1
|
Rasooly R, Do P, He X, Hernlem B. Streptococcal pyrogenic exotoxin B is a superantigen that induces murine splenocyte proliferation and secretion of IL-2 and IFN-γ ex vivo. FEMS Microbiol Lett 2024; 371:fnae036. [PMID: 38806245 DOI: 10.1093/femsle/fnae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024] Open
Abstract
Streptococcus pyogenes is a significant human pathogen, producing a range of virulence factors, including streptococcal pyrogenic exotoxin B (SpeB) that is associated with foodborne outbreaks. It was only known that this cysteine protease mediates cleavage of transmembrane proteins to permit bacterial penetration and is found in 25% of clinical isolates from streptococcal toxic shock syndrome patients with extreme inflammation. Its interaction with host and streptococcal proteins has been well characterized, but doubt remains about whether it constitutes a superantigen. In this study, for the first time it is shown that SpeB acts as a superantigen, similarly to other known superantigens such as staphylococcal enterotoxin A or streptococcal pyrogenic exotoxin type C, by inducing proliferation of murine splenocytes and cytokine secretion, primarily of interleukin-2 (IL-2), as shown by cytometric bead array analysis. IL-2 secretion was confirmed by enzyme-linked immunosorbent assay (ELISA) as well as secretion of interferon-γ. ELISA showed a dose-dependent relationship between SpeB concentration in splenocyte cells and IL-2 secretion levels, and it was shown that SpeB retains activity in milk pasteurized for 30 min at 63°C.
Collapse
Affiliation(s)
- Reuven Rasooly
- Foodborne Toxin Detection & Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States
| | - Paula Do
- Foodborne Toxin Detection & Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States
| | - Xiaohua He
- Foodborne Toxin Detection & Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States
| | - Bradley Hernlem
- Foodborne Toxin Detection & Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States
| |
Collapse
|
2
|
Chiang-Ni C, Chiang CY, Chen YW, Shi YA, Chao YT, Wang S, Tsai PJ, Chiu CH. RopB-regulated SpeB cysteine protease degrades extracellular vesicles-associated streptolysin O and bacterial proteins from group A Streptococcus. Virulence 2023; 14:2249784. [PMID: 37621107 PMCID: PMC10461520 DOI: 10.1080/21505594.2023.2249784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Extracellular vesicles (EVs) can be released from gram-positive bacteria and would participate in the delivery of bacterial toxins. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common pathogens of monomicrobial necrotizing fasciitis. Spontaneous inactivating mutation in the CovR/CovS two-component regulatory system is related to the increase of EVs production via an unknown mechanism. This study aimed to investigate whether the CovR/CovS-regulated RopB, the transcriptional regulator of GAS exoproteins, would participate in regulating EVs production. Results showed that the size, morphology, and number of EVs released from the wild-type strain and the ropB mutant were similar, suggesting RopB is not involved in controlling EVs production. Nonetheless, RopB-regulated SpeB protease degrades streptolysin O and bacterial proteins in EVs. Although SpeB has crucial roles in modulating protein composition in EVs, the SpeB-positive EVs failed to trigger HaCaT keratinocytes pyroptosis, suggesting that EVs did not deliver SpeB into keratinocytes or the amount of SpeB in EVs was not sufficient to trigger cell pyroptosis. Finally, we identified that EV-associated enolase was resistant to SpeB degradation, and therefore could be utilized as the internal control protein for verifying SLO degradation. This study revealed that RopB would participate in modulating protein composition in EVs via SpeB-dependent protein degradation and suggested that enolase is a potential internal marker for studying GAS EVs.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chien-Yi Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Wen Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Tzu Chao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
3
|
Chiang-Ni C, Chen YW, Chen KL, Jiang JX, Shi YA, Hsu CY, Chen YYM, Lai CH, Chiu CH. RopB represses the transcription of speB in the absence of SIP in group A Streptococcus. Life Sci Alliance 2023; 6:e202201809. [PMID: 37001914 PMCID: PMC10071013 DOI: 10.26508/lsa.202201809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
RopB is a quorum-sensing regulator that binds to the SpeB-inducing peptide (SIP) under acidic conditions. SIP is known to be degraded by the endopeptidase PepO, whose transcription is repressed by the CovR/CovS two-component regulatory system. Both SIP-bound RopB (RopB-SIP) and SIP-free RopB (apo-RopB) can bind to the speB promoter; however, only RopB-SIP activates speB transcription. In this study, we found that the SpeB expression was higher in the ropB mutant than in the SIP-inactivated (SIP*) mutant. Furthermore, the deletion of ropB in the SIP* mutant derepressed speB expression, suggesting that apo-RopB is a transcriptional repressor of speB Up-regulation of PepO in the covS mutant degraded SIP, resulting in the down-regulation of speB We demonstrate that deleting ropB in the covS mutant derepressed the speB expression, suggesting that the speB repression in this mutant was mediated not only by PepO-dependent SIP degradation but also by apo-RopB. These findings reveal a crosstalk between the CovR/CovS and RopB-SIP systems and redefine the role of RopB in regulating speB expression in group A Streptococcus.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wen Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Lin Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jian-Xian Jiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yun Hsu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
4
|
Deng W, Bai Y, Deng F, Pan Y, Mei S, Zheng Z, Min R, Wu Z, Li W, Miao R, Zhang Z, Kupper TS, Lieberman J, Liu X. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature 2022; 602:496-502. [PMID: 35110732 PMCID: PMC9703647 DOI: 10.1038/s41586-021-04384-4] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023]
Abstract
Gasdermins, a family of five pore-forming proteins (GSDMA-GSDME) in humans expressed predominantly in the skin, mucosa and immune sentinel cells, are key executioners of inflammatory cell death (pyroptosis), which recruits immune cells to infection sites and promotes protective immunity1,2. Pore formation is triggered by gasdermin cleavage1,2. Although the proteases that activate GSDMB, C, D and E have been identified, how GSDMA-the dominant gasdermin in the skin-is activated, remains unknown. Streptococcus pyogenes, also known as group A Streptococcus (GAS), is a major skin pathogen that causes substantial morbidity and mortality worldwide3. Here we show that the GAS cysteine protease SpeB virulence factor triggers keratinocyte pyroptosis by cleaving GSDMA after Gln246, unleashing an active N-terminal fragment that triggers pyroptosis. Gsdma1 genetic deficiency blunts mouse immune responses to GAS, resulting in uncontrolled bacterial dissemination and death. GSDMA acts as both a sensor and substrate of GAS SpeB and as an effector to trigger pyroptosis, adding a simple one-molecule mechanism for host recognition and control of virulence of a dangerous microbial pathogen.
Collapse
Affiliation(s)
- Wanyan Deng
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
- The Joint Center for Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yang Bai
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Deng
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youdong Pan
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Skin Disease Research Center, Harvard Medical School, Boston, MA, USA
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Zengzhang Zheng
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
- The Joint Center for Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Rui Min
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeyu Wu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wu Li
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
- The Joint Center for Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Rui Miao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Zhibin Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Skin Disease Research Center, Harvard Medical School, Boston, MA, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Xing Liu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China.
- The Joint Center for Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Proteolytic Profiling of Streptococcal Pyrogenic Exotoxin B (SpeB) by Complementary HPLC-MS Approaches. Int J Mol Sci 2021; 23:ijms23010412. [PMID: 35008838 PMCID: PMC8745752 DOI: 10.3390/ijms23010412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease expressed during group A streptococcal infection that represents a major virulence factor. Although subject to several studies, its role during infection is still under debate, and its proteolytic properties remain insufficiently characterized. Here, we revisited this protease through a set of complementary approaches relying on state of-the-art HPLC-MS methods. After conceiving an efficient protocol to recombinantly express SpeB, the zymogen of the protease and its activation were characterized. Employing proteome-derived peptide libraries, a strong preference for hydrophobic and aromatic residues at P2 alongside negatively charged amino acids at P3′ to P6′ was revealed. To identify relevant in vivo substrates, native proteins were obtained from monocytic secretome and plasma to assess their cleavage under physiological conditions. Besides corroborating our findings concerning specificity, more than 200 cleaved proteins were identified, including proteins of the extracellular matrix, proteins of the immune system, and proteins involved in inflammation. Finally, the cleavage of IgG subclasses was studied in detail. This study precisely depicts the proteolytic properties of SpeB and provides a library of potential host substrates, including their exact cleavage positions, as a valuable source for further research to unravel the role of SpeB during streptococcal infection.
