the anthocyanin regulation of date palm might be outside the R2 and R3 domains in the N-terminus.
Collapse
Affiliation(s)
- Nadia M Alsuhaimi
- Biology Department, College of Science, Taibah University, PO Box 30002, 14177, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
| | - Nadia S Al-Kaff
- Biology Department, College of Science, Taibah University, PO Box 30002, 14177, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia.
| |
Collapse
|
12
|
Zhang P, Wang T, Cao L, Jiao Z, Ku L, Dou D, Liu Z, Fu J, Xie X, Zhu Y, Chong L, Wei L. Molecular mechanism analysis of ZmRL6 positively regulating drought stress tolerance in maize. STRESS BIOLOGY 2023; 3:47. [PMID: 37971599 PMCID: PMC10654321 DOI: 10.1007/s44154-023-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
MYB-related genes, a subclass of MYB transcription factor family, have been documented to play important roles in biological processes such as secondary metabolism and stress responses that affect plant growth and development. However, the regulatory roles of MYB-related genes in drought stress response remain unclear in maize. In this study, we discovered that a 1R-MYB gene, ZmRL6, encodes a 96-amino acid protein and is highly drought-inducible. We also found that it is conserved in both barley (Hordeum vulgare L.) and Aegilops tauschii. Furthermore, we observed that overexpression of ZmRL6 can enhance drought tolerance while knock-out of ZmRL6 by CRISPR-Cas9 results in drought hypersensitivity. DAP-seq analyses additionally revealed the ZmRL6 target genes mainly contain ACCGTT, TTACCAAAC and AGCCCGAG motifs in their promoters. By combining RNA-seq and DAP-seq results together, we subsequently identified eight novel target genes of ZmRL6 that are involved in maize's hormone signal transduction, sugar metabolism, lignin synthesis, and redox signaling/oxidative stress. Collectively, our data provided insights into the roles of ZmRL6 in maize's drought response.
Collapse
Affiliation(s)
- Pengyu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Tongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Liru Cao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhixin Jiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Lixia Ku
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dandan Dou
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhixue Liu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiaxu Fu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaowen Xie
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Leelyn Chong
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Li Wei
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
13
|
Wang P, Cao H, Quan S, Wang Y, Li M, Wei P, Zhang M, Wang H, Ma H, Li X, Yang ZB. Nitrate improves aluminium resistance through SLAH-mediated citrate exudation from roots. PLANT, CELL & ENVIRONMENT 2023; 46:3518-3541. [PMID: 37574955 DOI: 10.1111/pce.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Aluminium (Al) toxicity is one of the major constraint for crop production in acidic soil, and the inappropriate utilization of nitrogen fertilizer can accelerate soil acidification. Despite previous studies investigating the regulation of nitrogen forms in Al toxicity of plants, the underlying mechanism, particularly at the molecular level, remains unclear. This study aims to uncover the potentially regulatory mechanism of nitrate (NO3 - ) in the Al resistance of maize and Arabidopsis. NO3 - conservatively improves Al resistance in maize and Arabidopsis, with nitrate-elevated citrate synthesis and exudation potentially playing critical roles in excluding Al from the root symplast. ZmSLAH2 in maize and AtSLAH1 in Arabidopsis are essential for the regulation of citrate exudation and NO3 - -promoted Al resistance, with ZmMYB81 directly targeting the ZmSLAH2 promoter to activate its activity. Additionally, NO3 - transport is necessary for NO3 - -promoted Al resistance, with ZmNRT1.1A and AtNRT1.1 potentially playing vital roles. The suppression of NO3 - transport in roots by ammonium (NH4 + ) may inhibit NO3 - -promoted Al resistance. This study provides novel insights into the understanding of the crucial role of NO3 - -mediated signalling in the Al resistance of plants and offers guidance for nitrogen fertilization on acid soils.
Collapse
Affiliation(s)
- Peng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| | - Hongrui Cao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| | - Shuxuan Quan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Mu Li
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Ping Wei
- Linyi Academy of Agricultural Sciences, Linyi, China
| | - Meng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| | - Hui Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| | - Hongyu Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| | - Xiaofeng Li
- College of Agronomy, Guangxi University, Nanning, China
| | - Zhong-Bao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
14
|
Liu Q, Wang F, Li P, Yu G, Zhang X. Overexpression of Lolium multiflorum LmMYB1 Enhances Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:15280. [PMID: 37894960 PMCID: PMC10607481 DOI: 10.3390/ijms242015280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Lolium multiflorum is one of the world-famous forage grasses with rich biomass, fast growth rate and good nutritional quality. However, its growth and forage yield are often affected by drought, which is a major natural disaster all over the world. MYB transcription factors have some specific roles in response to drought stress, such as regulation of stomatal development and density, control of cell wall and root development. However, the biological function of MYB in L. multiflorum remains unclear. Previously, we elucidated the role of LmMYB1 in enhancing osmotic stress resistance in Saccharomyces cerevisiae. Here, this study elucidates the biological function of LmMYB1 in enhancing plant drought tolerance through an ABA-dependent pathway involving the regulation of cell wall development and stomatal density. After drought stress and ABA stress, the expression of LmMYB1 in L. multiflorum was significantly increased. Overexpression of LmMYB1 increased the survival rate of Arabidopsis thaliana under drought stress. Under drought conditions, expression levels of drought-responsive genes such as AtRD22, AtRAB and AtAREB were up-regulated in OE compared with those in WT. Further observation showed that the stomatal density of OE was reduced, which was associated with the up-regulated expression of cell wall-related pathway genes in the RNA-Seq results. In conclusion, this study confirmed the biological function of LmMYB1 in improving drought tolerance by mediating cell wall development through the ABA-dependent pathway and thereby affecting stomatal density.
Collapse
Affiliation(s)
- Qiuxu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fangyan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Peng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Guohui Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| |
Collapse
|
15
|
Lan Y, Zhang K, Wang L, Liang X, Liu H, Zhang X, Jiang N, Wu M, Yan H, Xiang Y. The R2R3-MYB transcription factor OfMYB21 positively regulates linalool biosynthesis in Osmanthus fragrans flowers. Int J Biol Macromol 2023; 249:126099. [PMID: 37543267 DOI: 10.1016/j.ijbiomac.2023.126099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
Osmanthus fragrans is a well-known landscape ornamental tree species for its pleasing floral fragrance and abundance of flowers. Linalool, the core floral volatiles of O. fragrans, has tremendous economic value in the pharmaceuticals, cleaning products and cosmetics industries. However, the transcriptional regulatory network for the biosynthesis of linalool in O. fragrans remains unclear. Here, OfMYB21, a potential transcription factor regulating the linalool synthetase OfTPS2, was identified using RNA-seq data and qRT-PCR analysis. Yeast one-hybrid, dual-luciferase and EMSA showed that OfMYB21 directly binds to the promoter of OfTPS2 and activates its expression. Overexpression of OfMYB21 in the petals of O. fragrans led to up-regulation of OfTPS2 and increased accumulation of linalool, while silencing of OfMYB21 led to down-regulation of OfTPS2 and decreased biosynthesis of linalool. Subsequently, yeast two-hybrid, pull-down and BiFC experiments showed that OfMYB21 interacts with JA signaling factors OfJAZ2/3 and OfMYC2. Interestingly, the interaction between OfMYC2 and OfMYB21 further enhanced the transcription of OfTPS2, whereas OfJAZ3 attenuated this effect. Overall, our studies provided novel finding on the regulatory mechanisms responsible for the biosynthesis of the volatile monoterpenoid linalool in O. fragrans.
Collapse
Affiliation(s)
- Yangang Lan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Kaimei Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linna Wang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Liang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Honxia Liu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyue Zhang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Nianqin Jiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Min Wu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hanwei Yan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
16
|
Yu Y, Zhang S, Yu Y, Cui N, Yu G, Zhao H, Meng X, Fan H. The pivotal role of MYB transcription factors in plant disease resistance. PLANTA 2023; 258:16. [PMID: 37311886 DOI: 10.1007/s00425-023-04180-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION MYB transcription factors are essential for diverse biology processes in plants. This review has focused on the potential molecular actions of MYB transcription factors in plant immunity. Plants possess a variety of molecules to defend against disease. Transcription factors (TFs) serve as gene connections in the regulatory networks controlling plant growth and defense against various stressors. As one of the largest TF families in plants, MYB TFs coordinate molecular players that modulate plant defense resistance. However, the molecular action of MYB TFs in plant disease resistance lacks a systematic analysis and summary. Here, we describe the structure and function of the MYB family in the plant immune response. Functional characterization revealed that MYB TFs often function either as positive or negative modulators towards different biotic stressors. Moreover, the MYB TF resistance mechanisms are diverse. The potential molecular actions of MYB TFs are being analyzed to uncover functions by controlling the expression of resistance genes, lignin/flavonoids/cuticular wax biosynthesis, polysaccharide signaling, hormone defense signaling, and the hypersensitivity response. MYB TFs have a variety of regulatory modes that fulfill pivotal roles in plant immunity. MYB TFs regulate the expression of multiple defense genes and are, therefore, important for increasing plant disease resistance and promoting agricultural production.
