1
|
Yan L, Sun Y, Ding K, Peng T. Bioorthogonal chemical reporters for profiling retinoic acid-modified and retinoic acid-interacting proteins. Bioorg Med Chem 2025; 119:118065. [PMID: 39808893 DOI: 10.1016/j.bmc.2025.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Vitamin A and its primary active derivative, all-trans retinoic acid (RA), are endogenous signaling molecules essential for numerous biological processes, including cell proliferation, differentiation, and immune modulation. Owing to its differentiation-inducing effect, RA was the first differentiating agent approved for the clinical treatment of acute myeloid leukemia. While the classical mechanisms of RA signaling involve nuclear receptors, such as retinoic acid receptors (RARs), emerging evidence suggests that RA also engages in non-covalent and covalent interactions with a broader range of proteins. However, tools for thoroughly characterizing these interactions have been lacking, and a comprehensive understanding of the landscape of RA-modified and RA-interacting proteins remains limited. Here, we report the development of two RA-based chemical reporters, RA-yne and RA-diazyne, to profile RA-modified and RA-interacting proteins, respectively, in live cells. RA-yne features a clickable alkyne group for metabolic labeling of RA-modified proteins, while RA-diazyne incorporates a photoactivatable diazirine and an alkyne handle for crosslinking and capturing RA-interacting proteins. Using quantitative proteomics, we demonstrate the high-throughput identification of these proteins, revealing that non-covalent interactions are more prevalent than covalent modifications. Our global profiling also uncovers a large number of RA-interacting proteins mainly enriched in pathways related to mitochondrial processes, ER homeostasis, and lipid metabolism. Overall, this work introduces new RA-derived chemical reporters, expands the resource for studying RA biology, and enhances our understanding of RA-associated pathways in health and disease.
Collapse
Affiliation(s)
- Long Yan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanan Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ke Ding
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
2
|
Yun J, So J, Jeong S, Jang J, Han S, Jeon J, Lee K, Jang HR, Lee J. Transcriptome and epigenome dynamics of the clonal heterogeneity of human induced pluripotent stem cells for cardiac differentiation. Cell Mol Life Sci 2024; 82:2. [PMID: 39661125 PMCID: PMC11635083 DOI: 10.1007/s00018-024-05493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Human induced pluripotent stem cells (hiPSCs) generate multiple clones with inherent heterogeneity, leading to variations in their differentiation capacity. Previous studies have primarily addressed line-to-line variations in differentiation capacity, leaving a gap in the comprehensive understanding of clonal heterogeneity. Here, we aimed to profile the heterogeneity of hiPSC clones and identify predictive biomarkers for cardiomyocyte (CM) differentiation capacity by integrating transcriptomic, epigenomic, endogenous retroelement, and protein kinase phosphorylation profiles. We generated multiple clones from a single donor and validated that these clones exhibited comparable levels of pluripotency markers. The clones were classified into two groups based on their differentiation efficiency to CMs-productive clone (PC) and non-productive clone (NPC). We performed RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with sequencing (ATAC-seq). NPC was enriched in vasculogenesis and cell adhesion, accompanied by elevated levels of phosphorylated ERK1/2. Conversely, PC exhibited enrichment in embryonic organ development and transcription factor activation, accompanied by increased chromatin accessibility near transcription start site (TSS) regions. Integrative analysis of RNA-seq and ATAC-seq revealed 14 candidate genes correlated with cardiac differentiation potential. Notably, TEK and SDR42E1 were upregulated in NPC. Our integrative profiles enhance the understanding of clonal heterogeneity and highlight two novel biomarkers associated with CM differentiation. This insight may facilitate the identification of suboptimal hiPSC clones, thereby mitigating adverse outcomes in clinical applications.
Collapse
Affiliation(s)
- Jihye Yun
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaemin So
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seunghee Jeong
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiye Jang
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soyoung Han
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Republic of Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Republic of Korea
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Republic of Korea
| | - Jaecheol Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Lu J, Peng B, Wang W, Zou Y. Epithelial-mesenchymal crosstalk: the scriptwriter of craniofacial morphogenesis. Front Cell Dev Biol 2024; 12:1497002. [PMID: 39583201 PMCID: PMC11582012 DOI: 10.3389/fcell.2024.1497002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Epithelial-mesenchymal interactions (EMI) are fundamental mechanisms in regulating development and organogenesis. Here we summarized the signaling mechanisms involved in EMI in the major developmental events during craniofacial morphogenesis, including neural crest cell induction, facial primordial growth as well as fusion processes. Regional specificity/polarity are demonstrated in the expression of most signaling molecules that usually act in a mutually synergistic/antagonistic manner. The underlying mechanisms of pathogenesis due to disrupted EMI was also discussed in this review.
