1
|
Fang K, Yao X, Tian Y, He Y, Lin Y, Lei W, Peng S, Pan G, Shi H, Zhang D, Lin H. Ubiquitin-specific protease UBP14 stabilizes HY5 by deubiquitination to promote photomorphogenesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2024; 121:e2404883121. [PMID: 39102535 PMCID: PMC11331110 DOI: 10.1073/pnas.2404883121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 08/07/2024] Open
Abstract
Transcription factor ELONGATED HYPOCOTYL5 (HY5) is the central hub for seedling photomorphogenesis. E3 ubiquitin (Ub) ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) inhibits HY5 protein accumulation through ubiquitination. However, the process of HY5 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain HY5 homeostasis has never been studied. Here, we identified that Arabidopsis thaliana deubiquitinating enzyme, Ub-SPECIFIC PROTEASE 14 (UBP14) physically interacts with HY5 and enhances its protein stability by deubiquitination. The da3-1 mutant lacking UBP14 function exhibited a long hypocotyl phenotype, and UBP14 deficiency led to the failure of rapid accumulation of HY5 during dark to light. In addition, UBP14 preferred to stabilize nonphosphorylated form of HY5 which is more readily bound to downstream target genes. HY5 promoted the expression and protein accumulation of UBP14 for positive feedback to facilitate photomorphogenesis. Our findings thus established a mechanism by which UBP14 stabilizes HY5 protein by deubiquitination to promote photomorphogenesis in A. thaliana.
Collapse
Affiliation(s)
- Ke Fang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin644000, China
| | - Yu’ang Tian
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Yang He
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Yingru Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Sihan Peng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Guohui Pan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Haoyu Shi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610064, China
| |
Collapse
|
2
|
Wang X, Liu X, Song K, Du L. An insight into the roles of ubiquitin-specific proteases in plants: development and growth, morphogenesis, and stress response. FRONTIERS IN PLANT SCIENCE 2024; 15:1396634. [PMID: 38993940 PMCID: PMC11236618 DOI: 10.3389/fpls.2024.1396634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
Ubiquitination is a highly conserved and dynamic post-translational modification in which protein substrates are modified by ubiquitin to influence their activity, localization, or stability. Deubiquitination enzymes (DUBs) counter ubiquitin signaling by removing ubiquitin from the substrates. Ubiquitin-specific proteases (UBPs), the largest subfamily of DUBs, are conserved in plants, serving diverse functions across various cellular processes, although members within the same group often exhibit functional redundancy. Here, we briefly review recent advances in understanding the biological roles of UBPs, particularly the molecular mechanism by which UBPs regulate plant development and growth, morphogenesis, and stress response, which sheds light on the mechanistic roles of deubiquitination in plants.
Collapse
Affiliation(s)
- Xiuwen Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kaixuan Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Fu W, Fan D, Liu S, Bu Y. Genome-wide identification and expression analysis of Ubiquitin-specific protease gene family in maize (Zea mays L.). BMC PLANT BIOLOGY 2024; 24:404. [PMID: 38750451 PMCID: PMC11097515 DOI: 10.1186/s12870-024-04953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Ubiquitin-specific proteases (UBPs) are a large family of deubiquitinating enzymes (DUBs). They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristics of the UBP gene family in the important staple crop, maize (Zea mays L.). RESULTS In this study, we performed a bioinformatic analysis of the entire maize genome and identified 45 UBP genes. Phylogenetic analysis indicated that 45 ZmUBP genes can be divided into 15 subfamilies. Analysis of evolutionary patterns and divergence levels indicated that ZmUBP genes were present before the isolation of dicotyledons, were highly conserved and subjected to purifying selection during evolution. Most ZmUBP genes exhibited different expression levels in different tissues and developmental stages. Based on transcriptome data and promoter element analysis, we selected eight ZmUBP genes whose promoters contained a large number of plant hormones and stress response elements and were up-regulated under different abiotic stresses for RT-qPCR analysis, results showed that these genes responded to abiotic stresses and phytohormones to varying degrees, indicating that they play important roles in plant growth and stress response. CONCLUSIONS In this study, the structure, location and evolutionary relationship of maize UBP gene family members were analyzed for the first time, and the ZmUBP genes that may be involved in stress response and plant growth were identified by combining promoter element analysis, transcriptome data and RT-qPCR analysis. This study informs research on the involvement of maize deubiquitination in stress response.
Collapse
Affiliation(s)
- Weichao Fu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Delong Fan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, China
| | - Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
4
|
Sahu TK, Verma SK, Gayacharan, Singh NP, Joshi DC, Wankhede DP, Singh M, Bhardwaj R, Singh B, Parida SK, Chattopadhyay D, Singh GP, Singh AK. Transcriptome-wide association mapping provides insights into the genetic basis and candidate genes governing flowering, maturity and seed weight in rice bean (Vigna umbellata). BMC PLANT BIOLOGY 2024; 24:379. [PMID: 38720284 PMCID: PMC11077894 DOI: 10.1186/s12870-024-04976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Rice bean (Vigna umbellata), an underrated legume, adapts to diverse climatic conditions with the potential to support food and nutritional security worldwide. It is used as a vegetable, minor food crop and a fodder crop, being a rich source of proteins, minerals, and essential fatty acids. However, little effort has been made to decipher the genetic and molecular basis of various useful traits in this crop. Therefore, we considered three economically important traits i.e., flowering, maturity and seed weight of rice bean and identified the associated candidate genes employing an associative transcriptomics approach on 100 diverse genotypes out of 1800 evaluated rice bean accessions from the Indian National Genebank. RESULTS The transcriptomics-based genotyping of one-hundred diverse rice bean cultivars followed by pre-processing of genotypic data resulted in 49,271 filtered markers. The STRUCTURE, PCA and Neighbor-Joining clustering of 100 genotypes revealed three putative sub-populations. The marker-trait association analysis involving various genome-wide association study (GWAS) models revealed significant association of 82 markers on 48 transcripts for flowering, 26 markers on 22 transcripts for maturity and 22 markers on 21 transcripts for seed weight. The transcript annotation provided information on the putative candidate genes for the considered traits. The candidate genes identified for flowering include HSC80, P-II PsbX, phospholipid-transporting-ATPase-9, pectin-acetylesterase-8 and E3-ubiquitin-protein-ligase-RHG1A. Further, the WRKY1 and DEAD-box-RH27 were found to be associated with seed weight. Furthermore, the associations of PIF3 and pentatricopeptide-repeat-containing-gene with maturity and seed weight, and aldo-keto-reductase with flowering and maturity were revealed. CONCLUSION This study offers insights into the genetic basis of key agronomic traits in rice bean, including flowering, maturity, and seed weight. The identified markers and associated candidate genes provide valuable resources for future exploration and targeted breeding, aiming to enhance the agronomic performance of rice bean cultivars. Notably, this research represents the first transcriptome-wide association study in pulse crop, uncovering the candidate genes for agronomically useful traits.
Collapse
Affiliation(s)
- Tanmaya Kumar Sahu
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Sachin Kumar Verma
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | | | - Dinesh Chandra Joshi
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - D P Wankhede
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Badal Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
5
|
Guo X, Zhang X, Jiang S, Qiao X, Meng B, Wang X, Wang Y, Yang K, Zhang Y, Li N, Chen T, Kang Y, Yao M, Zhang X, Wang X, Zhang E, Li J, Yan D, Hu Z, Botella JR, Song CP, Li Y, Guo S. E3 ligases MAC3A and MAC3B ubiquitinate UBIQUITIN-SPECIFIC PROTEASE14 to regulate organ size in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:684-697. [PMID: 37850874 PMCID: PMC10828200 DOI: 10.1093/plphys/kiad559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.
Collapse
Affiliation(s)
- Xiaopeng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Qiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Bolun Meng
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xiaohang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yanan Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Kaihuan Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yilan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Tianyan Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yiyang Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Mengyi Yao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xuan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xinru Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Erling Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - José Ramón Botella
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| |
Collapse
|
6
|
Chen A, Zhou Y, Ren Y, Liu C, Han X, Wang J, Ma Z, Chen Y. Ubiquitination of acetyltransferase Gcn5 contributes to fungal virulence in Fusarium graminearum. mBio 2023; 14:e0149923. [PMID: 37504517 PMCID: PMC10470610 DOI: 10.1128/mbio.01499-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
The histone acetyltransferase general control non-depressible 5 (Gcn5) plays a critical role in the epigenetic landscape and chromatin modification for regulating a wide variety of biological events. However, the post-translational regulation of Gcn5 itself is poorly understood. Here, we found that Gcn5 was ubiquitinated and deubiquitinated by E3 ligase Tom1 and deubiquitinating enzyme Ubp14, respectively, in the important plant pathogenic fungus Fusarium graminearum. Tom1 interacted with Gcn5 in the nucleus and subsequently ubiquitinated Gcn5 mainly at K252 to accelerate protein degradation. Conversely, Ubp14 deubiquitinated Gcn5 and enhanced its stability. In the deletion mutant Δubp14, protein level of Gcn5 was significantly reduced and resulted in attenuated virulence in the fungus by affecting the mycotoxin production, autophagy process, and the penetration ability. Our findings indicate that Tom1 and Ubp14 show antagonistic functions in the control of the protein stability of Gcn5 via post-translational modification and highlight the importance of Tom1-Gcn5-Ubp14 circuit in the fungal virulence. IMPORTANCE Post-translational modification (PTM) enzymes have been reported to be involved in regulating numerous cellular processes. However, the modification of these PTM enzymes themselves is largely unknown. In this study, we found that the E3 ligase Tom1 and deubiquitinating enzyme Ubp14 contributed to the regulation of ubiquitination and deubiquitination of acetyltransferase Gcn5, respectively, in Fusarium graminearum, the causal agent of Fusarium head blight of cereals. Our findings provide deep insights into the modification of acetyltransferase Gcn5 and its dynamic regulation via ubiquitination and deubiquitination. To our knowledge, this work is the most comprehensive analysis of a regulatory network of ubiquitination that impinges on acetyltransferase in filamentous pathogens. Moreover, our findings are important because we present the novel roles of the Tom1-Gcn5-Ubp14 circuit in fungal virulence, providing novel possibilities and targets to control fungal diseases.