Collapse
Affiliation(s)
- Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuo Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guangchao Yu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan, China
| | - Hongyan Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
17
|
Overexpression of a Fragaria vesca 1R-MYB Transcription Factor Gene (FvMYB114) Increases Salt and Cold Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24065261. [PMID: 36982335 PMCID: PMC10048884 DOI: 10.3390/ijms24065261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The MYB (v-MYB avian myeloblastosis viral oncogene homolog) transcription factor (TF) family has numerous members with complex and diverse functions, which play an indispensable role in regulating the response of plants to stress. In this study, a new 1R-MYB TF gene was obtained from Fragaria vesca (a diploid strawberry) by cloning technology and given a new name, FvMYB114. According to the subcellular localization results, FvMYB114 protein was a nuclear localization protein. Overexpression of FvMYB114 greatly enhanced the adaptability and tolerance of Arabidopsis thaliana to salt and low temperature. Under salt and cold stress, the transgenic plants had greater proline and chlorophyll contents and higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than the wild-type (WT) and unloaded-line (UL) A. thaliana. However, malondialdehyde (MDA) was higher in the WT and UL lines. These results suggested that FvMYB114 may be involved in regulating the response of A. thaliana to salt stress and cold stress. FvMYB114 can also promote the expression of genes, such as the genes AtSOS1/3, AtNHX1 and AtLEA3 related to salt stress and the genes AtCCA1, AtCOR4 and AtCBF1/3 related to cold stress, further improving the tolerance of transgenic plants to salt and cold stress.
Collapse
|
18
|
Zhang Y, He Z, Qi X, Li M, Liu J, Le S, Chen K, Wang C, Zhou Y, Xu Z, Chen J, Guo C, Tang W, Ma Y, Chen M. Overexpression of MYB-like transcription factor SiMYB30 from foxtail millet (Setaria italica L.) confers tolerance to low nitrogen stress in transgenic rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:731-738. [PMID: 36822026 DOI: 10.1016/j.plaphy.2023.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen fertilizers significantly increase crop yield; however, the negative impact of excessive nitrogen use on the environment and soil requires urgent attention. Improving crop nitrogen use efficiency (NUE) is crucial to increase yields and protect the environment. Foxtail millet (Setaria italica L.), a gramineous crop with significant tolerance to barren croplands, is an ideal model crop for studying abiotic stress resistance in gramineous crops. However, knowledge of the regulatory network for NUE in foxtail millet is fragmentary. Herein, we identified an R2R3-like MYB transcription factor in foxtail millet, SiMYB30, which belongs to MYB subfamily 17. The expression of SiMYB30 is responsive to low nitrogen (LN) concentration. Compared with wildtype Kitaake, seedlings of rice lines overexpressing SiMYB30 showed significantly increased shoot fresh and dry weights, plant height, and root area under LN treatment indoors. Consistently, overexpression of SiMYB30 in field experiments significantly increased grain and stem nitrogen contents, grain yield per plant, and stem weight in rice. Furthermore, qRT-PCR revealed that SiMYB30 effectively activated the expression of nitrogen uptake-related genes-OsNRT1, OsNRT1.1B, and OsNPF2.4-and nitrogen assimilation-related genes-OsGOGAT1, OsGOGAT2, and OsNIA2. Notably, SiMYB30 directly bound to the promoter of OsGOGAT2 and regulated its expression. These results highlight the novel and pivotal role of SiMYB30 in improving crop NUE.
Collapse
Affiliation(s)
- Yuewei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhang He
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Xin Qi
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300112, China.
| | - Maomao Li
- Research Center of Jiangxi Crop Germplasm Resources, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Jin Liu
- Research Center of Jiangxi Crop Germplasm Resources, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Si Le
- Research Center of Jiangxi Crop Germplasm Resources, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Kai Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunxiao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongbin Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhaoshi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Wensi Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Youzhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
19
|
Ding Y, Yang Q, Waheed A, Zhao M, Liu X, Kahar G, Haxim Y, Wen X, Zhang D. Genome-wide characterization and functional identification of MYB genes in Malus sieversii infected by Valsa mali. FRONTIERS IN PLANT SCIENCE 2023; 14:1112681. [PMID: 37089647 PMCID: PMC10113540 DOI: 10.3389/fpls.2023.1112681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Among the most important transcription factors in plants, the v-myb avian myeloblastosis viral oncogene homolog (MYB) regulates the expression network of response genes under stresses such as fungal infection. In China, the canker disease Valsa mali threatens the survival of Malus sieversii, an ancestor of cultivated apples. Using the M. sieversii genome, we identified 457 MsMYB and 128 R2R3-MsMYB genes that were randomly distributed across 17 chromosomes. Based on protein sequence and structure, the R2R3-MsMYB genes were phylogenetically divided into 29 categories, and 26 conserved motifs were identified. We further predicted cis-elements in the 2000-kb promoter region of R2R3-MsMYBs based on the genome. Transcriptome analysis of M. sieversii under V. mali infection showed that 27 R2R3-MsMYBs were significantly differentially expressed, indicating their key role in the response to V. mali infection. Using transient transformation, MsMYB14, MsMYB24, MsMYB39, MsMYB78, and MsMYB108, which were strongly induced by V. mali infection, were functionally identified. Among the five MsMYBs, MsMYB14 and MsMYB78 were both important in enhancing resistance to diseases, whereas MsMYB24 inhibited resistance. Based on the results of this study, we gained a better understanding of the MsMYB transcription factor family and laid the foundation for a future research program on disease prevention strategies in M. sieversii.
Collapse
Affiliation(s)
- Yu Ding
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qihang Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Mingqi Zhao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
- *Correspondence: Daoyuan Zhang, ; Xuejing Wen,
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
- *Correspondence: Daoyuan Zhang, ; Xuejing Wen,
| |
Collapse
|
20
|
Chen Y, Feng P, Zhang X, Xie Q, Chen G, Zhou S, Hu Z. Silencing of SlMYB50 affects tolerance to drought and salt stress in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:139-152. [PMID: 36356545 DOI: 10.1016/j.plaphy.2022.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
High salinity and drought stresses often cause plants to produce ROS, including hydrogen peroxide (H2O2) and superoxide (O2-), which interfere with plant growth and affect crop yield. The transcription factors of the MYB family are involved in responses to biotic and abiotic stresses. Here, we isolated the R2R3-MYB transcription factor gene SlMYB50 and found that silencing of SlMYB50 increased resistance to PEG 6000, mannitol and salt. In addition, the resistance of transgenic tomatoes increased under high salt and drought stress. After stress treatment, the relative water content, chlorophyll content (critical for carbon fixation) and root vitality of the SlMYB50-RNAi lines were higher than those of the wild-type (WT). The opposite was true the water loss rate, relative conductivity, and MDA (as a sign of cell wall disruption). Under drought stress conditions, SlMYB50-silenced lines exhibited less H2O2 and less O2- accumulation, as well as higher CAT enzyme activity, than were exhibited by the WT. Notably, after stress treatment, the expression levels of chlorophyll-synthesis-related, flavonoid-synthesis-related, carotenoid-related, antioxidant-enzyme-related and ABA-biosynthesis-related genes were all upregulated in SlMYB50-silenced lines compared to those of WT. A dual-luciferase reporter system was used to verify that SlMYB50 could bind to the CHS1 promoter. In summary, this study identified essential roles for SlMYB50 in regulating drought and salt tolerance.
Collapse
Affiliation(s)
- Yanan Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Panpan Feng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xianwei Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Shuang Zhou
- College of Agriculture/Mudan, Henan University of Science and Technology, Henan Province, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| |
Collapse
|
21
|
Mao B, Takahashi H, Takahashi H, Fujii N. Diversity of root hydrotropism among natural variants of Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2022; 135:799-808. [PMID: 36149514 PMCID: PMC10039817 DOI: 10.1007/s10265-022-01412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/08/2022] [Indexed: 05/30/2023]
Abstract
Root gravitropism affects root hydrotropism. The interference intensity of root gravitropism with root hydrotropism differs among plant species. However, these differences have not been well compared within a single plant species. In this study, we compared root hydrotropism in various natural variants of Arabidopsis under stationary conditions. As a result, we detected a range of root hydrotropism under stationary conditions among natural Arabidopsis variants. Comparison of root gravitropism and root hydrotropism among several Arabidopsis natural variants classified natural variants that decreased root hydrotropism into two types; namely one type that expresses root gravitropism and root hydrotropism weaker than Col-0, and the other type that expresses weaker root hydrotropism than Col-0 but expresses similar root gravitropism with Col-0. However, root hydrotropism of all examined Arabidopsis natural variants was facilitated by clinorotation. These results suggested that the interference of root gravitropism with root hydrotropism is conserved among Arabidopsis natural variants, although the intensity of root gravitropism interference with root hydrotropism differs.
