1
|
Pegler JL, Oultram JMJ, Grof CPL, Eamens AL. DRB1 and DRB2 Are Required for an Appropriate miRNA-Mediated Molecular Response to Salt Stress in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2025; 14:924. [PMID: 40265861 PMCID: PMC11944917 DOI: 10.3390/plants14060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
In plants, microRNAs (miRNAs) and their target genes have been demonstrated to form an essential component of the molecular response to salt stress. In Arabidopsis thaliana (Arabidopsis), DOUBLE-STRANDED RNA BINDING1 (DRB1) and DRB2 are required to produce specific miRNA populations throughout normal development and in response to abiotic stress. The phenotypic and physiological assessment of 15-day-old wild-type Arabidopsis seedlings, and of the drb1 and drb2 mutants following a 7-day period of salt stress, revealed the drb2 mutant to be more sensitive to salt stress than the drb1 mutant. However, the assessment of miRNA abundance and miRNA target gene expression showed that the ability of both drb mutants to mount an appropriate miRNA-mediated molecular response to salt stress is defective. Furthermore, molecular profiling also showed that DRB1 and DRB2 are both required for miRNA production during salt stress, and that both a target transcript cleavage mode and a translational repression mode of RNA silencing are required to appropriately regulate miRNA target gene expression as part of the molecular response of Arabidopsis to salt stress. Taken together, the phenotypic, physiological, and molecular analyses performed here clearly show that all components of the miRNA pathway must be fully functional for Arabidopsis to mount an appropriate miRNA-mediated molecular response to salt stress.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; (J.L.P.); (J.M.J.O.); (C.P.L.G.)
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; (J.L.P.); (J.M.J.O.); (C.P.L.G.)
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; (J.L.P.); (J.M.J.O.); (C.P.L.G.)
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
2
|
Skowron E, Trojak M, Pacak I, Węzigowska P, Szymkiewicz J. Enhancing the Quality of Indoor-Grown Basil Microgreens with Low-Dose UV-B or UV-C Light Supplementation. Int J Mol Sci 2025; 26:2352. [PMID: 40076970 PMCID: PMC11900093 DOI: 10.3390/ijms26052352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Controlled-environment crop production often weakens plants' defense mechanisms, reducing the accumulation of protective phytochemicals essential to human health. Our previous studies demonstrated that short-term supplementation of low-dose ultraviolet (UV) light to the red-green-blue (RGB) spectrum effectively boosts secondary metabolite (SM) synthesis and antioxidant capacity in lettuce. This study explored whether similar effects occur in basil cultivars by supplementing the RGB spectrum with ultraviolet B (UV-B, 311 nm) or ultraviolet C (UV-C, 254 nm) light shortly before harvest. Molecular analyses focused on UV-induced polyphenol synthesis, particularly chalcone synthase (CHS) level, and UV light perception via the UVR8 receptor. The impact of high-energy UV radiation on the photosynthetic apparatus (PA) was also monitored. The results showed that UV-B supplementation did not harm the PA, while UV-C significantly impaired photosynthesis and restricted plant growth and biomass accumulation. In green-leaf (Sweet Large, SL) basil, UV-B enhanced total antioxidant capacity (TAC), increasing polyphenolic secondary metabolites and ascorbic acid (AsA) levels. UV-C also stimulated phenolic compound accumulation in SL basil but had no positive effects in the purple-leaf (Dark Opal, DO) cultivar. Interestingly, while the UV-B treatment promoted UVR8 monomerization in both cultivars, the enhanced CHS level and concomitant SM synthesis were noted only for SL basil. In addition, UV-C also induced CHS activity and SM synthesis in SL basil but clearly in a UVR8-independeted manner. These findings underscore the potential of UV light supplementation for enhancing plant functional properties, highlighting species- and cultivar-specific effects without compromising photosynthetic performance.
Collapse
Affiliation(s)
- Ernest Skowron
- Department of Environmental Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (M.T.); (P.W.); (J.S.)
| | - Magdalena Trojak
- Department of Environmental Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (M.T.); (P.W.); (J.S.)
| | - Ilona Pacak
- Department of Medical Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Paulina Węzigowska
- Department of Environmental Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (M.T.); (P.W.); (J.S.)
| | - Julia Szymkiewicz
- Department of Environmental Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (M.T.); (P.W.); (J.S.)
| |
Collapse
|
3
|
Zhu L, Zhang C, Yang N, Cao W, Li Y, Peng Y, Wei X, Ma B, Ma F, Ruan YL, Li M. Apple vacuolar sugar transporters regulated by MdDREB2A enhance drought resistance by promoting accumulation of soluble sugars and activating ABA signaling. HORTICULTURE RESEARCH 2024; 11:uhae251. [PMID: 39664684 PMCID: PMC11630069 DOI: 10.1093/hr/uhae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 12/13/2024]
Abstract
Soluble sugars are not only an important contributor to fruit quality, but also serve as the osmotic regulators in response to abiotic stresses. Early drought stress promotes sugar accumulation, while specific sugar transporters govern the cellular distribution of the sugars. Here, we show that apple plantlets accumulate soluble sugars in leaf tissues under drought stress. Transcriptional profiling of stressed and control plantlets revealed differential expression of several plasma membrane-or vacuolar membrane-localized sugar transporter genes. Among these, four previously identified vacuolar sugar transporter (VST) genes (MdERDL6-1, MdERDL6-2, MdTST1, and MdTST2) showed higher expression under drought, suggesting their roles in response to drought stress. Promoter cis-elements analyses, yeast one-hybrid, and dual-luciferase tests confirmed that the drought-induced transcription factor MdDREB2A could promote the expression of MdERDL6-1/-2 and MdTST1/2 by binding to their promoter regions. Moreover, overexpressing of each of these four MdVSTs alone in transgenic apple or Arabidopsis plants accumulated more soluble sugars and abscisic acid (ABA), and enhanced drought resistance. Furthermore, apple plants overexpressing MdERDL6-1 also showed reduced water potential, facilitated stomatal closure, and reactive oxygen species scavenging under drought conditions compared to control plants. Overall, our results suggest a potential strategy to enhance drought resistance and sugar accumulation in fruits through manipulating the genes involved in vacuolar sugar transport.
Collapse
Affiliation(s)
- Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunxia Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nanxiang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenjing Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanzhen Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunjing Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong-Ling Ruan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Pegler JL, Oultram JMJ, Grof CPL, Eamens AL. DRB1, DRB2 and DRB4 Are Required for an Appropriate miRNA-Mediated Molecular Response to Osmotic Stress in Arabidopsis thaliana. Int J Mol Sci 2024; 25:12562. [PMID: 39684274 DOI: 10.3390/ijms252312562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Arabidopsis thaliana (Arabidopsis) double-stranded RNA binding (DRB) proteins DRB1, DRB2 and DRB4 perform essential roles in microRNA (miRNA) production, with many of the produced miRNAs mediating aspects of the molecular response of Arabidopsis to abiotic stress. Exposure of the drb1, drb2 and drb4 mutants to mannitol stress showed drb2 to be the most sensitive to this form of osmotic stress. Profiling of the miRNA landscapes of mannitol-stressed drb1, drb2 and drb4 seedlings via small RNA sequencing, and comparison of these to the profile of mannitol-stressed wild-type Arabidopsis plants, revealed that the ability of the drb1 and drb2 mutants to mount an appropriate miRNA-mediated molecular response to mannitol stress was defective. RT-qPCR was next used to further characterize seven miRNA/target gene expression modules, with this analysis identifying DRB1 as the primary DRB protein required for miR160, miR164, miR167 and miR396 production. In addition, via its antagonism of DRB1 function, DRB2 was shown by RT-qPCR to play a secondary role in regulating the production of these four miRNAs. This analysis further showed that DRB1, DRB2 and DRB4 are all required to regulate the production of miR399 and miR408, and that DRB4 is the primary DRB protein required to produce the non-conserved miRNA, miR858. Finally, RT-qPCR was used to reveal that each of the seven characterized miRNA/target gene expression modules responded differently to mannitol-induced osmotic stress in each of the four assessed Arabidopsis lines. In summary, this research has identified mannitol-stress-responsive miRNA/target gene expression modules that can be molecularly manipulated in the future to generate novel Arabidopsis lines with increased tolerance to this form of osmotic stress.
Collapse
Affiliation(s)
- Joseph L Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jackson M J Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher P L Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Andrew L Eamens
- Seaweed Research Group, School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
5
|
Skowron E, Trojak M, Pacak I. Effects of UV-B and UV-C Spectrum Supplementation on the Antioxidant Properties and Photosynthetic Activity of Lettuce Cultivars. Int J Mol Sci 2024; 25:9298. [PMID: 39273249 PMCID: PMC11394776 DOI: 10.3390/ijms25179298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Indoor farming systems enable plant production in precisely controlled environments. However, implementing stable growth conditions and the absence of stress stimulants can weaken plants' defense responses and limit the accumulation of bioactive, health-beneficial phytochemicals. A potential solution is the controlled application of stressors, such as supplemental ultraviolet (UV) light. To this end, we analyzed the efficiency of short-term pre-harvest supplementation of the red-green-blue (RGB, LED) spectrum with ultraviolet B (UV-B) or C (UV-C) light to boost phytochemical synthesis. Additionally, given the biological harm of UV radiation due to high-energy photons, we monitored plants' photosynthetic activity during treatment and their morphology as well as sensory attributes after the treatment. Our analyses showed that UV-B radiation did not negatively impact photosynthetic activity while significantly increasing the overall antioxidant potential of lettuce through enhanced levels of secondary metabolites (total phenolics, flavonoids, anthocyanins), carotenoids, and ascorbic acid. On the contrary, UV-C radiation-induced anthocyanin accumulation in the green leaf cultivar significantly harmed the photosynthetic apparatus and limited plant growth. Taken together, we showed that short-term UV-B light supplementation is an efficient method for lettuce biofortification with healthy phytochemicals, while UV-C treatment is not recommended due to the negative impact on the quality (morphology, sensory properties) of the obtained leafy products. These results are crucial for understanding the potential of UV light supplementation for producing functional plants.
Collapse
Affiliation(s)
- Ernest Skowron
- Department of Environmental Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Magdalena Trojak
- Department of Environmental Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Ilona Pacak
- Institute of Chemistry, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
6
|
Song P, Yang Z, Wang H, Wan F, Kang D, Zheng W, Gong Z, Li J. Regulation of cryptochrome-mediated blue light signaling by the ABI4-PIF4 module. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39185941 DOI: 10.1111/jipb.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
ABSCISIC ACID-INSENSITIVE 4 (ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses. ABI4 has been shown to be involved in regulating seedling photomorphogenesis; however, the underlying mechanism remains elusive. Here, we show that the role of ABI4 in regulating photomorphogenesis is generally regulated by sucrose, but ABI4 promotes hypocotyl elongation of Arabidopsis seedlings under blue (B) light under all tested sucrose concentrations. We further show that ABI4 physically interacts with PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a well-characterized growth-promoting transcription factor, and post-translationally promotes PIF4 protein accumulation under B light. Further analyses indicate that ABI4 directly interacts with the B light photoreceptors cryptochromes (CRYs) and inhibits the interactions between CRYs and PIF4, thus relieving CRY-mediated repression of PIF4 protein accumulation. In addition, while ABI4 could directly activate its own expression, CRYs enhance, whereas PIF4 inhibits, ABI4-mediated activation of the ABI4 promoter. Together, our study demonstrates that the ABI4-PIF4 module plays an important role in mediating CRY-induced B light signaling in Arabidopsis.