Collapse
Affiliation(s)
- Ahai Chen
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yifan Zhou
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiyi Ren
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xingmin Han
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jing Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Lee JS, Ko CS, Seo YW. Oat AsDA1-2D enhances heat stress tolerance and negatively regulates seed-storage globulin. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153981. [PMID: 37054580 DOI: 10.1016/j.jplph.2023.153981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The importance of oats has increased because of their high nutritional value and health benefits in the human diet. High-temperature stress during the reproductive growth period has a detrimental effect on grain morphology by changing the structure and concentration of several seed-storage proteins. DA1, a conserved ubiquitin-proteasome pathway component, plays an important role in regulating grain size by controlling cell proliferation in maternal integuments during the grain-filling stage. However, there have been no reports or studies on oat DA1 genes. In this study, we identified three DA1-like genes (AsDA1-2D, AsDA1-5A, and AsDA1-1D) using genome-wide analysis. Among these, AsDA1-2D was found to be responsible for high-temperature stress tolerance via a yeast thermotolerance assay. The physical interaction of AsDA1-2D with oat-storage-globulin (AsGL-4D) and a protease inhibitor (AsPI-4D) was observed using yeast two-hybrid screening. A subcellular localization assay revealed that AsDA1-2D and its interacting proteins are localized in the cytosol and plasma membrane. An in vitro pull-down assay showed that AsDA1-2D forms a complex with both AsPI-4D and AsGL-4D. An in vitro cell-free degradation assay showed that AsGL-4D was degraded by AsDA1-2D under high-temperature conditions and that AsPI-4D inhibited the function of AsDA1-2D. These results suggest that AsDA1-2D acts as a cysteine protease and negatively regulates oat-grain-storage-globulin under heat stress.
Collapse
Affiliation(s)
- Joo Sun Lee
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chan Seop Ko
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup, 56212, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Ojeong Plant Breeding Research Center, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Luo R, Yang K, Xiao W. Plant deubiquitinases: from structure and activity to biological functions. PLANT CELL REPORTS 2023; 42:469-486. [PMID: 36567335 DOI: 10.1007/s00299-022-02962-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This article attempts to provide comprehensive review of plant deubiquitinases, paying special attention to recent advances in their biochemical activities and biological functions. Proteins in eukaryotes are subjected to post-translational modifications, in which ubiquitination is regarded as a reversible process. Cellular deubiquitinases (DUBs) are a key component of the ubiquitin (Ub)-proteasome system responsible for cellular protein homeostasis. DUBs recycle Ub by hydrolyzing poly-Ub chains on target proteins, and maintain a balance of the cellular Ub pool. In addition, some DUBs prefer to cleave poly-Ub chains not linked through the conventional K48 residue, which often alter the substrate activity instead of its stability. In plants, all seven known DUB subfamilies have been identified, namely Ub-binding protease/Ub-specific protease (UBP/USP), Ub C-terminal hydrolase (UCH), Machado-Joseph domain-containing protease (MJD), ovarian-tumor domain-containing protease (OTU), zinc finger with UFM1-specific peptidase domain protease (ZUFSP), motif interacting with Ub-containing novel DUB family (MINDY), and JAB1/MPN/MOV34 protease (JAMM). This review focuses on recent advances in the structure, activity, and biological functions of plant DUBs, particularly in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Runbang Luo
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
9
|
Cao Y, Li Y, Wang L, Zhang L, Jiang L. Evolution and function of ubiquitin-specific proteases (UBPs): Insight into seed development roles in tung tree (Vernicia fordii). Int J Biol Macromol 2022; 221:796-805. [PMID: 36037910 DOI: 10.1016/j.ijbiomac.2022.08.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
The tung oil produced by the tung tree (Vernicia fordii) provides resources for the manufacture of biodiesel. Ubiquitin-specific proteases (UBPs) are the largest group of deubiquitinases and play key roles in regulating development and stress responses. Here, 21 UBPs were identified in V. fordii, roughly one-half the number found in Manihot esculenta and Hevea brasiliensis. Most UBP duplications are produced from whole-genome duplication (WGD), and significant differences in gene retention existed among Euphorbiaceae. The great majority of UBP-containing blocks in V. fordii, V. montana, Ricinus communis, and Jatropha curcas exhibited extensive conservation with the duplicated regions of M. esculenta and H. brasiliensis. These blocks formed 14 orthologous groups, indicating they shared WGD with UBPs in M. esculenta and H. brasiliensis, but most of these UBPs copies were lost. The UBP orthologs contained significant functional divergence which explained the susceptibility of V. fordii to Fusarium wilt and the resistance of V. montana to Fusarium wilt. The expression patterns and experiments suggested that Vf03G1417 could affect the seed-related traits and positively regulate the seed oil accumulation. This study provided important insights into the evolution of UBPs in Euphorbiaceae and identified important candidate VfUBPs for marker-assisted breeding in V. fordii.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yanli Li
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, 430000 Wuhan, China.
| | - Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China.
| |
Collapse
|
10
|
Liu G, Liang J, Lou L, Tian M, Zhang X, Liu L, Zhao Q, Xia R, Wu Y, Xie Q, Yu F. The deubiquitinases UBP12 and UBP13 integrate with the E3 ubiquitin ligase XBAT35.2 to modulate VPS23A stability in ABA signaling. SCIENCE ADVANCES 2022; 8:eabl5765. [PMID: 35385312 PMCID: PMC8986106 DOI: 10.1126/sciadv.abl5765] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/11/2022] [Indexed: 06/01/2023]
Abstract
Ubiquitination-mediated protein degradation in both the 26S proteasome and vacuole is an important process in abscisic acid (ABA) signaling. However, the role of deubiquitination in this process remains elusive. Here, we demonstrate that two deubiquitinating enzymes (DUBs), ubiquitin-specific protease 12 (UBP12) and UBP13, modulate ABA signaling and drought tolerance by deubiquitinating and stabilizing the endosomal sorting complex required for transport-I (ESCRT-I) component vacuolar protein sorting 23A (VPS23A) and thereby affect the stability of ABA receptors in Arabidopsis thaliana. Genetic analysis showed that VPS23A overexpression could rescue the ABA hypersensitive and drought tolerance phenotypes of ubp12-2w or ubp13-1. In addition to the direct regulation of VPS23A, we found that UBP12 and UBP13 also stabilized the E3 ligase XB3 ortholog 5 in A. thaliana (XBAT35.2) in response to ABA treatment. Hence, we demonstrated that UBP12 and UBP13 are previously unidentified rheostatic regulators of ABA signaling and revealed a mechanism by which deubiquitination precisely monitors the XBAT35/VPS23A ubiquitination module in the ABA response.
Collapse
Affiliation(s)
- Guangchao Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jiaxuan Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lijuan Lou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206 Beijing, China
| | - Miaomiao Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiangyun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lijing Liu
- School of Life Sciences, Shandong University, Qingdao, 266237 Shandong, China
| | - Qingzhen Zhao
- College of Life Sciences, Liaocheng University, Liaocheng, 252000 Shandong, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
11
|
Jiang S, Wei J, Li N, Wang Z, Zhang Y, Xu R, Zhou L, Huang X, Wang L, Guo S, Wang Y, Song CP, Qian W, Li Y. The UBP14-CDKB1;1-CDKG2 cascade controls endoreduplication and cell growth in Arabidopsis. THE PLANT CELL 2022; 34:1308-1325. [PMID: 34999895 PMCID: PMC8972217 DOI: 10.1093/plcell/koac002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 05/31/2023]
Abstract
Endoreduplication, a process in which DNA replication occurs in the absence of mitosis, is found in all eukaryotic kingdoms, especially plants, where it is assumed to be important for cell growth and cell fate maintenance. However, a comprehensive understanding of the mechanism regulating endoreduplication is still lacking. We previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, acts upstream of CYCLIN-DEPENDENT KINASE B1;1 (CDKB1;1) to influence endoreduplication and cell growth in Arabidopsis thaliana. The da3-1 mutant possesses large cotyledons with enlarged cells due to high ploidy levels. Here, we identified a suppressor of da3-1 (SUPPRESSOR OF da3-1 6; SUD6), encoding CYCLIN-DEPENDENT KINASE G2 (CDKG2), which promotes endoreduplication and cell growth. CDKG2/SUD6 physically associates with CDKB1;1 in vivo and in vitro. CDKB1;1 directly phosphorylates SUD6 and modulates its stability. Genetic analysis indicated that SUD6 acts downstream of DA3 and CDKB1;1 to control ploidy level and cell growth. Thus, our study establishes a regulatory cascade for UBP14/DA3-CDKB1;1-CDKG2/SUD6-mediated control of endoreduplication and cell growth in Arabidopsis.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinwei Wei
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhibiao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yilan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lixun Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
12
|
Ubiquitin-specific proteases UBP12 and UBP13 promote shade avoidance response by enhancing PIF7 stability. Proc Natl Acad Sci U S A 2021; 118:2103633118. [PMID: 34732572 PMCID: PMC8609341 DOI: 10.1073/pnas.2103633118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
For plants grown in a crowded environment, PHYTOCHROME INTERACTING FACTOR 7 (PIF7) plays a critical role by initiating a series of adaptive growth responses. Here, we demonstrate that, in addition to transcription activity and subcellular localization, the PIF7 protein level, which is stringently regulated, is also important for shade avoidance responses. We identified two ubiquitin-specific proteases, UBP12 and UBP13, which positively regulate rapid plant growth in response to shade light. These two ubiquitin proteases directly interact with PIF7 and protect the latter from destruction by 26S proteasomes. The dynamic changes of PIF7 abundance regulated by UBP12 and UBP13 provide insight into the roles of posttranslational modifications of PIF7 in integrating environmental changes with endogenous responses. Changes in light quality caused by the presence of neighbor proximity regulate many growth and development processes of plants. PHYTOCHROME INTERACTING FACTOR 7 (PIF7), whose subcellular localization, DNA-binding properties, and protein abundance are regulated in a photoreversible manner, plays a central role in linking shade light perception and growth responses. How PIF7 activity is regulated during shade avoidance responses has been well studied, and many factors involved in this process have been identified. However, the detailed molecular mechanism by which shade light regulates the PIF7 protein level is still largely unknown. Here, we show that the PIF7 protein level regulation is important for shade-induced growth. Two ubiquitin-specific proteases, UBP12 and UBP13, were identified as positive regulators in shade avoidance responses by increasing the PIF7 protein level. The ubp12-2w/13–3 double mutant displayed significantly impaired sensitivity to shade-induced cell elongation and reproduction acceleration. Our genetic and biochemical analysis showed that UBP12 and UBP13 act downstream of phyB and directly interact with PIF7 to maintain PIF7 stability and abundance through deubiquitination.