Collapse
|
6
|
Shannon BA, McCormick JK, Schlievert PM. Toxins and Superantigens of Group A Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0054-2018. [PMID: 30737912 PMCID: PMC11590448 DOI: 10.1128/microbiolspec.gpp3-0054-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pyogenes (i.e., the group A Streptococcus) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of S. pyogenes is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in S. pyogenes disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A Streptococcus, as well as their roles in the pathogenesis of human disease.
Collapse
Affiliation(s)
- Blake A Shannon
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - John K McCormick
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
7
|
Laabei M, Ermert D. Catch Me if You Can: Streptococcus pyogenes Complement Evasion Strategies. J Innate Immun 2018; 11:3-12. [PMID: 30269134 DOI: 10.1159/000492944] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
The human host has evolved elaborate protection mechanisms to prevent infection from the billions of microorganisms to which it host is exposed and is home. One of these systems, complement, is an evolutionary ancient arm of innate immunity essential for combatting bacterial infection. Complement permits the efficient labelling of bacteria with opsonins, supports phagocytosis, and facilitates phagocyte recruitment to the site of infection through the production of chemoattractants. However, it is by no means perfect, and certain organisms engage in an evolutionary arms race with the host where complement has become a major target to promote immune evasion. Streptococcus pyogenes is a major human pathogen that causes significant morbidity and mortality globally. S. pyogenes is also a member of an elite group of bacterial pathogens possessing a sophisticated arsenal of virulence determinants capable of interfering with complement. In this review, we focus on these complement evasins, their mechanism of action, and their importance in disease progression. Finally, we highlight new therapeutic options for fighting S. pyogenes, by interfering with one of its main mechanisms of complement evasion.
Collapse
|
8
|
Endopeptidase PepO Regulates the SpeB Cysteine Protease and Is Essential for the Virulence of Invasive M1T1 Streptococcus pyogenes. J Bacteriol 2018; 200:JB.00654-17. [PMID: 29378883 DOI: 10.1128/jb.00654-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) causes a wide range of human infections. The pathogenesis of GAS infections is dependent on the temporal expression of numerous secreted and surface-associated virulence factors that interact with host proteins. Streptococcal pyrogenic exotoxin B (SpeB) is one of the most extensively studied toxins produced by GAS, and the coordinate growth phase-dependent regulation of speB expression is linked to disease severity phenotypes. Here, we identified the endopeptidase PepO as a novel growth phase-dependent regulator of SpeB in the invasive GAS M1 serotype strain 5448. By using transcriptomics followed by quantitative reverse transcriptase PCR and Western blot analyses, we demonstrate through targeted mutagenesis that PepO influences growth phase-dependent induction of speB gene expression. Compared to wild-type and complemented mutant strains, we demonstrate that the 5448ΔpepO mutant strain is more susceptible to killing by human neutrophils and is attenuated in virulence in a murine model of invasive GAS infection. Our results expand the complex regulatory network that is operating in GAS to control SpeB production and suggest that PepO is a virulence requirement during GAS M1T1 strain 5448 infections.IMPORTANCE Despite the continuing susceptibility of S. pyogenes to penicillin, this bacterial pathogen remains a leading infectious cause of global morbidity and mortality. A particular subclone of the M1 serotype (M1T1) has persisted globally for decades as the most frequently isolated serotype from patients with invasive and noninvasive diseases in Western countries. One of the key GAS pathogenicity factors is the potent broad-spectrum cysteine protease SpeB. Although there has been extensive research interest on the regulatory mechanisms that control speB gene expression, its genetic regulation is not fully understood. Here, we identify the endopeptidase PepO as a new regulator of speB gene expression in the globally disseminated M1T1 clone and as being essential for virulence.
Collapse
|
9
|
Oehmcke-Hecht S, Nass LE, Wichura JB, Mikkat S, Kreikemeyer B, Fiedler T. Deletion of the L-Lactate Dehydrogenase Gene ldh in Streptococcus pyogenes Leads to a Loss of SpeB Activity and a Hypovirulent Phenotype. Front Microbiol 2017; 8:1841. [PMID: 28983299 PMCID: PMC5613712 DOI: 10.3389/fmicb.2017.01841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/08/2017] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pyogenes uses lactic acid fermentation for the generation of ATP. Here, we analyzed the impact of a deletion of the L-lactate dehydrogenase gene ldh on the virulence of S. pyogenes M49. While the ldh deletion does not cause a general growth deficiency in laboratory media, the growth in human blood and plasma is significantly hampered. The ldh deletion strain is furthermore less virulent in a Galleria mellonella infection model. We show that the ldh deletion leads to a decrease in the activity of the cysteine protease SpeB, an important secreted virulence factor of S. pyogenes. The reduced SpeB activity is caused by a hampered autocatalytic activation of the SpeB zymogen into the mature SpeB. The missing SpeB activity furthermore leads to increased plasmin activation and a reduced activation of the contact system on the surface of S. pyogenes. All these effects can be reversed when ldh is reintroduced into the mutant via a plasmid. The results demonstrate a previously unappreciated role for LDH in modulation of SpeB maturation.
Collapse
Affiliation(s)
- Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Leif E Nass
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Jan B Wichura
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical CentreRostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Tomas Fiedler
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| |
Collapse
|
10
|
Chiang-Ni C, Chu TP, Wu JJ, Chiu CH. Repression of Rgg But Not Upregulation of LacD.1 in emm1-type covS Mutant Mediates the SpeB Repression in Group A Streptococcus. Front Microbiol 2016; 7:1935. [PMID: 27965655 PMCID: PMC5126071 DOI: 10.3389/fmicb.2016.01935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/17/2016] [Indexed: 01/02/2023] Open
Abstract
CovR/CovS is an important two-component regulatory system in human pathogen group A Streptococcus (GAS). Epidemiological studies have shown that inactivation of the sensor kinase CovS is correlated with invasive clinical manifestations. The phosphorylation level of response regulator CovR decreases dramatically in the absence of CovS, resulting in the derepression of virulence factor expression and an increase in bacterial invasiveness. Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease and is negatively regulated by CovR; however, the expression of SpeB is almost completely repressed in the covS mutant. The present study found that in the emm1-type A20 strain, non-phosphorylated CovR acts as a transcriptional repressor for SpeB-positive regulator Rgg. In addition, the expression of Rgg-negative regulator LacD.1 is upregulated in the covS mutant. These results suggest that inactivation of Rgg in the covS mutant would directly mediate speB repression. The current study showed that overexpression of rgg but not inactivation of lacD.1 in the covS mutant partially restores speB expression, indicating that only rgg repression, but not lacD.1 upregulation, contributes to the speB repression in the covS mutant.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung UniversityTao-yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial HospitalTao-yuan, Taiwan
| | - Teng-Ping Chu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University Tao-yuan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming UniversityTaipei, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial HospitalTao-yuan, Taiwan; Department of Pediatrics, Chang Gung Children's HospitalTao-yuan, Taiwan
| |
Collapse
|
11
|
Streptococcal pyrogenic exotoxin B inhibits apoptotic cell clearance by macrophages through protein S cleavage. Sci Rep 2016; 6:26026. [PMID: 27181595 PMCID: PMC4867609 DOI: 10.1038/srep26026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/25/2016] [Indexed: 11/08/2022] Open
Abstract
Clearance of apoptotic cells by macrophages plays an important role in maintaining tissue homeostasis. Previous study indicated that streptococcal pyrogenic exotoxin B (SPE B) reduces phagocytic activity in group A streptococcus (GAS) infection. Here, we demonstrate that SPE B causes an inhibitory effect on protein S-mediated phagocytosis. In the presence of SPE B, serum- and purified protein S-mediated phagocytosis of apoptotic cells were significantly inhibited. The binding abilities of protein S to apoptotic cells were decreased by treatment with SPE B. Bacterial culture supernatants from GAS NZ131 strain also caused a reduction of protein S binding to apoptotic cells, but speB mutant strain did not. SPE B directly cleaved protein S in vitro and in vivo, whereas a lower level of cleavage occurred in mice infected with a speB isogenic mutant strain. SPE B-mediated initial cleavage of protein S caused a disruption of phagocytosis, and also resulted in a loss of binding ability of protein S-associated C4b-binding protein to apoptotic cells. Taken together, these results suggest a novel pathogenic role of SPE B that initiates protein S degradation followed by the inhibition of apoptotic cell clearance by macrophages.