Collapse
Affiliation(s)
- Pengyu Song
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Wheat and Maize Crop Science, Postdoctoral Station of Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zidan Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, 644000, China
| | - Huaichang Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Wan
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingming Kang
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Postdoctoral Station of Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhizhong Gong
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Garcia A, Talavera-Mateo L, Petrik I, Oklestkova J, Novak O, Santamaria ME. Spider mite infestation triggers coordinated hormonal trade-offs enabling plant survival with a fitness cost. PHYSIOLOGIA PLANTARUM 2024; 176:e14479. [PMID: 39187434 DOI: 10.1111/ppl.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/28/2024]
Abstract
Tetranychus urticae is an important pest that causes severe damage to a wide variety of plants and crops, leading to a substantial productivity loss. Previous research has been focused on plant defence response to T. urticae to improve plant resistance. However, plant growth, development and reproduction throughout the infestation process have not been previously studied. Through physiological, biochemical, transcriptomic and hormonomic evaluation, we uncover the molecular mechanisms directing the defence-growth trade-off established in Arabidopsis upon T. urticae infestation. Upon mite attack, plants suffer an adaptation process characterized by a temporal separation between the defence and growth responses. Jasmonic and salicylic acids regulate the main defence responses in combination with auxin and abscisic acid. However, while the reduction of both auxin signalling and gibberellin, cytokinin and brassinosteroid biosynthesis lead to initial growth arrest, increasing levels of growth hormones at later stages enables growth restart. These alterations lead to a plant developmental delay that impacts both seed production and longevity. We demonstrate that coordinated trade-offs determine plant adaptation and survival, revealing mite infestation has a long-lasting effect negatively impacting seed viability. This study provides additional tools to design pest management strategies that improve resistance without penalty in plant fitness.
Collapse
Affiliation(s)
- Alejandro Garcia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Lucia Talavera-Mateo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Ivan Petrik
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc & Institute of Experimental Botany, The Czech Academy of Science, Olomouc, Czech Republic
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc & Institute of Experimental Botany, The Czech Academy of Science, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc & Institute of Experimental Botany, The Czech Academy of Science, Olomouc, Czech Republic
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Yoshida T, Mergner J, Yang Z, Liu J, Kuster B, Fernie AR, Grill E. Integrating multi-omics data reveals energy and stress signaling activated by abscisic acid in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1112-1133. [PMID: 38613775 DOI: 10.1111/tpj.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024]
Abstract
Phytohormones are essential signaling molecules regulating various processes in growth, development, and stress responses. Genetic and molecular studies, especially using Arabidopsis thaliana (Arabidopsis), have discovered many important players involved in hormone perception, signal transduction, transport, and metabolism. Phytohormone signaling pathways are extensively interconnected with other endogenous and environmental stimuli. However, our knowledge of the huge and complex molecular network governed by a hormone remains limited. Here we report a global overview of downstream events of an abscisic acid (ABA) receptor, REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR) 6 (also known as PYRABACTIN RESISTANCE 1 [PYR1]-LIKE [PYL] 12), by integrating phosphoproteomic, proteomic and metabolite profiles. Our data suggest that the RCAR6 overexpression constitutively decreases the protein levels of its coreceptors, namely clade A protein phosphatases of type 2C, and activates sucrose non-fermenting-1 (SNF1)-related protein kinase 1 (SnRK1) and SnRK2, the central regulators of energy and ABA signaling pathways. Furthermore, several enzymes in sugar metabolism were differentially phosphorylated and expressed in the RCAR6 line, and the metabolite profile revealed altered accumulations of several organic acids and amino acids. These results indicate that energy- and water-saving mechanisms mediated by the SnRK1 and SnRK2 kinases, respectively, are under the control of the ABA receptor-coreceptor complexes.
Collapse
Affiliation(s)
- Takuya Yoshida
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Zhenyu Yang
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Jinghui Liu
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| |
Collapse
|
9
|
Asad MAU, Yan Z, Zhou L, Guan X, Cheng F. How abiotic stresses trigger sugar signaling to modulate leaf senescence? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108650. [PMID: 38653095 DOI: 10.1016/j.plaphy.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Plants have evolved the adaptive capacity to mitigate the negative effect of external adversities at chemical, molecular, cellular, and physiological levels. This capacity is conferred by triggering the coordinated action of internal regulatory factors, in which sugars play an essential role in the regulating chloroplast degradation and leaf senescence under various stresses. In this review, we summarize the recent findings on the senescent-associated changes in carbohydrate metabolism and its relation to chlorophyl degradation, oxidative damage, photosynthesis inhibition, programmed cell death (PCD), and sink-source relation as affected by abiotic stresses. The action of sugar signaling in regulating the initiation and progression of leaf senescence under abiotic stresses involves interactions with various plant hormones, reactive oxygen species (ROS) burst, and protein kinases. This discussion aims to elucidate the complex regulatory network and molecular mechanisms that underline sugar-induced leaf senescence in response to various abiotic stresses. The imperative role of sugar signaling in regulating plant stress responses potentially enables the production of crop plants with modified sugar metabolism. This, in turn, may facilitate the engineering of plants with improved stress responses, optimal life span and higher yield achievement.
Collapse
Affiliation(s)
- Muhmmad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhang Yan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Collaborative Innovation Centre for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, China.
| |
Collapse
|
10
|
Li J, Yao S, Kim SC, Wang X. Lipid phosphorylation by a diacylglycerol kinase suppresses ABA biosynthesis to regulate plant stress responses. MOLECULAR PLANT 2024; 17:342-358. [PMID: 38243594 PMCID: PMC10869644 DOI: 10.1016/j.molp.2024.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Lipid phosphorylation by diacylglycerol kinase (DGK) that produces phosphatidic acid (PA) plays important roles in various biological processes, including stress responses, but the underlying mechanisms remain elusive. Here, we show that DGK5 and its lipid product PA suppress ABA biosynthesis by interacting with ABA-DEFICIENT 2 (ABA2), a key ABA biosynthesis enzyme, to negatively modulate plant response to abiotic stress tested in Arabidopsis thaliana. Loss of DGK5 function rendered plants less damaged, whereas overexpression (OE) of DGK5 enhanced plant damage to water and salt stress. The dgk5 mutant plants exhibited decreased total cellular and nuclear levels of PA with increased levels of diacylglycerol, whereas DGK5-OE plants displayed the opposite effect. Interestingly, we found that both DGK5 and PA bind to the ABA-synthesizing enzyme ABA2 and suppress its enzymatic activity. Consistently, the dgk5 mutant plants exhibited increased levels of ABA, while DGK5-OE plants showed reduced ABA levels. In addition, we showed that both DGK5 and ABA2 are detected in and outside the nuclei, and loss of DGK5 function decreased the nuclear association of ABA2. We found that both DGK5 activity and PA promote nuclear association of ABA2. Taken together, these results indicate that both DGK5 and PA interact with ABA2 to inhibit its enzymatic activity and promote its nuclear sequestration, thereby suppressing ABA production in response to abiotic stress. Our study reveals a sophisticated mechanism by which DGK5 and PA regulate plant stress responses.
Collapse
Affiliation(s)
- Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
11
|
Emenecker RJ, Cammarata J, Yuan I, Howard C, Ebrahimi Naghani S, Robert HS, Nambara E, Strader LC. Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development 2023; 150:dev202106. [PMID: 37846593 PMCID: PMC10730017 DOI: 10.1242/dev.202106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
In concert with other phytohormones, auxin regulates plant growth and development. However, how auxin and other phytohormones coordinately regulate distinct processes is not fully understood. In this work, we uncover an auxin-abscisic acid (ABA) interaction module in Arabidopsis that is specific to coordinating activities of these hormones in the hypocotyl. From our forward genetics screen, we determine that ABA biosynthesis is required for the full effects of auxin on hypocotyl elongation. Our data also suggest that ABA biosynthesis is not required for the inhibitory effects of auxin treatment on root elongation. Our transcriptome analysis identified distinct auxin-responsive genes in root and shoot tissues, which is consistent with differential regulation of growth in these tissues. Further, our data suggest that many gene targets repressed upon auxin treatment require an intact ABA pathway for full repression. Our results support a model in which auxin stimulates ABA biosynthesis to fully regulate hypocotyl elongation.
Collapse
Affiliation(s)
- Ryan J. Emenecker
- Department of Biology, Washington University, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | | | - Irene Yuan
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Caroline Howard
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Shekufeh Ebrahimi Naghani
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czechia
| | - Helene S. Robert
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Lucia C. Strader
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
12
|
Suraby EJ, Agisha VN, Dhandapani S, Sng YH, Lim SH, Naqvi NI, Sarojam R, Yin Z, Park BS. Plant growth promotion under phosphate deficiency and improved phosphate acquisition by new fungal strain, Penicillium olsonii TLL1. Front Microbiol 2023; 14:1285574. [PMID: 37965551 PMCID: PMC10642178 DOI: 10.3389/fmicb.2023.1285574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023] Open
Abstract
Microbiomes in soil ecosystems play a significant role in solubilizing insoluble inorganic and organic phosphate sources with low availability and mobility in the soil. They transfer the phosphate ion to plants, thereby promoting plant growth. In this study, we isolated an unidentified fungal strain, POT1 (Penicillium olsonii TLL1) from indoor dust samples, and confirmed its ability to promote root growth, especially under phosphate deficiency, as well as solubilizing activity for insoluble phosphates such as AlPO4, FePO4·4H2O, Ca3(PO4)2, and hydroxyapatite. Indeed, in vermiculite containing low and insoluble phosphate, the shoot fresh weight of Arabidopsis and leafy vegetables increased by 2-fold and 3-fold, respectively, with POT1 inoculation. We also conducted tests on crops in Singapore's local soil, which contains highly insoluble phosphate. We confirmed that with POT1, Bok Choy showed a 2-fold increase in shoot fresh weight, and Rice displayed a 2-fold increase in grain yield. Furthermore, we demonstrated that plant growth promotion and phosphate solubilizing activity of POT1 were more effective than those of four different Penicillium strains such as Penicillium bilaiae, Penicillium chrysogenum, Penicillium janthinellum, and Penicillium simplicissimum under phosphate-limiting conditions. Our findings uncover a new fungal strain, provide a better understanding of symbiotic plant-fungal interactions, and suggest the potential use of POT1 as a biofertilizer to improve phosphate uptake and use efficiency in phosphate-limiting conditions.