Collapse
|
13
|
Lim CW, Baek W, Lim J, Hong E, Lee SC. Pepper ubiquitin-specific protease, CaUBP12, positively modulates dehydration resistance by enhancing CaSnRK2.6 stability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1148-1165. [PMID: 34145668 DOI: 10.1111/tpj.15374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 05/27/2023]
Abstract
Abscisic acid (ABA) is a plant hormone that activates adaptive mechanisms to environmental stress conditions. Plant adaptive mechanisms are complex and highly modulated processes induced by stress-responsive proteins; however, the precise mechanisms by which these processes function under adverse conditions remain unclear. Here, we isolated CaUBP12 (Capsicum annuum ubiquitin-specific protease 12) from pepper (C. annuum) leaves. We show that CaUBP12 expression is significantly induced after exposure to abiotic stress treatments. We conducted loss-of-function and gain-of-function genetic studies to elucidate the biological functions of CaUBP12 in response to ABA and dehydration stress. CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants displayed dehydration-sensitive and dehydration-tolerant phenotypes, respectively; these phenotypes were characterized by regulation of transpirational water loss and stomatal aperture. Under dehydration stress conditions, CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants exhibited lower and higher expression levels of stress-related genes, respectively, than the control plants. We isolated a CaUBP12 interaction protein, CaSnRK2.6, which is a homolog of Arabidopsis OST1; degradation of this protein was partially inhibited by CaUBP12. Similar to CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants, CaSnRK2.6-silenced pepper plants and CaSnRK2.6-overexpressing Arabidopsis displayed dehydration-sensitive and dehydration-tolerant phenotypes, respectively. Our findings suggest that CaUBP12 positively modulates the dehydration stress response by suppressing CaSnRK2.6 protein degradation.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Dongjak-Gu, Republic of Korea
| | - Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Dongjak-Gu, Republic of Korea
| | - Junsub Lim
- Department of Life Science (BK21 program), Chung-Ang University, Dongjak-Gu, Republic of Korea
| | - Eunji Hong
- Department of Life Science (BK21 program), Chung-Ang University, Dongjak-Gu, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Dongjak-Gu, Republic of Korea
| |
Collapse
|
14
|
Zheng W, Du L. The DUB family in Populus: identification, characterization, evolution and expression patterns. BMC Genomics 2021; 22:541. [PMID: 34266381 PMCID: PMC8281628 DOI: 10.1186/s12864-021-07844-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/24/2021] [Indexed: 11/20/2022] Open
Abstract
Background The deubiquitinase (DUB) family constitutes a group of proteases that regulate the stability or reverse the ubiquitination of many proteins in the cell. These enzymes participate in cell-cycle regulation, cell division and differentiation, diverse physiological activities such as DNA damage repair, growth and development, and response to stress. However, limited information is available on this family of genes in woody plants. Results In the present study, 88 DUB family genes were identified in the woody model plant Populus trichocarpa, comprising 44 PtrUBP, 3 PtrUCH, 23 PtrOTU, 4 PtrMJD, and 14 PtrJAMM genes with similar domains. According to phylogenetic analysis, the PtrUBP genes were classified into 16 groups, the PtrUCH genes into two, the PtrOTU genes into eight, the PtrMJD genes into two, and the PtrJAMM genes into seven. Members of same subfamily had similar gene structure and motif distribution characteristics. Synteny analysis of the DUB family genes from P. thrchocarpa and four other plant species provided insight into the evolutionary traits of DUB genes. Expression profiles derived from previously published transcriptome data revealed distinct expression patterns of DUB genes in various tissues. On the basis of the results of analysis of promoter cis-regulatory elements, we selected 16 representative PtrUBP genes to treatment with abscisic acid, methyl jasmonate, or salicylic acid applied as a foliar spray. The majority of PtrUBP genes were upregulated in response to the phytohormone treatments, which implied that the genes play potential roles in abiotic stress response in Populus. Conclusions The results of this study broaden our understanding of the DUB family in plants. Analysis of the gene structure, conserved elements, and expression patterns of the DUB family provides a solid foundation for exploration of their specific functions in Populus and to elucidate the potential role of PtrUBP gene in abiotic stress response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07844-3.
Collapse
Affiliation(s)
- Wenqing Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China. .,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Xu M, Jin P, Liu T, Gao S, Zhang T, Zhang F, Han X, He L, Chen J, Yang J. Genome-wide identification and characterization of UBP gene family in wheat ( Triticum aestivum L.). PeerJ 2021; 9:e11594. [PMID: 34178465 PMCID: PMC8212830 DOI: 10.7717/peerj.11594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Ubiquitination is essential for plant growth and development. Deubiquitination cooperates with ubiquitination to regulate the ubiquitination levels of target proteins. The ubiquitin-specific protease (UBP) family is the largest group of deubiquitinases (DUBs), which perform extensive and significant roles in eukaryotic organisms. However, the UBP genes in wheat (TaUBPs) are not identified, and the functions of TaUBPs are unknown. The present study identified 97 UBP genes in the whole genome of T. aestivum. These genes were divided into 15 groups and non-randomly distributed on chromosomes of T. aestivum. Analyses of evolutionary patterns revealed that TaUBPs mainly underwent purification selection. The studies of cis-acting regulatory elements indicated that they might be involved in response to hormones. Quantitative real-time PCR (qRT-PCR) results showed that TaUBPs were differentially expressed in different tissues. Besides, several TaUBPs were significantly up-regulated when plants were treated with salicylic acid (SA), implying that these DUBs may play a role in abiotic stress responses in plants and few TaUBPs displayed differential expression after viral infection. Furthermore, TaUBP1A.1 (TraesCS1A02G432600.1) silenced by virus-induced gene silencing (VIGS) facilitates Chinese wheat mosaic virus (CWMV) infection in wheat, indicating that TaUBP1A.1 may be involved in a defense mechanism against viruses. This study comprehensively analyzed the UBP gene family in wheat and provided a basis for further research of TaUBPs functions in wheat plant response to viral infection.
Collapse
Affiliation(s)
- Miaoze Xu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Jin
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tingting Liu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shiqi Gao
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiaolei Han
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
David R, Ng PQ, Smith LM, Searle IR. Novel allele elh of the UBP14 gene affects plant organ size via cell expansion in Arabidopsis thaliana.. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34189424 PMCID: PMC8232968 DOI: 10.17912/micropub.biology.000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Plant organ size control is an essential process of plant growth and development. The regulation of plant organ size involves a complicated network of genetic, molecular interactions, as well as the interplay of environmental factors. Here, we report a temperature-sensitive hypocotyl elongation EMS-generated mutant, hereby referred to as elongated hypocotyl under high-temperature (elh). The elongated hypocotyl phenotype was prominent when the elh seedlings were grown at high temperature, 28°C, but not under the growth temperature of 21°C. We observed significantly larger organ sizes in elh plants, including cotyledons, petals and seeds. In elh plants, the cell sizes in cotyledons and petals were significantly larger than wild type. By measuring the cell density and organ area of cotyledons, petals and mature dissected embryos, we found no differences in total cell numbers in any organ indicating that cell expansion rather than cell proliferation was perturbed in elh. elh plants produced leaves at a slower rate than wild type plants, suggesting that perturbing the balance between cell division and cell expansion is linked to the developmental rate at which leaves are produced.
Collapse
Affiliation(s)
- Rakesh David
- School of Agriculture, Food and Wine, The University of Adelaide, Australia
| | - Pei Qin Ng
- School of Biological Sciences, The University of Adelaide, Australia
| | - Lisa M Smith
- Department of Animal and Plant Sciences, The University of Sheffield, UK
| | - Iain R Searle
- School of Biological Sciences, The University of Adelaide, Australia
| |
Collapse
|
17
|
Suresh HG, Pascoe N, Andrews B. The structure and function of deubiquitinases: lessons from budding yeast. Open Biol 2020; 10:200279. [PMID: 33081638 PMCID: PMC7653365 DOI: 10.1098/rsob.200279] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination is a key post-translational modification that regulates diverse cellular processes in eukaryotic cells. The specificity of ubiquitin (Ub) signalling for different bioprocesses and pathways is dictated by the large variety of mono-ubiquitination and polyubiquitination events, including many possible chain architectures. Deubiquitinases (DUBs) reverse or edit Ub signals with high sophistication and specificity, forming an integral arm of the Ub signalling machinery, thus impinging on fundamental cellular processes including DNA damage repair, gene expression, protein quality control and organellar integrity. In this review, we discuss the many layers of DUB function and regulation, with a focus on insights gained from budding yeast. Our review provides a framework to understand key aspects of DUB biology.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Natasha Pascoe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Brenda Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
18
|
Jiao F, Luo R, Dai X, Liu H, Yu G, Han S, Lu X, Su C, Chen Q, Song Q, Meng C, Li F, Sun H, Zhang R, Hui T, Qian Y, Zhao A, Jiang Y. Chromosome-Level Reference Genome and Population Genomic Analysis Provide Insights into the Evolution and Improvement of Domesticated Mulberry (Morus alba). MOLECULAR PLANT 2020; 13:1001-1012. [PMID: 32422187 DOI: 10.1016/j.molp.2020.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/08/2020] [Accepted: 05/12/2020] [Indexed: 05/16/2023]
Abstract
Mulberry (Morus spp.) is the sole plant consumed by the domesticated silkworm. However, the genome of domesticated mulberry has not yet been sequenced, and the ploidy level of this species remains unclear. Here, we report a high-quality, chromosome-level domesticated mulberry (Morus alba) genome. Analysis of genomic data and karyotype analyses confirmed that M. alba is a diploid with 28 chromosomes (2n = 2x = 28). Population genomic analysis based on resequencing of 134 mulberry accessions classified domesticated mulberry into three geographical groups, namely, Taihu Basin of southeastern China (Hu mulberry), northern and southwestern China, and Japan. Hu mulberry had the lowest nucleotide diversity among these accessions and demonstrated obvious signatures of selection associated with environmental adaptation. Further phylogenetic analysis supports a previous proposal that multiple domesticated mulberry accessions previously classified as different species actually belong to one species. This study expands our understanding of genome evolution of the genus Morus and population structure of domesticated mulberry, which would facilitate mulberry breeding and improvement.
Collapse
Affiliation(s)
- Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Rongsong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Liu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gang Yu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shuhua Han
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Lu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qi Chen
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qinxia Song
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Caiting Meng
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fanghong Li
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hongmei Sun
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Rui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tian Hui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chong Qing 400716, China.
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
19
|
Majumdar P, Nath U. De-ubiquitinases on the move: an emerging field in plant biology. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:563-572. [PMID: 32233097 DOI: 10.1111/plb.13118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
A balance between the synthesis and degradation of active proteins governs diverse cellular processes in plants, spanning from cell-cycle progression and circadian rhythm to the outcome of several hormone signalling pathways. Ubiquitin-mediated post-translational modification determines the degradative fate of the target proteins, thereby altering the output of cellular processes. An equally important, and perhaps under-appreciated, aspect of this pathway is the antagonistic process of de-ubiquitination. De-ubiquitinases (DUBs), a group of processing enzymes, play an important role in maintaining cellular ubiquitin homeostasis by hydrolyzing ubiquitin poly-proteins and free poly-ubiquitin chains into mono-ubiquitin. Further, DUBs rescue the cellular proteins from 26S proteasome-mediated degradation to their active form by cleaving the poly-ubiquitin chain from the target protein. Any perturbation in DUB activity is likely to affect proteostasis and downstream cellular processes. This review illustrates recent findings on the biological significance and mechanisms of action of the DUBs in Arabidopsis thaliana, with an emphasis on ubiquitin-specific proteases (UBPs), the largest family among the DUBs. We focus on the putative roles of various protein-protein interaction interfaces in DUBs and their generalized function in ubiquitin recycling, along with their pre-eminent role in plant development.