Collapse
Affiliation(s)
- Junjie Lu
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Wenyi Wang
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi Zou
- School of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Engfer ZJ, Palczewski K. The multifaceted roles of retinoids in eye development, vision, and retinal degenerative diseases. Curr Top Dev Biol 2024; 161:235-296. [PMID: 39870435 DOI: 10.1016/bs.ctdb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Vitamin A (all-trans-retinol; at-Rol) and its derivatives, known as retinoids, have been adopted by vertebrates to serve as visual chromophores and signaling molecules, particularly in the eye/retina. Few tissues rely on retinoids as heavily as the retina, and the study of genetically modified mouse models with deficiencies in specific retinoid-metabolizing proteins has allowed us to gain insight into the unique or redundant roles of these proteins in at-Rol uptake and storage, or their downstream roles in retinal development and function. These processes occur during embryogenesis and continue throughout life. This review delves into the role of these genes in supporting retinal function and maps the impact that genetically modified mouse models have had in studying retinoid-related genes. These models display distinct perturbations in retinoid biochemistry, physiology, and metabolic flux, mirroring human ocular diseases.
Collapse
Affiliation(s)
- Zachary J Engfer
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States; Department of Chemistry, University of California Irvine, Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
5
|
Chen RY, Ding LJ, Liu YJ, Shi JJ, Yu J, Li CY, Lu JF, Yang GJ, Chen J. Marine Staurosporine Analogues: Activity and Target Identification in Triple-Negative Breast Cancer. Mar Drugs 2024; 22:459. [PMID: 39452867 PMCID: PMC11509616 DOI: 10.3390/md22100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality and drug resistance and no targeted drug available at present. Compound 4, a staurosporine alkaloid derived from Streptomyces sp. NBU3142 in a marine sponge, exhibits potent anti-TNBC activity. This research investigated its impact on MDA-MB-231 cells and their drug-resistant variants. The findings highlighted that compound 4 inhibits breast cancer cell migration, induces apoptosis, arrests the cell cycle, and promotes cellular senescence in both regular and paclitaxel-resistant MDA-MB-231 cells. Additionally, this study identified mitogen-activated protein kinase kinase kinase 11 (MAP3K11) as a target of compound 4, implicating its role in breast tumorigenesis by affecting cell proliferation, migration, and cell cycle progression.
Collapse
Affiliation(s)
- Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Li-Jian Ding
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| |
Collapse
|
6
|
Coulleray J, Kindler A, Rima M, Cahuzac H, Rochel N, Chaubet G, Krezel W, Wagner A. Retinoids Molecular Probes by Late-stage Azide Insertion - Functional Tools to Decrypt Retinoid Metabolism. Chembiochem 2024; 25:e202300689. [PMID: 39092796 DOI: 10.1002/cbic.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Indexed: 08/04/2024]
Abstract
Studying the complex and intricate retinoids metabolic pathways by chemical biology approaches requires design and synthesis of biologically functional molecular probes. Only few of such molecular retinoid probes could be found in literature, most of them bearing a molecular structure quite different from natural retinoids. To provide close-to-native retinoid probes, we have developed a versatile late-stage method for the insertion of azide function at the C4 position of several retinoids. This one-step process opens straightforward access to different retinoid and carotenoid probes from commercially available precursors. We have further demonstrated that the different molecular probes retain ability of the original compound to activate genes' transcription, despite azide insertion, highlighting biological activities that were further validated in zebrafish in vivo model. The present work paves the way to future studies on vitamin A's metabolism.