Collapse
Affiliation(s)
- Erinjery Jose Suraby
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | | | - Savitha Dhandapani
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yee Hwui Sng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Shi Hui Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Zhongchao Yin
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Laloum T, Carvalho SD, Martín G, Richardson DN, Cruz TMD, Carvalho RF, Stecca KL, Kinney AJ, Zeidler M, Barbosa ICR, Duque P. The SCL30a SR protein regulates ABA-dependent seed traits and germination under stress. PLANT, CELL & ENVIRONMENT 2023; 46:2112-2127. [PMID: 37098235 DOI: 10.1111/pce.14593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023]
Abstract
SR proteins are conserved RNA-binding proteins best known as splicing regulators that have also been implicated in other steps of gene expression. Despite mounting evidence for a role in plant development and stress responses, the molecular pathways underlying SR protein regulation of these processes remain poorly understood. Here we show that the plant-specific SCL30a SR protein negatively regulates ABA signaling to control seed traits and stress responses during germination in Arabidopsis. Transcriptome-wide analyses revealed that loss of SCL30a function barely affects splicing, but largely induces ABA-responsive gene expression and genes repressed during germination. Accordingly, scl30a mutant seeds display delayed germination and hypersensitivity to ABA and high salinity, while transgenic plants overexpressing SCL30a exhibit reduced ABA and salt stress sensitivity. An ABA biosynthesis inhibitor rescues the enhanced mutant seed stress sensitivity, and epistatic analyses confirm that this hypersensitivity requires a functional ABA pathway. Finally, seed ABA levels are unchanged by altered SCL30a expression, indicating that the gene promotes seed germination under stress by reducing sensitivity to the phytohormone. Our results reveal a new player in ABA-mediated control of early development and stress response.
Collapse
Affiliation(s)
- Tom Laloum
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | | | | | - Kevin L Stecca
- Crop Genetics Research and Development, DuPont Experimental Station, Wilmington, Delaware, USA
| | - Anthony J Kinney
- Crop Genetics Research and Development, DuPont Experimental Station, Wilmington, Delaware, USA
| | - Mathias Zeidler
- Institute of Plant Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | | | - Paula Duque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
14
|
Koh SS, Dev K, Tan JJ, Teo VX, Zhang S, U.S. D, Olivo M, Urano D. Classification of Plant Endogenous States Using Machine Learning-Derived Agricultural Indices. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0060. [PMID: 37383729 PMCID: PMC10298216 DOI: 10.34133/plantphenomics.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Leaf color patterns vary depending on leaf age, pathogen infection, and environmental and nutritional stresses; thus, they are widely used to diagnose plant health statuses in agricultural fields. The visible-near infrared-shortwave infrared (VIS-NIR-SWIR) sensor measures the leaf color pattern from a wide spectral range with high spectral resolution. However, spectral information has only been employed to understand general plant health statuses (e.g., vegetation index) or phytopigment contents, rather than pinpointing defects of specific metabolic or signaling pathways in plants. Here, we report feature engineering and machine learning methods that utilize VIS-NIR-SWIR leaf reflectance for robust plant health diagnostics, pinpointing physiological alterations associated with the stress hormone, abscisic acid (ABA). Leaf reflectance spectra of wild-type, ABA2-overexpression, and deficient plants were collected under watered and drought conditions. Drought- and ABA-associated normalized reflectance indices (NRIs) were screened from all possible pairs of wavelength bands. Drought associated NRIs showed only a partial overlap with those related to ABA deficiency, but more NRIs were associated with drought due to additional spectral changes within the NIR wavelength range. Interpretable support vector machine classifiers built with 20 NRIs predicted treatment or genotype groups with an accuracy greater than those with conventional vegetation indices. Major selected NRIs were independent from leaf water content and chlorophyll content, 2 well-characterized physiological changes under drought. The screening of NRIs, streamlined with the development of simple classifiers, serves as the most efficient means of detecting reflectance bands that are highly relevant to characteristics of interest.
Collapse
Affiliation(s)
- Sally Shuxian Koh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kapil Dev
- Translational Biophotonics Laboratory, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Javier Jingheng Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Valerie Xinhui Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shuyan Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dinish U.S.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Malini Olivo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Wang S, Chen H, Huang Y, Zhang X, Chen Y, Du H, Wang H, Qin F, Ding S. Ubiquitin E3 ligase AtCHYR2 functions in glucose regulation of germination and post-germinative growth in Arabidopsis thaliana. PLANT CELL REPORTS 2023; 42:989-1002. [PMID: 36991149 DOI: 10.1007/s00299-023-03008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/19/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE Cytoplasm-localized RING ubiquitin E3 ligase AtCHYR2 involved in plant glucose responses during germination and post-germinative growth. CHY ZINC FINGER AND RING PROTEIN (CHYR) containing both a CHY zinc finger and a C3H2C3-type RING domain plays important roles in plant drought tolerance and the abscisic acid (ABA) response; however, their functions in sugar signaling pathways are less studied. Here, we report a glucose (Glc) response gene AtCHYR2, a homolog of RZFP34/CHYR1, which is induced by various abiotic stresses, ABA, and sugar treatments. In vitro, we demonstrated that AtCHYR2 is a cytoplasm-localized RING ubiquitin E3 ligase. Overexpression of AtCHYR2 led to hypersensitivity to Glc and enhanced Glc-mediated inhibition of cotyledon greening and post-germinative growth. Contrastingly, AtCHYR2 loss-of-function plants were insensitive to Glc-regulated seed germination and primary root growth, suggesting that AtCHYR2 is a positively regulator of the plant glucose response. Additionally, physiological analyses showed that overexpression AtCHYR2 increased stomata aperture and photosynthesis under normal condition, and promoted accumulation of endogenous soluble sugar and starch in response to high Glc. Genome-wide RNA sequencing analysis showed that AtCHYR2 affects a major proportion of Glc-responsive genes. Particularly, sugar marker gene expression analysis suggested that AtCHYR2 enhances the Glc response via a signaling pathway dependent on glucose metabolism. Taken together, our findings show that a novel RING ubiquitin E3 ligase, AtCHYR2, plays an important role in glucose responses in Arabidopsis.
Collapse
Affiliation(s)
- Shengyong Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Huili Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Yujie Huang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Xiaotian Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Yuhang Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Hongwei Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China.
| | - Feng Qin
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Shuangcheng Ding
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China.
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
16
|
Khatun N, Shinozawa A, Takahashi K, Matsuura H, Jahan A, Islam M, Karim M, Sk R, Yoshikawa M, Ishizaki K, Sakata Y, Takezawa D. Abscisic acid-mediated sugar responses are essential for vegetative desiccation tolerance in the liverwort Marchantia polymorpha. PHYSIOLOGIA PLANTARUM 2023; 175:e13898. [PMID: 36974502 DOI: 10.1111/ppl.13898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Low-molecular-weight sugars serve as protectants for cellular membranes and macromolecules under the condition of dehydration caused by environmental stress such as desiccation and freezing. These sugars also affect plant growth and development by provoking internal signaling pathways. We previously showed that both sugars and the stress hormone abscisic acid (ABA) enhance desiccation tolerance of gemma, a dormant propagule of the liverwort Marchantia polymorpha. To determine the role of ABA in sugar responses in liverworts, we generated genome-editing lines of M. polymorpha ABA DEFICIENT 1 (MpABA1) encoding zeaxanthin epoxidase, which catalyzes the initial reaction toward ABA biosynthesis. The generated Mpaba1 lines that accumulated only a trace amount of endogenous ABA showed reduced desiccation tolerance and reduced sugar responses. RNA-seq analysis of sucrose-treated gemmalings of M. polymorpha revealed that expression of a large part of sucrose-induced genes was reduced in Mpaba1 compared to the wild-type. Furthermore, Mpaba1 accumulated smaller amounts of low-molecular-weight sugars in tissues upon sucrose treatment than the wild-type, with reduced expression of genes for sucrose synthesis, sugar transporters, and starch-catabolizing enzymes. These results indicate that endogenous ABA plays a role in the regulation of the positive feedback loop for sugar-induced sugar accumulation in liverworts, enabling the tissue to have desiccation tolerance.
Collapse
Affiliation(s)
- Nobiza Khatun
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Akihisa Shinozawa
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Kosaku Takahashi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hideyuki Matsuura
- Division of Fundamental, AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Akida Jahan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Mousona Islam
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Masudul Karim
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Rahul Sk
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | | | | | - Yoichi Sakata
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
17
|
Park SH, Jeong JS, Huang CH, Park BS, Chua NH. Inositol polyphosphates-regulated polyubiquitination of PHR1 by NLA E3 ligase during phosphate starvation response in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:1215-1228. [PMID: 36377104 DOI: 10.1111/nph.18621] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Phosphate (Pi) availability is a major factor limiting plant growth and development. The key transcription factor controlling Pi-starvation response (PSR) is PHOSPHATE STARVATION RESPONSE 1 (PHR1) whose transcript levels do not change with changes in Pi levels. However, how PHR1 stability is regulated at the post-translational level is relatively unexplored in Arabidopsis thaliana. Inositol polyphosphates (InsPn) are important signal molecules that promote the association of stand-alone SPX domain proteins with PHR1 to regulate PSR. Here, we show that NITROGEN LIMITATION ADAPTATION (NLA) E3 ligase can associate with PHR1 through its conserved SPX domain and polyubiquitinate PHR1 in vitro. The association with PHR1 and its ubiquitination is enhanced by InsP6 but not by InsP5. Analysis of InsPn-related mutants and an overexpression plant shows PHR1 levels are more stable in itpk4-1 and vih2-4/VIH1amiRNA but less stable in ITPK4 overexpression plants. Under Pi-deficient conditions, nla seedlings contain high PHR1 levels, display long root hair and accumulate anthocyanin in shoots phenocopying PHR1 overexpression plants. By contrast, NLA overexpression plants phenocopy phr1 whose phenotypes are opposite to those of nla. Our results suggest NLA functions as a negative regulator of Pi response by modulating PHR1 stability and the NLA/PHR1 association depends on InsPn levels.