Collapse
Affiliation(s)
- Boyuan Mao
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hiroki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan.
| |
Collapse
|
22
|
Li Y, Qin P, Sun A, Xiao W, Chen F, He Y, Yu K, Li Y, Zhang M, Guo X. Genome-wide identification, new classification, expression analysis and screening of drought & heat resistance related candidates in the RING zinc finger gene family of bread wheat (Triticum aestivum L.). BMC Genomics 2022; 23:696. [PMID: 36207690 PMCID: PMC9547421 DOI: 10.1186/s12864-022-08905-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022] Open
Abstract
Background RING (Really Interesting New Gene) zinc finger (RING-zf) proteins belong to an important subclass of zinc fingers superfamily, which play versatile roles during various developmental stages and in abiotic stress responses. Based on the conserved cysteine and histidine residues, the RING-zf domains are classified into RING-HC (C3HC4), RING-H2 (C3H2C3), RING-v, RING-D, RING-S/T, RING-G, and RING-C2. However, little is known about the function of the RING-zfs of wheat. Results In this study, 129 (93.5%) of 138 members were found in nucleus, indicating TaRING-zf were primarily engaged in the degradation of transcription factors and other nuclear-localized proteins. 138 TaRING-zf domains can be divided into four canonical or modified types (RING-H2, RING-HC, RING-D, and RING-M). The RING-M was newly identified in T. aestivum, and might represent the intermediate other states between RING-zf domain and other modified domains. The consensus sequence of the RING-M domain can be described as M-X2-R-X14-Cys-X1-H-X2-Cys-X2-Cys-X10-Cys-X2-Cys. Further interspecies collinearity analyses showed that TaRING-zfs were more closely related to the genes in Poaceae. According to the public transcriptome data, most of the TaRING-zfs were expressed at different 15 stages of plant growth, development, and some of them exhibited specific responses to drought/heat stress. Moreover, 4 RING-HC (TraesCS2A02G526800.1, TraesCS4A02G290600.1, TraesCS4B02G023600.1 and TraesCS4D02G021200.1) and 2 RING-H2 (TraesCS3A02G288900.1 and TraesCS4A02G174600.1) were significantly expressed at different development stages and under drought stress. These findings provide valuable reference data for further study of their physiological functions in wheat varieties. Conclusions Taken together, the characterization and classifications of the TaRING-zf family were extensively studied and some new features about it were revealed. This study could provide some valuable targets for further studies on their functions in growth and development, and abiotic stress responses in wheat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08905-x.
Collapse
Affiliation(s)
- Yongliang Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Pai Qin
- College of Biology, Hunan University, Changsha, 410082, China
| | - Aolong Sun
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wenjun Xiao
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yang He
- College of Biology, Hunan University, Changsha, 410082, China
| | - Keyao Yu
- College of Biology, Hunan University, Changsha, 410082, China
| | - You Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Meng Zhang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
23
|
Overexpression of a Fragaria vesca MYB Transcription Factor Gene ( FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms231810538. [PMID: 36142448 PMCID: PMC9503638 DOI: 10.3390/ijms231810538] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
The MYB transcription factor (TF) family is one of the largest transcription families in plants, which is widely involved in the responses to different abiotic stresses, such as salt, cold, and drought. In the present study, a new MYB TF gene was cloned from Fragaria vesca (a diploid strawberry) and named FvMYB82. The open reading frame (ORF) of FvMYB82 was found to be 960 bp, encoding 319 amino acids. Sequence alignment results and predictions of the protein structure indicated that the FvMYB82 contained the conserved R2R3-MYB domain. Subcellular localization analysis showed that FvMYB82 was localized onto the nucleus. Furthermore, the qPCR showed that the expression level of FvMYB82 was higher in new leaves and roots than in mature leaves and stems. When dealing with different stresses, the expression level of FvMYB82 in F. vesca seedlings changed markedly, especially for salt and cold stress. When FvMYB82 was introduced into Arabidopsis thaliana, the tolerances to salt and cold stress of FvMYB82-OE A. thaliana were greatly improved. When dealt with salt and cold treatments, compared with wild-type and unloaded line (UL) A. thaliana, the transgenic lines had higher contents of proline and chlorophyll, as well as higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, the transgenic A. thaliana had lower level of malondialdehyde (MDA) and electrolytic leakage (EL) than wild-type and UL A. thaliana under salt and cold stress. Meanwhile, FvMYB82 can also regulate the expression of downstream genes associated with salt stress (AtSnRK2.4, AtSnRK2.6, AtKUP6, and AtNCED3) and cold stress (AtCBF1, AtCBF2, AtCOR15a, and AtCOR78). Therefore, these results indicated that FvMYB82 probably plays an important role in the response to salt and cold stresses in A. thaliana by regulating downstream related genes.
Collapse
|
24
|
Wang H, Pak S, Yang J, Wu Y, Li W, Feng H, Yang J, Wei H, Li C. Two high hierarchical regulators, PuMYB40 and PuWRKY75, control the low phosphorus driven adventitious root formation in Populus ussuriensis. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1561-1577. [PMID: 35514032 PMCID: PMC9342623 DOI: 10.1111/pbi.13833] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
Adventitious rooting is an essential biological process in the vegetative propagation of economically important horticultural and forest tree species. It enables utilization of the elite genotypes in breeding programmes and production. Promotion of adventitious root (AR) formation has been associated with starvation of inorganic phosphate and some factors involved in low phosphorus (LP) signalling. However, the regulatory mechanism underlying LP-mediated AR formation remains largely elusive. We established an efficient experimental system that guaranteed AR formation through short-term LP treatment in Populus ussuriensis. We then generated a time-course RNA-seq data set to recognize key regulatory genes and regulatory cascades positively regulating AR formation through data analysis and gene network construction, which were followed by experimental validation and characterization. We constructed a multilayered hierarchical gene regulatory network, from which PuMYB40, a typical R2R3-type MYB transcription factor (TF), and its interactive partner, PuWRKY75, as well as their direct targets, PuLRP1 and PuERF003, were identified to function upstream of the known adventitious rooting genes. These regulatory genes were functionally characterized and proved their roles in promoting AR formation in P. ussuriensis. In conclusion, our study unveiled a new hierarchical regulatory network that promoted AR formation in P. ussuriensis, which was activated by short-term LP stimulus and primarily governed by PuMYB40 and PuWRKY75.
Collapse
Affiliation(s)
- Hanzeng Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- College of AgricultureJilin Agricultural Science and Technology UniversityJilinChina
| | - Solme Pak
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Jia Yang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Ye Wu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Wenlong Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - He Feng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Hairong Wei
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMIUSA
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| |
Collapse
|
25
|
Ge W, Luo M, Sun H, Wei B, Zhou X, Zhou Q, Ji S. The CaMYB340 transcription factor induces chilling injury in post-harvest bell pepper by inhibiting fatty acid desaturation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:800-818. [PMID: 35653257 DOI: 10.1111/tpj.15854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Bell pepper (Capsicum annuum L.) is a tradable and desirable crop; however, its perishable nature requires low-temperature handling. Paradoxically, cold causes chilling injury (CI) and post-harvest waste. Current knowledge about CI in pepper is limited. The mechanism of CI is multi-faceted; therefore, we focused on fatty acid (FA) desaturation. We identified an upstream nuclear transcription factor (TF), CaMYB340, belonging to the R2R3 MYB subfamily, that negatively regulates FA desaturation and CaCBF3 expression and whose gene and protein expression is induced by low temperature (4°C). Specifically, McrBC treatment and bisulfite sequencing PCR indicate that exposure to cold triggers DNA methylation on one of the CHH sites in the CaMYB340 promoter. This epigenetic event at least partly contributes to the upregulation of CaMYB340 transcript levels. Increased expression of CaMYB340 results in the formation of protein complexes with CabHLH93 and CaMYB1R1, which in turn downregulate the expression of downstream genes. For peppers held at low temperature, transient overexpression of CaMYB340 reduced unsaturated FA content and membrane fluidity, resulting in cold-induced poor peel texture. Transient CaMYB340 silencing increased FA desaturation and lowered electrolyte leakage, enhancing cold tolerance in CaMYB340 knockdown fruits. Overall, these results underscore the intricacy of transcriptional networks in plants and highlight the role of CaMYB340 in CI occurrence in pepper fruits.
