1
|
Volná A, Červeň J, Nezval J, Pech R, Špunda V. Bridging the Gap: From Photoperception to the Transcription Control of Genes Related to the Production of Phenolic Compounds. Int J Mol Sci 2024; 25:7066. [PMID: 39000174 PMCID: PMC11241081 DOI: 10.3390/ijms25137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jakub Nezval
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Radomír Pech
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Vladimír Špunda
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| |
Collapse
|
2
|
Fiscus CJ, Herniter IA, Tchamba M, Paliwal R, Muñoz-Amatriaín M, Roberts PA, Abberton M, Alaba O, Close TJ, Oyatomi O, Koenig D. The pattern of genetic variability in a core collection of 2,021 cowpea accessions. G3 (BETHESDA, MD.) 2024; 14:jkae071. [PMID: 38708794 DOI: 10.1093/g3journal/jkae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024]
Abstract
Cowpea is a highly drought-adapted leguminous crop with great promise for improving agricultural sustainability and food security. Here, we report analyses derived from array-based genotyping of 2,021 accessions constituting a core subset of the world's largest cowpea collection, held at the International Institute of Tropical Agriculture (IITA) in Ibadan, Nigeria. We used this dataset to examine genetic variation and population structure in worldwide cowpea. We confirm that the primary pattern of population structure is two geographically defined subpopulations originating in West and East Africa, respectively, and that population structure is associated with shifts in phenotypic distribution. Furthermore, we establish the cowpea core collection as a resource for genome-wide association studies by mapping the genetic basis of several phenotypes, with a focus on seed coat pigmentation patterning and color. We anticipate that the genotyped IITA Cowpea Core Collection will serve as a powerful tool for mapping complex traits, facilitating the acceleration of breeding programs to enhance the resilience of this crop in the face of rapid global climate change.
Collapse
Affiliation(s)
- Christopher J Fiscus
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Ira A Herniter
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Marimagne Tchamba
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Rajneesh Paliwal
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | | | - Philip A Roberts
- Department of Nematology, University of California, Riverside, Riverside, CA 92521, USA
| | - Michael Abberton
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Oluwafemi Alaba
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Timothy J Close
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Olaniyi Oyatomi
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Daniel Koenig
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
4
|
Qian X, Zheng W, Hu J, Ma J, Sun M, Li Y, Liu N, Chen T, Wang M, Wang L, Hou X, Cai Q, Ye Z, Zhang F, Zhu Z. Identification and Expression Analysis of DFR Gene Family in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2023; 12:2583. [PMID: 37447144 DOI: 10.3390/plants12132583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Dihydroflavonol 4-reductase (DFR) is a key enzyme in the flavonoid biosynthetic pathway and is essential for the formation of plants' color. In this study, 26 BnDFR genes were identified using 6 Arabidopsis DFR genes as reference. The physicochemical properties, subcellular localization, and conserved structure of BnDFR proteins were analyzed; the evolutionary relationship, collinearity analysis, and expression characteristics of BnDFR genes were studied; and the correlation between the expression level of BnDFR genes and anthocyanin content in rape petals were analyzed. The results showed that the 26 BnDFRs were located in chloroplasts, cytoplasm, nuclei, and mitochondria, distributed on 17 chromosomes, and divided into 4 groups; members of the same group have a similar function, which may be related to the environmental response elements and plant hormone response elements. Intraspecific collinearity analysis showed 51 pairs of collinear genes, and interspecific collinearity analysis showed 30 pairs of collinear genes. Analysis of the expression levels of BnDFRs and anthocyanin content in different color rape petals showed that BnDFR6 and BnDFR26 might play an important role in the synthesis of anthocyanins in rape petals. This provides theoretical guidance for further analysis of the anthocyanin anabolism mechanism involved in the DFR gene in Brassica napus.
Collapse
Affiliation(s)
- Xingzhi Qian
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wenyin Zheng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jian Hu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jinxu Ma
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Mengyuan Sun
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yong Li
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Nian Liu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Tianhua Chen
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Meiqi Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Ling Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Xinzhe Hou
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Qingao Cai
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Zhaoshun Ye
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Fugui Zhang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Zonghe Zhu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Development of a simple multiple mutation detection system using seed-coat flavonoid pigments in irradiated Arabidopsis M 1 plants. Sci Rep 2022; 12:22467. [PMID: 36577797 PMCID: PMC9797493 DOI: 10.1038/s41598-022-26989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Ionizing radiation induces genetic variations in plants, which makes it useful for plant breeding. A theory that the induced mutations occur randomly in the genome has long been accepted, but is now controversial. Nevertheless, a comparative analysis of the mutations at multiple loci has not been conducted using irradiated M1 genomes that contain all types of mutations. In this study, we identified Arabidopsis mutants (pab2 and pab3) in a mutagenized population of an anthocyanin-positive seed mutant (ban). Both pab2 and pab3 were revealed to be double mutants (tt4 ban and tt8 ban, respectively) that produced similar anthocyanin-less immature seeds, but differentially colored mature seeds. These features enabled the seed color-based detection of de novo M1 mutations in TT4 or TT8 following the irradiation of double heterozygous plants (TT4/tt4 TT8/tt8 ban/ban). Most of the irradiated double heterozygous plants produced anthocyanin-positive immature seeds, but 19 plants produced anthocyanin-less immature seeds. Of these 19 mutants, 2 and 17 exhibited tt4- and tt8-type mature seed coloration, respectively. The molecular analysis of the seed coat DNA from randomly selected anthocyanin-less seeds detected mutations at the locus predicted on the basis of the phenotype. Thus, the simple system developed in this study can reliably detect radiation-induced mutations at multiple loci in irradiated Arabidopsis M1 plants.
Collapse
|
6
|
Islam NS, Duwadi K, Chen L, Pajak A, McDowell T, Marsolais F, Dhaubhadel S. Global analysis of common bean multidrug and toxic compound extrusion transporters (PvMATEs): PvMATE8 and pinto bean seed coat darkening. FRONTIERS IN PLANT SCIENCE 2022; 13:1046597. [PMID: 36438155 PMCID: PMC9686396 DOI: 10.3389/fpls.2022.1046597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In common bean (Phaseolus vulgaris L.), postharvest seed coat darkening is an undesirable trait that affects crop value. The increased accumulation of proanthocyanidins (PAs) in the seed coat results in darker seeds in many market classes of colored beans after harvest. The precursors of PAs are synthesized in the cytoplasm, and subsequently get glycosylated and then transported to the vacuoles where polymerization occurs. Thus, vacuolar transporters play an important role in the accumulation of PAs. Here, we report that common bean genome contains 59 multidrug and toxic compound extrusion genes (PvMATEs). Phylogenetic analysis of putative PvMATEs with functionally characterized MATEs from other plant species categorized them into substrate-specific clades. Our data demonstrate that a vacuolar transporter PvMATE8 is expressed at a higher level in the pinto bean cultivar CDC Pintium (regular darkening) compared to 1533-15 (slow darkening). PvMATE8 localizes in the vacuolar membrane and rescues the PA deficient (tt12) mutant phenotype in Arabidopsis thaliana. Analysis of PA monomers in transgenic seeds together with wild-type and mutants suggests a possible feedback regulation of PA biosynthesis and accumulation. Identification of PvMATE8 will help better understand the mechanism of PA accumulation in common bean.
Collapse
Affiliation(s)
- Nishat S. Islam
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Kishor Duwadi
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ling Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Aga Pajak
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
Jeon JS, Rybka D, Carreno-Quintero N, De Vos R, Raaijmakers JM, Etalo DW. Metabolic signatures of rhizobacteria-induced plant growth promotion. PLANT, CELL & ENVIRONMENT 2022; 45:3086-3099. [PMID: 35751418 DOI: 10.1111/pce.14385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Various root-colonizing bacterial species can promote plant growth and trigger systemic resistance against aboveground leaf pathogens and herbivore insects. To date, the underlying metabolic signatures of these rhizobacteria-induced plant phenotypes are poorly understood. To identify core metabolic pathways that are targeted by growth-promoting rhizobacteria, we used combinations of three plant species and three rhizobacterial species and interrogated plant shoot chemistry by untargeted metabolomics. A substantial part (50%-64%) of the metabolites detected in plant shoot tissue was differentially affected by the rhizobacteria. Among others, the phenylpropanoid pathway was targeted by the rhizobacteria in each of the three plant species. Differential regulation of the various branches of the phenylpropanoid pathways showed an association with either plant growth promotion or growth reduction. Overall, suppression of flavonoid biosynthesis was associated with growth promotion, while growth reduction showed elevated levels of flavonoids. Subsequent assays with 12 Arabidopsis flavonoid biosynthetic mutants revealed that the proanthocyanidin branch plays an essential role in rhizobacteria-mediated growth promotion. Our study also showed that a number of pharmaceutically and nutritionally relevant metabolites in the plant shoot were significantly increased by rhizobacterial treatment, providing new avenues to use rhizobacteria to tilt plant metabolism towards the biosynthesis of valuable natural plant products.