Collapse
|
12
|
Arzanlou M. Inhibition of streptococcal pyrogenic exotoxin B using allicin from garlic. Microb Pathog 2016; 93:166-71. [PMID: 26911644 DOI: 10.1016/j.micpath.2016.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Streptococcal pyrogenic exotoxin B (SpeB) is an important virulence factor of group A streptococci (GAS) and inactivation of SpeB results in the significantly decreased virulence of the bacterium. The protein is secreted as an inactive zymogen of 40 KDa (SpeBz) and undergoes proteolytic truncation to result in a 28 KDa mature active protease (SpeBm). In this study the effect of allicin on the proteolytic activity of SpeBm was evaluated using azocasein assay. Allicin neutralized the SpeBm proteolytic activity in a concentration dependent manner (IC50 = 15.71 ± 0.45 μg/ml). The loss of activity was completely reversed by subsequent treatment with a reducing agent, dithiothreitol (DTT; 10 mM final concentration), suggesting that allicin likely inhibits the SpeBm by forming a disulfide linkage with an active thiol group in its active site. This mechanism of action was further confirmed with the fact that DTT did not reverse the SpeBm activity in the presence of E-64, a cysteine protease-specific inhibitor, which works specially by forming a thioether linkage with free sulfhydryl groups in enzymes active site. The MIC of allicin against GAS was found to be 32 μg/ml. Exposure of GAS culture to allicin (25 μg/ml) inhibited maturation of SpeBz to the SpeBm. In conclusion, the results of this study suggest that allicin inhibits the maturation of SpeBz and proteolytic activity of SpeBm and could be a potential therapeutic agent for the treatment of GAS infections.
Collapse
Affiliation(s)
- Mohsen Arzanlou
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 5618953141, Iran.
| |
Collapse
|
13
|
Persson H, Söderberg JJ, Vindebro R, Johansson BP, von Pawel-Rammingen U. Proteolytic processing of the streptococcal IgG endopeptidase IdeS modulates the functional properties of the enzyme and results in reduced immunorecognition. Mol Immunol 2015; 68:176-84. [DOI: 10.1016/j.molimm.2015.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023]
|
14
|
The majority of 9,729 group A streptococcus strains causing disease secrete SpeB cysteine protease: pathogenesis implications. Infect Immun 2015; 83:4750-8. [PMID: 26416912 DOI: 10.1128/iai.00989-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022] Open
Abstract
Group A streptococcus (GAS), the causative agent of pharyngitis and necrotizing fasciitis, secretes the potent cysteine protease SpeB. Several lines of evidence suggest that SpeB is an important virulence factor. SpeB is expressed in human infections, protects mice from lethal challenge when used as a vaccine, and contributes significantly to tissue destruction and dissemination in animal models. However, recent descriptions of mutations in genes implicated in SpeB production have led to the idea that GAS may be under selective pressure to decrease secreted SpeB protease activity during infection. Thus, two divergent hypotheses have been proposed. One postulates that SpeB is a key contributor to pathogenesis; the other, that GAS is under selection to decrease SpeB during infection. In order to distinguish between these alternative hypotheses, we performed casein hydrolysis assays to measure the SpeB protease activity secreted by 6,775 GAS strains recovered from infected humans. The results demonstrated that 84.3% of the strains have a wild-type SpeB protease phenotype. The availability of whole-genome sequence data allowed us to determine the relative frequencies of mutations in genes implicated in SpeB production. The most abundantly mutated genes were direct transcription regulators. We also sequenced the genomes of 2,954 GAS isolates recovered from nonhuman primates with experimental necrotizing fasciitis. No mutations that would result in a SpeB-deficient phenotype were identified. Taken together, these data unambiguously demonstrate that the great majority of GAS strains recovered from infected humans secrete wild-type levels of SpeB protease activity. Our data confirm the important role of SpeB in GAS pathogenesis and help end a long-standing controversy.
Collapse
|
15
|
Metal-mediated modulation of streptococcal cysteine protease activity and its biological implications. Infect Immun 2014; 82:2992-3001. [PMID: 24799625 DOI: 10.1128/iai.01770-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues (47)Cys and (195)His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections.
Collapse
|
16
|
Cho KH, Kang SO. Streptococcus pyogenes c-di-AMP phosphodiesterase, GdpP, influences SpeB processing and virulence. PLoS One 2013; 8:e69425. [PMID: 23869242 PMCID: PMC3711813 DOI: 10.1371/journal.pone.0069425] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023] Open
Abstract
Small cyclic nucleotide derivatives are employed as second messengers by both prokaryotes and eukaryotes to regulate diverse cellular processes responding to various signals. In bacteria, c-di-AMP has been discovered most recently, and some Gram-positive pathogens including S. pyogenes use this cyclic nucleotide derivative as a second messenger instead of c-di-GMP, a well-studied important bacterial second messenger. GdpP, c-di-AMP phosphodiesterase, is responsible for degrading c-di-AMP inside cells, and the cellular role of GdpP in S. pyogenes has not been examined yet. To test the cellular role of GdpP, we created a strain with a nonpolar inframe deletion of the gdpP gene, and examined the properties of the strain including virulence. From this study, we demonstrated that GdpP influences the biogenesis of SpeB, the major secreted cysteine protease, at a post-translational level, susceptibility to the beta lactam antibiotic ampicillin, and is necessary for full virulence in a murine subcutaneous infection model.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, USA.
| | | |
Collapse
|
17
|
The streptococcal cysteine protease SpeB is not a natural immunoglobulin-cleaving enzyme. Infect Immun 2013; 81:2236-41. [PMID: 23569114 DOI: 10.1128/iai.00168-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human bacterial pathogen Streptococcus pyogenes has developed a broad variety of virulence mechanisms to evade the actions of the host immune defense. One of the best-characterized factors is the streptococcal cysteine protease SpeB, an important multifunctional protease that contributes to group A streptococcal pathogenesis in vivo. Among many suggested activities, SpeB has been described to degrade various human plasma proteins, including immunoglobulins (Igs). In this study, we show that SpeB has no Ig-cleaving activity under physiological conditions and that only Igs in a reduced state, i.e., semimonomeric molecules, are cleaved and degraded by SpeB. Since reducing conditions outside eukaryotic cells have to be considered nonphysiological and IgG in a reduced state lacks biological effector functions, we conclude that SpeB does not contribute to S. pyogenes virulence through the proteolytic degradation of Igs.
Collapse
|
18
|
Ruecker A, Shea M, Hackett F, Suarez C, Hirst EMA, Milutinovic K, Withers-Martinez C, Blackman MJ. Proteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyte. J Biol Chem 2012; 287:37949-63. [PMID: 22984267 PMCID: PMC3488066 DOI: 10.1074/jbc.m112.400820] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/04/2012] [Indexed: 12/22/2022] Open
Abstract
The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte.
Collapse
Affiliation(s)
- Andrea Ruecker
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Michael Shea
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Fiona Hackett
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Catherine Suarez
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Elizabeth M. A. Hirst
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Katarina Milutinovic
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Chrislaine Withers-Martinez
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Michael J. Blackman
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| |
Collapse
|
19
|
Nelson DC, Garbe J, Collin M. Cysteine proteinase SpeB from Streptococcus pyogenes - a potent modifier of immunologically important host and bacterial proteins. Biol Chem 2012; 392:1077-88. [PMID: 22050223 DOI: 10.1515/bc.2011.208] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Group A streptococcus (Streptococcus pyogenes) is an exclusively human pathogen that causes a wide spectrum of diseases ranging from pharyngitis, to impetigo, to toxic shock, to necrotizing fasciitis. The diversity of these disease states necessitates that S. pyogenes possess the ability to modulate both the innate and adaptive immune responses. SpeB, a cysteine proteinase, is the predominant secreted protein from S. pyogenes. Because of its relatively indiscriminant specificity, this enzyme has been shown to degrade the extracellular matrix, cytokines, chemokines, complement components, immunoglobulins, and serum protease inhibitors, to name but a few of the known substrates. Additionally, SpeB regulates other streptococcal proteins by degrading them or releasing them from the bacterial surface. Despite the wealth of literature on putative SpeB functions, there remains much controversy about this enzyme because many of reported activities would produce contradictory physiological results. Here we review all known host and bacterial protein substrates for SpeB, their cleavage sites, and discuss the role of this enzyme in streptococcal pathogenesis based on the current literature.