Collapse
Affiliation(s)
- Wanying Ge
- College of Food, Shenyang Agricultural University, Shenyang, 110866, China
| | - Manli Luo
- College of Food, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huajun Sun
- College of Food, Shenyang Agricultural University, Shenyang, 110866, China
| | - Baodong Wei
- College of Food, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Zhou
- College of Food, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qian Zhou
- College of Food, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
26
|
Shi M, Yu L, Shi J, Liu J. A conserved MYB transcription factor is involved in regulating lipid metabolic pathways for oil biosynthesis in green algae. THE NEW PHYTOLOGIST 2022; 235:576-594. [PMID: 35342951 DOI: 10.1111/nph.18119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Green algae can accumulate high levels of triacylglycerol (TAG), yet knowledge remains fragmented on the regulation of lipid metabolic pathways by transcription factors (TFs). Here, via bioinformatics and in vitro and in vivo analyses, we revealed the roles of a myeloblastosis (MYB) TF in regulating TAG accumulation in green algae. CzMYB1, an R2R3-MYB from Chromochloris zofingiensis, was transcriptionally upregulated upon TAG-inducing conditions and correlated well with many genes involved in the de novo fatty acid synthesis, fatty acid activation and desaturation, membrane lipid turnover, and TAG assembly. Most promoters of these genes were transactivated by CzMYB1 in the yeast one-hybrid assay and contained the binding elements CNGTTA that were recognized by CzMYB1 through the electrophoretic mobility shift assay. CrMYB1, a close homologue of CzMYB1 from Chlamydomonas reinhardtii that recognized similar elements for binding, also transcriptionally correlated with many lipid metabolic genes. Insertional disruption of CrMYB1 severely suppressed the transcriptional expression of CrMYB1, as well as of key lipogenic genes, and impaired TAG level considerably under stress conditions. Our results reveal that this MYB, conserved in green algae, is involved in regulating global lipid metabolic pathways for TAG biosynthesis and accumulation.
Collapse
Affiliation(s)
- Meicheng Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jianan Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
27
|
Orduña L, Li M, Navarro-Payá D, Zhang C, Santiago A, Romero P, Ramšak Ž, Magon G, Höll J, Merz P, Gruden K, Vannozzi A, Cantu D, Bogs J, Wong DCJ, Huang SSC, Matus JT. Direct regulation of shikimate, early phenylpropanoid, and stilbenoid pathways by Subgroup 2 R2R3-MYBs in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:529-547. [PMID: 35092714 DOI: 10.1111/tpj.15686] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 05/08/2023]
Abstract
The stilbenoid pathway is responsible for the production of resveratrol in grapevine (Vitis vinifera L.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP-Seq) allows for the genome-wide TF-binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP-Seq of MYB14/MYB15 was combined with aggregate gene co-expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS) targets, these regulators bind to 30 of 47 STS family genes. Moreover, all three MYBs bind to several PAL, C4H, and 4CL genes, in addition to shikimate pathway genes, the WRKY03 stilbenoid co-regulator and resveratrol-modifying gene candidates among which ROMT2-3 were validated enzymatically. A high proportion of DAP-Seq bound genes were induced in the activated transcriptomes of transient MYB15-overexpressing grapevine leaves, validating our methodological approach for delimiting TF targets. Overall, Subgroup 2 R2R3-MYBs appear to play a key role in binding and directly regulating several primary and secondary metabolic steps leading to an increased flux towards stilbenoid production. The integration of DAP-Seq and reciprocal GCNs offers a rapid framework for gene function characterization using genome-wide approaches in the context of non-model plant species and stands up as a valid first approach for identifying gene regulatory networks of specialized metabolism.
Collapse
Affiliation(s)
- Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, USA
| | - David Navarro-Payá
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Chen Zhang
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Pablo Romero
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Gabriele Magon
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro, 35020, Italy
| | - Janine Höll
- Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Viticulture and Enology Group, Neustadt/W, Germany
| | - Patrick Merz
- Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Viticulture and Enology Group, Neustadt/W, Germany
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro, 35020, Italy
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Jochen Bogs
- Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Viticulture and Enology Group, Neustadt/W, Germany
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australia
| | - Shao-Shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, USA
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| |
Collapse
|
28
|
Overexpression of a Malus baccata MYB Transcription Factor Gene MbMYB4 Increases Cold and Drought Tolerance in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23031794. [PMID: 35163716 PMCID: PMC8836155 DOI: 10.3390/ijms23031794] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
In the natural environment, plants often face unfavorable factors such as drought, cold, and freezing, which affect their growth and yield. The MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor family is widely involved in plant responses to biotic and abiotic stresses. In this study, Malus baccata (L.) Borkh was used as the research material, and a gene MbMYB4 of the MYB family was cloned from it. The open reading frame (ORF) of MbMYB4 was found to be 762 bp, encoding 253 amino acids; sequence alignment results and predictions of the protein structure indicated that the MbMYB4 protein contained the conserved MYB domain. Subcellular localization showed that MbMYB4 was localized in the nucleus. In addition, the use of quantitative real-time PCR (qPCR) technology found that the expression of MbMYB4 was enriched in the young leaf and root, and it was highly affected by cold and drought treatments in M. baccata seedlings. When MbMYB4 was introduced into Arabidopsis thaliana, it greatly increased the cold and drought tolerance in the transgenic plant. Under cold and drought stresses, the proline and chlorophyll content, and peroxidase (POD) and catalase (CAT) activities of transgenic A. thaliana increased significantly, and the content of malondialdehyde (MDA) and the relative conductivity decreased significantly, indicating that the plasma membrane damage of transgenic A. thaliana was lesser. Therefore, the overexpression of the MbMYB4 gene in A. thaliana can enhance the tolerance of transgenic plants to cold and drought stresses.
Collapse
|
29
|
Han X, Wei X, Lu W, Wu Q, Mao L, Luo Z. Transcriptional regulation of KCS gene by bZIP29 and MYB70 transcription factors during ABA-stimulated wound suberization of kiwifruit (Actinidia deliciosa). BMC PLANT BIOLOGY 2022; 22:23. [PMID: 34998386 PMCID: PMC8742354 DOI: 10.1186/s12870-021-03407-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. RESULTS Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. CONCLUSIONS Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.
Collapse
Affiliation(s)
- Xueyuan Han
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Xiaopeng Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Wenjing Lu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiong Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
30
|
Genome-wide analysis and transcriptional reprogrammings of MYB superfamily revealed positive insights into abiotic stress responses and anthocyanin accumulation in Carthamus tinctorius L. Mol Genet Genomics 2022; 297:125-145. [PMID: 34978004 DOI: 10.1007/s00438-021-01839-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022]
Abstract
The MYB transcription factors comprise one of the largest superfamilies in plants that have been implicated in the regulation of plant-specific metabolites and responses to biotic and abiotic stresses. Here, we present the first comprehensive genome-wide analysis and functional characterization of the CtMYB family in Carthamus tinctorius. A total of 272 CtMYBs were identified and classified into 12 subgroups using comparative phylogenetic analysis with Arabidopsis and rice orthologs. The overview of conserved motifs, gene structures, and cis elements as well as the expression pattern of CtMYB genes indicated the diverse roles of these transcription factors during plant growth, regulation of secondary metabolites, and various abiotic stress responses. The subcellular localization and transactivation analysis of four CtMYB proteins indicated predominant localization in the nuclei with enhanced transcriptional activation in yeast. The expression of CtMYB63 induced with various abiotic stress conditions showed upregulation in its transcription level. In addition, the expression analysis of the core structural genes of anthocyanin biosynthetic pathway under drought and cold stress in CtMYB63 overexpressed transgenic lines also supports the notion of CtMYB63 transcriptional reprogramming in response to abiotic stress by upregulating the anthocyanin biosynthesis. Together, our findings revealed the underlying regulatory mechanism of CtMYB TF network involving enhanced cold and drought stress tolerance through activating the rapid biosynthesis of anthocyanin in C. tinctorius. This study also presents useful insights towards the establishment of new strategies for crop improvements.