Collapse
Affiliation(s)
- Je-Seung Jeon
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Dominika Rybka
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
| | - Natalia Carreno-Quintero
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- KeyGene, Wageningen, The Netherlands
| | - Ric De Vos
- Wageningen Plant Research, Bioscience, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Zhang B, Yang H, Qu D, Zhu Z, Yang Y, Zhao Z. The MdBBX22-miR858-MdMYB9/11/12 module regulates proanthocyanidin biosynthesis in apple peel. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1683-1700. [PMID: 35527510 PMCID: PMC9398380 DOI: 10.1111/pbi.13839] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
Proanthocyanidins (PAs) have antioxidant properties and are beneficial to human health. The fruit of apple (Malus × domestica Borkh.), especially the peel, is rich in various flavonoids, such as PAs, and thus is an important source of dietary antioxidants. Previous research on the regulation of PAs in apple has mainly focussed on the transcription level, whereas studies conducted at the post-transcriptional level are relatively rare. In this study, we investigated the function of mdm-miR858, a miRNA with multiple functions in plant development, in the peel of apple fruit. We showed that mdm-miR858 negatively regulated PA accumulation by targeting MdMYB9/11/12 in the peel. During fruit development, mdm-miR858 expression was negatively correlated with MdMYB9/11/12 expression and PA accumulation. A 5'-RACE experiment, GUS staining assays and transient luminescent assays indicated that mdm-miR858 cleaved and inhibited the expression of MdMYB9/11/12. Overexpression of mdm-miR858 in apple calli, tobacco and Arabidopsis reduced the accumulation of PAs induced by overexpression of MdMYB9/11/12. Furthermore, we found that MdBBX22 bound to the mdm-miR858 promoter and induced its expression. Overexpression of MdBBX22 induced the expression of mdm-miR858 to inhibit the accumulation of PAs in apple calli overexpressing MdMYB9/11/12. Under light stress, MdBBX22 induced mdm-miR858 expression to inhibit PA accumulation and thereby indirectly enhanced anthocyanin synthesis in the peel. The present results revealed that the MdBBX22-miR858-MdMYB9/11/12 module regulates PA accumulation in apple. The findings provide a reference for further studies of the regulatory mechanism of PA accumulation and the relationship between PAs and anthocyanins.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Hui‐Juan Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Dong Qu
- Shaanxi Key Laboratory Bio‐resourcesCollege of Bioscience and EngineeringShaanxi University of TechnologyHanzhongShaanxiChina
| | - Zhen‐Zhen Zhu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Ya‐Zhou Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Zheng‐Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| |
Collapse
|
9
|
Li C, Yang J, Yang K, Wu H, Chen H, Wu Q, Zhao H. Tartary buckwheat FtF3'H1 as a metabolic branch switch to increase anthocyanin content in transgenic plant. FRONTIERS IN PLANT SCIENCE 2022; 13:959698. [PMID: 36092410 PMCID: PMC9452690 DOI: 10.3389/fpls.2022.959698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Tartary buckwheat (TB) is a pseudocereal rich in flavonoids, mainly including flavonols and anthocyanins. The flavonoid 3'-hydroxylase (F3'H) is a key enzyme in flavonoid biosynthesis and is encoded by two copies in TB genome. However, its biological function and effects on flavonol and anthocyanin synthesis in TB have not been well validated yet. In this study, we cloned the full-length FtF3'H1 gene highly expressed in all tissues (compared with FtF3'H2) according to TB flowering transcriptome data. The corresponding FtF3'H1 protein contains 534 amino acids with the molecular properties of the typical plant F3'H and belongs to the CYP75B family. During the flowering stage, the FtF3'H1 expression was highest in flowers, and its expression pattern showed a significant and positive correlation with the total flavonoids (R 2 > 0.95). The overexpression of FtF3'H1 in Arabidopsis thaliana, Nicotiana tabacum and TB hairy roots resulted in a significant increase in anthocyanin contents (p < 0.05) but a decrease in rutin (p < 0.05). The average anthocyanin contents were 2.94 mg/g (fresh weight, FW) in A. thaliana (about 135% increase), 1.18 mg/g (FW) in tobacco (about 17% increase), and 1.56 mg/g (FW) TB hairy roots (about 44% increase), and the rutin contents were dropped to about 53.85, 14.99, 46.31%, respectively. However, the expression of genes involved in anthocyanin (DFRs and ANSs) and flavonol (FLSs) synthesis pathways were significantly upregulated (p < 0.05). In particular, the expression level of DFR, a key enzyme that enters the anthocyanin branch, was upregulated thousand-fold in A. thaliana and in N. tabacum. These results might be attributed to FtF3'H1 protein with a higher substrate preference for anthocyanin synthesis substrates. Altogether, we identified the basic biochemical activity of FtF3'H1 in vivo and investigated its involvement in anthocyanin and flavonol metabolism in plant.
Collapse
|
10
|
Farooq MA, Ma W, Shen S, Gu A. Underlying Biochemical and Molecular Mechanisms for Seed Germination. Int J Mol Sci 2022; 23:ijms23158502. [PMID: 35955637 PMCID: PMC9369107 DOI: 10.3390/ijms23158502] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
With the burgeoning population of the world, the successful germination of seeds to achieve maximum crop production is very important. Seed germination is a precise balance of phytohormones, light, and temperature that induces endosperm decay. Abscisic acid and gibberellins—mainly with auxins, ethylene, and jasmonic and salicylic acid through interdependent molecular pathways—lead to the rupture of the seed testa, after which the radicle protrudes out and the endosperm provides nutrients according to its growing energy demand. The incident light wavelength and low and supra-optimal temperature modulates phytohormone signaling pathways that induce the synthesis of ROS, which results in the maintenance of seed dormancy and germination. In this review, we have summarized in detail the biochemical and molecular processes occurring in the seed that lead to the germination of the seed. Moreover, an accurate explanation in chronological order of how phytohormones inside the seed act in accordance with the temperature and light signals from outside to degenerate the seed testa for the thriving seed’s germination has also been discussed.
Collapse
|
11
|
Genome-wide identification of R2R3-MYB gene family and association with anthocyanin biosynthesis in Brassica species. BMC Genomics 2022; 23:441. [PMID: 35701743 PMCID: PMC9199147 DOI: 10.1186/s12864-022-08666-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Brassica species include important oil crops and vegetables in the world. The R2R3-MYB gene participates in a variety of plant functions, including the activation or inhibition of anthocyanin biosynthesis. Although previous studies have reported its phylogenetic relationships, gene structures, and expression patterns in Arabidopsis, the number and sequence variation of this gene family in Brassica crops and its involvement in the natural quantitative variation in anthocyanin biosynthesis regulation are still largely unknown. In this study, by using whole genome sequences and comprehensive genome-wide comparative analysis among the six cultivated Brassica species, 2120 R2R3-MYB genes were identified in six Brassica species, in total These R2R3-MYB genes were phylogenetically clustered into 12 groups. The R2R3-MYB family between A and C subgenomes showed better collinearity than between B and C and between A and B. From comparing transcriptional changes of five Brassica species with the purple and green leaves for the detection of the R2R3-MYB genes associated with anthocyanin biosynthesis, 7 R2R3-MYB genes were co-differentially expressed. The promoter and structure analysis of these genes showed that some variations between non-coding region, but they were highly conserved at the protein level and spatial structure. Co-expression analysis of anthocyanin-related genes and R2R3-MYBs indicated that MYB90 was strongly co-expressed with TT8, and they were co-expressed with structural genes F3H, LDOX, ANS and UF3GT at the same time. These results further clarified the roles of the R2R3-MYBs for leaf coloration in Brasica species, which provided new insights into the functions of the R2R3-MYB gene family in Brasica species.
Collapse
|
12
|
Li F, Jia Y, Zhou S, Chen X, Xie Q, Hu Z, Chen G. SlMBP22 overexpression in tomato affects flower morphology and fruit development. JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153687. [PMID: 35378388 DOI: 10.1016/j.jplph.2022.153687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
MADS-domain transcription factors have been identified as key regulators involved in proper flower and fruit development in angiosperms. As members of the MADS-box subfamily, Bsister (Bs) genes have been observed to play an important role during the evolution of the reproductive organs in seed plants. However, their effects on reproductive development in fruit crops, such as tomato (Solanum lycopersicum), remain unclear. Here, we found that SlMBP22 overexpression (SlMBP22-OE) resulted in considerable alterations in floral morphology and affected the expression levels of several floral homeotic genes. Further analysis by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays demonstrated that SlMBP22 forms dimers with class A protein MACROCALYX (MC) and SEPALLATA (SEP) floral homeotic proteins TM5 and TM29, respectively. In addition, pollen viability and cross-fertilization assays suggested that the defect in female reproductive development was responsible for the infertility phenotype observed in the strong overexpression transgenic plants. Transgenic fruits with mild overexpression exhibited reduced size as a result of reduced cell expansion, rather than impaired cell division. Additionally, SlMBP22 overexpression in tomato not only affected proanthocyanidin (PA) accumulation but also altered seed dormancy. Taken together, these findings may provide new insights into the knowledge of Bs MADS-box genes in flower and fruit development in tomato.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Yanhua Jia
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xinyu Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| |
Collapse
|
13
|
Lafferty DJ, Espley RV, Deng CH, Günther CS, Plunkett B, Turner JL, Jaakola L, Karppinen K, Allan AC, Albert NW. Hierarchical regulation of MYBPA1 by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in Vaccinium species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1344-1356. [PMID: 34664645 DOI: 10.1093/jxb/erab460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/17/2021] [Indexed: 05/28/2023]
Abstract
Members of the Vaccinium genus bear fruits rich in anthocyanins, a class of red-purple flavonoid pigments that provide human health benefits, although the localization and concentrations of anthocyanins differ between species: blueberry (V. corymbosum) has white flesh, while bilberry (V. myrtillus) has red flesh. Comparative transcriptomics between blueberry and bilberry revealed that MYBPA1.1 and MYBA1 strongly correlated with the presence of anthocyanins, but were absent or weakly expressed in blueberry flesh. MYBPA1.1 had a biphasic expression profile, correlating with both proanthocyanidin biosynthesis early during fruit development and anthocyanin biosynthesis during berry ripening. MYBPA1.1 was unable to induce anthocyanin or proanthocyanidin accumulation in Nicotiana benthamiana, but activated promoters of flavonoid biosynthesis genes. The MYBPA1.1 promoter is directly activated by MYBA1 and MYBPA2 proteins, which regulate anthocyanins and proanthocyanidins, respectively. Our findings suggest that the lack of VcMYBA1 expression in blueberry flesh results in an absence of VcMYBPA1.1 expression, which are both required for anthocyanin regulation. In contrast, VmMYBA1 is well expressed in bilberry flesh, up-regulating VmMYBPA1.1, allowing coordinated regulation of flavonoid biosynthesis genes and anthocyanin accumulation. The hierarchal model described here for Vaccinium may also occur in a wider group of plants as a means to co-regulate different branches of the flavonoid pathway.
Collapse
Affiliation(s)
- Declan J Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
- The University of Auckland, Auckland, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Janice L Turner
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Andrew C Allan
- The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
14
|
Yue E, Huang Y, Qian L, Lu Q, Wang X, Qian H, Yan J, Ruan S. Comparative Analysis of Proanthocyanidin Metabolism and Genes Regulatory Network in Fresh Leaves of Two Different Ecotypes of Tetrastigma hemsleyanum. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020211. [PMID: 35050099 PMCID: PMC8779916 DOI: 10.3390/plants11020211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 05/05/2023]
Abstract
Tetrastigma hemsleyanum Diels et Gilg is a rare and wild medicinal resource. Metabolites, especially secondary metabolites, have an important influence on T. hemsleyanum adaptability and its medicinal quality. The metabolite proanthocyanidin (PA) is a polyphenol compound widely distributed in land plants, which can be used as antioxidants and anticancer agents. Here, we discovered that three types of PA accumulated in large amounts in purple leaves (PL), but not in green leaves (RG), based on widely non-targeted metabolomics. In addition, we further found that catechins and their derivatives, which are the structural units of PA, are also enriched in PL. Afterwards, we screened and obtained five key genes, DNR1/2, ANS, ANR and LAR closely related to PA biosynthesis through transcriptome analysis and found they were all highly expressed in PL compared to RG. Therefore, observed the regulatory relationship between the main compounds and genes network, and the PA metabolism regulatory pathway was complicated, which may be different to other species.
Collapse
Affiliation(s)
- Erkui Yue
- Institute of Crop Science & Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China or (E.Y.); (Y.H.); (L.Q.); (X.W.)