Collapse
Affiliation(s)
- P Majumdar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - U Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
20
|
Alves‐Pereira A, Clement CR, Picanço‐Rodrigues D, Veasey EA, Dequigiovanni G, Ramos SLF, Pinheiro JB, de Souza AP, Zucchi MI. A population genomics appraisal suggests independent dispersals for bitter and sweet manioc in Brazilian Amazonia. Evol Appl 2020; 13:342-361. [PMID: 31993081 PMCID: PMC6976959 DOI: 10.1111/eva.12873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/14/2019] [Indexed: 12/19/2022] Open
Abstract
Amazonia is a major world centre of plant domestication, but the genetics of domestication remains unclear for most Amazonian crops. Manioc (Manihot esculenta) is the most important staple food crop that originated in this region. Although manioc is relatively well-studied, little is known about the diversification of bitter and sweet landraces and how they were dispersed across Amazonia. We evaluated single nucleotide polymorphisms (SNPs) in wild and cultivated manioc to identify outlier SNPs putatively under selection and to assess the neutral genetic structure of landraces to make inferences about the evolution of the crop in Amazonia. Some outlier SNPs were in putative manioc genes possibly related to plant architecture, transcriptional regulation and responses to stress. The neutral SNPs revealed contrasting genetic structuring for bitter and sweet landraces. The outlier SNPs may be signatures of the genomic changes resulting from domestication, while the neutral genetic structure suggests independent dispersals for sweet and bitter manioc, possibly related to the earlier domestication and diversification of the former. Our results highlight the role of ancient peoples and current smallholders in the management and conservation of manioc genetic diversity, including putative genes and specific genetic resources with adaptive potential in the context of climate change.
Collapse
Affiliation(s)
- Alessandro Alves‐Pereira
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
- Departamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
| | | | | | - Elizabeth Ann Veasey
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Gabriel Dequigiovanni
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Santiago Linorio Ferreyra Ramos
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - José Baldin Pinheiro
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Anete Pereira de Souza
- Departamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
| | | |
Collapse
|
21
|
Wu R, Zheng W, Tan J, Sammer R, Du L, Lu C. Protein partners of plant ubiquitin-specific proteases (UBPs). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:227-236. [PMID: 31630936 DOI: 10.1016/j.plaphy.2019.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/16/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
As one type of deubiquitinases (DUBs), ubiquitin-specific proteases (UBPs) play an extensive and significant role in plant life involving the regulation of plant development and stress responses. However, comprehensive studies are still needed to determine the functional mechanisms, which are largely unclear. Here, we summarized recent progress of plant UBPs' functional partners, particularly the molecular mechanisms by which UBPs work with their partners. We believe that functional analyses of UBPs and their partners will provide new insights into protein deubiquitination and lead to a better understanding of the physiological roles of UBPs in plants.
Collapse
Affiliation(s)
- Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenqing Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jinyi Tan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Rana Sammer
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Cunfu Lu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
22
|
Skelly MJ, Furniss JJ, Grey H, Wong KW, Spoel SH. Dynamic ubiquitination determines transcriptional activity of the plant immune coactivator NPR1. eLife 2019; 8:47005. [PMID: 31589140 PMCID: PMC6850887 DOI: 10.7554/elife.47005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/05/2019] [Indexed: 01/27/2023] Open
Abstract
Activation of systemic acquired resistance in plants is associated with transcriptome reprogramming induced by the unstable coactivator NPR1. Immune-induced ubiquitination and proteasomal degradation of NPR1 are thought to facilitate continuous delivery of active NPR1 to target promoters, thereby maximising gene expression. Because of this potentially costly sacrificial process, we investigated if ubiquitination of NPR1 plays transcriptional roles prior to its proteasomal turnover. Here we show ubiquitination of NPR1 is a progressive event in which initial modification by a Cullin-RING E3 ligase promotes its chromatin association and expression of target genes. Only when polyubiquitination of NPR1 is enhanced by the E4 ligase, UBE4, it is targeted for proteasomal degradation. Conversely, ubiquitin ligase activities are opposed by UBP6/7, two proteasome-associated deubiquitinases that enhance NPR1 longevity. Thus, immune-induced transcriptome reprogramming requires sequential actions of E3 and E4 ligases balanced by opposing deubiquitinases that fine-tune activity of NPR1 without strict requirement for its sacrificial turnover.
Collapse
Affiliation(s)
- Michael J Skelly
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - James J Furniss
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather Grey
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ka-Wing Wong
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Wu R, Shi Y, Zhang Q, Zheng W, Chen S, Du L, Lu C. Genome-Wide Identification and Characterization of the UBP Gene Family in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2019; 20:E4309. [PMID: 31484390 PMCID: PMC6747111 DOI: 10.3390/ijms20174309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 02/02/2023] Open
Abstract
The largest group of deubiquitinases-ubiquitin-specific proteases (UBPs)-perform extensive and significant roles in plants, including the regulation of development and stress responses. A comprehensive analysis of UBP genes has been performed in Arabidopsis thaliana, but no systematic study has been conducted in moso bamboo (Phyllostachys edulis). In this study, the genome-wide identification, classification, gene, protein, promoter region characterization, divergence time, and expression pattern analyses of the UBPs in moso bamboo were conducted. In total, 48 putative UBP genes were identified in moso bamboo, which were divided into 14 distinct subfamilies in accordance with a comparative phylogenetic analysis using 132 full-length protein sequences, including 48, 27, 25, and 32 sequences from moso bamboo, A. thaliana, rice (Oryza sativa), and purple false brome (Brachypodium distachyon), respectively. Analyses of the evolutionary patterns and divergence levels revealed that the PeUBP genes experienced a duplication event approximately 15 million years ago and that the divergence between PeUBP and OsUBP occurred approximately 27 million years ago. Additionally, several PeUBP members were significantly upregulated under abscisic acid, methyl jasmonate, and salicylic acid treatments, indicating their potential roles in abiotic stress responses in plants.
Collapse
Affiliation(s)
- Ruihua Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yanrong Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qian Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenqing Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Liang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Cunfu Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
24
|
Blount JR, Meyer DN, Akemann C, Johnson SL, Gurdziel K, Baker TR, Todi SV. Unanchored ubiquitin chains do not lead to marked alterations in gene expression in Drosophila melanogaster. Biol Open 2019; 8:bio.043372. [PMID: 31097444 PMCID: PMC6550069 DOI: 10.1242/bio.043372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The small protein modifier ubiquitin regulates various aspects of cellular biology through its chemical conjugation onto proteins. Ubiquitination of proteins presents itself in numerous iterations, from a single mono-ubiquitination event to chains of poly-ubiquitin. Ubiquitin chains can be attached onto other proteins or can exist as unanchored species, i.e. free from another protein. Unanchored ubiquitin chains are thought to be deleterious to the cell and rapidly disassembled into mono-ubiquitin. We recently examined the toxicity and utilization of unanchored poly-ubiquitin in Drosophila melanogaster. We found that free poly-ubiquitin species are largely innocuous to flies and that free poly-ubiquitin can be controlled by being degraded by the proteasome or by being conjugated onto another protein as a single unit. Here, to explore whether an organismal defense is mounted against unanchored chains, we conducted RNA-Seq analyses to examine the transcriptomic impact of free poly-ubiquitin in the fly. We found ∼90 transcripts whose expression is altered in the presence of different types of unanchored poly-ubiquitin. The set of genes identified was essentially devoid of ubiquitin-, proteasome-, or autophagy-related components. The seeming absence of a large and multipronged response to unanchored poly-ubiquitin supports the conclusion that these species need not be toxic in vivo and underscores the need to re-examine the role of free ubiquitin chains in the cell. Summary: Our Drosophila studies indicate the lack of a marked, coordinated response towards unanchored poly-ubiquitin in flies, suggesting that untethered ubiquitin chains are not necessarily problematic in intact organisms.
Collapse
Affiliation(s)
- Jessica R Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Danielle N Meyer
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Camille Akemann
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sean L Johnson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Katherine Gurdziel
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA .,Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA .,Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
25
|
Guo J, Zhang G, Song Y, Li Z, Ma S, Niu N, Wang J. Comparative proteomic analysis of multi-ovary wheat under heterogeneous cytoplasm suppression. BMC PLANT BIOLOGY 2019; 19:175. [PMID: 31046676 PMCID: PMC6498644 DOI: 10.1186/s12870-019-1778-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND DUOII is a multi-ovary wheat (Triticum aestivum L.) line with two or three pistils and three stamens in each floret. The multi-ovary trait of DUOII is controlled by a dominant gene, whose expression can be suppressed by the heterogeneous cytoplasm of TeZhiI (TZI), a line with the nucleus of common wheat and the cytoplasm of Aegilops. Crosses between female DUOII plants and male TZI plants resulted in multi-ovary F1s; whereas, the reciprocal crosses resulted in mono-ovary F1s. Although the multi-ovary trait is inherited as single trait controlled by a dominant allele in lines with a Triticum cytoplasm, the mechanism by which the special heterogeneous cytoplasm suppresses the expression of multi-ovary is not well understood. RESULTS Observing the developmental process, we found that the critical stage of additional pistil primordium development was when the young spikes were 2-6 mm long. Then, we compared the quantitative proteomic profiles of 2-6 mm long young spikes obtained from the reciprocal crosses between DUOII and TZI. A total of 90 differentially expressed proteins were identified and analyzed based on their biological functions. These proteins had obvious functional pathways mainly implicated in chloroplast metabolism, nuclear and cell division, plant respiration, protein metabolism, and flower development. Importantly, we identified two key proteins, Flowering Locus K Homology Domain and PEPPER, which are known to play an essential role in the specification of pistil organ identity. By drawing relationships between the 90 differentially expressed proteins, we found that these proteins revealed a complex network which is associated with multi-ovary gene expression under heterogeneous cytoplasmic suppression. CONCLUSIONS Our proteomic analysis has identified certain differentially expressed proteins in 2-6 mm long young spikes, which was the critical stage of additional primordium development. This paper provided a universal proteomic profiling involved in the cytoplasmic suppression of wheat floral meristems; and our findings have laid a solid foundation for further mechanistic studies on the underlying mechanisms that control the heterogeneous cytoplasm-induced suppression of the nuclear multi-ovary gene in wheat.