Collapse
|
31
|
Blanco E, Curci PL, Manconi A, Sarli A, Zuluaga DL, Sonnante G. R2R3-MYBs in Durum Wheat: Genome-Wide Identification, Poaceae-Specific Clusters, Expression, and Regulatory Dynamics Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:896945. [PMID: 35795353 PMCID: PMC9252425 DOI: 10.3389/fpls.2022.896945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
MYB transcription factors (TFs) represent one of the biggest TF families in plants, being involved in various specific plant processes, such as responses to biotic and abiotic stresses. The implication of MYB TFs in the tolerance mechanisms to abiotic stress is particularly interesting for crop breeding, since environmental conditions can negatively affect growth and productivity. Wheat is a worldwide-cultivated cereal, and is a major source of plant-based proteins in human food. In particular, durum wheat plays an important role in global food security improvement, since its adaptation to hot and dry conditions constitutes the base for the success of wheat breeding programs in future. In the present study, a genome-wide identification of R2R3-MYB TFs in durum wheat was performed. MYB profile search and phylogenetic analyses based on homology with Arabidopsis and rice MYB TFs led to the identification of 233 R2R3-TdMYB (Triticum durum MYB). Three Poaceae-specific MYB clusters were detected, one of which had never been described before. The expression of eight selected genes under different abiotic stress conditions, revealed that most of them responded especially to salt and drought stress. Finally, gene regulatory network analyses led to the identification of 41 gene targets for three TdR2R3-MYBs that represent novel candidates for functional analyses. This study provides a detailed description of durum wheat R2R3-MYB genes and contributes to a deeper understanding of the molecular response of durum wheat to unfavorable climate conditions.
Collapse
Affiliation(s)
- Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- *Correspondence: Emanuela Blanco,
| | - Pasquale Luca Curci
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- Pasquale Luca Curci,
| | - Andrea Manconi
- Institute of Biomedical Technologies, National Research Council (CNR), Milan, Italy
| | - Adele Sarli
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Diana Lucia Zuluaga
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- Gabriella Sonnante,
| |
Collapse
|
32
|
Li C, Wang K, Lei C, Cao S, Huang Y, Ji N, Xu F, Zheng Y. Alterations in Sucrose and Phenylpropanoid Metabolism Affected by BABA-Primed Defense in Postharvest Grapes and the Associated Transcriptional Mechanism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1250-1266. [PMID: 34410840 DOI: 10.1094/mpmi-06-21-0142-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Defense elicitors can induce fruit disease resistance to control postharvest decay but may incur quality impairment. Our present work aimed to investigate the resistance against Botrytis cinerea induced by the elicitor β-aminobutyric acid (BABA) and to elucidate the specific transcriptional mechanism implicated in defense-related metabolic regulations. The functional dissection results demonstrated that, after inoculation with the fungal necrotroph B. cinerea, a suite of critical genes encoding enzymes related to the sucrose metabolism and phenylpropanoid pathway in priming defense in grapes were transcriptionally induced by treatment with 10 mM BABA. In contrast, more UDP-glucose, a shared precursor of phenylpropanoid and sucrose metabolism, may be redirected to the phenylpropanoid pathway for the synthesis of phytoalexins, including trans-resveratrol and ɛ-viniferin, in 100 mM BABA-treated grapes, resulting in direct resistance but compromised soluble sugar contents. An R2R3-type MYB protein from Vitis vinifera, VvMYB44, was isolated and characterized. VvMYB44 expression was significantly induced upon the grapes expressed defensive reaction. Subcellular localization, yeast two-hybrid, and coimmunoprecipitation assays revealed that the nuclear-localized VvMYB44 physically interacted with the salicylic acid-responsive transcription coactivator NPR1 in vivo for defense expression. In addition, VvMYB44 directly bound to the promoter regions of sucrose and phenylpropanoid metabolism-related genes and transactivated their expression, thus tipping the balance of antifungal compound accumulation and soluble sugar maintenance. Hence, these results suggest that 2R-type VvMYB44 might be a potential positive participant in BABA-induced priming defense in grape berries that contributes to avoiding the excessive consumption of soluble sugars during the postharvest storage.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Chunhong Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Kaituo Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315211, China
| | - Yixiao Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
- College of Arts and Sciences, University of Miami, Coral Gables, FL 33143, U.S.A
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Feng Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| |
Collapse
|
33
|
Huang J, Chen F, Guo Y, Gan X, Yang M, Zeng W, Persson S, Li J, Xu W. GhMYB7 promotes secondary wall cellulose deposition in cotton fibres by regulating GhCesA gene expression through three distinct cis-elements. THE NEW PHYTOLOGIST 2021; 232:1718-1737. [PMID: 34245570 DOI: 10.1111/nph.17612] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Cotton fibre is the most important source for natural textiles. The secondary cell walls (SCWs) of mature cotton fibres contain the highest proportion of cellulose content (> 90%) in any plant. The onset and progression of SCW cellulose synthesis need to be tightly controlled to balance fibre elongation and cell wall deposition. However, regulatory mechanisms that control cellulose synthesis during cotton fibre growth remain elusive. Here, we conducted genetic and functional analyses demonstrating that the R2R3-MYB GhMYB7 controls cotton fibre cellulose synthesis. Overexpression of GhMYB7 in cotton sped up SCW cellulose biosynthesis in fibre cells, and led to shorter fibres with thicker walls. By contrast, RNA interference (RNAi) silencing of GhMYB7 delayed fibre SCW cellulose synthesis and resulted in elongated fibres with thinner walls. Furthermore, we demonstrated that GhMYB7 regulated cotton fibre SCW cellulose synthases by directly binding to three distinct cis-elements in the respective GhCesA4, GhCesA7 and GhCesA8 promoters. We found that this regulatory mechanism of cellulose synthesis was 'hi-jacked' also by other GhMYBs. Together, our findings uncover a hitherto-unknown mechanism that cotton fibre employs to regulate SCW cellulose synthesis. Our results also provide a strategy for genetic improvement of SCW thickness of cotton fibre.
Collapse
Affiliation(s)
- Junfeng Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Feng Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yanjun Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xinli Gan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Mingming Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Juan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wenliang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
34
|
Islam K, Rawoof A, Ahmad I, Dubey M, Momo J, Ramchiary N. Capsicum chinense MYB Transcription Factor Genes: Identification, Expression Analysis, and Their Conservation and Diversification With Other Solanaceae Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:721265. [PMID: 34721453 PMCID: PMC8548648 DOI: 10.3389/fpls.2021.721265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 05/27/2023]
Abstract
Myeloblastosis (MYB) genes are important transcriptional regulators of plant growth, development, and secondary metabolic biosynthesis pathways, such as capsaicinoid biosynthesis in Capsicum. Although MYB genes have been identified in Capsicum annuum, no comprehensive study has been conducted on other Capsicum species. We identified a total of 251 and 240 MYB encoding genes in Capsicum chinense MYBs (CcMYBs) and Capsicum baccatum MYBs (CbMYBs). The observation of twenty tandem and 41 segmental duplication events indicated expansion of the MYB gene family in the C. chinense genome. Five CcMYB genes, i.e., CcMYB101, CcMYB46, CcMYB6, CcPHR8, and CcRVE5, and two CaMYBs, i.e., CaMYB3 and CaHHO1, were found within the previously reported capsaicinoid biosynthesis quantitative trait loci. Based on phylogenetic analysis with tomato MYB proteins, the Capsicum MYBs were classified into 24 subgroups supported by conserved amino acid motifs and gene structures. Also, a total of 241 CcMYBs were homologous with 225 C. annuum, 213 C. baccatum, 125 potato, 79 tomato, and 23 Arabidopsis MYBs. Synteny analysis showed that all 251 CcMYBs were collinear with C. annuum, C. baccatum, tomato, potato, and Arabidopsis MYBs spanning over 717 conserved syntenic segments. Using transcriptome data from three fruit developmental stages, a total of 54 CcMYBs and 81 CaMYBs showed significant differential expression patterns. Furthermore, the expression of 24 CcMYBs from the transcriptome data was validated by quantitative real-time (qRT) PCR analysis. Eight out of the 24 CcMYBs validated by the qRT-PCR were highly expressed in fiery hot C. chinense than in the lowly pungent C. annuum. Furthermore, the co-expression analysis revealed several MYB genes clustered with genes from the capsaicinoid, anthocyanin, phenylpropanoid, carotenoid, and flavonoids biosynthesis pathways, and related to determining fruit shape and size. The homology modeling of 126 R2R3 CcMYBs showed high similarity with that of the Arabidopsis R2R3 MYB domain template, suggesting their potential functional similarity at the proteome level. Furthermore, we have identified simple sequence repeat (SSR) motifs in the CcMYB genes, which could be used in Capsicum breeding programs. The functional roles of the identified CcMYBs could be studied further so that they can be manipulated for Capsicum trait improvement.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilyas Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
35
|
Feng CZ, Luo YX, Wang PD, Gilliham M, Long Y. MYB77 regulates high-affinity potassium uptake by promoting expression of HAK5. THE NEW PHYTOLOGIST 2021; 232:176-189. [PMID: 34192362 DOI: 10.1111/nph.17589] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/22/2021] [Indexed: 05/25/2023]
Abstract
In Arabidopsis, the high-affinity K+ transporter HAK5 is the major pathway for root K+ uptake when below 100 µM; HAK5 responds to Low-K+ (LK) stress by strongly and rapidly increasing its expression during K+ -deficiency. Therefore, positive regulators of HAK5 expression have the potential to improve K+ uptake under LK. Here, we show that mutants of the transcription factor MYB77 share a LK-induced leaf chlorosis phenotype, lower K+ content, and lower Rb+ uptake of the hak5 mutant, but not the shorter root growth, and that overexpression of MYB77 enhanced K+ uptake and improved tolerance to LK stress. Furthermore, we demonstrated that MYB77 positively regulates the expression of HAK5, by binding to the HAK5 promoter and enhances high-affinity K+ uptake of roots. As such, our results reveal a novel pathway for enhancing HAK5 expression under LK stress, and provides a candidate for increasing the tolerance of plants to LK.