Collapse
Affiliation(s)
- Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| | | | | |
Collapse
|
20
|
González-Páez GE, Wolan DW. Ultrahigh and high resolution structures and mutational analysis of monomeric Streptococcus pyogenes SpeB reveal a functional role for the glycine-rich C-terminal loop. J Biol Chem 2012; 287:24412-26. [PMID: 22645124 DOI: 10.1074/jbc.m112.361576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 Å resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC(50) values for trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.
Collapse
Affiliation(s)
- Gonzalo E González-Páez
- Department of Molecular and Experimental, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
21
|
Korotkova N, Hoff JS, Becker DM, Quinn JKH, Icenogle LM, Moseley SL. SpyA is a membrane-bound ADP-ribosyltransferase of Streptococcus pyogenes which modifies a streptococcal peptide, SpyB. Mol Microbiol 2012; 83:936-52. [PMID: 22288436 DOI: 10.1111/j.1365-2958.2012.07979.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus, GAS) encode a protein, SpyA, with homology to C3-like ADP-ribosyltransferase toxins. SpyA is a novel virulence factor which plays a role in pathogenesis in a mouse model of soft-tissue infection. In this study we demonstrate that SpyA is a surface-exposed membrane protein which is anchored to the streptococcal membrane by an N-terminal transmembrane sequence. We identified a small gene upstream of spyA, designated spyB, which encodes a peptide of 35 amino acids, and is co-transcribed with spyA. Expression of spyBA is strongly influenced by translational coupling: mutational inactivation of spyB translation completely abolishes translation of spyA. spyB expression increases with increasing cell density and reaches its maximum at late exponential growth phase. The SpyB N-terminus is predicted to fold into an amphipathic α-helix, a structural motif that targets a protein to the cytoplasmic membrane. Consistent with the prediction, we found that a SpyB fusion with peptide affinity tags is located in the streptococcal membrane. An ADP-ribosylation assay with recombinant SpyA demonstrated that SpyA modifies SpyB. Thus, our study suggests that ADP-ribosylation of SpyB may be an important function of SpyA.
Collapse
Affiliation(s)
- Natalia Korotkova
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536-0509, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Minami M, Ichikawa M, Ohta M, Hasegawa T. The cell envelope-associated protein, LytR, regulates the cysteine protease SpeB in Streptococcus pyogenes. APMIS 2011; 120:417-26. [PMID: 22515297 DOI: 10.1111/j.1600-0463.2011.02847.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The LytR family of cell envelope-associated transcriptional attenuators in bacteria has been brought into focus of scientific interest on the expression of various virulence factors, as well as bacterial cell envelope maintenance. However, this protein of Streptococcus pyogenes has been only described as cell surface-associated protein, and its function is completely unknown. We created lytR mutant strains from two independent S. pyogenes strains to analyze the function of LytR. The protease assay in culture supernatant showed that lytR mutant had the higher cysteine protease activity than wild-type. Two-dimensional gel electrophoresis and western blotting analysis revealed that the amount of cysteine protease, SpeB in lytR mutant was more compared with that in wild-type. The level of speB mRNA in lytR mutant also increased compared with that of wild-type. The membrane integrity and potential in lytR mutant also were decreased compared with that of wild-type. Murine infection model showed that less survival was detected in mice inoculated with lytR mutant than that with wild-type, and the size of wound lesion of mice with lytR mutant was larger than that with wild-type. Our data suggest that the lytR regulates the expression of SpeB in S. pyogenes with relation to membrane integrity.
Collapse
Affiliation(s)
- Masaaki Minami
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Japan.
| | | | | | | |
Collapse
|
23
|
Nelson DC, Garbe J, Collin M. Cysteine proteinase SpeB from Streptococcus pyogenes - a potent modifier of immunologically important host and bacterial proteins. Biol Chem 2011. [PMID: 22050223 DOI: 10.1515/bc-2011-208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Group A streptococcus (Streptococcus pyogenes) is an exclusively human pathogen that causes a wide spectrum of diseases ranging from pharyngitis, to impetigo, to toxic shock, to necrotizing fasciitis. The diversity of these disease states necessitates that S. pyogenes possess the ability to modulate both the innate and adaptive immune responses. SpeB, a cysteine proteinase, is the predominant secreted protein from S. pyogenes. Because of its relatively indiscriminant specificity, this enzyme has been shown to degrade the extracellular matrix, cytokines, chemokines, complement components, immunoglobulins, and serum protease inhibitors, to name but a few of the known substrates. Additionally, SpeB regulates other streptococcal proteins by degrading them or releasing them from the bacterial surface. Despite the wealth of literature on putative SpeB functions, there remains much controversy about this enzyme because many of reported activities would produce contradictory physiological results. Here we review all known host and bacterial protein substrates for SpeB, their cleavage sites, and discuss the role of this enzyme in streptococcal pathogenesis based on the current literature.
Collapse
Affiliation(s)
- Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| | | | | |
Collapse
|
24
|
Okamoto A, Hasegawa T, Yamada K, Ohta M. Application of both high-performance liquid chromatography combined with tandem mass spectrometry shotgun and 2-D polyacrylamide gel electrophoresis for streptococcal exoproteins gave reliable proteomic data. Microbiol Immunol 2011; 55:84-94. [PMID: 21204954 DOI: 10.1111/j.1348-0421.2010.00302.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Streptococci secrete a large number of exoproteins including virulence-associated toxins and enzymes. To construct a reliable database of streptococcal exoproteins, we integrated the results that were derived from two approaches: LC-based shotgun proteomic analysis and 2-D PAGE-based proteomic analysis. We identified 74 and 82 proteins by LC-based and gel-based analysis, respectively. Forty-five proteins were identified by both methods. In addition, two proteins, one identified by both methods and the other only by LC-based shotgun analysis, were newly annotated. We therefore found the importance of combinational analysis by the two methods for the construction of a more reliable database.
Collapse
Affiliation(s)
- Akira Okamoto
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | | | | | | |
Collapse
|
25
|
Carroll RK, Musser JM. From transcription to activation: how group A streptococcus, the flesh-eating pathogen, regulates SpeB cysteine protease production. Mol Microbiol 2011; 81:588-601. [PMID: 21707787 DOI: 10.1111/j.1365-2958.2011.07709.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Streptococcal pyrogenic exotoxin B (SpeB) is a protease secreted by group A streptococci and known to degrade a wide range of host and GAS proteins in vitro. Although the role of SpeB in GAS infection is debated, recent evidence has conclusively demonstrated that SpeB is critical for the pathogenesis of severe invasive disease caused by GAS. Genetic inactivation of the speB gene results in significantly decreased virulence in a necrotizing fasciitis model of infection. Production of fully active SpeB by GAS is extremely complex. Following transcription and translation the SpeB protein is secreted as an inactive zymogen, which is autocatalytically processed through a series of intermediates to form an active protease. Each step from transcription to protease activation is tightly controlled and regulated by the bacterial cell reflecting the critical role played by this virulence factor in GAS infection. Here we review the molecular aspects of SpeB production by GAS from transcription to activation and the multiple layers of control involved.
Collapse
Affiliation(s)
- Ronan K Carroll
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | | |
Collapse
|
26
|
Zingaretti C, Falugi F, Nardi‐Dei V, Pietrocola G, Mariani M, Liberatori1 Marilena Gallotta S, Tontini M, Tani C, Speziale P, Grandi G, Margarit I. Streptococcus pyogenes
SpyCEP: a chemokine‐inactivating protease with unique structural and biochemical features. FASEB J 2010; 24:2839-48. [DOI: 10.1096/fj.09-145631] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chiara Zingaretti
- Novartis Vaccines & Diagnostics Siena Italy
- Istituto Nazionale di Genetica Molecolare Milan Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nickerson N, Ip J, Passos DT, McGavin MJ. Comparison of Staphopain A (ScpA) and B (SspB) precursor activation mechanisms reveals unique secretion kinetics of proSspB (Staphopain B), and a different interaction with its cognate Staphostatin, SspC. Mol Microbiol 2010; 75:161-77. [DOI: 10.1111/j.1365-2958.2009.06974.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Wang CC, Houng HC, Chen CL, Wang PJ, Kuo CF, Lin YS, Wu JJ, Lin MT, Liu CC, Huang W, Chuang WJ. Solution structure and backbone dynamics of streptopain: insight into diverse substrate specificity. J Biol Chem 2009; 284:10957-67. [PMID: 19237546 PMCID: PMC2667781 DOI: 10.1074/jbc.m807624200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 02/17/2009] [Indexed: 11/06/2022] Open
Abstract
Streptococcal pyrogenic exotoxin B (SPE B) is a cysteine protease expressed by Streptococcus pyogenes. The D9N, G163S, G163S/A172S, and G239D mutant proteins were expressed to study the effect of the allelic variants on their protease activity. In contrast to other mutants, the G239D mutant was approximately 12-fold less active. The Gly-239 residue is located within the C-terminal S230-G239 region, which cannot be observed in the x-ray structure. The three-dimensional structure and backbone dynamics of the 28-kDa mature SPE B (mSPE B) were determined. Unlike the x-ray structure of the 40-kDa zymogen SPE B (proSPE B), we observed the interactions between the C-terminal loop and the active site residues in mSPE B. The structural differences between mSPE B and proSPE B were the conformation of the C-terminal loop and the orientation of the catalytic His-195 residue, suggesting that activation and inactivation of SPE B is involved in the His-195 side-chain rotation. Dynamics analysis of mSPE B and the mSPE B/inhibitor complexes showed that the catalytic and C-terminal loops were the most flexible regions with low order parameter values of 0.5 to 0.8 and exhibited the motion on the ps/ns timescale. These findings suggest that the flexible C-terminal loop of SPE B may play an important role in controlling the substrate binding, resulting in its broad substrate specificity.