Collapse
Affiliation(s)
- Jialin Guo
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Gaisheng Zhang
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yulong Song
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Zheng Li
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Shoucai Ma
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Na Niu
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Junwei Wang
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
26
|
Ma X, Zhang J, Han B, Tang J, Cui D, Han L. FLA, which encodes a homolog of UBP, is required for chlorophyll accumulation and development of lemma and palea in rice. PLANT CELL REPORTS 2019; 38:321-331. [PMID: 30603810 DOI: 10.1007/s00299-018-2368-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
FLA, the homolog of ubiquitin-specific protease does not have deubiquitination activity, but it is essential for flower and chloroplast development in rice. Ubiquitin-specific proteases (UBPs) are widely distributed and highly conserved proteins and are also members of the most important family of deubiquitination enzymes. Although the functions and phylogenies of UBPs from yeast, mammals and Arabidopsis have been widely reported, the functions and evolutionary relationships of UBPs in rice remain unclear. In this study, we characterized the rice flower and leaf color aberrant mutant (fla), which exhibited a variety of developmental defects, including abnormal floral organs and pollen development, and leaf bleaching. We isolated FLA by positional cloning and found that it encodes a homolog of ubiquitin-specific protease. FLA is a ubiquitously expressed gene with the highest expression in floral organs. Subcellular localization analysis indicated that FLA is a cell membrane protein. Through searches of the rice genome database ( http://rice.plantbiology.msu.edu ), we identified 35 UBP family members in the rice genome. These proteins were grouped into 16 subfamilies based on phylogenetic analysis, and FLA was found to belong to the G8 subfamily. In vitro activity assays revealed that FLA does not have deubiquitination activity. Our data suggest that FLA plays an important role in the development of floral organs and chloroplast in rice, but that this role probably does not involve deubiquitination activity, because FLA does not have an active site and deubiquitination activity.
Collapse
Affiliation(s)
- Xiaoding Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiani Zhang
- Chongqing Normal University, Chongqing, 401331, China
| | - Bing Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Di Cui
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Longzhi Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
27
|
Kong J, Jin J, Dong Q, Qiu J, Li Y, Yang Y, Shi Y, Si W, Gu L, Yang F, Cheng B, Peng Y. Maize factors ZmUBP15, ZmUBP16 and ZmUBP19 play important roles for plants to tolerance the cadmium stress and salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:77-89. [PMID: 30824031 DOI: 10.1016/j.plantsci.2018.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Ubiquitin-Specific Protease16 (UBP16) has been described involved in cadmium stress and salt stress in Arabidopsis, however nothing is known about the functions of its homologs in maize. In this study, we investigate the functions of ZmUBP15, ZmUBP16 and ZmUBP19, three Arabidopsis UBP16 homologs in maize. Our results indicate that ZmUBP15, ZmUBP16 and ZmUBP19 are ubiquitously expressed throughout plant development, and ZmUBP15, ZmUBP16 and ZmUBP19 proteins are mainly localized in plasma membrane. Complementation analyses show that over-expression of ZmUBP15 or ZmUBP16 can rescue the defective phenotype of ubp16-1 in cadmium stress. In addition, over-expression of ZmUBP15, ZmUBP16 or ZmUBP19 can increase the plant tolerance to cadmium stress. These results indicate that ZmUBP15, ZmUBP16 and ZmUBP19 are required for plant to tolerance the cadmium stress. Consistent with this point, cadmium-related genes are markedly up-regulated in seedlings over-expressing ZmUBP15, ZmUBP16 or ZmUBP19. Furthermore, our data indicate that ZmUBP15, ZmUBP16 and ZmUBP19 partially rescue the salt-stress phenotype of ubp16-1. Thus, our research uncover the functions of three novel maize proteins, ZmUBP15, ZmUBP16 and ZmUBP19, which are required for plants in response to cadmium stress and salt stress.
Collapse
Affiliation(s)
- Jingjing Kong
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jing Jin
- School of horticulture and landscape, Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Qing Dong
- Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jianle Qiu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yangyang Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuehan Yang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yutian Shi
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Feiyang Yang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yuancheng Peng
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
28
|
Saatian B, Austin RS, Tian G, Chen C, Nguyen V, Kohalmi SE, Geelen D, Cui Y. Analysis of a novel mutant allele of GSL8 reveals its key roles in cytokinesis and symplastic trafficking in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:295. [PMID: 30466394 PMCID: PMC6249969 DOI: 10.1186/s12870-018-1515-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/31/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Plant cell walls are mainly composed of polysaccharides such as cellulose and callose. Callose exists at a very low level in the cell wall; however, it plays critical roles at different stages of plant development as well as in defence against unfavorable conditions. Callose is accumulated at the cell plate, at plasmodesmata and in male and female gametophytes. Despite the important roles of callose in plants, the mechanisms of its synthesis and regulatory properties are not well understood. RESULTS CALLOSE SYNTHASE (CALS) genes, also known as GLUCAN SYNTHASE-LIKE (GSL), comprise a family of 12 members in Arabidopsis thaliana. Here, we describe a new allele of GSL8 (named essp8) that exhibits pleiotropic seedling defects. Reduction of callose deposition at the cell plates and plasmodesmata in essp8 leads to ectopic endomitosis and an increase in the size exclusion limit of plasmodesmata during early seedling development. Movement of two non-cell-autonomous factors, SHORT ROOT and microRNA165/6, both required for root radial patterning during embryonic root development, are dysregulated in the primary root of essp8. This observation provides evidence for a molecular mechanism explaining the gsl8 root phenotype. We demonstrated that GSL8 interacts with PLASMODESMATA-LOCALIZED PROTEIN 5, a β-1,3-glucanase, and GSL10. We propose that they all might be part of a putative callose synthase complex, allowing a concerted regulation of callose deposition at plasmodesmata. CONCLUSION Analysis of a novel mutant allele of GSL8 reveals that GSL8 is a key player in early seedling development in Arabidopsis. GSL8 is required for maintaining the basic ploidy level and regulating the symplastic trafficking. Callose deposition at plasmodesmata is highly regulated and occurs through interaction of different components, likely to be incorporated into a callose biosynthesis complex. We are providing new evidence supporting an earlier hypothesis that GSL8 might have regulatory roles apart from its enzymatic function in plasmodesmata regulation.
Collapse
Affiliation(s)
- Behnaz Saatian
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
- Department of Biology, Western University, 1391 Sandford St, London, ON N5V 4T3 Canada
| | - Ryan S. Austin
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
- Department of Biology, Western University, 1391 Sandford St, London, ON N5V 4T3 Canada
| | - Gang Tian
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
| | - Chen Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
- Department of Biology, Western University, 1391 Sandford St, London, ON N5V 4T3 Canada
| | - Vi Nguyen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
| | - Susanne E. Kohalmi
- Department of Biology, Western University, 1391 Sandford St, London, ON N5V 4T3 Canada
| | - Danny Geelen
- In Vitro Biology and Horticulture, Department of Plant Production, University of Ghent, 9000 Ghent, Belgium
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
- Department of Biology, Western University, 1391 Sandford St, London, ON N5V 4T3 Canada
| |
Collapse
|
29
|
Govender N, Senan S, Mohamed-Hussein ZA, Wickneswari R. A gene co-expression network model identifies yield-related vicinity networks in Jatropha curcas shoot system. Sci Rep 2018; 8:9211. [PMID: 29907786 PMCID: PMC6003958 DOI: 10.1038/s41598-018-27493-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022] Open
Abstract
The plant shoot system consists of reproductive organs such as inflorescences, buds and fruits, and the vegetative leaves and stems. In this study, the reproductive part of the Jatropha curcas shoot system, which includes the aerial shoots, shoots bearing the inflorescence and inflorescence were investigated in regard to gene-to-gene interactions underpinning yield-related biological processes. An RNA-seq based sequencing of shoot tissues performed on an Illumina HiSeq. 2500 platform generated 18 transcriptomes. Using the reference genome-based mapping approach, a total of 64 361 genes was identified in all samples and the data was annotated against the non-redundant database by the BLAST2GO Pro. Suite. After removing the outlier genes and samples, a total of 12 734 genes across 17 samples were subjected to gene co-expression network construction using petal, an R library. A gene co-expression network model built with scale-free and small-world properties extracted four vicinity networks (VNs) with putative involvement in yield-related biological processes as follow; heat stress tolerance, floral and shoot meristem differentiation, biosynthesis of chlorophyll molecules and laticifers, cell wall metabolism and epigenetic regulations. Our VNs revealed putative key players that could be adapted in breeding strategies for J. curcas shoot system improvements.
Collapse
Affiliation(s)
- Nisha Govender
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
- Center for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Siju Senan
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Center for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Ratnam Wickneswari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
30
|
Blount JR, Libohova K, Marsh GB, Sutton JR, Todi SV. Expression and Regulation of Deubiquitinase-Resistant, Unanchored Ubiquitin Chains in Drosophila. Sci Rep 2018; 8:8513. [PMID: 29855490 PMCID: PMC5981470 DOI: 10.1038/s41598-018-26364-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/10/2018] [Indexed: 01/03/2023] Open
Abstract
The modifier protein, ubiquitin (Ub) regulates various cellular pathways by controlling the fate of substrates to which it is conjugated. Ub moieties are also conjugated to each other, forming chains of various topologies. In cells, poly-Ub is attached to proteins and also exists in unanchored form. Accumulation of unanchored poly-Ub is thought to be harmful and quickly dispersed through dismantling by deubiquitinases (DUBs). We wondered whether disassembly by DUBs is necessary to control unanchored Ub chains in vivo. We generated Drosophila melanogaster lines that express Ub chains non-cleavable into mono-Ub by DUBs. These chains are rapidly modified with different linkages and represent various types of unanchored species. We found that unanchored poly-Ub is not devastating in Drosophila, under normal conditions or during stress. The DUB-resistant, free Ub chains are degraded by the proteasome, at least in part through the assistance of VCP and its cofactor, p47. Also, unanchored poly-Ub that cannot be cleaved by DUBs can be conjugated en bloc, in vivo. Our results indicate that unanchored poly-Ub species need not be intrinsically toxic; they can be controlled independently of DUB-based disassembly by being degraded, or through conjugation onto other proteins.