Collapse
Affiliation(s)
- Cui-Zhu Feng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yun-Xin Luo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Peng-Dan Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Yu Long
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
36
|
Liu X, Wu Z, Feng J, Yuan G, He L, Zhang D, Teng N. A Novel R2R3-MYB Gene LoMYB33 From Lily Is Specifically Expressed in Anthers and Plays a Role in Pollen Development. FRONTIERS IN PLANT SCIENCE 2021; 12:730007. [PMID: 34630475 PMCID: PMC8495421 DOI: 10.3389/fpls.2021.730007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Lily (Lilium spp.) is an important commercial flower crop, but its market popularity and applications are adversely affected by severe pollen pollution. Many studies have examined pollen development in model plants, but few studies have been conducted on flower crops such as lily. GAMYBs are a class of R2R3-MYB transcription factors and play important roles in plant development and biotic resistance; their functions vary in different pathways, and many of them are involved in anther development. However, their function and regulatory role in lily remain unclear. Here, the GAMYB homolog LoMYB33 was isolated and identified from lily. The open reading frame of LoMYB33 was 1620 bp and encoded a protein with 539 amino acids localized in the nucleus and cytoplasm. Protein sequence alignment showed that LoMYB33 contained a conserved R2R3 domain and three BOX motifs (BOX1, BOX2, and BOX3), which were unique to the GAMYB family. LoMYB33 had transcriptional activation activity, and its transactivation domain was located within 90 amino acids of the C-terminal. LoMYB33 was highly expressed during the late stages of anther development, especially in pollen. Analysis of the promoter activity of LoMYB33 in transgenic Arabidopsis revealed that the LoMYB33 promoter was highly activated in the pollen of stage 12 to 13 flowers. Overexpression of LoMYB33 in Arabidopsis significantly retarded growth; the excess accumulation of LoMYB33 also negatively affected normal anther development, which generated fewer pollen grains and resulted in partial male sterility in transgenic plants. Silencing of LoMYB33 in lily also greatly decreased the amount of pollen. Overall, our results suggested that LoMYB33 might play an important role in the anther development and pollen formation of lily.
Collapse
Affiliation(s)
- Xinyue Liu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jingxian Feng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guozhen Yuan
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ling He
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Muñoz-Gómez S, Suárez-Baron H, Alzate JF, González F, Pabón-Mora N. Evolution of the Subgroup 6 R2R3-MYB Genes and Their Contribution to Floral Color in the Perianth-Bearing Piperales. FRONTIERS IN PLANT SCIENCE 2021; 12:633227. [PMID: 33897722 PMCID: PMC8063865 DOI: 10.3389/fpls.2021.633227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 05/27/2023]
Abstract
Flavonoids, carotenoids, betalains, and chlorophylls are the plant pigments responsible for floral color. Anthocyanins, a class of flavonoids, are largely responsible for the red, purple, pink, and blue colors. R2R3-MYB genes belonging to subgroup 6 (SG6) are the upstream regulatory factors of the anthocyanin biosynthetic pathway. The canonical members of these genes in Arabidopsis include AtMYB75, AtMYB90, AtMYB113, and AtMYB114. The Aristolochiaceae is an angiosperm lineage with diverse floral groundplans and perianth colors. Saruma henryi exhibits a biseriate perianth with green sepals and yellow petals. All other genera have sepals only, with colors ranging from green (in Lactoris) to a plethora of yellow to red and purple mixtures. Here, we isolated and reconstructed the SG6 R2R3-MYB gene lineage evolution in angiosperms with sampling emphasis in Aristolochiaceae. We found numerous species-specific duplications of this gene lineage in core eudicots and local duplications in Aristolochiaceae for Saruma and Asarum. Expression of SG6 R2R3-MYB genes examined in different developmental stages and plant organs of four Aristolochiaceae species, largely overlaps with red and purple pigments, suggesting a role in anthocyanin and flavonoid synthesis and accumulation. A directed RNA-seq analysis corroborated our RT-PCR analyses, by showing that these structural enzymes activate during perianth development in Aristolochia fimbriata and that the regulatory genes are expressed in correlation with color phenotype. Finally, the reconstruction of the flavonoid and anthocyanin metabolic pathways using predicted peptides from transcriptomic data show that all pivotal enzymes are present in the analyzed species. We conclude that the regulatory genes as well as the biosynthetic pathway are largely conserved across angiosperms. In addition, the Aristolochiaceae emerges as a remarkable group to study the genetic regulatory network for floral color, as their members exhibit an outstanding floral diversity with elaborate color patterns and the genetic complement for SG6 R2R3-MYB genes is simpler than in core eudicot model species.
Collapse
Affiliation(s)
- Sarita Muñoz-Gómez
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Harold Suárez-Baron
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica – CNSG, Sede de Investigación Universitaria, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Favio González
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Instituto de Ciencias Naturales, Bogotá, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
38
|
Xiao R, Zhang C, Guo X, Li H, Lu H. MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis during Xylem Development. Int J Mol Sci 2021; 22:3560. [PMID: 33808132 PMCID: PMC8037110 DOI: 10.3390/ijms22073560] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/12/2023] Open
Abstract
The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.
Collapse
Affiliation(s)
- Ruixue Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Chong Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Xiaorui Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| |
Collapse
|
39
|
Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M, Chiang VL, Sederoff RR, Zhao X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int J Mol Sci 2021; 22:3103. [PMID: 33803587 PMCID: PMC8002911 DOI: 10.3390/ijms22063103] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health.
Collapse
Affiliation(s)
- Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiaona Pei
- Harbin Research Institute of Forestry Machinery, State Administration of Forestry and Grassland, Harbin 150086, China;
- Research Center of Cold Temperate Forestry, CAF, Harbin 150086, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Ross Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| |
Collapse
|
40
|
Genome-wide analysis of general phenylpropanoid and monolignol-specific metabolism genes in sugarcane. Funct Integr Genomics 2021; 21:73-99. [PMID: 33404914 DOI: 10.1007/s10142-020-00762-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Lignin is the main component of secondary cell walls and is essential for plant development and defense. However, lignin is recognized as a major recalcitrant factor for efficiency of industrial biomass processing. Genes involved in general phenylpropanoid and monolignol-specific metabolism in sugarcane have been previously analyzed at the transcriptomic level. Nevertheless, the number of genes identified in this species is still very low. The recently released sugarcane genome sequence has allowed the genome-wide characterization of the 11 gene families involved in the monolignol biosynthesis branch of the phenylpropanoid pathway. After an exhaustive analysis of sugarcane genomes, 438 haplotypes derived from 175 candidate genes from Saccharum spontaneum and 144 from Saccharum hybrid R570 were identified as associated with this biosynthetic route. The phylogenetic analyses, combined with the search for protein conserved residues involved in the catalytic activity of the encoded enzymes, were employed to identify the family members potentially involved in developmental lignification. Accordingly, 15 candidates were identified as bona fide lignin biosynthesis genes: PTAL1, PAL2, C4H4, 4CL1, HCT1, HCT2, C3'H1, C3'H2, CCoAOMT1, COMT1, F5H1, CCR1, CCR2, CAD2, and CAD7. For this core set of lignin biosynthetic genes, we searched for the chromosomal location, the gene expression pattern, the promoter cis-acting elements, and microRNA targets. Altogether, our results present a comprehensive characterization of sugarcane general phenylpropanoid and monolignol-specific genes, providing the basis for further functional studies focusing on lignin biosynthesis manipulation and biotechnological strategies to improve sugarcane biomass utilization.