Collapse
Affiliation(s)
- Chih-Chieh Wang
- Departments of Biochemistry, Microbiology and Immunology, Medical Technology, and Pediatrics, National Cheng Kung University College of Medicine, 1 University Road, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Egesten A, Olin AI, Linge HM, Yadav M, Mörgelin M, Karlsson A, Collin M. SpeB of Streptococcus pyogenes differentially modulates antibacterial and receptor activating properties of human chemokines. PLoS One 2009; 4:e4769. [PMID: 19274094 PMCID: PMC2652026 DOI: 10.1371/journal.pone.0004769] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/31/2009] [Indexed: 02/02/2023] Open
Abstract
Background CXC chemokines are induced by inflammatory stimuli in epithelial cells and some, like MIG/CXCL9, IP–10/CXCL10 and I–TAC/CXCL11, are antibacterial for Streptococcus pyogenes. Methodology/Principal Findings SpeB from S. pyogenes degrades a wide range of chemokines (i.e. IP10/CXCL10, I-TAC/CXCL11, PF4/CXCL4, GROα/CXCL1, GROβ/CXCL2, GROγ/CXCL3, ENA78/CXCL5, GCP-2/CXCL6, NAP-2/CXCL7, SDF-1/CXCL12, BCA-1/CXCL13, BRAK/CXCL14, SRPSOX/CXCL16, MIP-3α/CCL20, Lymphotactin/XCL1, and Fractalkine/CX3CL1), has no activity on IL-8/CXCL8 and RANTES/CCL5, partly degrades SRPSOX/CXCL16 and MIP-3α/CCL20, and releases a 6 kDa CXCL9 fragment. CXCL10 and CXCL11 loose receptor activating and antibacterial activities, while the CXCL9 fragment does not activate the receptor CXCR3 but retains its antibacterial activity. Conclusions/Significance SpeB destroys most of the signaling and antibacterial properties of chemokines expressed by an inflamed epithelium. The exception is CXCL9 that preserves its antibacterial activity after hydrolysis, emphasizing its role as a major antimicrobial on inflamed epithelium.
Collapse
Affiliation(s)
- Arne Egesten
- Division of Respiratory Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders I. Olin
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Helena M. Linge
- Division of Respiratory Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Manisha Yadav
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anna Karlsson
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
30
|
Władyka B, Pustelny K. Regulation of bacterial protease activity. Cell Mol Biol Lett 2008; 13:212-29. [PMID: 18026858 PMCID: PMC6275810 DOI: 10.2478/s11658-007-0048-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 09/13/2007] [Indexed: 11/24/2022] Open
Abstract
Proteases, also referred to as peptidases, are the enzymes that catalyse the hydrolysis of peptide bonds in polipeptides. A variety of biological functions and processes depend on their activity. Regardless of the organism's complexity, peptidases are essential at every stage of life of every individual cell, since all protein molecules produced must be proteolytically processed and eventually recycled. Protease inhibitors play a crucial role in the required strict and multilevel control of the activity of proteases involved in processes conditioning both the physiological and pathophysiological functioning of an organism, as well as in host-pathogen interactions. This review describes the regulation of activity of bacterial proteases produced by dangerous human pathogens, focusing on the Staphylococcus genus.
Collapse
Affiliation(s)
- Benedykt Władyka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | | |
Collapse
|
31
|
Cole JN, Aquilina JA, Hains PG, Henningham A, Sriprakash KS, Caparon MG, Nizet V, Kotb M, Cordwell SJ, Djordjevic SP, Walker MJ. Role of group A Streptococcus HtrA in the maturation of SpeB protease. Proteomics 2008; 7:4488-98. [PMID: 18072207 DOI: 10.1002/pmic.200700626] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine protease high-temperature requirement A (HtrA) (DegP) of the human pathogen Streptococcus pyogenes (group A Streptococcus; GAS) is localized to the ExPortal secretory microdomain and is reportedly essential for the maturation of cysteine protease streptococcal pyrogenic exotoxin B (SpeB). Here, we utilize HSC5 (M5 serotype) and the in-frame isogenic mutant HSC5DeltahtrA to determine whether HtrA contributes to the maturation of other GAS virulence determinants. Mutanolysin cell wall extracts and secreted proteins were arrayed by 2-DE and identified by MALDI-TOF PMF analysis. HSC5DeltahtrA had elevated levels of cell wall-associated M protein, whilst the supernatant had higher concentrations of M protein fragments and a reduced amount of mature SpeB protease, compared to wild-type (WT). Western blot analysis and protease assays revealed a delay in the maturation of SpeB in the HSC5DeltahtrA supernatant. HtrA was unable to directly process SpeB zymogen (proSpeB) to the active form in vitro. We therefore conclude that HtrA plays an indirect role in the maturation of cysteine protease SpeB.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Janoir C, Péchiné S, Grosdidier C, Collignon A. Cwp84, a surface-associated protein of Clostridium difficile, is a cysteine protease with degrading activity on extracellular matrix proteins. J Bacteriol 2007; 189:7174-80. [PMID: 17693508 PMCID: PMC2168428 DOI: 10.1128/jb.00578-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium difficile pathogenicity is mediated mainly by its A and B toxins, but the colonization process is thought to be a necessary preliminary step in the course of infection. The aim of this study was to characterize the Cwp84 protease of C. difficile, which is highly immunogenic in patients with C. difficile-associated disease and is potentially involved in the pathogenic process. Cwp84 was purified as a recombinant His-tagged protein, and specific antibodies were generated in rabbits. Treatment of multiple-band-containing eluted fractions with a reducing agent or with trypsin led to accumulation of a unique protein species with an estimated molecular mass of 61 kDa, corresponding most likely to mature autoprocessed Cwp84 (mCwp84). mCwp84 showed concentration-dependent caseinolytic activity, with maximum activity at pH 7.5. The Cwp84 activity was inhibited by various cysteine protease inhibitors, such as the specific inhibitor E64, and the anti-Cwp84-specific antibodies. Using fractionation experiments followed by immunoblot detection, the protease was found to be associated with the S-layer proteins, mostly as a nonmature species. Proteolytic assays were performed with extracellular matrix proteins to assess the putative role of Cwp84 in the pathogenicity of C. difficile. No degrading activity was detected with type IV collagen. In contrast, Cwp84 exhibited degrading activity with fibronectin, laminin, and vitronectin, which was neutralized by the E64 inhibitor and specific antibodies. In vivo, this proteolytic activity could contribute to the degradation of the host tissue integrity and to the dissemination of the infection.
Collapse
Affiliation(s)
- Claire Janoir
- Université de Paris-Sud, Faculté de Pharmacie, Département de Microbiologie, 5 rue JB Clément, 92296, Châtenay-Malabry Cedex, France
| | | | | | | |
Collapse
|
33
|
Ma Y, Bryant AE, Salmi DB, Hayes-Schroer SM, McIndoo E, Aldape MJ, Stevens DL. Identification and characterization of bicistronic speB and prsA gene expression in the group A Streptococcus. J Bacteriol 2006; 188:7626-34. [PMID: 16950917 PMCID: PMC1636262 DOI: 10.1128/jb.01059-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe, invasive group A streptococcal infections have reemerged worldwide, and extracellular toxins, including streptococcal pyrogenic exotoxin B (SpeB), have been implicated in pathogenesis. The genetic regulation of SpeB is not fully understood, and the mechanisms involved in the processing of the protoxin to its enzymatically active form have not been definitively established. The present work demonstrated that the genes encoding SpeB (speB) and a peptidyl-prolyl isomerase (prsA) constitute an operon with transcription initiated from two promoters upstream of speB. Further, the speB-prsA operon was transcribed as a bicistronic mRNA. This finding is in contrast to the generally accepted notion that speB is transcribed only as a monocistronic gene. In addition, prsA has its own promoter, and transcription from this promoter starts in early log phase, prior to the transcription of speB. Genomic disruption of prsA decreased the production of enzymatically active SpeB but not the level of the pro-SpeB zymogen. Taken together, these results demonstrate that prsA is required for production of fully mature, enzymatically active SpeB.