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Yuqing Huang
- Institute of Crop Science & Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China or (E.Y.); (Y.H.); (L.Q.); (X.W.)
| | - Lihua Qian
- Institute of Crop Science & Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China or (E.Y.); (Y.H.); (L.Q.); (X.W.)
| | - Qiujun Lu
- Agricultural and Rural Affairs Guarantee Center, Hangzhou Agricultural and Rural Bureau, Hangzhou 310020, China;
| | - Xianbo Wang
- Institute of Crop Science & Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China or (E.Y.); (Y.H.); (L.Q.); (X.W.)
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Jianli Yan
- Institute of Crop Science & Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China or (E.Y.); (Y.H.); (L.Q.); (X.W.)
- Correspondence: (J.Y.); (S.R.)
| | - Songlin Ruan
- Institute of Crop Science & Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China or (E.Y.); (Y.H.); (L.Q.); (X.W.)
- Correspondence: (J.Y.); (S.R.)
| |
Collapse
|
15
|
Liu D, Yu L, Wei L, Yu P, Wang J, Zhao H, Zhang Y, Zhang S, Yang Z, Chen G, Yao X, Yang Y, Zhou Y, Wang X, Lu S, Dai C, Yang Q, Guo L. BnTIR: an online transcriptome platform for exploring RNA-seq libraries for oil crop Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1895-1897. [PMID: 34260132 PMCID: PMC8486221 DOI: 10.1111/pbi.13665] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 07/11/2021] [Indexed: 05/25/2023]
Affiliation(s)
- Dongxu Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Lulu Wei
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Pugang Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Jing Wang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Hu Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Shuntai Zhang
- College of Humanities & Social ScienceHuazhong Agricultural UniversityWuhanChina
| | - Zhiquan Yang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonABCanada
| | - Xuan Yao
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Yanjun Yang
- College of Humanities & Social ScienceHuazhong Agricultural UniversityWuhanChina
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xuemin Wang
- Department of BiologyUniversity of Missouri‐St. LouisSt. LouisMOUSA
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Cheng Dai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Qing‐Yong Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
16
|
de Vries S, Fürst-Jansen JMR, Irisarri I, Dhabalia Ashok A, Ischebeck T, Feussner K, Abreu IN, Petersen M, Feussner I, de Vries J. The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:975-1002. [PMID: 34165823 DOI: 10.1111/tpj.15387] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 05/20/2023]
Abstract
Land plants constantly respond to fluctuations in their environment. Part of their response is the production of a diverse repertoire of specialized metabolites. One of the foremost sources for metabolites relevant to environmental responses is the phenylpropanoid pathway, which was long thought to be a land-plant-specific adaptation shaped by selective forces in the terrestrial habitat. Recent data have, however, revealed that streptophyte algae, the algal relatives of land plants, have candidates for the genetic toolkit for phenylpropanoid biosynthesis and produce phenylpropanoid-derived metabolites. Using phylogenetic and sequence analyses, we here show that the enzyme families that orchestrate pivotal steps in phenylpropanoid biosynthesis have independently undergone pronounced radiations and divergence in multiple lineages of major groups of land plants; sister to many of these radiated gene families are streptophyte algal candidates for these enzymes. These radiations suggest a high evolutionary versatility in the enzyme families involved in the phenylpropanoid-derived metabolism across embryophytes. We suggest that this versatility likely translates into functional divergence, and may explain the key to one of the defining traits of embryophytes: a rich specialized metabolism.
Collapse
Affiliation(s)
- Sophie de Vries
- Population Genetics, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Janine M R Fürst-Jansen
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077, Goettingen, Germany
| | - Amra Dhabalia Ashok
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Ilka N Abreu
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Maike Petersen
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077, Goettingen, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goldschmidtsr. 1, 37077, Goettingen, Germany
| |
Collapse
|
17
|
Spray treatment of leaves with Fe2+ promotes procyanidin biosynthesis by upregulating the expression of the F3H and ANS genes in red rice grains (Oryza sativa L.). J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Recent Insights into Anthocyanin Pigmentation, Synthesis, Trafficking, and Regulatory Mechanisms in Rice ( Oryza sativa L.) Caryopsis. Biomolecules 2021; 11:biom11030394. [PMID: 33800105 PMCID: PMC8001509 DOI: 10.3390/biom11030394] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/06/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Anthocyanins are antioxidants used as natural colorants and are beneficial to human health. Anthocyanins contribute to reactive oxygen species detoxification and sustain plant growth and development under different environmental stresses. They are phenolic compounds that are broadly distributed in nature and are responsible for a wide range of attractive coloration in many plant organs. Anthocyanins are found in various parts of plants such as flowers, leaves, stems, shoots, and grains. Considering their nutritional and health attributes, anthocyanin-enriched rice or pigmented rice cultivars are a possible alternative to reduce malnutrition around the globe. Anthocyanin biosynthesis and storage in rice are complex processes in which several structural and regulatory genes are involved. In recent years, significant progress has been achieved in the molecular and genetic mechanism of anthocyanins, and their synthesis is of great interest to researchers and the scientific community. However, limited studies have reported anthocyanin synthesis, transportation, and environmental conditions that can hinder anthocyanin production in rice. Rice is a staple food around the globe, and further research on anthocyanin in rice warrants more attention. In this review, metabolic and pre-biotic activities, the underlying transportation, and storage mechanisms of anthocyanins in rice are discussed in detail. This review provides potential information for the food industry and clues for rice breeding and genetic engineering of rice.
Collapse
|
19
|
Aoki T, Kawaguchi M, Imaizumi-Anraku H, Akao S, Ayabe SI, Akashi T. Mutants of Lotus japonicus deficient in flavonoid biosynthesis. JOURNAL OF PLANT RESEARCH 2021; 134:341-352. [PMID: 33570676 PMCID: PMC7929969 DOI: 10.1007/s10265-021-01258-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Spatiotemporal features of anthocyanin accumulation in a model legume Lotus japonicus (Regel) K.Larsen were elucidated to develop criteria for the genetic analysis of flavonoid biosynthesis. Artificial mutants and wild accessions, with lower anthocyanin accumulation in the stem than the standard wild type (B-129 'Gifu'), were obtained by ethyl methanesulfonate (EMS) mutagenesis and from a collection of wild-grown variants, respectively. The loci responsible for the green stem of the mutants were named as VIRIDICAULIS (VIC). Genetic and chemical analysis identified two loci, namely, VIC1 and VIC2, required for the production of both anthocyanins and proanthocyanidins (condensed tannins), and two loci, namely, VIC3 and VIC4, required for the steps specific to anthocyanin biosynthesis. A mutation in VIC5 significantly reduced the anthocyanin accumulation. These mutants will serve as a useful system for examining the effects of anthocyanins and proanthocyanidins on the interactions with herbivorous pests, pathogenic microorganisms and nitrogen-fixing symbiotic bacteria, Mesorhizobium loti.
Collapse
Affiliation(s)
- Toshio Aoki
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan.
| | - Haruko Imaizumi-Anraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Shoichiro Akao
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Shin-Ichi Ayabe
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
20
|
Advances in Biosynthesis and Biological Functions of Proanthocyanidins in Horticultural Plants. Foods 2020; 9:foods9121774. [PMID: 33265960 PMCID: PMC7759826 DOI: 10.3390/foods9121774] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Proanthocyanidins are colorless flavonoid polymers condensed from flavan-3-ol units. They are essential secondary plant metabolites that contribute to the nutritional value and sensory quality of many fruits and the related processed products. Mounting evidence has shown that the accumulation of proanthocyanidins is associated with the resistance of plants against a broad spectrum of abiotic and biotic stress conditions. The biosynthesis of proanthocyanidins has been examined extensively, allowing for identifying and characterizing the key regulators controlling the biosynthetic pathway in many plants. New findings revealed that these specific regulators were involved in the proanthocyanidins biosynthetic network in response to various environmental conditions. This paper reviews the current knowledge regarding the control of key regulators in the underlying proanthocyanidins biosynthetic and molecular mechanisms in response to environmental stress. Furthermore, it discusses the directions for future research on the metabolic engineering of proanthocyanidins production to improve food and fruit crop quality.
Collapse
|
21
|
Islam NS, Bett KE, Pauls KP, Marsolais F, Dhaubhadel S. Postharvest seed coat darkening in pinto bean ( Phaseolus vulgaris) is regulated by Psd , an allele of the basic helix-loop-helix transcription factor P. PLANTS, PEOPLE, PLANET 2020; 2:663-677. [PMID: 34268482 PMCID: PMC8262261 DOI: 10.1002/ppp3.10132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/13/2023]
Abstract
Pinto bean (Phaseolus vulgaris) is one of the leading market classes of dry beans that is most affected by postharvest seed coat darkening. The process of seed darkening poses a challenge for bean producers and vendors as they encounter significant losses in crop value due to decreased consumer preference for darker beans. Here, we identified a novel allele of the P gene, Psd , responsible for the slow darkening seed coat in pintos, and identified trait-specific sequence polymorphisms which are utilized for the development of new gene-specific molecular markers for breeding. These tools can be deployed to help tackle this economically important issue for bean producers. SUMMARY Postharvest seed coat darkening in pinto bean is an undesirable trait that reduces the market value of the stored crop. Regular darkening (RD) pintos darken faster after harvest and accumulate higher level of proanthocyanidins (PAs) compared to slow darkening (SD) cultivars. Although the markers cosegregating with the SD trait have been known for some time, the SLOW DARKENING (Sd) gene identity had not been proven.Here, we identified Psd as a candidate for controlling the trait. Genetic complementation, transcript abundance, metabolite analysis, and inheritance study confirmed that Psd is the Sd gene. Psd is another allele of the P (Pigment) gene, whose loss-of-function alleles result in a white seed coat. Psd encodes a bHLH transcription factor with two transcript variants but only one is involved in PA biosynthesis. An additional glutamate residue in the activation domain, and/or an arginine to histidine substitution in the bHLH domain of the Psd-1 transcript in the SD cultivar is likely responsible for the reduced activity of this allele compared to the allele in a RD cultivar, leading to reduced PA accumulation.Overall, we demonstrate that a novel allele of P, Psd , is responsible for the SD phenotype, and describe the development of new, gene-specific, markers that could be utilized in breeding to resolve an economically important issue for bean producers.