Collapse
Affiliation(s)
- Su-Hyun Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Jin Seo Jeong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Chung-Hao Huang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| |
Collapse
|
18
|
Li D, Liu B, Wang Z, Li X, Sun S, Ma C, Wang L, Wang S. Sugar accumulation may be regulated by a transcriptional cascade of ABA-VvGRIP55-VvMYB15-VvSWEET15 in grape berries under root restriction. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111288. [PMID: 35717774 DOI: 10.1016/j.plantsci.2022.111288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
In the southern of China, precipitation is abundant during the grape growing season, which results in lower sugar content, and finally reduces the quality and yield of grape berries and leads to lower economic benefits. The root restriction cultivation method is an important abiotic stress that limits the disordered growth and development of roots, and it favors the accumulation of sugar and abscisic acid. However, the relationship between ABA and sugar accumulation under root restriction remains unclear. Here, we tested the expression levels of several transcription factors and sugar metabolism-related genes and found that root restriction cultivation could induce higher expression of VvMYB15 and VvSWEET15. The VvMYB15 transcription factor was found to bind to the promoter of VvSWEET15 and activate its expression, furthermore, transient overexpression of VvMYB15 in strawberry fruits and grape berries can promote sugar accumulation and increase the expression level of sugar metabolism-related genes, indicating that VvMYB15 is a positive regulator of sugar accumulation. In addition, the endogenous ABA content and expression level of VvGRIP55, which is highly responsive to ABA, were significantly increased under root restriction, and VvGRIP55 could bind to the promoter of VvMYB15 and activate its expression. Therefore, our results demonstrated that the ABA-responsive factor VvGRIP55 can promote sugar accumulation through VvMYB15 and VvSWEET15, suggesting a mechanism by which ABA regulates sugar accumulation under root restriction.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyang Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenping Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sijie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Agro-food Science and Technology, Key Laboratory of Agro-products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
19
|
The ABCISIC ACID INSENSITIVE (ABI) 4 Transcription Factor Is Stabilized by Stress, ABA and Phosphorylation. PLANTS 2022; 11:plants11162179. [PMID: 36015481 PMCID: PMC9414092 DOI: 10.3390/plants11162179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
The Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) is a key player in the plant hormone abscisic acid (ABA) signaling pathway and is involved in plant response to abiotic stress and development. Expression of the ABI4 gene is tightly regulated, with low basal expression. Maximal transcript levels occur during the seed maturation and early seed germination stages. Moreover, ABI4 is an unstable, lowly expressed protein. Here, we studied factors affecting the stability of the ABI4 protein using transgenic Arabidopsis plants expressing 35S::HA-FLAG-ABI4-eGFP. Despite the expression of eGFP-tagged ABI4 being driven by the highly active 35S CaMV promoter, low steady-state levels of ABI4 were detected in the roots of seedlings grown under optimal conditions. These levels were markedly enhanced upon exposure of the seedlings to abiotic stress and ABA. ABI4 is degraded rapidly by the 26S proteasome, and we report on the role of phosphorylation of ABI4-serine 114 in regulating ABI4 stability. Our results indicate that ABI4 is tightly regulated both post-transcriptionally and post-translationally. Moreover, abiotic factors and plant hormones have similar effects on ABI4 transcripts and ABI4 protein levels. This double-check mechanism for controlling ABI4 reflects its central role in plant development and cellular metabolism.
Collapse
|
20
|
Kurmanbayeva A, Bekturova A, Soltabayeva A, Oshanova D, Nurbekova Z, Srivastava S, Tiwari P, Dubey AK, Sagi M. Active O-acetylserine-(thiol) lyase A and B confer improved selenium resistance and degrade l-Cys and l-SeCys in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2525-2539. [PMID: 35084469 DOI: 10.1093/jxb/erac021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The roles of cytosolic O-acetylserine-(thiol)-lyase A (OASTLA), chloroplastic OASTLB, and mitochondrial OASTLC in plant selenate resistance were studied in Arabidopsis. Impairment in OASTLA and OASTLB resulted in reduced biomass, chlorophyll and soluble protein content compared with selenate-treated OASTLC-impaired and wild-type plants. The generally lower total selenium (Se), protein-Se, organic-sulfur and protein-sulfur (S) content in oastlA and oastlB compared with wild-type and oastlC leaves indicated that Se accumulation was not the main cause for the stress symptoms in these mutants. Notably, the application of selenate positively induced S-starvation markers and the OASTLs, followed by increased sulfite reductase, sulfite oxidase activities, and increased sulfite and sulfide concentrations. Taken together, our results indicate a futile anabolic S-starvation response that resulted in lower glutathione and increased oxidative stress symptoms in oastlA and oastlB mutants. In-gel assays of l-cysteine and l-seleno-cysteine, desulfhydrase activities revealed that two of the three OASTL activity bands in each of the oastl single mutants were enhanced in response to selenate, whereas the impaired proteins exhibited a missing activity band. The absence of differently migrated activity bands in each of the three oastl mutants indicates that these OASTLs are major components of desulfhydrase activity, degrading l-cysteine and l-seleno-cysteine in Arabidopsis.
Collapse
Affiliation(s)
- Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L. N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Sudhakar Srivastava
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Poonam Tiwari
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Arvind Kumar Dubey
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| |
Collapse
|
21
|
Zhang R, Koh SS, Teo MJT, Bi R, Zhang S, Dev K, Urano D, Dinish US, Olivo M. Handheld Multifunctional Fluorescence Imager for Non-invasive Plant Phenotyping. FRONTIERS IN PLANT SCIENCE 2022; 13:822634. [PMID: 35463443 PMCID: PMC9024405 DOI: 10.3389/fpls.2022.822634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Fluorescence imaging has shown great potential in non-invasive plant monitoring and analysis. However, current systems have several limitations, such as bulky size, high cost, contact measurement, and lack of multifunctionality, which may hinder its applications in a wide range of settings including indoor vertical farming. Herein, we developed a compact handheld fluorescence imager enabling multipurpose plant phenotyping, such as continuous photosynthetic activity monitoring and non-destructive anthocyanin quantification. The compact imager comprises of pulse-amplitude-modulated multi-color light emitting diodes (LEDs), optimized light illumination and collection, dedicated driver circuit board, miniaturized charge-coupled device camera, and associated image analytics. Experiments conducted in drought stressed lettuce proved that the novel imager could quantitatively evaluate the plant stress by the non-invasive measurement of photosynthetic activity efficiency. Moreover, a non-invasive and fast quantification of anthocyanins in green and red Batavia lettuce leaves had excellent correlation (>84%) with conventional destructive biochemical analysis. Preliminary experimental results emphasize the high throughput monitoring capability and multifunctionality of our novel handheld fluorescence imager, indicating its tremendous potential in modern agriculture.
Collapse
Affiliation(s)
- Ruochong Zhang
- Translational Biophotonic Laboratory, Institute of Bioengineering and Bioimaging, A*STAR, Singapore, Singapore
| | - Sally Shuxian Koh
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Mark Ju Teng Teo
- Translational Biophotonic Laboratory, Institute of Bioengineering and Bioimaging, A*STAR, Singapore, Singapore
| | - Renzhe Bi
- Translational Biophotonic Laboratory, Institute of Bioengineering and Bioimaging, A*STAR, Singapore, Singapore
| | - Shuyan Zhang
- Translational Biophotonic Laboratory, Institute of Bioengineering and Bioimaging, A*STAR, Singapore, Singapore
| | - Kapil Dev
- Translational Biophotonic Laboratory, Institute of Bioengineering and Bioimaging, A*STAR, Singapore, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - U. S. Dinish
- Translational Biophotonic Laboratory, Institute of Bioengineering and Bioimaging, A*STAR, Singapore, Singapore
| | - Malini Olivo
- Translational Biophotonic Laboratory, Institute of Bioengineering and Bioimaging, A*STAR, Singapore, Singapore
| |
Collapse
|
22
|
Hu J, Ren B, Chen Y, Liu P, Zhao B, Zhang J. Exogenous 6-Benzyladenine Improved the Ear Differentiation of Waterlogged Summer Maize by Regulating the Metabolism of Hormone and Sugar. FRONTIERS IN PLANT SCIENCE 2022; 13:848989. [PMID: 35463417 PMCID: PMC9021890 DOI: 10.3389/fpls.2022.848989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Waterlogging (W-B) is a major abiotic stress during the growth cycle of maize production in Huang-huai-hai plain of China, threatening food security. A wide range of studies suggests that the application of 6-benzyladenine (6-BA) can mitigate the W-B effects on crops. However, the mechanisms underlying this process remain unclear. In this study, the application of 6-BA that effectively increased the yield of summer maize was confirmed to be related to the hormone and sugar metabolism. At the florets differentiation stage, application of 6-BA increased the content of trans-zeatin (TZ, + 59.3%) and salicylic acid (SA, + 285.5%) of ears to induce the activity of invertase, thus establishing sink strength. During the phase of sexual organ formation, the TZ content of ear leaves, spike nodes, and ears was increased by 24.2, 64.2, and 46.1%, respectively, in W-B treatment, compared with that of W. Accordingly, the sugar metabolism of summer maize was also improved. Therefore, the structure of the spike node was improved, promoting the translocation of carbon assimilations toward the ears and the development of ears and filaments. Thus the number of fertilized florets, grain number, and yield were increased by the application of 6-BA.
Collapse
|
23
|
Ge C, Wang L, Yang Y, Liu R, Liu S, Chen J, Shen Q, Ma H, Li Y, Zhang S, Pang C. Genome-wide association study identifies variants of GhSAD1 conferring cold tolerance in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2222-2237. [PMID: 34919655 DOI: 10.1093/jxb/erab555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Cold stress is a major environmental factor affecting plant growth and development. Although some plants have developed resistance to cold stress, the molecular mechanisms underlying this process are poorly understood. Using genome-wide association mapping with 200 cotton accessions collected from different regions, we identified variations in the short chain alcohol dehydrogenase gene, GhSAD1, that responds to cold stress. Virus-induced gene silencing and overexpression in Arabidopsis revealed that GhSAD1 fulfils important roles in cold stress responses. Ectopic expression of a haploid genotype of GhSAD1 (GhSAD1HapB) in Arabidopsis increased cold tolerance. Silencing of GhSAD1HapB resulted in a decrease in abscisic acid (ABA) content. Conversely, overexpression of GhSAD1HapB increased ABA content. GhSAD1HapB regulates cold stress responses in cotton through modulation of C-repeat binding factor activity, which regulates ABA signalling. GhSAD1HapB induces the expression of COLD-REGULATED (COR) genes and increases the amount of metabolites associated with cold stress tolerance. Overexpression of GhSAD1HapB partially complements the phenotype of the Arabidopsis ABA2 mutant, aba2-1. Collectively, these findings increase our understanding of the mechanisms underlying GhSAD1-mediated cold stress responses in cotton.