Collapse
|
41
|
Qin W, Xie L, Li Y, Liu H, Fu X, Chen T, Hassani D, Li L, Sun X, Tang K. An R2R3-MYB Transcription Factor Positively Regulates the Glandular Secretory Trichome Initiation in Artemisia annua L. FRONTIERS IN PLANT SCIENCE 2021; 12:657156. [PMID: 33897745 PMCID: PMC8063117 DOI: 10.3389/fpls.2021.657156] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 05/21/2023]
Abstract
Artemisia annua L. is known for its specific product "artemisinin" which is an active ingredient for curing malaria. Artemisinin is secreted and accumulated in the glandular secretory trichomes (GSTs) on A. annua leaves. Earlier studies have shown that increasing GST density is effective in increasing artemisinin content. However, the mechanism of GST initiation is not fully understood. To this end, we isolated and characterized an R2R3-MYB gene, AaMYB17, which is expressed specifically in the GSTs of shoot tips. Overexpression of AaMYB17 in A. annua increased GST density and enhanced the artemisinin content, whereas RNA interference of AaMYB17 resulted in the reduction of GST density and artemisinin content. Additionally, neither overexpression lines nor RNAi lines showed an abnormal phenotype in plant growth and the morphology of GSTs. Our study demonstrates that AaMYB17 is a positive regulator of GSTs' initiation, without influencing the trichome morphology.
Collapse
|
42
|
Luján MA, Soria-García Á, Claver A, Lorente P, Rubio MC, Picorel R, Alfonso M. Different Cis-Regulatory Elements Control the Tissue-Specific Contribution of Plastid ω-3 Desaturases to Wounding and Hormone Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:727292. [PMID: 34777414 PMCID: PMC8578140 DOI: 10.3389/fpls.2021.727292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/04/2021] [Indexed: 05/13/2023]
Abstract
Trienoic fatty acids are essential constituents of biomembranes and precursors of jasmonates involved in plant defense responses. Two ω-3 desaturases, AtFAD7 and AtFAD8, synthetize trienoic fatty acids in the plastid. Promoter:GUS and mutagenesis analysis was used to identify cis-elements controlling AtFAD7 and AtFAD8 basal expression and their response to hormones or wounding. AtFAD7 promoter GUS activity was much higher than that of AtFAD8 in leaves, with specific AtFAD7 expression in the flower stamen and pistil and root meristem and vasculature. This specific tissue and organ expression of AtFAD7 was controlled by different cis-elements. Thus, promoter deletion and mutagenesis analysis indicated that WRKY proteins might be essential for basal expression of AtFAD7 in leaves. Two MYB target sequences present in the AtFAD7 promoter might be responsible for its expression in the flower stamen and stigma of the pistil and in the root meristem, and for the AtFAD7 wound-specific response. Two MYB target sequences detected in the distal region of the AtFAD8 gene promoter seemed to negatively control AtFAD8 expression, particularly in true leaves and flowers, suggesting that MYB transcription factors act as repressors of AtFAD8 gene basal expression, modulating the different relative abundance of both plastid ω-3 desaturases at the transcriptional level. Our data showed that the two ABA repression sequences detected in the AtFAD7 promoter were functional, suggesting an ABA-dependent mechanism involved in the different regulation of both ω-3 plastid desaturases. These results reveal the implication of different signaling pathways for the concerted regulation of trienoic fatty acid content in Arabidopsis.
Collapse
|
43
|
Zhang L, Jiang X, Liu Q, Ahammed GJ, Lin R, Wang L, Shao S, Yu J, Zhou Y. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway. PLANT, CELL & ENVIRONMENT 2020; 43:2712-2726. [PMID: 32799321 DOI: 10.1111/pce.13868] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 05/25/2023]
Abstract
The induction of C-repeat binding factors (CBFs) is crucial for plant survival at low temperatures. Therefore, understanding the mechanisms that regulate CBF transcription is vital for the future development of crops with increased cold tolerance. Here, we provide evidence for the existence of a LONG HYPOCOTYL 5 (HY5)-MYB15-CBFs transcriptional cascade that plays a crucial role in the cold response in tomato. The exposure of tomato plants to cold (4°C) increased the levels of HY5, MYB15 and CBFs transcripts. Moreover, mutations in HY5 or MYB15 decreased the levels of CBF transcripts. In contrast, overexpression of HY5 or MYB15 increased CBF transcript abundance. Crucially, the HY5 transcription factor activated the expression of MYB15 by directly binding to the promoter region, while both HY5 and MYB15 activated the expression of CBF1, CBF2 and CBF3. Taken together, these data show that HY5 can directly regulate CBF transcript levels, and also influence CBF expression indirectly via MYB15. The coordinated action of HY5 and MYB15 allows precise regulation of CBF expression and subsequent cold tolerance. These findings provide an improved understanding of the molecular mechanisms affording transcriptional regulation of CBFs, which can be exploited in the future to enhance cold tolerance in crops.
Collapse
Affiliation(s)
- Luyue Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Xiaochun Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Qianying Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Golam Jalal Ahammed
- Department of Horticulture, College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Lingyu Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Shujun Shao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Plant Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| |
Collapse
|
44
|
Qi Y, Zhou L, Han L, Zou H, Miao K, Wang Y. PsbHLH1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:396-408. [PMID: 32645590 DOI: 10.1016/j.plaphy.2020.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Flower color is one of the most important features of ornamental plants. Anthocyanin composition and concentration are usually closely related to flower color formation. The biosynthesis of anthocyanin is regulated by a series of structural genes and regulatory genes. The basic helix-loop-helix proteins (bHLHs) are considered as one of the key transcription factors known as the regulators of anthocyanin biosynthesis. However, the bHLH transcription factor family of tree peony (Paeonia suffruticosa) has not been systematically studied in previous studies, especially for the regulation of petal pigmentation. The aim of this study was to identify bHLH genes and unravel their underlying molecular mechanism involved in the regulation of anthocyanin biosynthesis in tree peony. Based on transcriptome profiling analysis, we identified three bHLHs candidate anthocyanin regulators, PsbHLH1, PsbHLH2, and PsbHLH3. PsbHLH1-3 were phylogenetically clustered in the IIIf bHLH subgroup, which is involved in anthocyanin biosynthesis in other plant species. In addition, three bHLH proteins were localized in the nucleus and displayed transcriptional activation activity in a yeast hybrid system. Through a series of functional experiments, we further demonstrated that PsbHLH1 could transcriptionally activate the expression of PsDFR and PsANS via directly binding to their promoters. These results laid a solid foundation to better understand the regulatory mechanisms of anthocyanin biosynthesis in P. suffruticosa and to benefit molecular breeding of tree peony cultivars with novel color.
Collapse
Affiliation(s)
- Yu Qi
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lulu Han
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hongzhu Zou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Kun Miao
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
45
|
Xia X. Beyond Trees: Regulons and Regulatory Motif Characterization. Genes (Basel) 2020; 11:genes11090995. [PMID: 32854400 PMCID: PMC7564462 DOI: 10.3390/genes11090995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Trees and their seeds regulate their germination, growth, and reproduction in response to environmental stimuli. These stimuli, through signal transduction, trigger transcription factors that alter the expression of various genes leading to the unfolding of the genetic program. A regulon is conceptually defined as a set of target genes regulated by a transcription factor by physically binding to regulatory motifs to accomplish a specific biological function, such as the CO-FT regulon for flowering timing and fall growth cessation in trees. Only with a clear characterization of regulatory motifs, can candidate target genes be experimentally validated, but motif characterization represents the weakest feature of regulon research, especially in tree genetics. I review here relevant experimental and bioinformatics approaches in characterizing transcription factors and their binding sites, outline problems in tree regulon research, and demonstrate how transcription factor databases can be effectively used to aid the characterization of tree regulons.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
46
|
Yang Z, Li Y, Gao F, Jin W, Li S, Kimani S, Yang S, Bao T, Gao X, Wang L. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4140-4158. [PMID: 32275056 DOI: 10.1093/jxb/eraa184] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 05/09/2023]
Abstract
Previously, linalool was found to be the most abundant component among the cocktail of volatiles released from flowers of Freesia hybrida. Linalool formation is catalysed by monoterpene synthase TPS1. However, the regulatory network developmentally modulating the expression of the TPS1 gene in Freesia hybrida remains unexplored. In this study, three regulatory genes, FhMYB21L1, FhMYB21L2, and FhMYC2, were screened from 52 candidates. Two MYB transcription factor genes were synchronously expressed with FhTPS1 and could activate its expression significantly when overexpressed, and the binding of FhMYB21L2 to the MYBCORE sites in the FhTPS1 promoter was further confirmed, indicating a direct role in activation. FhMYC2 showed an inverse expression pattern compared with FhTPS1; its expression led to a decreased binding of FhMYB21 to the FhTPS1 promoter to reduce its activation capacity when co-expressed, suggesting a role for an MYB-bHLH complex in the regulation of the FhTPS1 gene. In Arabidopsis, both MYB21 and MYC2 regulators were shown to activate the expression of sesquiterpene synthase genes, and the regulatory roles of AtMYB21 and AtMYC2 in the expression of the linalool synthase gene were also confirmed, implying conserved functions of the MYB-bHLH complex in these two evolutionarily divergent plants. Moreover, the expression ratio between MYB21 and MYC2 orthologues might be a determinant factor in floral linalool emission.