Collapse
Affiliation(s)
- Nishat S. Islam
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONCanada
- Department of BiologyUniversity of Western OntarioLondonONCanada
| | - Kirstin E. Bett
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKCanada
| | - K. Peter Pauls
- Department of Plant AgricultureUniversity of GuelphGuelphONCanada
| | - Frédéric Marsolais
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONCanada
- Department of BiologyUniversity of Western OntarioLondonONCanada
| | - Sangeeta Dhaubhadel
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONCanada
- Department of BiologyUniversity of Western OntarioLondonONCanada
| |
Collapse
|
22
|
Li SF, Allen PJ, Napoli RS, Browne RG, Pham H, Parish RW. MYB-bHLH-TTG1 Regulates Arabidopsis Seed Coat Biosynthesis Pathways Directly and Indirectly via Multiple Tiers of Transcription Factors. PLANT & CELL PHYSIOLOGY 2020; 61:1005-1018. [PMID: 32154880 DOI: 10.1093/pcp/pcaa027] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
MYB-bHLH-WDR (MBW) transcription factor (TF) complexes regulate Arabidopsis seed coat development including mucilage and tannin biosynthesis. The R2R3 MYBs MYB5, MYB23 and TRANSPARENT TESTA2 (TT2) participate in the MBW complexes with the WD-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). These complexes regulate GLABRA2 (GL2) and TTG2 expression in developing seeds. Microarray transcriptome analysis of ttg1-1- and wild-type (Ler) developing seeds identified 246 TTG1-regulated genes, which include all known metabolic genes of the tannin biosynthetic pathway. The first detailed TTG1-dependent metabolic pathways could be proposed for the biosynthesis of mucilage, jasmonic acid (JA) and cuticle including wax ester in developing seeds. We also assigned many known and previously uncharacterized genes to the activation/inactivation of hormones, plant immunity and nutrient transport. The promoters of six cuticle pathway genes were active in developing seeds. Expression of 11 genes was determined in the developing seeds of the combinatorial mutants of MYB5, MYB23 and TT2, and in the combinatorial mutants of GL2, HOMEODOMAIN GLABROUS2 (HDG2) and TTG2. These six TFs positively co-regulated the expression of four repressor genes while three of the six TFs repressed the wax biosynthesis genes examined, suggesting that the three TFs upregulate the expression of these repressor genes, which, in turn, repress the wax biosynthesis genes. Chromatin immunoprecipitation analysis identified 21 genes directly regulated by MYB5 including GL2, HDG2, TTG2, four repressor genes and various metabolic genes. We propose a multi-tiered regulatory mechanism by which MBWs regulate tannin, mucilage, JA and cuticle biosynthetic pathways.
Collapse
Affiliation(s)
- Song Feng Li
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Patrick J Allen
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Ross S Napoli
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Richard G Browne
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Hanh Pham
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Roger W Parish
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| |
Collapse
|
23
|
Roldan MB, Cousins G, Fraser K, Hancock KR, Collette V, Demmer J, Woodfield DR, Caradus JR, Jones C, Voisey CR. Elevation of Condensed Tannins in the Leaves of Ta-MYB14-1 White Clover ( Trifolium repens L.) Outcrossed with High Anthocyanin Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2927-2939. [PMID: 31241924 DOI: 10.1021/acs.jafc.9b01185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Condensed tannins (CT) are highly desirable in forage as they sequester dietary protein and reduce bloat and methane emissions in ruminants. However, the widely used forage legume white clover (Trifolium repens) only produces CTs in flowers and trichomes and at levels too low to achieve therapeutic effects. Genetic transformation with transcription factor Ta-MYB14-1 from Trifolium arvense was effective in inducing CTs to 0.6% of leaf dry matter. CT synthesis has been elevated further by crossing the primary white clover transgenic line with wild type genotypes producing the related phenylpropanoids, anthocyanins. CT levels in leaves were highest under the anthocyanin leaf marks associated with the "red midrib" trait; however, there was no evidence for CT accumulation in leaf sections with the "red V" anthocyanin marking. Ta-MYB14-1 was stably inherited in two generations of crosses, and T2 progeny produced up to 3.6-fold higher CTs than the T0 parent. The profile of small CT oligomers such as dimers and trimers was consistent in T0, T1, T2, and BC2 progeny and consisted predominantly of prodelphinidins (PD), with lesser amounts of procyanidins (PC) and mixed PC:PD oligomers.
Collapse
Affiliation(s)
| | - Greig Cousins
- PGG Wrightson Seeds Ltd., Palmerston North 4442, New Zealand
| | - Karl Fraser
- AgResearch Limited, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Kerry R Hancock
- University of Southern Queensland, Toowoomba, Queensland 4350, Australia
| | - Vern Collette
- Plant and Food Research, Palmerston North 4442, New Zealand
| | - Jerome Demmer
- Halcyon Bioconsulting Ltd., Auckland 0571, New Zealand
| | | | - John R Caradus
- Grasslanz Technology Ltd., Palmerston North 4442, New Zealand
| | - Chris Jones
- International Livestock Research Institute, Nairobi 00100, Kenya
| | | |
Collapse
|
24
|
Jiang N, Lee YS, Mukundi E, Gomez-Cano F, Rivero L, Grotewold E. Diversity of genetic lesions characterizes new Arabidopsis flavonoid pigment mutant alleles from T-DNA collections. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110335. [PMID: 31928687 DOI: 10.1016/j.plantsci.2019.110335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 05/22/2023]
Abstract
The visual phenotypes afforded by flavonoid pigments have provided invaluable tools for modern genetics. Many Arabidopsis transparent testa (tt) mutants lacking the characteristic proanthocyanidin (PA) seed coat pigmentation and often failing to accumulate anthocyanins in vegetative tissues have been characterized. These mutants have significantly contributed to our understanding of flavonoid biosynthesis, regulation, and transport. A comprehensive screening for tt mutants in available large T-DNA collection lines resulted in the identification of 16 independent lines lacking PAs and anthocyanins, or with seed coat pigmentation clearly distinct from wild type. Segregation analyses and the characterization of second alleles in the genes disrupted by the indexed T-DNA insertions demonstrated that all the lines contained at least one additional mutation responsible for the tt phenotypes. Using a combination of RNA-Seq and whole genome re-sequencing and confirmed through complementation, we show here that these mutations correspond to novel alleles of ttg1 (two alleles), tt3 (two alleles), tt5 (two alleles), ban (two alleles), tt1 (two alleles), and tt8 (six alleles), which harbored additional T-DNA insertions, indels, missense mutations, and large genomic deletion. Several of the identified alleles offer interesting perspectives on flavonoid biosynthesis and regulation.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Eric Mukundi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Luz Rivero
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA.
| |
Collapse
|
25
|
Qin S, Wei K, Cui Z, Liang Y, Li M, Gu L, Yang C, Zhou X, Li L, Xu W, Liu C, Miao J, Zhang Z. Comparative Genomics of Spatholobus suberectus and Insight Into Flavonoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:528108. [PMID: 33013959 PMCID: PMC7500164 DOI: 10.3389/fpls.2020.528108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/19/2020] [Indexed: 05/09/2023]
Abstract
Spatholobus suberectus Dunn (S. suberectus), has been widely used in traditional medicines plant source of the Leguminosae family. Its vine stem of which plays an important role in the prevention and treatment of various diseases because it contains various flavonoids. Comparative genome analysis suggested well-conserved genomic components and genetic collinearity between the genome of S. suberectus and other genera of Leguminosae such as Glycine max. We discovered two whole genome duplications (WGD) events in S. suberectus and G. max lineage underwent a WGD after speciation from S. suberectus. The determination of expansion and contractions of orthologous gene families revealed 1,001 expanded gene families and 3,649 contracted gene families in the S. suberectus lineage. Comparing to the model plants, many novel flavonoid biosynthesis-related genes were predicted in the genome of S. suberectus, and the expression patterns of these genes in the roots are similar to those in the stems [such as the isoflavone synthase (IFS) genes]. The expansion of IFS from a single copy in the Leguminosae ancestor to four copies in S. suberectus, will accelerate the biosynthesis of flavonoids. MYB genes are widely involved in plant flavonoid biosynthesis and the most abundant member of the TF family in S. suberectus. Activated retrotransponson positive regulates the accumulation of flavonoid in S. suberectus by introducing the cis-elements of tissue-specific expressed MYBs. Our study not only provides significant insight into the evolution of specific flavonoid biosynthetic pathways in S. suberectus, but also would facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding for alleviating resource shortage of S. suberectus.
Collapse
Affiliation(s)
- Shuangshuang Qin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhanhu Cui
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Mingjie Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Gu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuyun Yang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolei Zhou
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Linxuan Li
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Wei Xu
- Center for Research and Cooperation, Novogene Bioinformatics Institute, Beijing, China
| | - Can Liu
- Center for Research and Cooperation, Novogene Bioinformatics Institute, Beijing, China
- *Correspondence: Zhongyi Zhang, ; Can Liu, ; Jianhua Miao,
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- *Correspondence: Zhongyi Zhang, ; Can Liu, ; Jianhua Miao,
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Genetics, Breeding and Comprehensive Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zhongyi Zhang, ; Can Liu, ; Jianhua Miao,
| |
Collapse
|
26
|
Wang P, Liu Y, Zhang L, Wang W, Hou H, Zhao Y, Jiang X, Yu J, Tan H, Wang Y, Xie DY, Gao L, Xia T. Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:18-36. [PMID: 31454118 DOI: 10.1111/tpj.14515] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 05/23/2023]
Abstract
The plant flavonoid dogma proposes that labile plant flavonoid carbocations (PFCs) play vital roles in the biosynthesis of proanthocyanidins (PAs). However, whether PFCs exist in plants and how PFCs function remain unclear. Here, we report the use of an integrative strategy including enzymatic assays, mutant analysis, metabolic engineering, isotope labeling and metabolic profiling to capture PFCs and demonstrate their functions. In anthocyanidin reductase (ANR) assays, an (-)-epicatechin conjugate was captured in protic polar nucleophilic methanol alone or methanol-HCl extracts. Tandem mass spectrum (MS/MS) analysis characterized this compound as an (-)-epicatechin-4-O-methyl (EOM) ether, which resulted from (-)-epicatechin carbocation and the methyl group of methanol. Acid-based catalysis of procyanidin B2 and B3 produced four compounds, which were annotated as two EOM and two (+)-catechin-4-O-methyl (COM) ethers. Metabolic profiling of seven PA pathway mutants showed an absence or reduction of two EOM ether isomers in seeds. Camellia sinensis ANRa (CsANRa), leucoanthocyanidin reductase c (CsLARc), and CsMYB5b (a transcription factor) were independently overexpressed for successful PA engineering in tobacco. The EOM ether was remarkably increased in CsANRa and CsMYB5b transgenic flowers. Further metabolic profiling for eight green tea tissues revealed two EOM and two COM ethers associated with PA biosynthesis. Moreover, an incubation of (-)-epicatechin or (+)-catechin with epicatechin carbocation in CsANRa transgenic flower extracts formed dimeric procyanidin B1 or B2, demonstrating the role of flavan-3-ol carbocation in the formation of PAs. Taken together, these findings indicated that flavan-3-ol carbocations exist in extracts and are involved in the biosynthesis of PAs of plants.