Collapse
Affiliation(s)
- Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yongfei Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Ruihua Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Yang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Wang Y, Liu T, Ma C, Li G, Wang X, Wang J, Chang J, Guan C, Yao H, Dong X. Carbohydrate regulation response to cold during rhizome bud dormancy release in Polygonatum kingianum. BMC PLANT BIOLOGY 2022; 22:163. [PMID: 35365083 PMCID: PMC8973533 DOI: 10.1186/s12870-022-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The rhizome of Polygonatum kingianum Coll. et Hemsl (P. kingianum) is a crucial traditional Chinese medicine, but severe bud dormancy occurs during early rhizome development. Low temperature is a positive factor affecting dormancy release, whereas the variation in carbohydrates during dormancy release has not been investigated systematically. Therefore, the sugar content, related metabolic pathways and gene co-expression were analysed to elucidate the regulatory mechanism of carbohydrates during dormancy release in the P. kingianum rhizome bud. RESULTS During dormancy transition, starch and sucrose (Suc) exhibited opposing trends in the P. kingianum rhizome bud, representing a critical indicator of dormancy release. Galactose (Gal) and raffinose (Raf) were increased in content and synthesis. Glucose (Glc), cellulose (Cel), mannose (Man), arabinose (Ara), rhamnose (Rha) and stachyose (Sta) showed various changes, indicating their different roles in breaking rhizome bud dormancy in P. kingianum. At the beginning of dormancy release, Glc metabolism may be dominated by anaerobic oxidation (glycolysis followed by ethanol fermentation). After entering the S3 stage, the tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP) were may be more active possibly. In the gene co-expression network comprising carbohydrates and hormones, HYD1 was identified as a hub gene, and numerous interactions centred on STS/SUS were also observed, suggesting the essential role of brassinosteroids (BRs), Raf and Suc in the regulatory network. CONCLUSION We revealed cold-responsive genes related to carbohydrate metabolism, suggesting regulatory mechanisms of sugar during dormancy release in the P. kingianum rhizome bud. Additionally, gene co-expression analysis revealed possible interactions between sugar and hormone signalling, providing new insight into the dormancy release mechanism in P. kingianum rhizome buds.
Collapse
Affiliation(s)
- Yue Wang
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Jinan, Shandong, China
| | - Tao Liu
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Jinan, Shandong, China
| | - Changjian Ma
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Guoqing Li
- Tai'an Academy of Agricultural Science, Taian, Shandong, China
| | - Xinhong Wang
- Shan Dong Agriculture and Engineering University, Jinan, Shandong, China
| | - Jianghui Wang
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Jinan, Shandong, China
| | - Jin Chang
- Tai'an Academy of Forestry Sciences, Taian, Shandong, China
| | - Cong Guan
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Jinan, Shandong, China
| | - Huimin Yao
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.
| | - Xuehui Dong
- China Agricultural University, Beijing, China.
| |
Collapse
|
25
|
Laloum D, Magen S, Soroka Y, Avin-Wittenberg T. Exploring the Contribution of Autophagy to the Excess-Sucrose Response in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23073891. [PMID: 35409249 PMCID: PMC8999498 DOI: 10.3390/ijms23073891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an essential intracellular eukaryotic recycling mechanism, functioning in, among others, carbon starvation. Surprisingly, although autophagy-deficient plants (atg mutants) are hypersensitive to carbon starvation, metabolic analysis revealed that they accumulate sugars under such conditions. In plants, sugars serve as both an energy source and as signaling molecules, affecting many developmental processes, including root and shoot formation. We thus set out to understand the interplay between autophagy and sucrose excess, comparing wild-type and atg mutant seedlings. The presented work showed that autophagy contributes to primary root elongation arrest under conditions of exogenous sucrose and glucose excess but not during fructose or mannitol treatment. Minor or no alterations in starch and primary metabolites were observed between atg mutants and wild-type plants, indicating that the sucrose response relates to its signaling and not its metabolic role. Extensive proteomic analysis of roots performed to further understand the mechanism found an accumulation of proteins essential for ROS reduction and auxin maintenance, which are necessary for root elongation, in atg plants under sucrose excess. The analysis also suggested mitochondrial and peroxisomal involvement in the autophagy-mediated sucrose response. This research increases our knowledge of the complex interplay between autophagy and sugar signaling in plants.
Collapse
|
26
|
Trojak M, Skowron E, Sobala T, Kocurek M, Pałyga J. Effects of partial replacement of red by green light in the growth spectrum on photomorphogenesis and photosynthesis in tomato plants. PHOTOSYNTHESIS RESEARCH 2022; 151:295-312. [PMID: 34580802 PMCID: PMC8940809 DOI: 10.1007/s11120-021-00879-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The artificial light used in growth chambers is usually devoid of green (G) light, which is considered to be less photosynthetically efficient than blue (B) or red (R) light. To verify the role of G light supplementation in the spectrum, we modified the RB spectrum by progressively replacing R light with an equal amount of G light. The tomato plants were cultivated under 100 µmol m-2 s-1 of five different combinations of R (35-75%) and G light (0-40%) in the presence of a fixed proportion of B light (25%) provided by light-emitting diodes (LEDs). Substituting G light for R altered the plant's morphology and partitioning of biomass. We observed a decrease in the dry biomass of leaves, which was associated with increased biomass accumulation and the length of the roots. Moreover, plants previously grown under the RGB spectrum more efficiently utilized the B light that was applied to assess the effective quantum yield of photosystem II, as well as the G light when estimated with CO2 fixation using RB + G light-response curves. At the same time, the inclusion of G light in the growth spectrum reduced stomatal conductance (gs), transpiration (E) and altered stomatal traits, thus improving water-use efficiency. Besides this, the increasing contribution of G light in place of R light in the growth spectrum resulted in the progressive accumulation of phytochrome interacting factor 5, along with a lowered level of chalcone synthase and anthocyanins. However, the plants grown at 40% G light exhibited a decreased net photosynthetic rate (Pn), and consequently, a reduced dry biomass accumulation, accompanied by morphological and molecular traits related to shade-avoidance syndrome.
Collapse
Affiliation(s)
- Magdalena Trojak
- Department of Medical Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.
| | - Ernest Skowron
- Department of Environmental Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Tomasz Sobala
- Department of Environmental Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Maciej Kocurek
- Department of Environmental Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Jan Pałyga
- Department of Medical Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| |
Collapse
|
27
|
Identification, Analysis and Gene Cloning of the SWEET Gene Family Provide Insights into Sugar Transport in Pomegranate ( Punica granatum). Int J Mol Sci 2022; 23:ijms23052471. [PMID: 35269614 PMCID: PMC8909982 DOI: 10.3390/ijms23052471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
Members of the sugars will eventually be exported transporter (SWEET) family regulate the transport of different sugars through the cell membrane and control the distribution of sugars inside and outside the cell. The SWEET gene family also plays important roles in plant growth and development and physiological processes. So far, there are no reports on the SWEET family in pomegranate. Meanwhile, pomegranate is rich in sugar, and three published pomegranate genome sequences provide resources for the study of the SWEET gene family. 20 PgSWEETs from pomegranate and the known Arabidopsis and grape SWEETs were divided into four clades (Ⅰ, Ⅱ, Ⅲ and Ⅳ) according to the phylogenetic relationships. PgSWEETs of the same clade share similar gene structures, predicting their similar biological functions. RNA-Seq data suggested that PgSWEET genes have a tissue-specific expression pattern. Foliar application of tripotassium phosphate significantly increased the total soluble sugar content of pomegranate fruits and leaves and significantly affected the expression levels of PgSWEETs. The plant growth hormone regulator assay also significantly affected the PgSWEETs expression both in buds of bisexual and functional male flowers. Among them, we selected PgSWEET17a as a candidate gene that plays a role in fructose transport in leaves. The 798 bp CDS sequence of PgSWEET17a was cloned, which encodes 265 amino acids. The subcellular localization of PgSWEET17a showed that it was localized to the cell membrane, indicating its involvement in sugar transport. Transient expression results showed that tobacco fructose content was significantly increased with the up-regulation of PgSWEET17a, while both sucrose and glucose contents were significantly down-regulated. The integration of the PgSWEET phylogenetic tree, gene structure and RNA-Seq data provide a genome-wide trait and expression pattern. Our findings suggest that tripotassium phosphate and plant exogenous hormone treatments could alter PgSWEET expression patterns. These provide a reference for further functional verification and sugar metabolism pathway regulation of PgSWEETs.
Collapse
|
28
|
Márquez-López RE, Loyola-Vargas VM, Santiago-García PA. Interaction between fructan metabolism and plant growth regulators. PLANTA 2022; 255:49. [PMID: 35084581 DOI: 10.1007/s00425-022-03826-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The relationship of fructan to plant growth regulators is clearly more complicated than it looks and is likely related to differences between fructan molecules in size and structure as well as localization. Fructans are a complex group of carbohydrates composed mainly of fructose units linked to a sucrose molecule. Fructans are present in plants as heterogeneous mixtures with diverse molecular structures and mass, different polymerization degrees, and linkage types between fructosyl residues. Like sucrose, they are frequently stored in leaves and other organs, acting as carbohydrate reserves. Fructans are synthesized in the cell vacuole by fructosyltransferase enzymes and catabolized by fructan exohydrolase enzymes. Several publications have shown that fructan metabolism varies with the stage of plant development and in response to the environment. Recent studies have shown a correlation between plant growth regulators (PGR), fructan metabolism, and tolerance to drought and cold. PGR are compounds that profoundly influence the growth and differentiation of plant cells, tissues, and organs. They play a fundamental role in regulating plant responses to developmental and environmental signals. In this review, we summarize the most up-to-date knowledge on the metabolism of fructans and their crosstalk with PGR signaling pathways. We identify areas that require more research to complete our understanding of the role of fructans in plants.
Collapse
Affiliation(s)
- Ruth E Márquez-López
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional - Unidad Oaxaca, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Patricia Araceli Santiago-García
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional - Unidad Oaxaca, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, Mexico.
| |
Collapse
|
29
|
Yang Y, Wang L, Che Z, Wang R, Cui R, Xu H, Chu S, Jiao Y, Zhang H, Yu D, Zhang D. Novel target sites for soybean yield enhancement by photosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153580. [PMID: 34871989 DOI: 10.1016/j.jplph.2021.153580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Photosynthesis plays an important role in plant growth and development. Increasing photosynthetic rate is a main objective of improving crop productivity. Chlorophyll fluorescence is an effective method for quickly evaluating photosynthesis. In this study, four representative chlorophyll fluorescence parameters, that is, maximum quantum efficiency of photosystem II, quantum efficiency of PSII, photochemical quenching, and non-photochemical quenching, of 219 diverse soybean accessions were measured across three environments. The underlying genetic architecture was analyzed by genome-wide association study. Forty-eight SNPs were detected to associate with the four traits and explained 10.43-20.41% of the phenotypic variation. Nine candidate genes in the stable QTLs were predicted. Great differences in the expression levels of the candidate genes existed between the high photosynthetic efficiency accessions and low photosynthetic efficiency accessions. In all, we uncover 17 QTLs associated with photosynthesis-related traits and nine genes that may participate in the regulation of photosynthesis, which can provide references for revealing the genetic mechanism of photosynthesis. These QTLs and candidate genes will provide new targets for crop yield improvement through increasing photosynthesis.