Collapse
Affiliation(s)
- Jessica R Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gregory B Marsh
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joanna R Sutton
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
31
|
Wang Z, Zhang H, Liu C, Xing J, Chen XL. A Deubiquitinating Enzyme Ubp14 Is Required for Development, Stress Response, Nutrient Utilization, and Pathogenesis of Magnaporthe oryzae. Front Microbiol 2018; 9:769. [PMID: 29720973 PMCID: PMC5915541 DOI: 10.3389/fmicb.2018.00769] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/04/2018] [Indexed: 02/02/2023] Open
Abstract
Ubiquitination is an essential protein modification in eukaryotic cells, which is reversible. Deubiquitinating enzymes (DUBs) catalyze deubiquitination process to reverse ubiquitination, maintain ubiquitin homeostasis or promote protein degradation by recycling ubiquitins. In order to investigate effects of deubiquitination process in plant pathogenic fungus Magnaporthe oryzae, we generated deletion mutants of MoUBP14. Ortholog of MoUbp14 was reported to play general roles in ubiquitin-mediated protein degradation in Saccharomyces cerevisiae. The ΔMoubp14 mutant lost its pathogenicity and was severely reduced in mycelial growth, sporulation, carbon source utilization, and increased in sensitivity to distinct stresses. The mutant was blocked in penetration, which could due to defect in turgor generation. It is also blocked in invasive growth, which could due to reduction in stress tolerance and nutrient utilization. Deletion of UBP14 also led to accumulation of free polyubiquitin chains. Pulldown assay identified some proteins related to carbohydrate metabolism and stress response may putatively interact with MoUbp14, including two key rate-limiting enzymes of gluconeogenesis, MoFbp1 and MoPck1. These two proteins were degraded when the glucose was supplied to M. oryzae grown in low glucose media for a short period of time (∼12 h), and this process required MoUbp14. In summary, pleiotropic phenotypes of the deletion mutants indicated that MoUbp14 is required for different developments and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Zhao Wang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong Zhang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Caiyun Liu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Xiao-Lin Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
32
|
Wu R, Wang T, Warren BAW, Thomson SJ, Allan AC, Macknight RC, Varkonyi-Gasic E. Kiwifruit SVP2 controls developmental and drought-stress pathways. PLANT MOLECULAR BIOLOGY 2018; 96:233-244. [PMID: 29222611 DOI: 10.1007/s11103-017-0688-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/30/2017] [Indexed: 05/20/2023]
Abstract
Genome-wide targets of Actinidia chinensis SVP2 confirm roles in ABA- and dehydration-mediated growth repression and reveal a conservation in mechanism of action between SVP genes of taxonomically distant Arabidopsis and a woody perennial kiwifruit. The molecular mechanisms underlying growth and dormancy in woody perennials are largely unknown. In Arabidopsis, the MADS-box transcription factor SHORT VEGETATIVE PHASE (SVP) plays a key role in the progression from vegetative to floral development, and in woody perennials SVP-like genes are also proposed to be involved in controlling dormancy. During kiwifruit development SVP2 has a role in growth inhibition, with high-chill kiwifruit Actinidia deliciosa transgenic lines overexpressing SVP2 showing suppressed bud outgrowth. Transcriptomic analyses of these plants suggests that SVP2 mimics the well-documented abscisic acid (ABA) effect on the plant dehydration response. To corroborate the growth inhibition role of SVP2 in kiwifruit development at the molecular level, we analysed the genome-wide direct targets of SVP2 using chromatin immunoprecipitation followed by high-throughput sequencing in kiwifruit A. chinensis. SVP2 was found to bind to at least 297 target sites in the kiwifruit genome, and potentially modulates 252 genes that function in a range of biological processes, especially those involved in repressing meristem activity and ABA-mediated dehydration pathways. In addition, our ChIP-seq analysis reveals remarkable conservation in mechanism of action between SVP genes of taxonomically distant plant species.
Collapse
Affiliation(s)
- Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (PFR) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Limited (PFR) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Ben A W Warren
- The New Zealand Institute for Plant and Food Research Limited (PFR) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Susan J Thomson
- The New Zealand Institute for Plant and Food Research Limited (PFR) Lincoln, Christchurch Mail Centre, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Richard C Macknight
- Department of Biochemistry, The New Zealand Institute for Plant and Food Research Limited, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (PFR) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland, 1142, New Zealand.
| |
Collapse
|
33
|
Wang DH, Song W, Wei SW, Zheng YF, Chen ZS, Han JD, Zhang HT, Luo JC, Qin YM, Xu ZH, Bai SN. Characterization of the Ubiquitin C-Terminal Hydrolase and Ubiquitin-Specific Protease Families in Rice ( Oryza sativa). FRONTIERS IN PLANT SCIENCE 2018; 9:1636. [PMID: 30498503 PMCID: PMC6249995 DOI: 10.3389/fpls.2018.01636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/22/2018] [Indexed: 05/11/2023]
Abstract
The ubiquitin C-terminal hydrolase (UCH) and ubiquitin-specific processing protease (UBP) protein families both function in protein deubiquitination, playing important roles in a wide range of biological processes in animals, fungi, and plants. Little is known about the functions of these proteins in rice (Oryza sativa), and the numbers of genes reported for these families have not been consistent between different rice database resources. To further explore their functions, it is necessary to first clarify the basic molecular and biochemical nature of these two gene families. Using a database similarity search, we clarified the numbers of genes in these two families in the rice genome, examined the enzyme activities of their corresponding proteins, and characterized the expression patterns of all OsUCH and representative OsUBP genes. Five OsUCH and 44 OsUBP genes were identified in the rice genome, with four OsUCH proteins and 10 of 16 tested representative OsUBP proteins showing enzymatic activities. Two OsUCHs and five OsUBPs were found to be preferentially expressed in the early development of rice stamens. This work thus lays down a reliable bioinformatic foundation for future investigations of genes in these two families, particularly for exploring their potential roles in rice stamen development.
Collapse
Affiliation(s)
- Dong-Hui Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Wei Song
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Shao-Wei Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Ya-Feng Zheng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Zhi-Shan Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Jing-Dan Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hong-Tao Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Jing-Chu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Yong-Mei Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Shu-Nong Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
- *Correspondence: Shu-Nong Bai,
| |
Collapse
|
34
|
Ye LS, Zhang Q, Pan H, Huang C, Yang ZN, Yu QB. EMB2738, which encodes a putative plastid-targeted GTP-binding protein, is essential for embryogenesis and chloroplast development in higher plants. PHYSIOLOGIA PLANTARUM 2017; 161:414-430. [PMID: 28675462 DOI: 10.1111/ppl.12603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
In higher plants, chloroplasts carry out many important functions, and normal chloroplast development is required for embryogenesis. Numerous chloroplast-targeted proteins involved in embryogenesis have been identified. Nevertheless, their functions remain unclear. In this study, a chloroplast-localized protein, EMB2738, was reported to be involved in Arabidopsis embryogenesis. EMB2738 knockout led to defective embryos, and the embryo development in emb2738 was interrupted after the globular stage. Complementation experiments identified the AT3G12080 locus as EMB2738. Cellular observation indicated that severely impaired chloroplast development was observed in these aborted embryos. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that chloroplast-encoded photosynthetic genes, which are transcribed by plastid-encoded RNA polymerase (PEP), are predominantly decreased in defective embryogenesis, compared with those in the wild-type. In contrast, genes encoding PEP core subunits, which are transcribed by nucleus-encoded RNA polymerase (NEP), were increased. These results suggested that the knockout of EMB2738 strongly blocked chloroplast-encoded photosynthesis gene expression in embryos. Silencing of the EMB2738 orthologue in tobacco through a virus-induced genome silencing technique resulted in an albinism phenotype, vacuolated chloroplasts and decreased PEP-dependent plastid transcription. These results suggested that NtEMB2738 might be involved in plastid gene expression. Nevertheless, genetic analysis showed that the NtEMB2738 coding sequence could not fully rescue the defective embryogenesis of the emb2738 mutant, which suggested functional divergence between NtEMB2738 and EMB2738 in embryogenesis. Taken together, these results indicated that both EMB2738 and NtEMB2738 are involved in the expression of plastid genes in higher plants, and there is a functional divergence between NtEMB2738 and EMB2738 in embryogenesis.
Collapse
Affiliation(s)
- Lin-Shan Ye
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
- College of Tourism, Shanghai Normal University, Shanghai 200234, China
| | - Qin Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hui Pan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chao Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
- College of Tourism, Shanghai Normal University, Shanghai 200234, China
| | - Qing-Bo Yu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
35
|
Zhou H, Zhao J, Cai J, Patil SB. UBIQUITIN-SPECIFIC PROTEASES function in plant development and stress responses. PLANT MOLECULAR BIOLOGY 2017; 94:565-576. [PMID: 28695315 DOI: 10.1007/s11103-017-0633-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/05/2017] [Indexed: 05/08/2023]
Abstract
UBIQUITIN-SPECIFIC PROTEASES play important roles in plant development and stress responses. Protein ubiquitination and deubiquitination are reversible processes, which can modulate the stability, activity as well as subcellular localization of the substrate proteins. UBIQUITIN-SPECIFIC PROTEASE (UBP) protein family participates in protein deubiquitination. Members of UBP family are involved in a variety of physiological processes in plants, as evidenced by their functional characterization in model plant Arabidopsis and other plants. UBPs are conserved in plants and distinct UBPs function in different regulatory processes, although functional redundancies exist between some members. Here we briefly reviewed recent advances in understanding the biological functions of UBP protein family in Arabidopsis, particularly the molecular mechanisms by which UBPs regulate plant development and stress responses. We believe that elucidation of UBPs function and regulation in Arabidopsis will provide new insights about protein deubiquitination and might shed light on the understanding of the mechanistic roles of UBPs in general, which will definitely contribute to crop improvement in agriculture.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingqing Cai
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
36
|
March E, Farrona S. Plant Deubiquitinases and Their Role in the Control of Gene Expression Through Modification of Histones. FRONTIERS IN PLANT SCIENCE 2017; 8:2274. [PMID: 29387079 PMCID: PMC5776116 DOI: 10.3389/fpls.2017.02274] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/29/2017] [Indexed: 05/11/2023]
Abstract
Selective degradation of proteins in the cell occurs through ubiquitination, which consists of post-translational deposition of ubiquitin on proteins to target them for degradation by proteases. However, ubiquitination does not only impact on protein stability, but promotes changes in their functions. Whereas the deposition of ubiquitin has been amply studied and discussed, the antagonistic activity, deubiquitination, is just emerging and the full model and players involved in this mechanism are far from being completely understood. Nevertheless, it is the dynamic balance between ubiquitination and deubiquitination that is essential for the development and homeostasis of organisms. In this review, we present a detailed analysis of the members of the deubiquitinase (DUB) superfamily in plants and its division in different clades. We describe current knowledge in the molecular and functional characterisation of DUB proteins, focusing primarily on Arabidopsis thaliana. In addition, the striking function of the duality between ubiquitination and deubiquitination in the control of gene expression through the modification of chromatin is discussed and, using the available information of the activities of the DUB superfamily in yeast and animals as scaffold, we propose possible scenarios for the role of these proteins in plants.