Collapse
Affiliation(s)
- Yongsheng Ma
- Research & Development Service, Veterans Affairs Medical Center, 500 West Fort St., Bldg 45, Boise, ID 83702, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rosch JW, Caparon MG. The ExPortal: an organelle dedicated to the biogenesis of secreted proteins in Streptococcus pyogenes. Mol Microbiol 2006; 58:959-68. [PMID: 16262783 DOI: 10.1111/j.1365-2958.2005.04887.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Gram-positive pathogen Streptococcus pyogenes secretes proteins through the ExPortal, a unique single microdomain of the cellular membrane specialized to contain the Sec translocons. It has been proposed that the ExPortal functions as an organelle to promote the biogenesis of secreted proteins by coordinating interactions between nascent unfolded secretory proteins and membrane-associated chaperones. In this study we provide evidence to support this model. It was found that HtrA (DegP), a surface anchored accessory factor required for maturation of the secreted SpeB cysteine protease, was localized exclusively to the ExPortal. Furthermore, the ATP synthase beta subunit was not localized to the ExPortal, suggesting that retention is likely restricted to a specific subset of exported proteins. Mutations that disrupted the anchoring, but not the protease activity, of HtrA, also altered the maturation kinetics of SpeB demonstrating that localization to the ExPortal was important for HtrA function. These data indicate that the ExPortal provides a mechanism by which Gram-positive bacteria can coordinate protein secretion and subsequent biogenesis in the absence of a specialized protein-folding compartment.
Collapse
Affiliation(s)
- Jason W Rosch
- Department of Molecular Microbiology, Washington University School of Medicine, Box 8230, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
35
|
Kagawa TF, O'toole PW, Cooney JC. SpeB-Spi: a novel protease-inhibitor pair from Streptococcus pyogenes. Mol Microbiol 2005; 57:650-66. [PMID: 16045611 DOI: 10.1111/j.1365-2958.2005.04708.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study presents evidence for a novel protease-protease inhibitor couple, SpeB-Spi, in the human pathogen Streptococcus pyogenes. The gene for the inhibitor Spi is located directly downstream of the gene for the streptococcal cysteine protease SpeB. Spi is 37% identical and 70% similar to the sequence of the SpeB propeptide, suggesting that Spi and the SpeB propeptide might bind to SpeB in an analogous manner. Secondary structure predictions and molecular modelling suggested that Spi would adopt a structure similar to the SpeB propeptide. The spi gene was co-transcribed with speB on the 1.7 knt and 2.2 knt transcripts previously identified for speB. The Spi protein was purified by SpeB-affinity chromatography from the S. pyogenes cytoplasm. Recombinant Spi was produced and purified, and shown to bind to SpeB and to inhibit its protease activity. Although a similar genetic arrangement of protease and inhibitor is present in staphylococci, this is the first example of an inhibitor molecule that is a structural homologue of the cognate propeptide, and which is genetically linked to the protease gene. Thus, this represents a novel system whereby bacteria may control the intracellular activity of their proteases.
Collapse
Affiliation(s)
- Todd F Kagawa
- Department of Chemical and Environmental Sciences, and Materials and Surfaces Sciences Institute, University of Limerick, Limerick, Ireland
| | | | | |
Collapse
|
36
|
Anderson ET, Winter LA, Fernsten P, Olmsted SB, Matsuka YV. The pro-sequence domain of streptopain directs the folding of the mature enzyme. Arch Biochem Biophys 2005; 436:297-306. [PMID: 15797242 DOI: 10.1016/j.abb.2005.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/27/2005] [Indexed: 10/25/2022]
Abstract
The cysteine endopeptidase streptopain, an extracellular enzyme from pathogenic Streptococcus pyogenes, is synthesized as a precursor containing an NH2-terminal pro-sequence. The pro-sequence of streptopain was expressed in Escherichia coli and subjected to structural and functional investigation. Heat-induced denaturation of the pro-sequence studied using circular dichroism spectroscopy revealed that it forms a compact structure and represents an independently folded domain. The isolated pro-sequence exhibits high affinity towards mature streptopain and associates with its cognate enzyme by forming an equimolar complex. Refolding of denatured streptopain in the presence of pro-sequence in vitro facilitated recovery of active enzyme. Expression of the mature streptopain in E. coli either alone, or in trans with its pro-sequence as an independent polypeptide, led to the formation of insoluble protein aggregates or functionally active enzyme, respectively. These results demonstrate that the pro-sequence domain acts as an intramolecular chaperone that directs the correct folding of the mature streptopain.
Collapse
Affiliation(s)
- Elizabeth T Anderson
- Department of Protein Chemistry, Wyeth Research, 401 N. Middletown Road, Bldg. 205/228, Pearl River, NY 10965, USA
| | | | | | | | | |
Collapse
|
37
|
Nagamune H, Ohkura K, Ohkuni H. Molecular basis of group A streptococcal pyrogenic exotoxin B. J Infect Chemother 2005; 11:1-8. [PMID: 15729480 DOI: 10.1007/s10156-004-0354-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Indexed: 01/23/2023]
Affiliation(s)
- Hideaki Nagamune
- Department of Biological Science and Technology, Faculty of Engineering, University of Tokushima, Tokushima, Japan
| | | | | |
Collapse
|
38
|
Zimmerlein B, Park HS, Li S, Podbielski A, Cleary PP. The M protein is dispensable for maturation of streptococcal cysteine protease SpeB. Infect Immun 2005; 73:859-64. [PMID: 15664926 PMCID: PMC546975 DOI: 10.1128/iai.73.2.859-864.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The streptococcal pyrogenic exotoxin B (SpeB) is an important virulence factor of group A streptococci (GAS) with cysteine protease activity. Maturation of SpeB to a proteolytically active form was suggested to be dependent on cell-wall-anchored M1 protein, the major surface protein of GAS (M. Collin and A. Olsen, Mol. Microbiol. 36:1306-1318, 2000). Collin and Olsen showed that mutant GAS strains expressing truncated M protein secrete a conformationally different form of unprocessed SpeB with no proteolytic activity. Alternatively, we hypothesized that a truncated M protein may interfere with processing of this secreted protease, and therefore we tested cysteine protease activity in genetically defined mutant strains that express either no M protein or membrane-anchored M protein with an in-frame deletion of the AB repeat region. Measurements of SpeB activity by cleavage of a substrate n-benzoyl-Pro-Phe-Arg-p-nitroanilide hydrochloride showed that the proteolytic activities in culture supernatants of both mutants were similar to those from the wild-type strain. In addition, Western blot analysis of culture supernatants showed that SpeB expression and processing to a mature form was unaffected by either deletion mutation. Therefore, we conclude that M protein is not required for maturation of the streptococcal cysteine protease SpeB.
Collapse
Affiliation(s)
- Björn Zimmerlein
- Department of Microbiology, University of Minnesota Medical School, 1460 Mayo Bldg., MMC196, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
39
|
Morita M, Ikebe T, Watanabe H. Consideration of cysteine protease activity for serological M-typing of clinical Streptococcus pyogenes isolates. Microbiol Immunol 2005; 48:779-82. [PMID: 15502412 DOI: 10.1111/j.1348-0421.2004.tb03594.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Clinical isolates of Streptococcus pyogenes were classified by serological typing of their surface M protein. Non-M typeable strains with the emm1 gene were characterized as the degradation of M protein caused by overproduction of the extracellular cysteine protease, SpeB. These events are dependent on the growth phase. M protein produced prior to expression of SpeB is degraded in the stationary phase when the active form of SpeB is detected. The proteolytic degradation of M protein should be considered for precise M typing analysis.