Collapse
Affiliation(s)
- Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450006, China
| | - Li Wang
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210014, China
| | - Zhijun Che
- Ningxia University, Yinchuan, 750021, China
| | - Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450006, China
| | - Ruifang Cui
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450006, China
| | - Huanqing Xu
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450006, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450006, China
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450006, China
| | - Hengyou Zhang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Deyue Yu
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210014, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450006, China.
| |
Collapse
|
30
|
Fàbregas N, Fernie AR. The interface of central metabolism with hormone signaling in plants. Curr Biol 2021; 31:R1535-R1548. [PMID: 34875246 DOI: 10.1016/j.cub.2021.09.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amongst the myriad of metabolites produced by plants, primary metabolites and hormones play crucial housekeeping roles in the cell and are essential for proper plant growth and development. While the biosynthetic pathways of primary metabolism are well characterized, those of hormones are yet to be completely defined. Central metabolism provides precursors for hormone biosynthesis and the regulation and function of primary metabolites and hormones are tightly entwined. The combination of reverse genetics and technological advances in our ability to evaluate the levels of the molecular entities of the cell (transcripts, proteins and metabolites) has led to considerable improvements in our understanding of both the regulatory interaction between primary metabolites and hormones and its coordination in response to different conditions. Here, we provide an overview of the interaction of primary and hormone metabolism at the metabolic and signaling levels, as well as a perspective regarding the tools that can be used to tackle our current knowledge gaps at the signaling level.
Collapse
Affiliation(s)
- Norma Fàbregas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
31
|
Pegler JL, Nguyen DQ, Oultram JMJ, Grof CPL, Eamens AL. Molecular Manipulation of the miR396 and miR399 Expression Modules Alters the Response of Arabidopsis thaliana to Phosphate Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122570. [PMID: 34961041 PMCID: PMC8706208 DOI: 10.3390/plants10122570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 05/03/2023]
Abstract
In plant cells, the molecular and metabolic processes of nucleic acid synthesis, phospholipid production, coenzyme activation and the generation of the vast amount of chemical energy required to drive these processes relies on an adequate supply of the essential macronutrient, phosphorous (P). The requirement of an appropriate level of P in plant cells is evidenced by the intricately linked molecular mechanisms of P sensing, signaling and transport. One such mechanism is the posttranscriptional regulation of the P response pathway by the highly conserved plant microRNA (miRNA), miR399. In addition to miR399, numerous other plant miRNAs are also required to respond to environmental stress, including miR396. Here, we exposed Arabidopsis thaliana (Arabidopsis) transformant lines which harbor molecular modifications to the miR396 and miR399 expression modules to phosphate (PO4) starvation. We show that molecular alteration of either miR396 or miR399 abundance afforded the Arabidopsis transformant lines different degrees of tolerance to PO4 starvation. Furthermore, RT-qPCR assessment of PO4-starved miR396 and miR399 transformants revealed that the tolerance displayed by these plant lines to this form of abiotic stress most likely stemmed from the altered expression of the target genes of these two miRNAs. Therefore, this study forms an early step towards the future development of molecularly modified plant lines which possess a degree of tolerance to growth in a PO4 deficient environment.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; (J.L.P.); (D.Q.N.); (J.M.J.O.); (C.P.L.G.)
| | - Duc Quan Nguyen
- Centre for Plant Science, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; (J.L.P.); (D.Q.N.); (J.M.J.O.); (C.P.L.G.)
- Institute of Genome Research, Vietnam Academy of Research and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; (J.L.P.); (D.Q.N.); (J.M.J.O.); (C.P.L.G.)
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; (J.L.P.); (D.Q.N.); (J.M.J.O.); (C.P.L.G.)
| | - Andrew L. Eamens
- Centre for Plant Science, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; (J.L.P.); (D.Q.N.); (J.M.J.O.); (C.P.L.G.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
32
|
Eisner N, Maymon T, Sanchez EC, Bar-Zvi D, Brodsky S, Finkelstein R, Bar-Zvi D. Phosphorylation of Serine 114 of the transcription factor ABSCISIC ACID INSENSITIVE 4 is essential for activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110847. [PMID: 33691973 DOI: 10.1016/j.plantsci.2021.110847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor ABA-INSENSITIVE(ABI)4 has diverse roles in regulating plant growth, including inhibiting germination and reserve mobilization in response to ABA and high salinity, inhibiting seedling growth in response to high sugars, inhibiting lateral root growth, and repressing light-induced gene expression. ABI4 activity is regulated at multiple levels, including gene expression, protein stability, and activation by phosphorylation. Although ABI4 can be phosphorylated at multiple residues by MAPKs, we found that S114 is the preferred site of MPK3. To examine the possible biological role of S114 phosphorylation, we transformed abi4-1 mutant plants with ABI4pro::ABI4 constructs encoding wild type (114S), phosphorylation-null (S114A) or phosphomimetic (S114E) forms of ABI4. Phosphorylation of S114 is necessary for the response to ABA, glucose, salt stress, and lateral root development, where the abi4 phenotype could be complemented by expressing ABI4 (114S) or ABI4 (S114E) but not ABI4 (S114A). Comparison of root transcriptomes in ABA-treated roots of abi4-1 mutant plants transformed with constructs encoding the different phosphorylation-forms of S114 of ABI4 revealed that 85 % of the ABI4-regulated genes whose expression pattern could be restored by expressing ABI4 (114S) are down-regulated by ABI4. Phosphorylation of S114 was required for regulation of 35 % of repressed genes, but only 17 % of induced genes. The genes whose repression requires the phosphorylation of S114 are mainly involved in embryo and seedling development, growth and differentiation, and regulation of gene expression.
Collapse
Affiliation(s)
- Nadav Eisner
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Tzofia Maymon
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Ester Cancho Sanchez
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Dana Bar-Zvi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ruth Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Dudy Bar-Zvi
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel.
| |
Collapse
|
33
|
Wang TJ, Huang S, Zhang A, Guo P, Liu Y, Xu C, Cong W, Liu B, Xu ZY. JMJ17-WRKY40 and HY5-ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:567-584. [PMID: 33423315 DOI: 10.1111/nph.17177] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/25/2020] [Indexed: 05/09/2023]
Abstract
Abscisic acid (ABA) plays a crucial role in the adaptation of young seedlings to environmental stresses. However, the role of epigenetic components and core transcriptional machineries in the effect of ABA on seed germination and seedling growth remain unclear. Here, we show that a histone 3 lysine 4 (H3K4) demethylase, JMJ17, regulates the expression of ABA-responsive genes during seed germination and seedling growth. Using comparative interactomics, WRKY40, a central transcriptional repressor in ABA signaling, was shown to interact with JMJ17. WRKY40 facilitates the recruitment of JMJ17 to the ABI5 chromatin, which removes gene activation marks (H3K4me3) from the ABI5 chromatin, thereby repressing its expression. Additionally, WRKY40 represses the transcriptional activation activity of HY5, which can activate ABI5 expression by directly binding to its promoter. An increase in ABA concentrations decreases the affinity of WRKY40 for the ABI5 promoter. Thus, WRKY40 and JMJ17 are released from the ABI5 chromatin, activating HY5. The accumulated ABI5 protein further shows heteromeric interaction with HY5, and thus synergistically activates its own expression. Our findings reveal a novel transcriptional switch, composed of JMJ17-WRKY40 and HY5-ABI5 modules, which regulates the ABA response during seed germination and seedling development in Arabidopsis.
Collapse
Affiliation(s)
- Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Weixuan Cong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
34
|
Oshanova D, Kurmanbayeva A, Bekturova A, Soltabayeva A, Nurbekova Z, Standing D, Dubey AK, Sagi M. Level of Sulfite Oxidase Activity Affects Sulfur and Carbon Metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:690830. [PMID: 34249061 PMCID: PMC8264797 DOI: 10.3389/fpls.2021.690830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Molybdenum cofactor containing sulfite oxidase (SO) enzyme is an important player in protecting plants against exogenous toxic sulfite. It was also demonstrated that SO activity is essential to cope with rising dark-induced endogenous sulfite levels and maintain optimal carbon and sulfur metabolism in tomato plants exposed to extended dark stress. The response of SO and sulfite reductase to direct exposure of low and high levels of sulfate and carbon was rarely shown. By employing Arabidopsis wild-type, sulfite reductase, and SO-modulated plants supplied with excess or limited carbon or sulfur supply, the current study demonstrates the important role of SO in carbon and sulfur metabolism. Application of low and excess sucrose, or sulfate levels, led to lower biomass accumulation rates, followed by enhanced sulfite accumulation in SO impaired mutant compared with wild-type. SO-impairment resulted in the channeling of sulfite to the sulfate reduction pathway, resulting in an overflow of organic S accumulation. In addition, sulfite enhancement was followed by oxidative stress contributing as well to the lower biomass accumulation in SO-modulated plants. These results indicate that the role of SO is not limited to protection against elevated sulfite toxicity but to maintaining optimal carbon and sulfur metabolism in Arabidopsis plants.
Collapse
Affiliation(s)
- Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Assylay Kurmanbayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Dominic Standing
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Arvind Kumar Dubey
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
- *Correspondence: Moshe Sagi
| |
Collapse
|
35
|
Molecular Manipulation of the miR399/ PHO2 Expression Module Alters the Salt Stress Response of Arabidopsis thaliana. PLANTS 2020; 10:plants10010073. [PMID: 33396498 PMCID: PMC7824465 DOI: 10.3390/plants10010073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
In Arabidopsis thaliana (Arabidopsis), the microRNA399 (miR399)/PHOSPHATE2 (PHO2) expression module is central to the response of Arabidopsis to phosphate (PO4) stress. In addition, miR399 has been demonstrated to also alter in abundance in response to salt stress. We therefore used a molecular modification approach to alter miR399 abundance to investigate the requirement of altered miR399 abundance in Arabidopsis in response to salt stress. The generated transformant lines, MIM399 and MIR399 plants, with reduced and elevated miR399 abundance respectively, displayed differences in their phenotypic and physiological response to those of wild-type Arabidopsis (Col-0) plants following exposure to a 7-day period of salt stress. However, at the molecular level, elevated miR399 abundance, and therefore, altered PHO2 target gene expression in salt-stressed Col-0, MIM399 and MIR399 plants, resulted in significant changes to the expression level of the two PO4 transporter genes, PHOSPHATE TRANSPORTER1;4 (PHT1;4) and PHT1;9. Elevated PHT1;4 and PHT1;9 PO4 transporter levels in salt stressed Arabidopsis would enhance PO4 translocation from the root to the shoot tissue which would supply additional levels of this precious cellular resource that could be utilized by the aerial tissues of salt stressed Arabidopsis to either maintain essential biological processes or to mount an adaptive response to salt stress.