Collapse
Affiliation(s)
- Peiqiang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Lingjie Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wenzhao Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Hua Hou
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jie Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Huarong Tan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - De-Yu Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Department of Pant and Microbial Biology, North Carolina State University, Raleigh, 27695, USA
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
27
|
Friis EM, Crane PR, Pedersen KR. The endothelium in seeds of early angiosperms. THE NEW PHYTOLOGIST 2019; 224:1419-1424. [PMID: 31240716 DOI: 10.1111/nph.16024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Else Marie Friis
- Department of Palaeobiology, Swedish Museum of Natural History, PO Box 50007, SE-104 05, Stockholm, Sweden
| | - Peter R Crane
- Oak Spring Garden Foundation, 1776 Loughborough Lane, Upperville, VA, 20184, USA
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Kaj Raunsgaard Pedersen
- Department of Geoscience, University of Aarhus, Høegh-Guldbergs Gade 2, DK-8000, Aarhus C, Denmark
| |
Collapse
|
28
|
Wang L, Tang W, Hu Y, Zhang Y, Sun J, Guo X, Lu H, Yang Y, Fang C, Niu X, Yue J, Fei Z, Liu Y. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:359-378. [PMID: 30912865 DOI: 10.1111/tpj.14330] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 05/20/2023]
Abstract
Many Actinidia cultivars are characterized by anthocyanin accumulation, specifically in the inner pericarp, but the underlying regulatory mechanism remains elusive. Here we report two interacting transcription factors, AcMYB123 and AcbHLH42, that regulate tissue-specific anthocyanin biosynthesis in the inner pericarp of Actinidia chinensis cv. Hongyang. Through transcriptome profiling analysis we identified five MYB and three bHLH transcription factors that were upregulated in the inner pericarp. We show that the combinatorial action of two of them, AcMYB123 and AcbHLH42, is required for activating promoters of AcANS and AcF3GT1 that encode the dedicated enzymes for anthocyanin biosynthesis. The presence of anthocyanin in the inner pericarp appears to be tightly associated with elevated expression of AcMYB123 and AcbHLH42. RNA interference repression of AcMYB123, AcbHLH42, AcF3GT1 and AcANS in 'Hongyang' fruits resulted in significantly reduced anthocyanin biosynthesis. Using both transient assays in Nicotiana tabacum leaves or Actinidia arguta fruits and stable transformation in Arabidopsis, we demonstrate that co-expression of AcMYB123 and AcbHLH42 is a prerequisite for anthocyanin production by activating transcription of AcF3GT1 and AcANS or the homologous genes. Phylogenetic analysis suggests that AcMYB123 or AcbHLH42 are closely related to TT2 or TT8, respectively, which determines proanthocyanidin biosynthesis in Arabidopsis, and to anthocyanin regulators in monocots rather than regulators in dicots. All these experimental results suggest that AcMYB123 and AcbHLH42 are the components involved in spatiotemporal regulation of anthocyanin biosynthesis specifically in the inner pericarp of kiwifruit.
Collapse
Affiliation(s)
- Lihuan Wang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tang
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yawen Hu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yabin Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Jiaqi Sun
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiuhong Guo
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Han Lu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ying Yang
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Congbing Fang
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangli Niu
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Junyang Yue
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
- USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
29
|
Biochemical and Functional Characterization of Anthocyanidin Reductase (ANR) from Mangifera indica L. Molecules 2018; 23:molecules23112876. [PMID: 30400564 PMCID: PMC6278290 DOI: 10.3390/molecules23112876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022] Open
Abstract
Mango (Mangifera indica L.) is abundant in proanthocyanidins (PAs) that are important for human health and plant response to abiotic stresses. However, the molecular mechanisms involved in PA biosynthesis still need to be elucidated. Anthocyanidin reductase (ANR) catalyzes a key step in PA biosynthesis. In this study, three ANR cDNAs (MiANR1-1,1-2,1-3) were isolated from mango, and expressed in Escherichia coli. In vitro enzyme assay showed MiANR proteins convert cyanidin to their corresponding flavan-3-ols, such as (−)-catechin and (−)-epicatechin. Despite high amino acid similarity, the recombinant ANR proteins exhibited differences in enzyme kinetics and cosubstrate preference. MiANR1-2 and MiANR1-3 have the same optimum pH of 4.0 in citrate buffer, while the optimum pH for MiANR1-1 is pH 3.0 in phosphate buffer. MiANR1-1 does not use either NADPH or NADH as co-substrate while MiANR1-2/1-3 use only NADPH as co-substrate. MiANR1-2 has the highest Km and Vmax for cyanidin, followed by MiANR1-3 and MiANR1-1. The overexpression of MiANRs in ban mutant reconstructed the biosynthetic pathway of PAs in the seed coat. These data demonstrate MiANRs can form the ANR pathway, leading to the formation of two types of isomeric flavan-3-ols and PAs in mango.
Collapse
|
30
|
Park KI, Nitasaka E, Hoshino A. Anthocyanin mutants of Japanese and common morning glories exhibit normal proanthocyanidin accumulation in seed coats. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:259-266. [PMID: 31819731 PMCID: PMC6879366 DOI: 10.5511/plantbiotechnology.18.0613a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/13/2018] [Indexed: 05/28/2023]
Abstract
Anthocyanin and proanthocyanidin biosynthesis pathways are believed to overlap. This study examined proanthocyanidin accumulation in seed coats of morning glories (Ipomoea nil and I. purpurea) carrying mutations in CHS-D, CHI, and ANS genes encoding chalcone synthase, chalcone isomerase, and anthocyanidin synthase, respectively. Chemical staining revealed that mutants accumulate proanthocyanidin normally. Thus, the tested genes are not essential to proanthocyanidin biosynthesis, but are essential to anthocyanin biosynthesis in flowers and stems. Based on the results and the I. nil draft genome sequence, the genes involved in proanthocyanidin biosynthesis, including a new copy of the flavanone 3-hydroxylase gene could be predicted. Moreover, the genome has no homologs for known enzymes involved in producing flavan-3-ols, the starter and extension units of proanthocyanidin. These results suggested that I. nil produces flavan-3-ols through an undiscovered biosynthesis pathway. To characterize proanthocyanidin pigmentation further, we conducted mutant screening using a large I. nil population. We discovered that the brown mutant lines (exhibiting brown seeds and normal anthocyanin pigmentation) do not accumulate proanthocyanidin in their seed coats. Thus, the brown mutation should be useful for further investigations into the various mechanisms controlling anthocyanin and proanthocyanidin pathways.
Collapse
Affiliation(s)
- Kyeung Il Park
- Department of Horticulture & Life Science, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongbuk 38541, Republic of Korea
| | - Eiji Nitasaka
- Department of Biological Science, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsushi Hoshino
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji Okazaki-shi, Aichi 444-8585, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki-shi, Aichi 444–8585, Japan
| |
Collapse
|
31
|
Shi L, Cao S, Chen X, Chen W, Zheng Y, Yang Z. Proanthocyanidin Synthesis in Chinese Bayberry ( Myrica rubra Sieb. et Zucc.) Fruits. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 29541082 PMCID: PMC5835688 DOI: 10.3389/fpls.2018.00212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Proanthocyanidins (PAs) are distributed widely in Chinese bayberry fruit and have been associated with human health benefits, but molecular and biochemical characterization of PA biosynthesis remains unclear. Here, two genes encoding key PA biosynthetic enzymes, anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) were isolated in bayberry fruit. MrANR was highly expressed at the early stage of fruit development when soluble PAs accumulated at high levels. Meanwhile, the transcript abundance of both MrANR and MrLAR observed at the late stage was paralleled with the high amounts of insoluble PAs. LC-MS/MS showed that PAs in developing Chinese bayberry fruits were comprised predominantly of epigallocatechin-3-O-gallate terminal subunits, while the extension subunits were a mixture of epigallocatechin-3-O-gallate, epigallocatechin and catechin. Recombinant MrANR protein converted cyanidin to a mixture of epicatechin and catechin, and delphinidin to a mixture of epigallocatechin and gallocatechin in vitro. Recombinant MrLAR was active with leucocyanidin as substrate to produce catechin. Ectopic expression of MrANR in tobacco reduced anthocyanin levels but increased PA accumulation. The catechin and epicatechin contents in transgenic flowers overexpressed MrANR were significantly higher than those of wild-type. However, overexpression of MrLAR in tobacco led to an increase in catechin levels but had no impact on PA contents. Quantitative real time PCR revealed that the loss of anthocyanin in transgenic flowers overexpressed MrANR or MrLAR is probably attributed to decreased expression of tobacco chalcone isomerase (CHI) gene. Our results not only reveal in vivo and in vitro functions for ANR and LAR but also provide a resource for understanding the mechanism of PA biosynthesis in Chinese bayberry fruit.
Collapse
Affiliation(s)
- Liyu Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Xin Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Wei Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yonghua Zheng
| | - Zhenfeng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- Zhenfeng Yang
| |
Collapse
|
32
|
Vardhan PV, Shukla LI. Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production. Int J Radiat Biol 2017; 93:967-979. [PMID: 28714761 DOI: 10.1080/09553002.2017.1344788] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE The profitable production of some important plant-based secondary metabolites (ginsenosides, saponins, camptothecin, shikonins etc.) in vitro by gamma irradiation is a current area of interest. We reviewed different types of secondary metabolites, their mode of synthesis and effect of γ-radiation on their yield for different plants, organs and in vitro cultures (callus, suspension, hairy root). Special effort has been made to review the biochemical mechanisms underlying the increase in secondary metabolites. A comparison of yield improvement with biotic and abiotic stresses was made. RESULTS Phenolic compounds increase with γ-irradiation in whole plants/plant parts; psoralen content in the common herb babchi (Psoralea corylifolia) was increased as high as 32-fold with γ-irradiation of seeds at 20 kGy. The capsaicinoids, a phenolic compound increased about 10% with 10 kGy in paprika (Capsicum annum L.). The in vitro studies show all the three types of secondary metabolites are reported to increase with γ-irradiation. Stevioside, total phenolic and flavonoids content were slightly increased in 15 Gy-treated callus cultures of stevia (Stevia rebaudiana Bert.). In terpenoids, total saponin and ginsenosides content were increased 1.4- and 1.8-fold, respectively, with 100 Gy for wild ginseng (Panax ginseng Meyer) hairy root cultures. In alkaloids, camptothecin yield increased as high as 20-fold with 20 Gy in callus cultures of ghanera (Nothapodytes foetida). Shikonins increased up to 4-fold with 16 Gy in suspension cultures of purple gromwell (Lithospermum erythrorhizon S.). The enzymes associated with secondary metabolite production were increased with γ-irradiation of 20 Gy; namely, phenylalanine ammonia-lyase (PAL) for phenolics, chalcone synthase (CHS) for flavonoids, squalene synthase (SS), squalene epoxidase (SE) and oxidosqualene cyclases (OSC) for ginsenosides and PHB (p-hydroxylbenzoic acid) geranyl transferase for shikonins. CONCLUSIONS An increase in secondary metabolites in response to various biotic and abiotic stresses is compared with ionizing radiation. A ∼5- to 20-fold increase is noted with ∼20 Gy irradiation dose. It increases the yield of secondary metabolites by enhancing the activity of certain key biosynthetic enzymes. Identification of the optimum dose is the important step in the large-scale production of secondary metabolites at industrial level.