Collapse
|
37
|
Li C, Shen Y, Meeley R, McCarty DR, Tan BC. Embryo defective 14 encodes a plastid-targeted cGTPase essential for embryogenesis in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:785-799. [PMID: 26771182 DOI: 10.1111/tpj.13045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
The embryo defective (emb) mutants in maize genetically define a unique class of loci that is required for embryogenesis but not endosperm development, allowing dissection of two developmental processes of seed formation. Through characterization of the emb14 mutant, we report here that Emb14 gene encodes a circular permuted, YqeH class GTPase protein that likely functions in 30S ribosome formation in plastids. Loss of Emb14 function in the null mutant arrests embryogenesis at the early transition stage. Emb14 was cloned by transposon tagging and was confirmed by analysis of four alleles. Subcellular localization indicated that the EMB14 is targeted to chloroplasts. Recombinant EMB14 is shown to hydrolyze GTP in vitro (Km = 2.42 ± 0.3 μm). Emb14 was constitutively expressed in all tissues examined and high level of expression was found in transition stage embryos. Comparison of emb14 and WT indicated that loss of EMB14 function severely impairs accumulation of 16S rRNA and several plastid encoded ribosomal genes. We show that an EMB14 transgene complements the pale green, slow growth phenotype conditioned by mutations in AtNOA1, a closely related YqeH GTPase of Arabidopsis. Taken together, we propose that the EMB14/AtNOA1/YqeH class GTPases function in assembly of the 30S subunit of the chloroplast ribosome, and that this function is essential to embryogenesis in plants.
Collapse
Affiliation(s)
- Cuiling Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Yun Shen
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Robert Meeley
- DuPont Pioneer AgBiotech Research, Johnston, Iowa, 50131-1004, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
38
|
Kovács L, Nagy O, Pál M, Udvardy A, Popescu O, Deák P. Role of the deubiquitylating enzyme DmUsp5 in coupling ubiquitin equilibrium to development and apoptosis in Drosophila melanogaster. PLoS One 2015; 10:e0120875. [PMID: 25806519 PMCID: PMC4373725 DOI: 10.1371/journal.pone.0120875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/27/2015] [Indexed: 01/07/2023] Open
Abstract
Protein ubiquitylation is a dynamic process that affects the function and stability of proteins and controls essential cellular processes ranging from cell proliferation to cell death. This process is regulated through the balanced action of E3 ubiquitin ligases and deubiquitylating enzymes (DUB) which conjugate ubiquitins to, and remove them from target proteins, respectively. Our genetic analysis has revealed that the deubiquitylating enzyme DmUsp5 is required for maintenance of the ubiquitin equilibrium, cell survival and normal development in Drosophila. Loss of the DmUsp5 function leads to late larval lethality accompanied by the induction of apoptosis. Detailed analyses at a cellular level demonstrated that DmUsp5 mutants carry multiple abnormalities, including a drop in the free monoubiquitin level, the excessive accumulation of free polyubiquitins, polyubiquitylated proteins and subunits of the 26S proteasome. A shortage in free ubiquitins results in the induction of a ubiquitin stress response previously described only in the unicellular budding yeast. It is characterized by the induction of the proteasome-associated deubiquitylase DmUsp14 and sensitivity to cycloheximide. Removal of DmUsp5 also activates the pro-apoptotic machinery thereby resulting in widespread apoptosis, indicative of an anti-apoptotic role of DmUsp5. Collectively, the pleiotropic effects of a loss of DmUsp5 function can be explained in terms of the existence of a limited pool of free monoubiquitins which makes the ubiquitin-dependent processes mutually interdependent.
Collapse
Affiliation(s)
- Levente Kovács
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Olga Nagy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Margit Pál
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andor Udvardy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Octavian Popescu
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Péter Deák
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
39
|
Arabidopsis proteome responses to the smoke-derived growth regulator karrikin. J Proteomics 2015; 120:7-20. [PMID: 25746380 DOI: 10.1016/j.jprot.2015.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Karrikins are butenolide plant growth regulators in smoke from burning plant material that have proven ability to promote germination and seedling photomorphogenesis. However, the molecular mechanisms underlying these processes are unclear. Here we provide the first proteome-wide analysis of early responses to karrikin in plants (Arabidopsis seedlings). Image analysis of two-dimensionally separated proteins, Rubisco-depleted proteomes and phosphoproteomes, together with LC-MS profiling, detected >1900 proteins, 113 of which responded to karrikin treatment. All the differentially abundant proteins (except HSP70-3) are novel karrikin-responders, and most are involved in photosynthesis, carbohydrate metabolism, redox homeostasis, transcription control, proteosynthesis, protein transport and processing, or protein degradation. Our data provide functionally complementary information to previous identifications of karrikin-responsive genes and evidence for a novel karrikin signalling pathway originating in chloroplasts. We present an updated model of karrikin signalling that integrates proteomic data and is supported by growth response observations. BIOLOGICAL SIGNIFICANCE Karrikin has shown promising potential in agricultural applications, yet this process is poorly understood at the molecular level. To the best of our knowledge, this is the first survey of early global proteomic responses to karrikin in plants (Arabidopsis seedlings). The combination of label-free LC-MS profiling and 2-DE analyses provided highly sensitive snapshots of protein abundance and quantitative information on proteoform-level changes. These results present evidence of proteasome-independent karrikin signalling pathways and provide novel targets for detailed mechanistic studies using, e.g., mutants and transgenic plants.
Collapse
|
40
|
Wang CH, Chen GC, Chien CT. The deubiquitinase Leon/USP5 regulates ubiquitin homeostasis during Drosophila development. Biochem Biophys Res Commun 2014; 452:369-75. [PMID: 25152394 DOI: 10.1016/j.bbrc.2014.08.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 01/09/2023]
Abstract
Ubiquitination and the reverse process deubiquitination regulate protein stability and function during animal development. The Drosophila USP5 homolog Leon functions as other family members of unconventional deubiquitinases, disassembling free, substrate-unconjugated polyubiquitin chains to replenish the pool of mono-ubiquitin, and maintaining cellular ubiquitin homeostasis. However, the significance of Leon/USP5 in animal development is still unexplored. In this study, we generated leon mutants to show that Leon is essential for animal viability and tissue integrity during development. Both free and substrate-conjugated polyubiquitin chains accumulate in leon mutants, suggesting that abnormal ubiquitin homeostasis caused tissue disorder and lethality in leon mutants. Further analysis of protein expression profiles in leon mutants shows that the levels of all proteasomal subunits were elevated. Also, proteasomal enzymatic activities were elevated in leon mutants. However, proteasomal degradation of ubiquitinated substrates was impaired. Thus, aberrant ubiquitin homeostasis in leon mutants disrupts normal proteasomal degradation, which is compensated by elevating the levels of proteasomal subunits and activities. Ultimately, the failure to fully compensate the dysfunctional proteasome in leon mutants leads to animal lethality and tissue disorder.
Collapse
Affiliation(s)
- Chien-Hsiang Wang
- Institute of Neuroscience, National Yang-Ming University, Taipei 112, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Ting Chien
- Institute of Neuroscience, National Yang-Ming University, Taipei 112, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
41
|
Pan R, Kaur N, Hu J. The Arabidopsis mitochondrial membrane-bound ubiquitin protease UBP27 contributes to mitochondrial morphogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1047-59. [PMID: 24707813 DOI: 10.1111/tpj.12532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 05/13/2023]
Abstract
Mitochondria are essential organelles with dynamic morphology and function. Post-translational modifications (PTMs), which include protein ubiquitination, are critically involved in animal and yeast mitochondrial dynamics. How PTMs contribute to plant mitochondrial dynamics is just beginning to be elucidated, and mitochondrial enzymes involved in ubiquitination have not been reported from plants. In this study, we identified an Arabidopsis mitochondrial localized ubiquitin protease, UBP27, through a screen that combined bioinformatics and fluorescent fusion protein targeting analysis. We characterized UBP27 with respect to its membrane topology and enzymatic activities, and analysed the mitochondrial morphological changes in UBP27T-DNA insertion mutants and overexpression lines. We have shown that UBP27 is embedded in the mitochondrial outer membrane with an Nin -Cout orientation and possesses ubiquitin protease activities in vitro. UBP27 demonstrates similar sub-cellular localization, domain structure, membrane topology and enzymatic activities with two mitochondrial deubiquitinases, yeast ScUBP16 and human HsUSP30, which indicated that these proteins are functional orthologues in eukaryotes. Although loss-of-function mutants of UBP27 do not show obvious phenotypes in plant growth and mitochondrial morphology, UBP27 overexpression can change mitochondrial morphology from rod to spherical shape and reduce the mitochondrial association of dynamin-related protein 3 (DRP3) proteins, large GTPases that serve as the main mitochondrial fission factors. Thus, our study has uncovered a plant ubiquitin protease that plays a role in mitochondrial morphogenesis possibly through modulation of the function of organelle division proteins.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
42
|
Fan X, Huang Q, Ye X, Lin Y, Chen Y, Lin X, Qu J. Drosophila USP5 controls the activation of apoptosis and the Jun N-terminal kinase pathway during eye development. PLoS One 2014; 9:e92250. [PMID: 24643212 PMCID: PMC3958489 DOI: 10.1371/journal.pone.0092250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/20/2014] [Indexed: 11/18/2022] Open
Abstract
The Jun N-terminal kinase pathway plays an important role in inducing programmed cell death (apoptosis) and is activated in a variety of contexts. The deubiquitinating enzymes (DUBs) are proteases regulating the protein stability by ubiquitin-proteasome system. Here, for the first time, we report the phenotypes observed during eye development that are induced by deleting Drosophila USP5 gene, which encodes one of the USP subfamily of DUBs. usp5 mutants displayed defects in photoreceptor differentiation. Using genetic epistasis analysis and molecular markers, we show that most of these phenotypes are caused by the activation of apoptosis and JNK pathway. These data may provide a mechanistic model for understanding the mammalian usp5 gene.