Collapse
Affiliation(s)
- Jessica Coulleray
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| | - Alexia Kindler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
| | - Mohamad Rima
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
- Department of Natural Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Héloïse Cahuzac
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
| | - Guilhem Chaubet
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
| | - Alain Wagner
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| |
Collapse
|
7
|
Wei Y, Cheng S, Tsukada T, Horiguchi K, Fujiwara Y, Fujiwara K. Expression of Retinaldehyde Dehydrogenases in the Pituitary Glands of Fetus and Adult Mice. Acta Histochem Cytochem 2024; 57:109-118. [PMID: 38988691 PMCID: PMC11231566 DOI: 10.1267/ahc.24-00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 07/12/2024] Open
Abstract
Retinoic acid (RA) plays a critical role in cell growth and tissue development. RA is synthesized from retinoids through oxidation processes by the retinaldehyde dehydrogenase (Raldh) family. However, the expression of Raldhs during pituitary development and the identification of Raldh-expressing cells in the adult pituitary have not been fully elucidated. Here, we performed in situ hybridization to localize the three Raldh isoforms (Raldh1-3) in fetal and adult mouse pituitary glands. The results showed that Raldh2 expression was observed in Rathke's pouch from embryonic day 13.5 (E13.5), and this expression was sustained in the anterior lobe of the pituitary primordium from E15.5 to E17.5. In contrast, Raldh1 and Raldh3 were rarely detectable. Real-time PCR analysis revealed that Raldh2 was the predominant isoform expressed in the adult pituitary, although Raldh1 was also expressed to a lesser extent. In the adult pituitary, Raldh1-expressing cells were primarily observed in the posterior lobe. Raldh2-expressing cells were found in the marginal cell layer and parenchyma of the anterior lobe and were immunopositive for aldolase C (folliculostellate cells), but not for anterior pituitary hormones. These results suggest that RA is an important regulatory factor in the functions of the pituitary throughout its development in mice.
Collapse
Affiliation(s)
- Yanan Wei
- Graduate School of Science, Kanagawa University, Kanagawa, Japan
| | - Si Cheng
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Takehiro Tsukada
- Department of Bimolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Ken Fujiwara
- Graduate School of Science, Kanagawa University, Kanagawa, Japan
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| |
Collapse
|
8
|
Duan X, Hu H, Wang L, Chen L. Aldehyde dehydrogenase 1 family: A potential molecule target for diseases. Cell Biol Int 2024. [PMID: 38800962 DOI: 10.1002/cbin.12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Aldehyde dehydrogenase 1 (ALDH1), a crucial aldehyde metabolizing enzyme, has six family members. The ALDH1 family is expressed in various tissues, with a significant presence in the liver. It plays a momentous role in several pathophysiological processes, including aldehyde detoxification, oxidative stress, and lipid peroxidation. Acetaldehyde detoxification is the fundamental function of the ALDH1 family in participating in vital pathological mechanisms. The ALDH1 family can catalyze retinal to retinoic acid (RA) that is a hormone-signaling molecule and plays a vital role in the development and adult tissues. Furthermore, there is a need for further and broader research on the role of the ALDH1 family as a signaling molecule. The ALDH1 family is widely recognized as a cancer stem cell (CSC) marker and plays a significant role in the proliferation, invasion, metastasis, prognosis, and drug resistance of cancer. The ALDH1 family also participates in other human diseases, such as neurodegenerative diseases, osteoarthritis, diabetes, and atherosclerosis. It can inhibit disease progression by inhibiting/promoting the expression/activity of the ALDH1 family. In this review, we comprehensively analyze the tissue distribution, and functions of the ALDH1 family. Additionally, we review the involvement of the ALDH1 family in diseases, focusing on the underlying pathological mechanisms and briefly talk about the current status and development of ALDH1 family inhibitors. The ALDH1 family presents new possibilities for treating diseases, with both its upstream and downstream pathways serving as promising targets for therapeutic intervention. This offers fresh perspectives for drug development in the field of disease research.