Collapse
Affiliation(s)
- Masatomo Morita
- Department of Bacteriology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
40
|
Nyberg P, Rasmussen M, von Pawel-Rammingen U, Björck L. SpeB modulates fibronectin-dependent internalization of Streptococcus pyogenes by efficient proteolysis of cell-wall-anchored protein F1. MICROBIOLOGY-SGM 2004; 150:1559-1569. [PMID: 15133117 DOI: 10.1099/mic.0.27076-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SpeB is a cysteine proteinase and virulence determinant secreted by the important human pathogen Streptococcus pyogenes. Recent investigations have suggested a role for SpeB in streptococcal entry into human cells. However, conflicting data concerning the contribution of SpeB to internalization have been presented. Protein F1 is a cell-wall-attached fibronectin (Fn)-binding protein that is present in a majority of streptococcal isolates and is important for internalization. This study shows that protein F1 is efficiently degraded by SpeB, and that removal of protein F1 from the bacterial surface leads to reduced internalization. Whereas M1 protein and protein H, two additional surface proteins of S. pyogenes that bind human plasma proteins, are protected from proteolytic degradation by their ligands, protein F1 is readily cleaved by SpeB also when in complex with Fn. This finding, and the connection between the presence of Fn at the bacterial surface and entry into human cells, suggest that SpeB plays a role in the regulation of the internalization process.
Collapse
Affiliation(s)
- Patrik Nyberg
- Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, BMC, B14, Tornavägen 10, S-22184 Lund, Sweden
| | - Magnus Rasmussen
- Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, BMC, B14, Tornavägen 10, S-22184 Lund, Sweden
| | - Ulrich von Pawel-Rammingen
- Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, BMC, B14, Tornavägen 10, S-22184 Lund, Sweden
| | - Lars Björck
- Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, BMC, B14, Tornavägen 10, S-22184 Lund, Sweden
| |
Collapse
|
41
|
Lyon WR, Caparon MG. Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S. Infect Immun 2004; 72:1618-25. [PMID: 14977969 PMCID: PMC356025 DOI: 10.1128/iai.72.3.1618-1625.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The serine protease HtrA is involved in the folding and maturation of secreted proteins, as well as in the degradation of proteins that misfold during secretion. Depletion of HtrA has been shown to affect the sensitivity of many organisms to thermal and environmental stresses, as well as being essential for virulence in many pathogens. In the present study, we compared the behaviors of several different HtrA mutants of the gram-positive pathogen Streptococcus pyogenes (group A streptococcus). Consistent with prior reports, insertional inactivation of htrA, the gene that encodes HtrA, resulted in a mutant that grew poorly at 37 degrees C. However, an identical phenotype was observed when a similar polar insertion was placed immediately downstream of htrA in the streptococcal chromosome, suggesting that the growth defect of the insertion mutant was not a direct result of insertional inactivation of htrA. This conclusion was supported by the observation that a nonpolar deletion mutation of htrA did not produce the growth defect. However, this mutation did affect the production of several secreted virulence factors whose biogenesis requires extensive processing. For the SpeB cysteine protease, the loss of HtrA was associated with a failure to proteolytically process the zymogen to an active protease. For the streptolysin S hemolysin, a dramatic increase in hemolytic activity resulted from the depletion of HtrA. Interestingly, HtrA-deficient mutants were not attenuated in a murine model of subcutaneous infection. These data add to the growing body of information that implies an important role for HtrA in the biogenesis of secreted proteins in gram-positive bacteria.
Collapse
Affiliation(s)
- William R Lyon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | |
Collapse
|
42
|
Savariau-Lacomme MP, Lebarbier C, Karjalainen T, Collignon A, Janoir C. Transcription and analysis of polymorphism in a cluster of genes encoding surface-associated proteins of Clostridium difficile. J Bacteriol 2003; 185:4461-70. [PMID: 12867455 PMCID: PMC165755 DOI: 10.1128/jb.185.15.4461-4470.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent investigations of the Clostridium difficile genome have revealed the presence of a cluster of 17 genes, 11 of which encode proteins with similar two-domain structures, likely to be surface-anchored proteins. Two of these genes have been proven to encode proteins involved in cell adherence: slpA encodes the precursor of the two proteins of the S-layer, P36 and P47, whereas cwp66 encodes the Cwp66 adhesin. To gain further insight into the function of this cluster, we further focused on slpA, cwp66, and cwp84, the latter of which encodes a putative surface-associated protein with homology to numerous cysteine proteases. It displayed nonspecific proteolytic activity when expressed as a recombinant protein in Escherichia coli. Polymorphism of cwp66 and cwp84 genes was analyzed in 28 strains, and transcriptional organization of the three genes was explored by Northern blots. The slpA gene is strongly transcribed during the entire growth phase as a bicistronic transcript; cwp66 is transcribed only in the early exponential growth phase as a polycistronic transcript encompassing the two contiguous genes upstream. The putative proteins encoded by the cotranscribed genes have no significant homology with known proteins but may have a role in adherence. No correlation could be established between sequence patterns of Cwp66 and Cwp84 and virulence of the strains. The cwp84 gene is strongly transcribed as a monocistronic message. This feature, together with the highly conserved sequence pattern of cwp84, suggests a significant role in the physiopathology of C. difficile for the Cwp84 protease, potentially in the maturation of surface-associated adhesins encoded by the gene cluster.
Collapse
Affiliation(s)
- Marie-Pierre Savariau-Lacomme
- Université de Paris-Sud, Faculté de Pharmacie, Département de Microbiologie, Unité EA 35-34, 92296 Châtenay-Malabry Cedex, France
| | | | | | | | | |
Collapse
|
43
|
Collin M, Olsén A. Extracellular enzymes with immunomodulating activities: variations on a theme in Streptococcus pyogenes. Infect Immun 2003; 71:2983-92. [PMID: 12761074 PMCID: PMC155735 DOI: 10.1128/iai.71.6.2983-2992.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mattias Collin
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
44
|
Chen CY, Luo SC, Kuo CF, Lin YS, Wu JJ, Lin MT, Liu CC, Jeng WY, Chuang WJ. Maturation processing and characterization of streptopain. J Biol Chem 2003; 278:17336-43. [PMID: 12621045 DOI: 10.1074/jbc.m209038200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptopain is a cysteine protease expressed by Streptococcus pyogenes. To study the maturation mechanism of streptopain, wild-type and Q186N, C192S, H340R, N356D and W357A mutant proteins were expressed in Escherichia coli and purified to homogeneity. Proteolytic analyses showed that the maturation of prostreptococcal pyrogenic exotoxin B zymogen (pro-SPE B) involves eight intermediates with a combination of cis- and trans-processing. Based on the sequences of these intermediates, the substrate specificity of streptopain favors a hydrophobic residue at the P2 site. The relative autocatalytic rates of these mutants exhibited the order Q186N > W357A > N356D, C192S, H340R. Interestingly, the N356D mutant containing protease activity could not be converted into the 28-kDa form by autoprocessing. This observation suggested that Asn(356) might involve the cis-processing of the propeptide. In addition, the maturation rates of pro-SPE B with trypsin and plasmin were 10- and 60-fold slower than that with active mature streptopain. These findings indicate that active mature streptopain likely plays the most important role in the maturation of pro-SPE B under physiological conditions.
Collapse
Affiliation(s)
- Chiu-Yueh Chen
- Department of Biochemistry, National Cheng Kung University College of Medicine, 1 University Road, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Massimi I, Park E, Rice K, Muller-Esterl W, Sauder D, McGavin MJ. Identification of a novel maturation mechanism and restricted substrate specificity for the SspB cysteine protease of Staphylococcus aureus. J Biol Chem 2002; 277:41770-7. [PMID: 12207024 DOI: 10.1074/jbc.m207162200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The SspB cysteine protease of Staphylococcus aureus is expressed in an operon, flanked by the sspA serine protease, and sspC, encoding a 12.9-kDa protein of unknown function. SspB was expressed as a 40-kDa prepropeptide pSspB, which did not undergo autocatalytic maturation. Activity of pSspB was reduced compared with 22-kDa mature SspB, but it was equivalent to mature SspB after incubation with SspA, which specifically removed the pSspB N-terminal propeptide. SspC abrogated the activity of pSspB when incubated in a 1:1 complex but had no effect on SspA or papain. Activity of the pSspB.SspC complex was restored when incubated with SspA, and SspC was cleaved by SspA but not pSspB. Thus, SspC maintains pSspB as an inert zymogen, and SspA is required for removal of the propeptide and inactivation of SspC. Like the papain protease family, SspB cleaved substrates with a hydrophobic amino acid at P2 but had a strong preference for arginine at P1. It did not cleave casein, serum albumin, IgG, or IgA, but it promoted detachment of cultured keratinocytes and cleaved fibronectin and fibrinogen at sites recognized by urokinase plasminogen activator and plasmin, respectively. It also processed high molecular weight kininogen in a manner resembling plasma kallikrein. Thus, SspB exhibits a novel maturation mechanism and mimics the specificity of plasma serine proteases.