Collapse
Affiliation(s)
- Xiaolan Fan
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinzhu Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Chen
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
43
|
Katsiarimpa A, Muñoz A, Kalinowska K, Uemura T, Rojo E, Isono E. The ESCRT-III-Interacting Deubiquitinating Enzyme AMSH3 is Essential for Degradation of Ubiquitinated Membrane Proteins in Arabidopsis thaliana. ACTA ACUST UNITED AC 2014; 55:727-36. [DOI: 10.1093/pcp/pcu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Isono E, Nagel MK. Deubiquitylating enzymes and their emerging role in plant biology. FRONTIERS IN PLANT SCIENCE 2014; 5:56. [PMID: 24600466 PMCID: PMC3928566 DOI: 10.3389/fpls.2014.00056] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/05/2014] [Indexed: 05/18/2023]
Abstract
Ubiquitylation is a reversible post-translational modification that is involved in various cellular pathways and that thereby regulates various aspects of plant biology. For a long time, functional studies of ubiquitylation have focused on the function of ubiquitylating enzymes, especially the E3 ligases, rather than deubiquitylating enzymes (DUBs) or ubiquitin isopeptidases, enzymes that hydrolyze ubiquitin chains. One reason may be the smaller number of DUBs in comparison to E3 ligases, implying the broader substrate specificities of DUBs and the difficulties to identify the direct targets. However, recent studies have revealed that DUBs also actively participate in controlling cellular events and thus play pivotal roles in plant development and growth. DUBs are also essential for processing ubiquitin precursors and are important for recycling ubiquitin molecules from target proteins prior to their degradation and thereby maintaining the free ubiquitin pool in the cell. Here, we will discuss the five different DUB families (USP/UBP, UCH, JAMM, OTU, and MJD) and their known biochemical and physiological roles in plants.
Collapse
Affiliation(s)
- Erika Isono
- *Correspondence: Erika Isono, Department of Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 4, D-85354 Freising, Germany e-mail:
| | | |
Collapse
|
45
|
Radjacommare R, Usharani R, Kuo CH, Fu H. Distinct phylogenetic relationships and biochemical properties of Arabidopsis ovarian tumor-related deubiquitinases support their functional differentiation. FRONTIERS IN PLANT SCIENCE 2014; 5:84. [PMID: 24659992 PMCID: PMC3950621 DOI: 10.3389/fpls.2014.00084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/22/2014] [Indexed: 05/07/2023]
Abstract
The reverse reaction of ubiquitylation is catalyzed by different classes of deubiquitylation enzymes (DUBs), including ovarian tumor domain (OTU)-containing DUBs; experiments using Homo sapiens proteins have demonstrated that OTU DUBs modulate various cellular processes. With the exception of OTLD1, plant OTU DUBs have not been characterized. We identified 12 Arabidopsis thaliana OTU loci and analyzed 11 of the encoded proteins in vitro to determine their preferences for the ubiquitin (UB) chains of M1, K48, and K63 linkages as well as the UB-/RUB-/SUMO-GST fusions. The A. thaliana OTU DUBs were shown to be cysteine proteases and classified into four groups with distinct linkage preferences: OTU1 (M1 = K48 > K63), OTU3/4/7/10 (K63 > K48 > M1), OTU2/9 (K48 = K63), and OTU5/11/12/OTLD1 (inactive). Five active OTU DUBs (OTU3/4/7/9/10) also cleaved RUB fusion. OTU1/3/4 cleaved M1 UB chains, suggesting a possible role for M1 chains in plant cellular signaling. The different substrate specificities of the various A. thaliana OTU DUBs indicate the involvement of distinct structural elements; for example, the OTU1 oxyanion residue D89 is essential for cleaving isopeptide bond-linked chains but dispensable for M1 chains. UB-binding activities were detected only for OTU2 and OTLD1, with distinct linkage preferences. These differences in biochemical properties support the involvement of A. thaliana OTU DUBs in different functions. Moreover, based on the established phylogenetic tree, plant- and H. sapiens-specific clades exist, which suggests that the proteins within these clades have taxa-specific functions. We also detected five OTU clades that are conserved across species, which suggests that the orthologs in different species within each clade are involved in conserved cellular processes, such as ERAD and DNA damage responses. However, different linkage preferences have been detected among potential cross-species OTU orthologs, indicating functional and mechanistic differentiation.
Collapse
Affiliation(s)
| | | | | | - Hongyong Fu
- *Correspondence: Hongyong Fu, Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec 2, Academia Road, Nankang, Taipei 11529, Taiwan, Republic of China e-mail:
| |
Collapse
|
46
|
Cui X, Lu F, Li Y, Xue Y, Kang Y, Zhang S, Qiu Q, Cui X, Zheng S, Liu B, Xu X, Cao X. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:897-906. [PMID: 23645632 PMCID: PMC3668078 DOI: 10.1104/pp.112.213009] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Protein ubiquitination is involved in most cellular processes. In Arabidopsis (Arabidopsis thaliana), ubiquitin-mediated protein degradation regulates the stability of key components of the circadian clock feedback loops and the photoperiodic flowering pathway. Here, we identified two ubiquitin-specific proteases, UBP12 and UBP13, involved in circadian clock and photoperiodic flowering regulation. Double mutants of ubp12 and ubp13 display pleiotropic phenotypes, including early flowering and short periodicity of circadian rhythms. In ubp12 ubp13 double mutants, CONSTANS (CO) transcript rises earlier than that of wild-type plants during the day, which leads to increased expression of FLOWERING LOCUS T. This, and analysis of ubp12 co mutants, indicates that UBP12 and UBP13 regulate photoperiodic flowering through a CO-dependent pathway. In addition, UBP12 and UBP13 regulate the circadian rhythm of clock genes, including LATE ELONGATED HYPOCOTYL, CIRCADIAN CLOCK ASSOCIATED1, and TIMING OF CAB EXPRESSION1. Furthermore, UBP12 and UBP13 are circadian controlled. Therefore, our work reveals a role for two deubiquitinases, UBP12 and UBP13, in the control of the circadian clock and photoperiodic flowering, which extends our understanding of ubiquitin in daylength measurement in higher plants.
Collapse
Affiliation(s)
- Xia Cui
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shen Y, Li C, McCarty DR, Meeley R, Tan BC. Embryo defective12 encodes the plastid initiation factor 3 and is essential for embryogenesis in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:792-804. [PMID: 23451851 DOI: 10.1111/tpj.12161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 05/09/2023]
Abstract
Embryo-specific mutants in maize define a unique class of genetic loci that affect embryogenesis without a significant deleterious impact on endosperm development. Here we report the characterization of an embryo specific12 (emb12) mutant in maize. Embryogenesis in the emb12 mutants is arrested at or before transition stage. The mutant embryo at an early stage exhibits abnormal cell structure with increased vacuoles and dramatically reduced internal membrane organelles. In contrast, the mutant endosperm appears normal in morphology, cell structure, starch, lipid and protein accumulation. The Emb12 locus was cloned by transposon tagging and predicts a protein with a high similarity to prokaryotic translation initiation factor 3 (IF3). EMB12-GFP fusion analysis indicates that EMB12 is localized in plastids. The RNA in situ hybridization and protein immunohistochemical analyses indicate that a high level of Emb12 expression localizes in the embryo proper at early developmental stages and in the embryo axis at later stages. Western analysis indicates that plastid protein synthesis is impaired. These results indicate that Emb12 encodes the plastid IF3 which is essential for embryogenesis but not for endosperm development in maize.
Collapse
Affiliation(s)
- Yun Shen
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, N.T. Hong Kong, China
| | | | | | | | | |
Collapse
|
48
|
Wang GK, Zhang M, Gong JF, Guo QF, Feng YN, Wang W. Increased gibberellin contents contribute to accelerated growth and development of transgenic tobacco overexpressing a wheat ubiquitin gene. PLANT CELL REPORTS 2012; 31:2215-27. [PMID: 22926030 DOI: 10.1007/s00299-012-1331-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/28/2012] [Accepted: 08/02/2012] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE Overexpressing TaUb2 promoted stem growth and resulted in early flowering in transgenic tobacco plants. Ubiquitin are involved in the production, metabolism and proper function of gibberellin. The ubiquitin-26S proteasome system (UPS), in which ubiquitin (Ub) functions as a marker, is a post-translational regulatory system that plays a prominent role in various biological processes. To investigate the impact of different Ub levels on plant growth and development, transgenic tobacco (Nicotiana tabacum L.) plants were engineered to express an Ub gene (TaUb2) from wheat (Triticum aestivum L.) under the control of cauliflower mosaic virus 35S promoter. Transgenic tobacco plants overexpressing TaUb2 demonstrated an accelerated growth rate at early stage and an early flowering phenotype in development. The preceding expression of MADS-box genes also corresponded to the accelerated developmental phenotypes of the transgenic tobacco plants compared to that of wild-type (WT). Total gibberellin (GA) and active GA contents in transgenic tobacco plants were higher than those in WT at the corresponding developmental stages, and some GA metabolism genes were upregulated. Treatment with GA(3) conferred a similarly accelerated grown rate in WT plants to that of transgenic tobacco plants, while growth was inhibited when transgenic tobacco plants were treated with a GA biosynthesis inhibitor. Thus, the results suggest that Ub are involved in the production, metabolism and proper function of GA, which is important in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Guo-Kun Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Vierstra RD. The expanding universe of ubiquitin and ubiquitin-like modifiers. PLANT PHYSIOLOGY 2012; 160:2-14. [PMID: 22693286 PMCID: PMC3440198 DOI: 10.1104/pp.112.200667] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/09/2012] [Indexed: 05/18/2023]
Affiliation(s)
- Richard D Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
50
|
Cornejo P, Camadro E, Masuelli R. Molecular bases of the postzygotic barriers in interspecific crosses between the wild potato species Solanum acaule and Solanum commersonii. Genome 2012; 55:605-14. [DOI: 10.1139/g2012-047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the molecular bases of postzygotic hybridization barriers in tuber-bearing Solanums, the wild species Solanum commersonii Dunal ex Poir. (cmm, 2n = 2x = 24, 1EBN) and Solanum acaule Bitter (acl, 2n = 4x = 48, 2EBN) were crossed in intra- and interspecific genotypic combinations, and the transcriptome of immature seeds was analyzed by using the cDNA-AFLP technique. From a total of 423 analyzed cDNA fragments, 107 (25.3%) were differentially regulated in the compatible (acl × acl and cmm × cmm) versus incompatible (acl × cmm) crosses. DNA sequence data were obtained from 21 fragments and RT–PCR analyses were carried out with five fragments to validate the cDNA-AFLP differential pattern. Sequence analysis suggested a possible role for the differentially expressed sequences in cytokinesis, cell cycle, secondary and hormonal metabolism, biodegradation, and transport. In situ hybridization experiments with fragments encoding an ubiquitin-fold modifier 1 precursor and a possible vesicle transport protein revealed expression of these genes in the embryo and endosperm. The results suggest that the collapse of the embryo and endosperm in incompatible crosses may be related to alterations in cell cycle and cytokinesis.
Collapse
Affiliation(s)
- P. Cornejo
- EEA La Consulta INTA, Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo and CONICET, Alte. Brown 500 (M5528AHB), Mendoza, Argentina
| | - E.L. Camadro
- EEA Balcarce, INTA-FCA, UNMdP and CONICET, C.C. 276 (7620) Balcarce, Bs. As, Argentina
| | - R.W. Masuelli
- EEA La Consulta INTA, Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo and CONICET, Alte. Brown 500 (M5528AHB), Mendoza, Argentina
| |
Collapse
|