Collapse
Affiliation(s)
- P Vivek Vardhan
- a Department of Biotechnology, School of Life Sciences , Pondicherry University , Pondicherry , India
| | - Lata I Shukla
- a Department of Biotechnology, School of Life Sciences , Pondicherry University , Pondicherry , India
| |
Collapse
|
33
|
Raviv B, Aghajanyan L, Granot G, Makover V, Frenkel O, Gutterman Y, Grafi G. The dead seed coat functions as a long-term storage for active hydrolytic enzymes. PLoS One 2017; 12:e0181102. [PMID: 28700755 PMCID: PMC5507414 DOI: 10.1371/journal.pone.0181102] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/25/2017] [Indexed: 12/31/2022] Open
Abstract
Seed development culminates in programmed cell death (PCD) and hardening of organs enclosing the embryo (e.g., pericarp, seed coat) providing essentially a physical shield for protection during storage in the soil. We examined the proposal that dead organs enclosing embryos are unique entities that store and release upon hydration active proteins that might increase seed persistence in soil, germination and seedling establishment. Proteome analyses of dead seed coats of Brassicaceae species revealed hundreds of proteins being stored in the seed coat and released upon hydration, many are stress-associated proteins such as nucleases, proteases and chitinases. Functional analysis revealed that dead seed coats function as long-term storage for multiple active hydrolytic enzymes (e.g., nucleases) that can persist in active forms for decades. Substances released from the dead seed coat of the annual desert plant Anastatica hierochuntica displayed strong antimicrobial activity. Our data highlighted a previously unrecognized feature of dead organs enclosing embryos (e.g., seed coat) functioning not only as a physical shield for embryo protection but also as a long-term storage for active proteins and other substances that are released upon hydration to the “seedsphere” and could contribute to seed persistence in the soil, germination and seedling establishment.
Collapse
Affiliation(s)
- Buzi Raviv
- French Associates Institute of Agriculture and Biotechnology of Drylands, The Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Lusine Aghajanyan
- French Associates Institute of Agriculture and Biotechnology of Drylands, The Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Gila Granot
- French Associates Institute of Agriculture and Biotechnology of Drylands, The Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Vardit Makover
- The Zuckerberg Institute for Water Research, The Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Bet Dagan, Israel
| | - Yitzchak Gutterman
- French Associates Institute of Agriculture and Biotechnology of Drylands, The Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Gideon Grafi
- French Associates Institute of Agriculture and Biotechnology of Drylands, The Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- * E-mail:
| |
Collapse
|
34
|
Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4013-4028. [PMID: 28922752 DOI: 10.1093/jxb/erx177] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Flavonoids are a signature class of secondary metabolites formed from a relatively simple collection of scaffolds. They are extensively decorated by chemical reactions including glycosylation, methylation, and acylation. They are present in a wide variety of fruits and vegetables and as such in Western populations it is estimated that 20-50 mg of flavonoids are consumed daily per person. In planta they have demonstrated to contribute to both flower color and UV protection. Their consumption has been suggested to presenta wide range of health benefits. Recent technical advances allowing affordable whole genome sequencing, as well as a better inventory of species-by-species chemical diversity, have greatly advanced our understanding as to how flavonoid biosynthesis pathways vary across species. In parallel, reverse genetics combined with detailed molecular phenotyping is currently allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. Here we provide an inventory of current knowledge of pathways of flavonoid biosynthesis in both the model plant Arabidopsis thaliana and a range of crop species, including tomato, maize, rice, and bean.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| |
Collapse
|
35
|
Lian J, Lu X, Yin N, Ma L, Lu J, Liu X, Li J, Lu J, Lei B, Wang R, Chai Y. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:32-47. [PMID: 27964783 DOI: 10.1016/j.plantsci.2016.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 05/07/2023]
Abstract
TRANSPARENT TESTA1 (TT1) is a zinc finger protein that contains a WIP domain. It plays important roles in controlling differentiation and pigmentation of the seed coat endothelium, and can affect the expression of early biosynthetic genes and late biosynthetic genes of flavonoid biosynthesis in Arabidopsis thaliana. In Brassica napus (AACC, 2n=38), the functions of BnTT1 genes remain unknown and few studies have focused on their roles in fatty acid (FA) biosynthesis. In this study, BnTT1 family genes were silenced by RNA interference, which resulted in yellow rapeseed, abnormal testa development (a much thinner testa), decreased seed weight, and altered seed FA composition in B. napus. High-throughput sequencing of genes differentially expressed between developing transgenic B. napus and wild-type seeds revealed altered expression of numerous genes involved in flavonoid and FA biosynthesis. As a consequence of this altered expression, we detected a marked decrease of oleic acid (C18:1) and notable increases of linoleic acid (C18:2) and α-linolenic acid (C18:3) in mature transgenic B. napus seeds by gas chromatography and near-infrared reflectance spectroscopy. Meanwhile, liquid chromatography-mass spectrometry showed reduced accumulation of flavonoids in transgenic seeds. Therefore, we propose that BnTT1s are involved in the regulation of flavonoid biosynthesis, and may also play a role in FA biosynthesis in B. napus.
Collapse
Affiliation(s)
- Jianping Lian
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Xiaochun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Nengwen Yin
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Lijuan Ma
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Jing Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Xue Liu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Jun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Bo Lei
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Rui Wang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Yourong Chai
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
36
|
Chen Q, Man C, Li D, Tan H, Xie Y, Huang J. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana. MOLECULAR PLANT 2016; 9:1609-1619. [PMID: 27720844 DOI: 10.1016/j.molp.2016.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 05/24/2023]
Abstract
Anthocyanins, a group of L-phenylalanine (Phe)-derived flavonoids, have been demonstrated to play important roles in plant stress resistance and interactions between plants and insects. Although the anthocyanin biosynthetic pathway and its regulatory mechanisms have been extensively studied, it remains unclear whether the level of Phe supply affects anthocyanin biosynthesis. Here, we investigated the roles of arogenate dehydratases (ADTs), the key enzymes that catalyze the conversion of arogenate into Phe, in sucrose-induced anthocyanin biosynthesis in Arabidopsis. Genetic analysis showed that all six ADT isoforms function redundantly in anthocyanin biosynthesis but have differential contributions. ADT2 contributes the most to anthocyanin accumulation, followed by ADT1 and ADT3, and ADT4-ADT6. We found that anthocyanin content is positively correlated with the levels of Phe and sucrose-induced ADT transcripts in seedlings. Consistently, addition of Phe to the medium could dramatically increase anthocyanin content in the wild-type plants and rescue the phenotype of the adt1 adt3 double mutant regarding the anthocyanin accumulation. Moreover, transgenic plants overexpressing ADT4, which appears to be less sensitive to Phe than overexpression of ADT2, hyperaccumulate Phe and produce elevated level of anthocyanins. Taken together, our results suggest that the level of Phe is an important regulatory factor for sustaining anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Qingbo Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Cong Man
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Danning Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Huijuan Tan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Ye Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Jirong Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
37
|
Liu C, Wang X, Shulaev V, Dixon RA. A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. NATURE PLANTS 2016; 2:16182. [PMID: 27869786 DOI: 10.1038/nplants.2016.182] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/25/2016] [Indexed: 05/22/2023]
Abstract
Proanthocyanidins (PAs) are the second most abundant plant polyphenolic compounds after lignin. PAs affect taste, mouth feel and astringency of many fruits, wines and beverages1,2, have been associated with reduced risks of cardiovascular disease, cancer and Alzheimer's disease3-5, can improve nutrition and prevent bloat in ruminant animals6 and enhance soil nitrogen retention7. PAs are oligomers and polymers of flavan-3-ols, primarily (-)-epicatechin and (+)-catechin, but the mechanism by which the monomers polymerize and become insoluble is currently unknown. Leucoanthocyanidin reductase (LAR) has been shown to convert leucocyanidin to (+)-catechin8,9. Here, we report that loss of function of LAR in the model legume Medicago truncatula leads unexpectedly to loss of soluble epicatechin-derived PAs, increased levels of insoluble PAs, and accumulation of 4β-(S-cysteinyl)-epicatechin, which provides the 4→8 linked extension units during non-enzymatic PA polymerization. LAR converts 4β-(S-cysteinyl)-epicatechin back to epicatechin, the starter unit in PAs, thereby regulating the relative proportions of starter and extension units and consequently the degree of PA oligomerization.
Collapse
Affiliation(s)
- Chenggang Liu
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203-5017, USA
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Xiaoqiang Wang
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203-5017, USA
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Vladimir Shulaev
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Richard A Dixon
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203-5017, USA
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| |
Collapse
|
38
|
Yu R, Cook MG, Yacco RS, Watrelot AA, Gambetta G, Kennedy JA, Kurtural SK. Effects of Leaf Removal and Applied Water on Flavonoid Accumulation in Grapevine (Vitis vinifera L. cv. Merlot) Berry in a Hot Climate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8118-8127. [PMID: 27728974 DOI: 10.1021/acs.jafc.6b03748] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The relationships between variations in grapevine (Vitis vinifera L. cv. Merlot) fruit zone light exposure and water deficits and the resulting berry flavonoid composition were investigated in a hot climate. The experimental design involved application of mechanical leaf removal (control, pre-bloom, post-fruit set) and differing water deficits (sustained deficit irrigation and regulated deficit irrigation). Flavonol and anthocyanin concentrations were measured by C18 reversed-phased HPLC and increased with pre-bloom leaf removal in 2013, but with post-fruit set leaf removal in 2014. Proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Post-fruit set leaf removal increased total proanthocyanidin concentration in both years, whereas no effect was observed with applied water amounts. Mean degree of polymerization of skin proanthocyanidins increased with post-fruit set leaf removal compared to pre-bloom, whereas water deficit had no effect. Conversion yield was greater with post-fruit set leaf removal. Seed proanthocyanidin concentration was rarely affected by applied treatments. The application of post-fruit set leaf removal, regardless of water deficit. increased the proportion of proanthocyanidins derived from the skin, whereas no leaf removal or pre-bloom leaf removal regardless of water deficit increased the proportion of seed-derived proanthocyanidins. The study provides fundamental information to viticulturists and winemakers on how to manage red wine grape low molecular weight phenolics and polymeric proanthocyanidin composition in a hot climate.