Collapse
|
36
|
Du C, Li H, Liu C, Fan H. Understanding of the postgerminative development response to salinity and drought stresses in cucumber seeds by integrated proteomics and transcriptomics analysis. J Proteomics 2020; 232:104062. [PMID: 33276192 DOI: 10.1016/j.jprot.2020.104062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
The postgerminative development is a complex, genetically programmed process, and also the most dangerous period before the developing seedlings reach the autotrophy state. To obtain a comprehensive understanding of postgerminative development mechanism, the study focuses on an integrative analysis on transcriptome, proteome, and microRNA in cucumber seeds under drought and salt stress. Drought and salt stress caused differential expression of 4197 mRNAs, 36 microRNAs and 768 proteins compared with the control, and 827 mRNAs, 364 proteins, and 12 microRNAs were shared by the two stresses. Numerous common differentially expressed genes and proteins participated the signal transduction of plant hormone, photosynthesis, and argine and proline metabolism. We noted the correlation among nitric oxide, polyamine, proline, and ethylene metabolism, thereby helping to elucidate the role of these substances, which are derived either directly or indirectly from arginine, in the regulation of abiotic stress and provide a basis for building better network-based molecular models in further research. Above findings contribute to new and useful information regarding the common molecular mechanisms during cucumber seedling development under drought and salt stress. SIGNIFICANCE: Water scarcity and high salt are two of the most destructive and wide stress factors which limit the growth and progression of plants by affecting a variety of vital physiological and biochemical processes. Our study focuses on an integrative analysis on transcriptome, proteome, and microRNA for confirming the essential regulators as well as pathways using cucumber postgerminative development under drought and salt stress. Arginine metabolism is a vital response to abiotic stress during cucumber seed germination.
Collapse
Affiliation(s)
- Changxia Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hao Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Chen Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Huaifu Fan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
37
|
Nguyen DQ, Brown CW, Pegler JL, Eamens AL, Grof CPL. Molecular Manipulation of MicroRNA397 Abundance Influences the Development and Salt Stress Response of Arabidopsis thaliana. Int J Mol Sci 2020; 21:E7879. [PMID: 33114207 PMCID: PMC7660671 DOI: 10.3390/ijms21217879] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Arabidopsis thaliana (Arabidopsis) has been used extensively as a heterologous system for molecular manipulation to genetically characterize both dicotyledonous and monocotyledonous plant species. Here, we report on Arabidopsis transformant lines molecularly manipulated to over-accumulate the small regulatory RNA microRNA397 (miR397) from the emerging C4 monocotyledonous grass model species Setaria viridis (S. viridis). The generated transformant lines, termed SvMIR397 plants, displayed a range of developmental phenotypes that ranged from a mild, wild-type-like phenotype, to a severe, full dwarfism phenotype. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR)-based profiling of the SvMIR397 transformant population revealed a strong correlation between the degree of miR397 over-accumulation, repressed LACCASE (LAC) target gene expression, reduced lignin content, and the severity of the developmental phenotype displayed by SvMIR397 transformants. Further, exposure of SvMIR397 transformants to a 7-day regime of salt stress revealed the SvMIR397 transformant lines to be more sensitive to the imposed stress than were wild-type Arabidopsis plants. Taken together, the findings reported here via the use of Arabidopsis as a heterologous system show that the S. viridis miR397 small regulatory RNA is able to repress the expression of three Arabidopsis LAC genes which led to reduced lignin content and increased salt stress sensitivity.
Collapse
Affiliation(s)
| | | | | | - Andrew L. Eamens
- Correspondence: (A.L.E.); (C.P.L.G.); Tel.: +61-249-217-784 (A.L.E.); +61-249-215-85 (C.P.L.G.)
| | - Christopher P. L. Grof
- Correspondence: (A.L.E.); (C.P.L.G.); Tel.: +61-249-217-784 (A.L.E.); +61-249-215-85 (C.P.L.G.)
| |
Collapse
|
38
|
Chong L, Guo P, Zhu Y. Mediator Complex: A Pivotal Regulator of ABA Signaling Pathway and Abiotic Stress Response in Plants. Int J Mol Sci 2020; 21:ijms21207755. [PMID: 33092161 PMCID: PMC7588972 DOI: 10.3390/ijms21207755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
As an evolutionarily conserved multi-protein complex, the Mediator complex modulates the association between transcription factors and RNA polymerase II to precisely regulate gene transcription. Although numerous studies have shown the diverse functions of Mediator complex in plant development, flowering, hormone signaling, and biotic stress response, its roles in the Abscisic acid (ABA) signaling pathway and abiotic stress response remain largely unclear. It has been recognized that the phytohormone, ABA, plays a predominant role in regulating plant adaption to various abiotic stresses as ABA can trigger extensive changes in the transcriptome to help the plants respond to environmental stimuli. Over the past decade, the Mediator complex has been revealed to play key roles in not only regulating the ABA signaling transduction but also in the abiotic stress responses. In this review, we will summarize current knowledge of the Mediator complex in regulating the plants’ response to ABA as well as to the abiotic stresses of cold, drought and high salinity. We will particularly emphasize the involvement of multi-functional subunits of MED25, MED18, MED16, and CDK8 in response to ABA and environmental perturbation. Additionally, we will discuss potential research directions available for further deciphering the role of Mediator complex in regulating ABA and other abiotic stress responses.
Collapse
|
39
|
Bai Z, Zhang J, Ning X, Guo H, Xu X, Huang X, Wang Y, Hu Z, Lu C, Zhang L, Chi W. A Kinase-Phosphatase-Transcription Factor Module Regulates Adventitious Root Emergence in Arabidopsis Root-Hypocotyl Junctions. MOLECULAR PLANT 2020; 13:1162-1177. [PMID: 32534220 DOI: 10.1016/j.molp.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/05/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Adventitious roots form from non-root tissues as part of normal development or in response to stress or wounding. The root primordia form in the source tissue, and during emergence the adventitious roots penetrate the inner cell layers and the epidermis; however, the mechanisms underlying this emergence remain largely unexplored. Here, we report that a regulatory module composed of the AP2/ERF transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4), the MAP kinases MPK3 and MPK6, and the phosphatase PP2C12 plays an important role in the emergence of junction adventitious roots (J-ARs) from the root-hypocotyl junctions in Arabidopsis thaliana. ABI4 negatively regulates J-AR emergence, preventing the accumulation of reactive oxygen species and death of epidermal cells, which would otherwise facilitate J-AR emergence. Phosphorylation by MPK3/MPK6 activates ABI4 and dephosphorylation by PP2C12 inactivates ABI4. MPK3/MPK6 also directly phosphorylate and inactivate PP2C12 during J-AR emergence. We propose that this "double-check" mechanism increases the robustness of MAP kinase signaling and finely regulates the local programmed cell death required for J-AR emergence.
Collapse
Affiliation(s)
- Zechen Bai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Ning
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Guo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Xiumei Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
40
|
Yu B, Wang Y, Zhou H, Li P, Liu C, Chen S, Peng Y, Zhang Y, Teng S. Genome-wide binding analysis reveals that ANAC060 directly represses sugar-induced transcription of ABI5 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:965-979. [PMID: 32314488 DOI: 10.1111/tpj.14777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The sugar status of a plant acts as a signal affecting growth and development. The phenomenon by which high levels of sugars inhibit seedling establishment has been widely used to gain insight into sugar-signaling pathways. Natural allelic variation has been identified at the ANAC060 locus. The Arabidopsis Columbia ecotype produces a short ANAC060 protein without a transmembrane domain that is constitutively located to the nucleus, causing sugar insensitivity when overexpressed. In this study, we generated a genome-wide DNA-binding map of ANAC060 via chromatin immunoprecipitation sequencing using transgenic lines that express a functional ANAC060-GFP fusion protein in an anac060 background. A total of 3282 genes associated with ANAC060-binding sites were identified. These genes were enriched in biotic and abiotic stress responses, and the G-box binding motif was highly enriched in ANAC060-bound genomic regions. Expression microarray analysis resulted in the identification of 8350 genes whose activities were altered in the anac060 mutant and upon sugar treatment. Cluster analysis revealed that ANAC060 attenuates sugar-regulated gene expression. Direct target genes of ANAC060 included equivalent numbers of genes that were upregulated or downregulated by ANAC060. The various functions of these target genes indicate that ANAC060 has several functions. Our results demonstrate that ANAC060 directly binds to the promoter of ABI5 and represses the sugar-induced transcription of ABI5. Genetic data indicate that ABI5 is epistatic to ANAC060 in both sugar and abscisic acid responses.
Collapse
Affiliation(s)
- Bo Yu
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Yuejun Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Hua Zhou
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Ping Li
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Chunmei Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Sunlu Chen
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yu Peng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
41
|
Herger A, Gupta S, Kadler G, Franck CM, Boisson-Dernier A, Ringli C. Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genet 2020; 16:e1008847. [PMID: 32559234 PMCID: PMC7357788 DOI: 10.1371/journal.pgen.1008847] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/13/2020] [Accepted: 05/11/2020] [Indexed: 02/01/2023] Open
Abstract
Plant cell growth requires the coordinated expansion of the protoplast and the cell wall, which is controlled by an elaborate system of cell wall integrity (CWI) sensors linking the different cellular compartments. LRR-eXtensins (LRXs) are cell wall-attached extracellular regulators of cell wall formation and high-affinity binding sites for RALF (Rapid ALkalinization Factor) peptide hormones that trigger diverse physiological processes related to cell growth. LRXs function in CWI sensing and in the case of LRX4 of Arabidopsis thaliana, this activity was shown to involve interaction with the transmembrane CatharanthusroseusReceptor-Like Kinase1-Like (CrRLK1L) protein FERONIA (FER). Here, we demonstrate that binding of RALF1 and FER is common to most tested LRXs of vegetative tissue, including LRX1, the main LRX protein of root hairs. Consequently, an lrx1-lrx5 quintuple mutant line develops shoot and root phenotypes reminiscent of the fer-4 knock-out mutant. The previously observed membrane-association of LRXs, however, is FER-independent, suggesting that LRXs bind not only FER but also other membrane-localized proteins to establish a physical link between intra- and extracellular compartments. Despite evolutionary diversification of various LRX proteins, overexpression of several chimeric LRX constructs causes cross-complementation of lrx mutants, indicative of comparable functions among members of this protein family. Suppressors of the pollen-growth defects induced by mutations in the CrRLK1Ls ANXUR1/2 also alleviate lrx1 lrx2-induced mutant root hair phenotypes. This suggests functional similarity of LRX-CrRLK1L signaling processes in very different cell types and indicates that LRX proteins are components of conserved processes regulating cell growth. Cell growth in plants requires the coordinated enlargement of the cell and the surrounding cell wall, which is regulated by an elaborate system of cell wall integrity sensors, proteins involved in the exchange of information between the cell and the cell wall. In Arabidopsis thaliana, LRR-extensins (LRXs) are localized in the cell wall and bind RALF peptides, hormones that regulate cell growth-related processes. LRX4 also binds the plasma membrane-localized protein FERONIA (FER), thereby establishing a link between the cell and the cell wall. Here, we show that membrane association of LRX4 is not dependent on FER, suggesting that LRX4 binds other, so far unknown proteins. The LRR domain of several LRXs can bind to FER, consistent with the observation that mutations in multiple LRX genes are required to recapitulate a fer knock-out phenotype. Our results support the notion that LRX-FER interactions are key to proper cell growth.