Collapse
Affiliation(s)
- Xiangning Duan
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Haoliang Hu
- Changde Research Centre for Artificial Intelligence and Biomedicine, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lingzhi Wang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
9
|
Shi R, Wu Y, Chen H, Zhang Z, Bao S, Qu J, Zhou M. The causal effect of oxidative stress on the risk of glaucoma. Heliyon 2024; 10:e24852. [PMID: 38317903 PMCID: PMC10838757 DOI: 10.1016/j.heliyon.2024.e24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Glaucoma is a complex multifactorial disease. Oxidative stress has been implicated in its pathogenesis. However, establishing a causal relationship between oxidative stress and glaucoma is challenging due to confounding and reverse causality. In this study, we performed bidirectional two-sample Mendelian randomization (MR) analyses based on genetic instrumental variables as proxies for 11 biomarkers of oxidative stress injury to investigate the causal relationship between oxidative stress and glaucoma. Eight significant associations were identified. Increased circulating levels of catalase (OR = 0.915, 95 % CI: 0.848-0.987, P = 0.022), retinol (OR = 0.481, 95 % CI: 0.248-0.932, P = 0.044) and superoxide dismutase (OR = 0.779, 95 % CI: 0. 616-0.986, P = 0.038) are associated with a decreased risk of glaucoma, whereas an increased myeloperoxidase level (OR = 2.145, 95 % CI: 1.119-4.111, P = 0.029) is associated with an increased risk of glaucoma. Glaucoma was causally associated with lower levels of total bilirubin (OR = 0.961, 95 % CI: 0.927-0.997, P = 0.039), glutathione peroxidase (OR = 0. 934, 95 % CI: 0.890-0.981, P = 0.006), paraoxonase (OR = 0.883, 95 % CI: 0.810-0.963, P = 0.005) and albumin (OR = 0.988, 95 % CI: 0.978-0.998, P = 0.014). The bidirectional MR analysis revealed a causal relationship between oxidative stress and glaucoma. These findings provide a greater understanding of the underlying mechanisms of glaucomatous neurodegeneration and imply a potential therapeutic approach for glaucoma through targeting oxidative stress pathways.
Collapse
Affiliation(s)
- Ronghua Shi
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - Yaxuan Wu
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - He Chen
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - Zicheng Zhang
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - Siqi Bao
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - Jia Qu
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - Meng Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
10
|
Arbab Solimani S, Irani S, Mohamadali M, Bakhshi H. Carboxymethyl Chitosan-Functionalized Polyaniline/Polyacrylonitrile Nano-Fibers for Neural Differentiation of Mesenchymal Stem Cells. Appl Biochem Biotechnol 2023; 195:7638-7651. [PMID: 37071298 PMCID: PMC10754755 DOI: 10.1007/s12010-023-04526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Electroconductive scaffolds based on polyaniline (PANi)/polyacrylonitrile (PAN) were fabricated and surface-functionalized by carboxymethyl chitosan (CMC) as efficient scaffolds for nerve tissue regeneration. The results of scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and water contact angle measurement approved the successful fabrication of CMC-functionalized PANi/PAN-based scaffolds. Human adipose-derived mesenchymal stem cells (hADMSCs) were cultured on the scaffolds for 10 d in the presence or absence of β-carotene (βC, 20 µM) as a natural neural differentiation agent. The MTT and SEM results confirmed the attachment and proliferation of hADMSCs on the scaffolds. The expression of MAP2 at the mRNA and protein levels showed the synergic neurogenic induction effect of CMC-functionalization and βC for hADMSCs on the scaffolds. The CMC-functionalized nanofibrous PANi/PAN-based scaffolds are potential candidates for nerve tissue engineering.
Collapse
Affiliation(s)
- Sahar Arbab Solimani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Marjan Mohamadali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Bakhshi
- Department of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 68, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
11
|
Xia P, Hou T, Jin H, Meng Y, Li J, Zhan F, Geng F, Li B. A critical review on inflammatory bowel diseases risk factors, dietary nutrients regulation and protective pathways based on gut microbiota during recent 5 years. Crit Rev Food Sci Nutr 2023; 64:8805-8821. [PMID: 37096497 DOI: 10.1080/10408398.2023.2204147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The treatment of inflammatory bowel diseases (IBDs) has become a worldwide problem. Intestinal flora plays an important role in the development and progression of IBDs. Various risk factors (psychology, living habits, dietary patterns, environment) influence the structure and composition of the gut microbiota and contribute to the susceptibility to IBDs. This review aims to provide a comprehensive overview on risk factors regulating intestinal microenvironment which was contributed to IBDs. Five protective pathways related to intestinal flora were also discussed. We hope to provide systemic and comprehensive insights of IBDs treatment and to offer theoretical guidance for personalized patients with precision nutrition.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yaqi Meng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