Collapse
Affiliation(s)
- Zhongzhou Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Fengzhan Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Wei Jin
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Shuying Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Shadrack Kimani
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Department of Biological and Physical Sciences, Karatina University, Karatina, Kenya
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
47
|
Yu C, Luo X, Zhang C, Xu X, Huang J, Chen Y, Feng S, Zhan X, Zhang L, Yuan H, Zheng B, Wang H, Shen C. Tissue-specific study across the stem of Taxus media identifies a phloem-specific TmMYB3 involved in the transcriptional regulation of paclitaxel biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:95-110. [PMID: 31999384 DOI: 10.1111/tpj.14710] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 05/24/2023]
Abstract
Taxus stem barks can be used for extraction of paclitaxel. However, the composition of taxoids across the whole stem and the stem tissue-specificity of paclitaxel biosynthesis-related enzymes remain largely unknown. We used cultivated Taxus media trees for analyses of the chemical composition and protein of major stem tissues by an integrated metabolomic and proteomic approach, and the role of TmMYB3 in paclitaxel biosynthesis was investigated. The metabolomic landscape analysis showed differences in stem tissue-specific accumulation of metabolites. Phytochemical analysis revealed that there is high accumulation of paclitaxel in the phloem. Ten key enzymes involved in paclitaxel biosynthesis were identified, most of which are predominantly produced in the phloem. The full-length sequence of TmMYB3 and partial promoter sequences of five paclitaxel biosynthesis-related genes were isolated. Several MYB recognition elements were found in the promoters of TBT, DBTNBT and TS. Further in vitro and in vivo investigations indicated that TmMYB3 is involved in paclitaxel biosynthesis by activating the expression of TBT and TS. Differences in the taxoid composition of different stem tissues suggest that the whole stem of T. media has potential for biotechnological applications. Phloem-specific TmMYB3 plays a role in the transcriptional regulation of paclitaxel biosynthesis, and may explain the phloem-specific accumulation of paclitaxel.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chengchao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinyun Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiefang Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yueyue Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Hangzhou, 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Hangzhou, 311300, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
48
|
Barco B, Clay NK. Hierarchical and Dynamic Regulation of Defense-Responsive Specialized Metabolism by WRKY and MYB Transcription Factors. FRONTIERS IN PLANT SCIENCE 2020; 10:1775. [PMID: 32082343 PMCID: PMC7005594 DOI: 10.3389/fpls.2019.01775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/19/2019] [Indexed: 05/07/2023]
Abstract
The plant kingdom produces hundreds of thousands of specialized bioactive metabolites, some with pharmaceutical and biotechnological importance. Their biosynthesis and function have been studied for decades, but comparatively less is known about how transcription factors with overlapping functions and contrasting regulatory activities coordinately control the dynamics and output of plant specialized metabolism. Here, we performed temporal studies on pathogen-infected intact host plants with perturbed transcription factors. We identified WRKY33 as the condition-dependent master regulator and MYB51 as the dual functional regulator in a hierarchical gene network likely responsible for the gene expression dynamics and metabolic fluxes in the camalexin and 4-hydroxy-indole-3-carbonylnitrile (4OH-ICN) pathways. This network may have also facilitated the regulatory capture of the newly evolved 4OH-ICN pathway in Arabidopsis thaliana by the more-conserved transcription factor MYB51. It has long been held that the plasticity of plant specialized metabolism and the canalization of development should be differently regulated; our findings imply a common hierarchical regulatory architecture orchestrated by transcription factors for specialized metabolism and development, making it an attractive target for metabolic engineering.
Collapse
Affiliation(s)
| | - Nicole K. Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
49
|
Li W, Liu Y, Zhao J, Zhen X, Guo C, Shu Y. Genome-wide identification and characterization of R2R3-MYB genes in Medicago truncatula. Genet Mol Biol 2019; 42:611-623. [PMID: 31188936 PMCID: PMC6905446 DOI: 10.1590/1678-4685-gmb-2018-0235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/28/2018] [Indexed: 11/22/2022] Open
Abstract
MYB is a large family of plant transcription factors. Its function has been identified in several plants, while there are few reports in Medicago truncatula. In this study, we used RNA-seq data to analyze and identify R2R3-MYB genes in the genome of Medicago truncatula. Phylogenetic analysis classified 150 MtMYB genes into 21 subfamilies with homologs. Out of the 150 MtMYB genes, 139 were distributed among 8 chromosomes, with tandem duplications (TD) and segment duplications (SD). Microarray data were used for functional analysis of the MtMYB genes during growth and developmental processes providing evidence for a role in tissues differentiation, seed development processes, and especially the nodulation process. Furthermore, we investigated the expression of MtMYB genes in response to abiotic stresses using RNA-seq data, which confirmed the critical roles in signal transduction and regulation processes under abiotic stress. We used quantitative real-time PCR (qRT-PCR) to validate expression profiles. The expression pattern of M. truncatula MYB genes under different abiotic stress conditions suggest that some may play a major role in cross-talk among different signal transduction pathways in response to abiotic stresses. Our study will serve as a foundation for future research into the molecular function of M. truncatula R2R3-MYB genes.
Collapse
Affiliation(s)
- Wei Li
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Ying Liu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Jinyue Zhao
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Xin Zhen
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Changhong Guo
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Yongjun Shu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| |
Collapse
|
50
|
Pi E, Xu J, Li H, Fan W, Zhu C, Zhang T, Jiang J, He L, Lu H, Wang H, Poovaiah BW, Du L. Enhanced Salt Tolerance of Rhizobia-inoculated Soybean Correlates with Decreased Phosphorylation of the Transcription Factor GmMYB183 and Altered Flavonoid Biosynthesis. Mol Cell Proteomics 2019; 18:2225-2243. [PMID: 31467032 PMCID: PMC6823849 DOI: 10.1074/mcp.ra119.001704] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 01/15/2023] Open
Abstract
Soybean (Glycine max (L.) Merrill) is an important component of the human diet and animal feed, but soybean production is limited by abiotic stresses especially salinity. We recently found that rhizobia inoculation enhances soybean tolerance to salt stress, but the underlying mechanisms are unaddressed. Here, we used quantitative phosphoproteomic and metabonomic approaches to identify changes in phosphoproteins and metabolites in soybean roots treated with rhizobia inoculation and salt. Results revealed differential regulation of 800 phosphopeptides, at least 32 of these phosphoproteins or their homologous were reported be involved in flavonoid synthesis or trafficking, and 27 out of 32 are transcription factors. We surveyed the functional impacts of all these 27 transcription factors by expressing their phospho-mimetic/ablative mutants in the roots of composite soybean plants and found that phosphorylation of GmMYB183 could affect the salt tolerance of the transgenic roots. Using data mining, ChIP and EMSA, we found that GmMYB183 binds to the promoter of the soybean GmCYP81E11 gene encoding for a Cytochrome P450 monooxygenase which contributes to the accumulation of ononin, a monohydroxy B-ring flavonoid that negatively regulates soybean tolerance to salinity. Phosphorylation of GmMYB183 was inhibited by rhizobia inoculation; overexpression of GmMYB183 enhanced the expression of GmCYP81E11 and rendered salt sensitivity to the transgenic roots; plants deficient in GmMYB183 function are more tolerant to salt stress as compared with wild-type soybean plants, these results correlate with the transcriptional induction of GmCYP81E11 by GmMYB183 and the subsequent accumulation of ononin. Our findings provide molecular insights into how rhizobia enhance salt tolerance of soybean plants.
Collapse
Affiliation(s)
- Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants.
| | - Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Huihui Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Wei Fan
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, PR China
| | - Chengmin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Tongyao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Jiachen Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Litao He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Hongfei Lu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - B W Poovaiah
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants.
| |
Collapse
|