Collapse
Affiliation(s)
- Runze Yu
- Department of Viticulture and Enology, Oakville Experiment Station, University of California , Oakville, California 94562, United States
| | - Michael G Cook
- Texas A&M AgriLife Extension Service , 401 West Hickory Street, Denton, Texas 76201, United States
| | - Ralph S Yacco
- Gusmer Enterprises, Inc. , 124 M Street, Fresno, California 93721, United States
| | - Aude A Watrelot
- Department of Viticulture and Enology, Oakville Experiment Station, University of California , Oakville, California 94562, United States
| | - Gregory Gambetta
- 3UMR EGFV ISVV , 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon Cedex, France
| | - James A Kennedy
- Constellation Brands, Inc. , 12667 Road 24, Madera, California 93637, United States
| | - S Kaan Kurtural
- Department of Viticulture and Enology, Oakville Experiment Station, University of California , Oakville, California 94562, United States
| |
Collapse
|
39
|
Qu C, Zhao H, Fu F, Wang Z, Zhang K, Zhou Y, Wang X, Wang R, Xu X, Tang Z, Lu K, Li JN. Genome-Wide Survey of Flavonoid Biosynthesis Genes and Gene Expression Analysis between Black- and Yellow-Seeded Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1755. [PMID: 27999578 PMCID: PMC5139615 DOI: 10.3389/fpls.2016.01755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 05/20/2023]
Abstract
Flavonoids, the compounds that impart color to fruits, flowers, and seeds, are the most widespread secondary metabolites in plants. However, a systematic analysis of these loci has not been performed in Brassicaceae. In this study, we isolated 649 nucleotide sequences related to flavonoid biosynthesis, i.e., the Transparent Testa (TT) genes, and their associated amino acid sequences in 17 Brassicaceae species, grouped into Arabidopsis or Brassicaceae subgroups. Moreover, 36 copies of 21 genes of the flavonoid biosynthesis pathway were identified in Arabidopsis thaliana, 53 were identified in Brassica rapa, 50 in Brassica oleracea, and 95 in B. napus, followed the genomic distribution, collinearity analysis and genes triplication of them among Brassicaceae species. The results showed that the extensive gene loss, whole genome triplication, and diploidization that occurred after divergence from the common ancestor. Using qRT-PCR methods, we analyzed the expression of 18 flavonoid biosynthesis genes in 6 yellow- and black-seeded B. napus inbred lines with different genetic background, found that 12 of which were preferentially expressed during seed development, whereas the remaining genes were expressed in all B. napus tissues examined. Moreover, 14 of these genes showed significant differences in expression level during seed development, and all but four of these (i.e., BnTT5, BnTT7, BnTT10, and BnTTG1) had similar expression patterns among the yellow- and black-seeded B. napus. Results showed that the structural genes (BnTT3, BnTT18, and BnBAN), regulatory genes (BnTTG2 and BnTT16) and three encoding transfer proteins (BnTT12, BnTT19, and BnAHA10) might play an crucial roles in the formation of different seed coat colors in B. napus. These data will be helpful for illustrating the molecular mechanisms of flavonoid biosynthesis in Brassicaceae species.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
- Food and Bioproduct Science, University of SaskatchewanSaskatoon, SK, Canada
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue UniversityWest Lafayette, IN, USA
| | - Zhen Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Kai Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Yan Zhou
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Xin Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Zhanglin Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
- *Correspondence: Kun Lu
| | - Jia-Na Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
- Jia-Na Li
| |
Collapse
|
40
|
Qu C, Zhao H, Fu F, Zhang K, Yuan J, Liu L, Wang R, Xu X, Lu K, Li JN. Molecular Mapping and QTL for Expression Profiles of Flavonoid Genes in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1691. [PMID: 27881992 PMCID: PMC5102069 DOI: 10.3389/fpls.2016.01691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/26/2016] [Indexed: 05/18/2023]
Abstract
Flavonoids are secondary metabolites that are extensively distributed in the plant kingdom and contribute to seed coat color formation in rapeseed. To decipher the genetic networks underlying flavonoid biosynthesis in rapeseed, we constructed a high-density genetic linkage map with 1089 polymorphic loci (including 464 SSR loci, 97 RAPD loci, 451 SRAP loci, and 75 IBP loci) using recombinant inbred lines (RILs). The map consists of 19 linkage groups and covers 2775 cM of the B. napus genome with an average distance of 2.54 cM between adjacent markers. We then performed expression quantitative trait locus (eQTL) analysis to detect transcript-level variation of 18 flavonoid biosynthesis pathway genes in the seeds of the 94 RILs. In total, 72 eQTLs were detected and found to be distributed among 15 different linkage groups that account for 4.11% to 52.70% of the phenotypic variance atrributed to each eQTL. Using a genetical genomics approach, four eQTL hotspots together harboring 28 eQTLs associated with 18 genes were found on chromosomes A03, A09, and C08 and had high levels of synteny with genome sequences of A. thaliana and Brassica species. Associated with the trans-eQTL hotspots on chromosomes A03, A09, and C08 were 5, 17, and 1 genes encoding transcription factors, suggesting that these genes have essential roles in the flavonoid biosynthesis pathway. Importantly, bZIP25, which is expressed specifically in seeds, MYC1, which controls flavonoid biosynthesis, and the R2R3-type gene MYB51, which is involved in the synthesis of secondary metabolites, were associated with the eQTL hotspots, and these genes might thus be involved in different flavonoid biosynthesis pathways in rapeseed. Hence, further studies of the functions of these genes will provide insight into the regulatory mechanism underlying flavonoid biosynthesis, and lay the foundation for elaborating the molecular mechanism of seed coat color formation in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue UniversityWest Lafayette, IN, USA
| | - Kai Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Jianglian Yuan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
- *Correspondence: Kun Lu
| | - Jia-Na Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest UniversityChongqing, China
- Jia-na Li
| |
Collapse
|
41
|
Wan L, Li B, Pandey MK, Wu Y, Lei Y, Yan L, Dai X, Jiang H, Zhang J, Wei G, Varshney RK, Liao B. Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation. FRONTIERS IN PLANT SCIENCE 2016; 7:1491. [PMID: 27790222 PMCID: PMC5063860 DOI: 10.3389/fpls.2016.01491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/20/2016] [Indexed: 05/21/2023]
Abstract
Seed-coat cracking and undesirable color of seed coat highly affects external appearance and commercial value of peanuts (Arachis hypogaea L.). With an objective to find genetic solution to the above problems, a peanut mutant with cracking and brown colored seed coat (testa) was identified from an EMS treated mutant population and designated as "peanut seed coat crack and brown color mutant line (pscb)." The seed coat weight of the mutant was almost twice of the wild type, and the germination time was significantly shorter than wild type. Further, the mutant had lower level of lignin, anthocyanin, proanthocyanidin content, and highly increased level of melanin content as compared to wild type. Using RNA-Seq, we examined the seed coat transcriptome in three stages of seed development in the wild type and the pscb mutant. The RNA-Seq analysis revealed presence of highly differentially expressed phenylpropanoid and flavonoid pathway genes in all the three seed development stages, especially at 40 days after flowering (DAF40). Also, the expression of polyphenol oxidases and peroxidase were found to be activated significantly especially in the late seed developmental stage. The genome-wide comparative study of the expression profiles revealed 62 differentially expressed genes common across all the three stages. By analyzing the expression patterns and the sequences of the common differentially expressed genes of the three stages, three candidate genes namely c36498_g1 (CCoAOMT1), c40902_g2 (kinesin), and c33560_g1 (MYB3) were identified responsible for seed-coat cracking and brown color phenotype. Therefore, this study not only provided candidate genes but also provided greater insights and molecular genetic control of peanut seed-coat cracking and color variation. The information generated in this study will facilitate further identification of causal gene and diagnostic markers for breeding improved peanut varieties with smooth and desirable seed coat color.
Collapse
Affiliation(s)
- Liyun Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural SciencesWuhan, China
| | - Bei Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural SciencesWuhan, China
| | - Manish K. Pandey
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Yanshan Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural SciencesWuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural SciencesWuhan, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural SciencesWuhan, China
| | - Xiaofeng Dai
- Institute of Food Science and Technology of Chinese Academy of Agricultural SciencesBeijing, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural SciencesWuhan, China
| | - Juncheng Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural SciencesWuhan, China
| | - Guo Wei
- Institute of Food Science and Technology of Chinese Academy of Agricultural SciencesBeijing, China
| | - Rajeev K. Varshney
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural SciencesWuhan, China
- *Correspondence: Boshou Liao
| |
Collapse
|
42
|
Hoang VLT, Innes DJ, Shaw PN, Monteith GR, Gidley MJ, Dietzgen RG. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties. BMC Genomics 2015; 16:561. [PMID: 26220670 PMCID: PMC4518526 DOI: 10.1186/s12864-015-1784-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/17/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. RESULTS A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. CONCLUSIONS The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango.
Collapse
Affiliation(s)
- Van L T Hoang
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| | - David J Innes
- Department of Agriculture and Fisheries, Agri-Science Queensland, Brisbane, Queensland, Australia.
| | - P Nicholas Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| | - Ralf G Dietzgen
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
43
|
Fukushima A, Nakamura M, Suzuki H, Saito K, Yamazaki M. High-Throughput Sequencing and De Novo Assembly of Red and Green Forms of the Perilla frutescens var. crispa Transcriptome. PLoS One 2015; 10:e0129154. [PMID: 26070213 PMCID: PMC4466401 DOI: 10.1371/journal.pone.0129154] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/05/2015] [Indexed: 01/05/2023] Open
Abstract
Perilla frutescens var. crispa (Labiatae) has two chemo-varietal forms, i.e. red and green forms of perilla, that differ in the production of anthocyanins. To facilitate molecular biological and biochemical studies in perilla-specialized metabolism we used Illumina RNA-sequencing technology in our comprehensive comparison of the transcriptome map of the leaves of red and green forms of perilla. Sequencing generated over 1.2 billion short reads with an average length of 101 nt. De novo transcriptome assembly yielded 47,788 and 47,840 unigenes in the red and green forms of perilla plants, respectively. Comparison of the assembled unigenes and existing perilla cDNA sequences showed highly reliable alignment. All unigenes were annotated with gene ontology (GO) and Enzyme Commission numbers and entered into the Kyoto Encyclopedia of Genes and Genomes. We identified 68 differentially expressed genes (DEGs) in red and green forms of perilla. GO enrichment analysis of the DEGs showed that genes involved in the anthocyanin metabolic process were enriched. Differential expression analysis revealed that the transcript level of anthocyanin biosynthetic unigenes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase was significantly higher in red perilla, while the transcript level of unigenes encoding limonene synthase was significantly higher in green perilla. Our data serve as a basis for future research on perilla bio-engineering and provide a shortcut for the characterization of new functional genes in P. frutescens.