Collapse
Affiliation(s)
- Isabella Massimi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario M5G 1L5, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Watanabe Y, Todome Y, Ohkuni H, Sakurada S, Ishikawa T, Yutsudo T, Fischetti VA, Zabriskie JB. Cysteine protease activity and histamine release from the human mast cell line HMC-1 stimulated by recombinant streptococcal pyrogenic exotoxin B/streptococcal cysteine protease. Infect Immun 2002; 70:3944-7. [PMID: 12065540 PMCID: PMC128063 DOI: 10.1128/iai.70.7.3944-3947.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed the expression vector pSK-SCP containing the streptococcal exotoxin B gene (spe b) which expressed protease activity. We showed that the recombinant streptococcal pyogenic exotoxin B/streptococcal cysteine protease (rSPE B/SCP) was secreted into the culture supernatant of the transformant and retained its SCP activity, which was equivalent to or greater than that of the naturally occurring molecule. The secreted rSPE B/SCP induced histamine release and degranulation of the human mast cell line HMC-1. This study may contribute to the understanding of the pathogenic role of SPE B/SCP in streptococcal infection and streptococcal toxic shock syndrome.
Collapse
Affiliation(s)
- Yukino Watanabe
- Department of Immunology and Infectious Diseases, Institute of Gerontology, Nippon Medical School, Nakahara-ku, Kawasaki 211-8533, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nomizu M, Pietrzynski G, Kato T, Lachance P, Menard R, Ziomek E. Substrate specificity of the streptococcal cysteine protease. J Biol Chem 2001; 276:44551-6. [PMID: 11553627 DOI: 10.1074/jbc.m106306200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The streptococcal pyrogenic exotoxin B (SpeB) is an important factor in mediating Streptococcus pyogenes infections. SpeB is the zymogen of the streptococcal cysteine protease (SCP), of which relatively little is known regarding substrate specificity. To investigate this aspect of SCP function, a series of internally quenched fluorescent substrates was designed based on the cleavage sites identified in the autocatalytic processing of SpeB to mature SCP. The best substrates for SCP contain three amino acids in the nonprimed position (i.e. AIK in P(3)-P(2)-P(1)). Varying the length of the substrate on the primed side of the scissile bond has a relatively lower effect on activity. The highest activity (k(cat)/K(M) = 2.8 +/- 0.6 (10(5) x m(-1)s(-1)) is observed for the pentamer 3-aminobenzoic acid-AIKAG-3-nitrotyrosine, which spans subsites S(3) to S(2)' on the enzyme. High pressure liquid chromatography and mass spectrometry analyses show that the substrates are cleaved at the site predicted from the autoprocessing experiments. These results show that SCP can display an important level of endopeptidase activity. Substitutions at position P(2) of the substrate clearly indicate that the S(2) subsite of SCP can readily accommodate substrates containing a hydrophobic residue at that position and that some topological preference exists for that subsite. Substitutions in positions P(3), P(1), and P(1)' had little or no effect on SCP activity. The substrate specificity outlined in this work further supports the similarity between SCP and the cysteine proteases of the papain family. From the data regarding the identified or proposed natural substrates for SCP, it appears that this substrate specificity profile may also apply to the processing of mammalian and streptococcal protein targets by SCP.
Collapse
Affiliation(s)
- M Nomizu
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Lyon WR, Madden JC, Levin JC, Stein JL, Caparon MG. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol Microbiol 2001; 42:145-57. [PMID: 11679074 DOI: 10.1046/j.1365-2958.2001.02616.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adaptive responses of bacteria that involve sensing the presence of other bacteria are often critical for proliferation and the expression of virulence characteristics. The autoinducer II (AI-2) pathway has recently been shown to be a mechanism for sensing other bacteria that is highly conserved among diverse bacterial species, including Gram-positive pathogens. However, a role for this pathway in the regulation of virulence factors in Gram-positive pathogens has yet to be established. In this study, we have inactivated luxS, an essential component of the AI-2 pathway, in the Gram-positive pathogen Streptococcus pyogenes. Analyses of the resulting mutants revealed the aberrant expression of several virulence properties that are regulated in response to growth phase, including enhanced haemolytic activity, and a dramatic reduction in the expression of secreted proteolytic activity. This latter defect was associated with a reduced ability to secrete and process the precursor of the cysteine protease (SpeB) as well as a difference in the timing of expression of the protease. Enhanced haemolytic activity of the luxS strain was also shown to be linked with an increased expression of the haemolysin S-associated gene sagA. Disruptions of luxS in these mutants also produced a media-dependent growth defect. Finally, an allelic replacement analysis of an S. pyogenes strain with a naturally occurring insertion of IS1239 in luxS suggested a mechanism for modulation of virulence during infection. Results from this study suggest that luxS makes an important contribution to the regulation of S. pyogenes virulence factors.
Collapse
Affiliation(s)
- W R Lyon
- Department of Molecular Microbiology, Washington University School of Medicine, Box 8230, St Louis, MO 63110-1093, USA
| | | | | | | | | |
Collapse
|
49
|
Boyle MD, Romer TG, Meeker AK, Sledjeski DD. Use of surface-enhanced laser desorption ionization protein chip system to analyze streptococcal exotoxin B activity secreted by Streptococcus pyogenes. J Microbiol Methods 2001; 46:87-97. [PMID: 11412919 DOI: 10.1016/s0167-7012(01)00279-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ciphergen surface-enhanced laser desorption ionization (SELDI) protein chip technology was used to analyze the secretion and autoactivation of the Streptococcus pyogenes cysteine protease SpeB. This method allowed rapid identification of both the zymogen form of the protein Mr approximately 41,000 and the fully active enzyme Mr approximately 28,500. SpeB production in culture supernatants was demonstrated to be growth-phase regulated and SpeB positive and negative variants of a blood passaged S. pyogenes isolate could readily be distinguished. In kinetic studies of the autoactivation of the zymogen form of SpeB, the sequential generation of four intermediates was detected before the accumulation of the fully active enzyme. The methods described enabled enhanced speed, use of lower sample volumes and concentrations, and a more complete molecular characterization of SpeB than allowed by existing methods of analysis using SDS-PAGE and Western immunoblotting.
Collapse
Affiliation(s)
- M D Boyle
- Department of Microbiology and Immunology, Medical College of Ohio, 3055 Arlington Avenue, Toledo, OH 43614-5806, USA.
| | | | | | | |
Collapse
|
50
|
Watanabe Y. [Cloning of group A streptococcal pyrogenic exotoxin-B gene and its recombinant protein expression in culture supernatant]. J NIPPON MED SCH 2001; 68:222-32. [PMID: 11404768 DOI: 10.1272/jnms.68.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcal pyrogenic exotoxin B, a conserved cysteine protease (SPE B/SCP) released by group A Streptococcus (GAS) strains, is considered to be an important virulence factor of this bacterium. This paper reports the cloning of gene encoding SPE B/SCP. For production of recombinant SPE B/SCP (rSPE B/SCP), the primers specific for the SPE B/SCP gene (spe b) were designed based on its nucleotide sequence. Polymerase chain reaction (PCR) was performed with the genomic DNA of GAS strain NZ131 as a template. The amplified PCR products were purified and cloned into the pBluescript II SK(+) plasmid vector. The vector was transformed into Escherichia coli (E. coli) JM109. The rSPE B/SCP and its recombinant proenzyme (rzym) were secreted in the culture supernate of the transformant. The rSPE B/SCP was purified from the supernatant by sequential chromatography on DEAE-Sepharose, matrix gel Red A and Sephadex G-50 columns. The purified rzym and rSPE B/SCP, respectively, gave a single band with a molecular weight approximately 40 kDa and 27 kDa on SDS-polyacrylamide gel electrophoresis, and reacted with anti-SPE B/SCP antibodies in Western Blot analysis. This is the first report in which rSPE B/SCP was obtained from the culture supernate of the transformant.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Immunology and Infectious Diseases, Institute of Gerontology, Nippon Medical School.
| |
Collapse
|