Collapse
Affiliation(s)
- Aline Herger
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Shibu Gupta
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabor Kadler
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christina Maria Franck
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Biocenter, Botanical Institute, University of Cologne, Cologne, Germany
| | | | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Chandrasekaran U, Luo X, Zhou W, Shu K. Multifaceted Signaling Networks Mediated by Abscisic Acid Insensitive 4. PLANT COMMUNICATIONS 2020; 1:100040. [PMID: 33367237 PMCID: PMC7748004 DOI: 10.1016/j.xplc.2020.100040] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 05/04/2023]
Abstract
Although ABSCISIC ACID INSENSITIVE 4 (ABI4) was initially demonstrated as a key positive regulator in the phytohormone abscisic acid (ABA) signaling cascade, multiple studies have now shown that it is actually involved in the regulation of several other cascades, including diverse phytohormone biogenesis and signaling pathways, various developmental processes (such as seed dormancy and germination, seedling establishment, and root development), disease resistance and lipid metabolism. Consistent with its versatile biological functions, ABI4 either activates or represses transcription of its target genes. The upstream regulators of ABI4 at both the transcription and post-transcription levels have also been documented in recent years. Consequently, a complicated network consisting of the direct target genes and upstream regulators of ABI4, through which ABI4 participates in several phytohormone crosstalk networks, has been generated. In this review, we summarize current understanding of the sophisticated ABI4-mediated molecular networks, mainly focusing on diverse phytohormone (including ABA, gibberellin, cytokinin, ethylene, auxin, and jasmonic acid) crosstalks. We also discuss the potential mechanisms through which ABI4 receives the ABA signal, focusing on protein phosphorylation modification events.
Collapse
Affiliation(s)
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenguan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| |
Collapse
|
43
|
On the Evolution and Functional Diversity of Terpene Synthases in the Pinus Species: A Review. J Mol Evol 2020; 88:253-283. [PMID: 32036402 DOI: 10.1007/s00239-020-09930-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
In the biosynthesis of terpenoids, the ample catalytic versatility of terpene synthases (TPS) allows the formation of thousands of different molecules. A steadily increasing number of sequenced plant genomes invariably show that the TPS gene family is medium to large in size, comprising from 30 to 100 functional members. In conifers, TPSs belonging to the gymnosperm-specific TPS-d subfamily produce a complex mixture of mono-, sesqui-, and diterpenoid specialized metabolites, which are found in volatile emissions and oleoresin secretions. Such substances are involved in the defence against pathogens and herbivores and can help to protect against abiotic stress. Oleoresin terpenoids can be also profitably used in a number of different fields, from traditional and modern medicine to fine chemicals, fragrances, and flavours, and, in the last years, in biorefinery too. In the present work, after summarizing the current views on the biosynthesis and biological functions of terpenoids, recent advances on the evolution and functional diversification of plant TPSs are reviewed, with a focus on gymnosperms. In such context, an extensive characterization and phylogeny of all the known TPSs from different Pinus species is reported, which, for such genus, can be seen as the first effort to explore the evolutionary history of the large family of TPS genes involved in specialized metabolism. Finally, an approach is described in which the phylogeny of TPSs in Pinus spp. has been exploited to isolate for the first time mono-TPS sequences from Pinus nigra subsp. laricio, an ecologically important endemic pine in the Mediterranean area.
Collapse
|
44
|
Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:25-54. [PMID: 31850654 DOI: 10.1111/jipb.12899] [Citation(s) in RCA: 776] [Impact Index Per Article: 155.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is an important phytohormone regulating plant growth, development, and stress responses. It has an essential role in multiple physiological processes of plants, such as stomatal closure, cuticular wax accumulation, leaf senescence, bud dormancy, seed germination, osmotic regulation, and growth inhibition among many others. Abscisic acid controls downstream responses to abiotic and biotic environmental changes through both transcriptional and posttranscriptional mechanisms. During the past 20 years, ABA biosynthesis and many of its signaling pathways have been well characterized. Here we review the dynamics of ABA metabolic pools and signaling that affects many of its physiological functions.
Collapse
Affiliation(s)
- Kong Chen
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Jun Li
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| |
Collapse
|
45
|
Chandrasekaran U, Luo X, Wang Q, Shu K. Are There Unidentified Factors Involved in the Germination of Nanoprimed Seeds? FRONTIERS IN PLANT SCIENCE 2020; 11:832. [PMID: 32587599 PMCID: PMC7298061 DOI: 10.3389/fpls.2020.00832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/25/2020] [Indexed: 05/03/2023]
Affiliation(s)
- Umashankar Chandrasekaran
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xiaofeng Luo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Qichao Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Kai Shu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- *Correspondence: Kai Shu,
| |
Collapse
|
46
|
Siddiqui H, Sami F, Hayat S. Glucose: Sweet or bitter effects in plants-a review on current and future perspective. Carbohydr Res 2019; 487:107884. [PMID: 31811968 DOI: 10.1016/j.carres.2019.107884] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023]
Abstract
Sugars are metabolic substrates playing a part in modulating various processes in plants during different phases of development. Thus, modulating the sugar metabolism can have intense effects on the plant metabolism. Glucose is a soluble sugar, found throughout the plant kingdom. Apart from being a universal carbon source, glucose also operates as a signaling molecule modulating various metabolic processes in plants. From germination to senescence, wide range of processes in plants is regulated by glucose. The effect of glucose is found to be concentration dependent. Photosynthesis and its related attributes, respiration and nitrogen metabolism are influenced by glucose application. Endogenous content of glucose increases upon exposure of plant to various abiotic stresses and also when glucose is supplied exogenously. Glucose accumulation alleviates the damaging effects of stress by enhancing production of antioxidants and compounds similar to that of photosynthetic CO2 fixation which act as an osmoticum by maintaining osmotic pressure inside the cell, pH homeostasis regulator and reduce membrane permeability during stress. Glucose interaction with various phytohormones has also been discussed in this review.
Collapse
Affiliation(s)
- Husna Siddiqui
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Fareen Sami
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
47
|
Zheng M, Yang T, Zhu C, Fu Y, Hsu YF. Arabidopsis GSM1 is involved in ABI4-regulated ABA signaling under high-glucose condition in early seedling growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110183. [PMID: 31481206 DOI: 10.1016/j.plantsci.2019.110183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 05/21/2023]
Abstract
In plants, sugar acts as an essential signaling molecule that modulates various aspects of metabolism, growth and development, which are also controlled by phytohormones. However, the molecular mechanism of cross-talk between sugar and phytohormones still remains to be elucidated. We have identified gsm1 (glucose-hypersensitive mutant 1) as a mutant with impaired cotyledon development that shows sensitivity to exogenous abscisic acid (ABA). The addition of fluridone can reverse the glucose (Glc) inhibitory effect in gsm1, implying that endogenous ABA is involved in the Glc response of gsm1. In 4.5% Glc, the expression of Glc-induced ABA-responsive genes in gsm1-1 was nearly two times higher than that in the wild type. Compared to gsm1-1, the gsm1-1 abi4-1 double mutant exhibited reduced sensitivity to Glc and ABA, which was similar to the Glc and ABA insensitive phenotype of abi4-1, suggesting that ABI4 is epistatic to GSM1. In the treatment with 4.5% Glc, the GSM1 transcript level was greatly increased in abi4-1 by almost 4-fold of that in the wild type. These data suggest that GSM1 plays an important role in the ABI4-regulated Glc-ABA signaling cascade during Arabidopsis early seedling growth.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Tingting Yang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Chunyan Zhu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yufan Fu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yi-Feng Hsu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| |
Collapse
|
48
|
Min JH, Park CR, Jang YH, Ju HW, Lee KH, Lee S, Kim CS. A basic helix-loop-helix 104 (bHLH104) protein functions as a transcriptional repressor for glucose and abscisic acid signaling in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:34-42. [PMID: 30639920 DOI: 10.1016/j.plaphy.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Transduction of glucose (Glc) signaling is critical for plant development, metabolism, and stress responses. However, identifying initial Glc sensing and response stimulating mechanisms in plants has been difficult due to dual functions of glucose as energy sources and signaling component. A basic Helix-Loop-Helix 104 (bHLH104) protein is a homolog of bHLH34 previously isolated from Arabidopsis that functions as a transcriptional activator of Glc and abscisic acid (ABA) responses. In this study, we characterized bHLH104 as a transcription factor that binds to the regulatory region of Arabidopsis Plasma membrane Glc-responsive Regulator (AtPGR) gene. The bHLH104 binds to 5'-AANA-3' element of the promoter region of AtPGR in vitro and represses beta-glucuronidase (GUS) activity in AtPGR promoter-GUS transgenic plants. Genetic approaches show that bHLH104 positively regulates Glc and abscisic acid (ABA) response. These results suggest that bHLH104 is involved in Glc- and ABA-mediated signaling pathway. Taken together, these findings provide evidence that bHLH104 is an important transcription regulator in plant-sensitivity to Glc and ABA signaling.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Cho-Rong Park
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yun-Ha Jang
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Woo Ju
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Rural and Biosystems Engineering, Agricultural Robotics and Automation Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sungbeom Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Cheol Soo Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
49
|
|
50
|
Vishal B, Krishnamurthy P, Ramamoorthy R, Kumar PP. OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition. THE NEW PHYTOLOGIST 2019; 221:1369-1386. [PMID: 30289560 DOI: 10.1111/nph.15464] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/26/2018] [Indexed: 05/11/2023]
Abstract
Class I TREHALOSE-PHOSPHATE-SYNTHASE (TPS) genes affect salinity tolerance and plant development. However, the function of class IITPS genes and their underlying mechanisms of action are unknown. We report the identification and functional analysis of a rice class IITPS gene (OsTPS8). The ostps8 mutant was characterised by GC-MS analysis, an abscisic acid (ABA) sensitivity test and by generating transgenic lines. To identify the underlying mechanism, gene expression analyses, genetic complementation and examination of suberin deposition in the roots were conducted. The ostps8 mutant showed salt sensitivity, ABA sensitivity and altered agronomic traits compared to the wild-type (WT), which could be rescued upon complementation. The dsRNAi line phenocopied the mutant, while the overexpression lines exhibited enhanced salt tolerance. The ostps8 mutant showed significantly reduced soluble sugars, Casparian bands and suberin deposition in the roots compared to the WT and overexpression lines. The mutant also showed downregulation of SAPKs (rice SnRK2s) and ABA-responsive genes. Furthermore, ostps8pUBI::SAPK9 rescued the salt-sensitive phenotype of ostps8. Our results suggest that OsTPS8 may regulate suberin deposition in rice through ABA signalling. Additionally, SAPK9-mediated regulation of altered ABA-responsive genes helps to confer salinity tolerance. Overexpression of OsTPS8 was adequate to confer enhanced salinity tolerance without any yield penalty, suggesting its usefulness in rice genetic improvement.
Collapse
Affiliation(s)
- Bhushan Vishal
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore City, 117543, Singapore
| | - Pannaga Krishnamurthy
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore City, 117543, Singapore
| | - Rengasamy Ramamoorthy
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore City, 117543, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore City, 117543, Singapore
| |
Collapse
|