Collapse
Affiliation(s)
- Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230–0045, Japan
| | - Michimi Nakamura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Chiba, 263–8522, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, Kazusa-Kamatari 2-6-7, Kisarazu, Chiba, 292–0818, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230–0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Chiba, 263–8522, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Chiba, 263–8522, Japan
| |
Collapse
|
44
|
Roscoe TT, Guilleminot J, Bessoule JJ, Berger F, Devic M. Complementation of Seed Maturation Phenotypes by Ectopic Expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:1215-28. [PMID: 25840088 DOI: 10.1093/pcp/pcv049] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/19/2015] [Indexed: 05/20/2023]
Abstract
ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3) and LEAFY COTYLEDON2 (LEC2), collectively the AFL, are master regulators of seed maturation processes. This study examined the role of AFL in the production of seed reserves in Arabidopsis. Quantification of seed reserves and cytological observations of afl mutant embryos show that protein and lipid but not starch reserves are spatially regulated by AFL. Although AFL contribute to a common regulation of reserves, ABI3 exerts a quantitatively greater control over storage protein content whereas FUS3 controls lipid content to a greater extent. Although ABI3 controls the reserve content throughout the embryo, LEC2 and FUS3 regulate reserves in distinct embryonic territories. By analyzing the ability of an individual ectopically expressed AFL to suppress afl phenotypes genetically, we show that conserved domains common to each component of the AFL are sufficient for the initiation of storage product synthesis and the establishment of embryo morphology. This confirms redundancy among the AFL and indicates a threshold necessary for function within the AFL pool. Since no individual AFL was able to suppress the tolerance to desiccation, mid- and late-maturation programs were uncoupled.
Collapse
Affiliation(s)
- Thomas T Roscoe
- Régulations Epignetiques et Développement de la Graine, ERL 3500 CNRS-IRD, UMR DIADE, IRD centre de Montpellier, 911 avenue Agropolis, BP64501, 34394 Montpellier, France
| | - Jocelyne Guilleminot
- Laboratoire Genome et Développement des Plantes, UMR 5096 CNRS-UPVD, 58 Avenue P. Alduy, 66860 Perpignan, France
| | - Jean-Jacques Bessoule
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, Bâtiment A3-INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux CS 20032, 33140 Villenave d'Ornon, France CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Bâtiment A3-INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux CS 20032, 33140 Villenave d'Ornon, France
| | - Frédéric Berger
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Dr. Bohr-Gasse, 31030 Vienna, Austria
| | - Martine Devic
- Régulations Epignetiques et Développement de la Graine, ERL 3500 CNRS-IRD, UMR DIADE, IRD centre de Montpellier, 911 avenue Agropolis, BP64501, 34394 Montpellier, France
| |
Collapse
|
45
|
Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Appl Microbiol Biotechnol 2015; 99:3797-806. [PMID: 25805345 DOI: 10.1007/s00253-015-6533-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/29/2022]
Abstract
Proanthocyanidins (PA), also known as condensed tannins, contribute to important forage legumes traits including disease resistance and forage quality. PA in forage plants has both positive and negative effects on feed digestibility and animal performance. The analytical methods and their applicability in measuring the contents of PA in forage plants are essential to studies on their nutritional effects. In spite of important breakthroughs in our understanding of the PA biosynthesis, important questions still remain to be answered such as the PA polymerization and transport. Recent advances in the understanding of transcription factor-mediated gene regulation mechanisms in anthocyanin and PA biosynthetic pathway in model plants suggest new approaches for the metabolic engineering of PA in forage plants. The present review will attempt to present the state-of-the-art of research in these areas and provide an update on the production and metabolic engineering of PA in forage plants. We hope that this will contribute to a better understanding of the ways in which PA production to manipulate the content of PA for beneficial effects in forage plants.
Collapse
|
46
|
MacGregor DR, Kendall SL, Florance H, Fedi F, Moore K, Paszkiewicz K, Smirnoff N, Penfield S. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. THE NEW PHYTOLOGIST 2015; 205:642-52. [PMID: 25412428 DOI: 10.1111/nph.13090] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/22/2014] [Indexed: 05/21/2023]
Abstract
Environmental changes during seed production are important drivers of lot-to-lot variation in seed behaviour and enable wild species to time their life history with seasonal cues. Temperature during seed set is the dominant environmental signal determining the depth of primary dormancy, although the mechanisms though which temperature changes impart changes in dormancy state are still only partly understood. We used molecular, genetic and biochemical techniques to examine the mechanism through which temperature variation affects Arabidopsis thaliana seed dormancy. Here we show that, in Arabidopsis, low temperatures during seed maturation result in an increase in phenylpropanoid gene expression in seeds and that this correlates with higher concentrations of seed coat procyanidins. Lower maturation temperatures cause differences in coat permeability to tetrazolium, and mutants with increased seed coat permeability and/or low procyanidin concentrations are less able to enter strongly dormant states after exposure to low temperatures during seed maturation. Our data show that maternal temperature signalling regulates seed coat properties, and this is an important pathway through which the environmental signals control primary dormancy depth.
Collapse
Affiliation(s)
- Dana R MacGregor
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK; Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney Ln, Norwich, Norfolk, NR4, 7UH, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mizzotti C, Ezquer I, Paolo D, Rueda-Romero P, Guerra RF, Battaglia R, Rogachev I, Aharoni A, Kater MM, Caporali E, Colombo L. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat. PLoS Genet 2014; 10:e1004856. [PMID: 25521508 PMCID: PMC4270456 DOI: 10.1371/journal.pgen.1004856] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites) in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK) is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR), which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites. Plant secondary metabolites accumulate in seeds to protect the developing embryo. Using an RNA sequencing approach in conjunction with enrichment analyses we identified the homeotic MADS-domain gene SEEDSTICK (STK) as a regulator of metabolic processes during seed development. We analyzed the role of STK as a key regulator of the production of proanthocyanidins, compounds which are important for the pigmentation of the seed. STK directly regulates a network of metabolic genes, and is also implicated in changes occurring in the chromatin landscape. Our work demonstrates that a key homeotic transcription factor not only determines the identity of ovules but also controls metabolic processes that occur subsequent to the initial identity determination process, thus suggesting a link between identity determination and cell-specific (metabolic) processes.
Collapse
Affiliation(s)
- Chiara Mizzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Milan, Italy
| | - Dario Paolo
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | - Paloma Rueda-Romero
- Centro de Biotecnología y Genómica de Plantas-UPM-INIA, ETSI Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | | | | | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Martin M. Kater
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | | | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Milan, Italy
- * E-mail:
| |
Collapse
|
48
|
Mouradov A, Spangenberg G. Flavonoids: a metabolic network mediating plants adaptation to their real estate. FRONTIERS IN PLANT SCIENCE 2014; 5:620. [PMID: 25426130 PMCID: PMC4226159 DOI: 10.3389/fpls.2014.00620] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/21/2014] [Indexed: 05/18/2023]
Abstract
From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.
Collapse
Affiliation(s)
- Aidyn Mouradov
- Royal Melbourne Institute of Technology UniversityBundoora, VIC, Australia
| | - German Spangenberg
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University – AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
| |
Collapse
|
49
|
Appelhagen I, Thiedig K, Nordholt N, Schmidt N, Huep G, Sagasser M, Weisshaar B. Update on transparent testa mutants from Arabidopsis thaliana: characterisation of new alleles from an isogenic collection. PLANTA 2014; 240:955-70. [PMID: 24903359 DOI: 10.1007/s00425-014-2088-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/23/2014] [Indexed: 05/23/2023]
Abstract
We present a comprehensive overview on flavonoid-related phenotypes of A. thaliana tt and tds mutants, provide tools for their characterisation, increase the number of available alleles and demonstrate that tds3 is allelic to tt12 and tds5 to aha10. Flavonoid biosynthesis is one of the best-studied secondary metabolite pathways in plants. In the model system Arabidopsis thaliana it leads to the synthesis of three phenolic compound classes: flavonol glycosides, anthocyanins and proanthocyanidins (PAs). PAs appear brown in their oxidised polymeric forms, and most A. thaliana mutants impaired in flavonoid accumulation were identified through screens for lack of this seed coat pigmentation. These mutants are referred to as transparent testa (tt) or tannin-deficient seed (tds). More than 20 mutants of these types have been published, probably representing most of the genes relevant for PA accumulation in A. thaliana. However, data about the genes involved in PA deposition or oxidation are still rather scarce. Also, for some of the known mutants it is unclear if they represent additional loci or if they are allelic to known genes. For the present study, we have performed a systematic phenotypic characterisation of almost all available tt and tds mutants and built a collection of mutants in the genetic background of the accession Columbia to minimise effects arising from ecotype variation. We have identified a novel tt6 allele from a forward genetic screen and demonstrated that tds3 is allelic to tt12 and tds5 to aha10.
Collapse
Affiliation(s)
- Ingo Appelhagen
- Department of Biology, Bielefeld University, Universitaetsstrasse 27, 33615, Bielefeld, Germany,
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhu Y, Peng QZ, Li KG, Xie DY. Molecular cloning and functional characterization of the anthocyanidin reductase gene from Vitis bellula. PLANTA 2014; 240:381-98. [PMID: 24880552 DOI: 10.1007/s00425-014-2094-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/02/2014] [Indexed: 05/24/2023]
Abstract
Anthocyanidin reductase (ANR) is an NADPH-/NADH-dependent enzyme that transfers two hydrides to anthocyanidins to produce three types of isomeric flavan-3-ols. This reductase forms the ANR pathway toward the biosynthesis of proanthocyanidins (PAs, which are also called condensed tannins). Here, we report cloning and functional characterization of an ANR (called VbANR) homolog from the leaves of Vitis bellula, a newly developed grape crop in southern China. The open reading frame (ORF) of VbANR is 1,017 bp in length and encodes 339 amino acids. A phylogenetic analysis and an alignment using 17 sequences revealed that VbANR is approximately 99.9 % identical to the ANR homolog from Vitis vinifera. The VbANR ORF is fused to the Trx gene containing a His-tag in the pET32a(+) vector to obtain a pET32a(+)-VbANR construct for expressing the recombinant VbANR. In vitro enzyme assays show that VbANR converts cyanidin, delphinidin, and pelargonidin to their corresponding flavan-3-ols. Enzymatic products include 2S,3R-trans- and 2R,3R-cis-flavan-3-ols isomers, such as (-)-catechin and (-)-epicatechin. In addition, the third compound that is observed from the enzymatic products is most likely a 2S,3S-cis-flavan-3-ol. To analyze the kinetics and optimize pH and temperature values, a UV spectrometry method was developed to quantify the concentrations of total enzymatic products. The optimum pH and temperature values are 4.0 and 40 °C, respectively. The K m , K cat, V max, and K cat/K m values for pelargonidin and delphinidin were similar. In comparison, VbANR exhibits a slightly lower affinity to cyanidin. VbANR uses both NADPH and NADH but prefers to employ NADPH. GFP fusion and confocal microscopy analyses revealed the cytosolic localization of VbANR. The overexpression of VbANR in ban mutants reconstructed the biosynthetic pathway of PAs in the seed coat. These data demonstrate that VbANR forms the ANR pathway, leading to the formation of three types of isomeric flavan-3-ols and PAs in the leaves of V. bellula.
Collapse
Affiliation(s)
- Yue Zhu
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, No. 120 Ren Min Nan Lu, Jishou City, 416000, Hunan Province, People's Republic of China
| | | | | | | |
Collapse
|