12
|
Jin XC, Peng DQ, Kim SJ, Kim NY, Nejad JG, Kim D, Smith SB, Lee HG. Vitamin A supplementation downregulates ADH1C and ALDH1A1 mRNA expression in weaned beef calves. ANIMAL NUTRITION 2022; 10:372-381. [PMID: 35949197 PMCID: PMC9356019 DOI: 10.1016/j.aninu.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Our previous studies demonstrated that oral vitamin A supplementation during late-stage pregnancy and the neonatal stage enhances birth weight, growth performance, and mRNA expression related to muscle and preadipocyte development in beef cattle. The alcohol dehydrogenase 1C (ADH1C) c.-64T > C genotype also correlated with vitamin A concentration in beef production. This study aimed to investigate the effects of vitamin A supplementation on the muscle development and vitamin A metabolism in weaned beef calves with different ADH1C genotypes. Twenty male calves (90 d of age; initial BW: 89.03 kg [SD 8.60]) were stratified according to ADH1C genotype and vitamin A treatment (duration: 3 months) and randomly assigned to 4 groups with a 2 × 2 factorial arrangement. Vitamin A treatments included the following: control (10,000 IU/kg of as-fed, a. TT type; b. TC type); treatment (40,000 IU/kg of as-fed, c. TT type; and d. TC type). Parameters including BW, FI, blood, longissimus dorsi muscle, and liver status during the experimental period were analyzed using the generalized linear model (GLM) procedure and Tukey's test by SAS 9.4 program. Serum vitamin A was significantly increased (P < 0.05) in the vitamin A treatment group at 4 and 6 months of age. TT type calves showed higher serum vitamin A concentration (P < 0.05) than the TC type calves. Serum triglyceride and non-esterified fatty acid (NEFA) levels increased (P < 0.05) in the treatment group compared with the control at 6 months of age. However, BW, ADG and FI showed no differences between the groups. In addition, mRNA expression in longissimus dorsi muscle revealed upregulation of paired box 7 (PAX7) (P < 0.05) after the vitamin A treatment period based on biopsy results. Both ADH1C and aldehyde dehydrogenase (ALDH) 1A1 mRNA expression was downregulated (P < 0.01) by vitamin A supplementation. The TC type of ADH1C showed higher mRNA expression than the TT type. However, no effect was observed on adipogenic mRNA expression (preadipocyte factor-1 [PREF-1], peroxisome proliferator-activated receptor gamma [PPARγ], fatty acid binding protein 4 [FABP4]) in all groups. Our findings suggest that weaned calves treated with vitamin A may promote the storage of satellite cells by elevating PAX7 gene expression in the muscle. The TC type calves may show increased capacity for vitamin A metabolism, which can be used in genetically customizing feed management to maximize beef production in the calves.
Collapse
|
13
|
Liu H, Lutz M, Sheng L. Genetic association between epigenetic aging-acceleration and the progression of mild cognitive impairment to Alzheimer's disease. J Gerontol A Biol Sci Med Sci 2022; 77:1734-1742. [PMID: 35797594 PMCID: PMC9434458 DOI: 10.1093/gerona/glac138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and previous studies have showed its association with accelerated aging. In this study, we hypothesized that SNPs that contributed to aging acceleration are also associated with the progression from mild cognitive impairment (MCI) to AD. By applying genetic correlation analysis and single-locus survival analysis, we investigated the associations between intrinsic- and extrinsic-epigenetic-age-acceleration (IEAA and EEAA) related SNPs and the progression time from mild cognitive impairment (MCI) to AD dementia using the data of 767 MCI participants from the ADNI study and 1373 MCI patients from the NACC study. Genetic correlations were found between IEAA/EEAA and AD (positive for IEAA-AD and negative for EEAA-AD). We revealed that 70 IEAA and 81 EEAA SNPs had associations with the progression time from MCI to AD with Bayesian false-discovery probability (BFDP) ≤ 0.8 in the ADNI study, with 22 IEAA SNPs and 16 EEAA SNPs being replicated in the NACC study (P < 0.05). Polygenic risk score (PRS) analysis showed that EEAA PRS but not IEAA PRS was associated with AD progression and the trend of decreasing Fusiform gyrus volume in two datasets. Risk models incorporating both EAA PRSs did not show any significant improvement in predictive accuracy. Our results identified multiple genetic variants with pleiotropic effects on both EAA and AD, which suggested shared genetic architecture between epigenetic age acceleration and AD progression.
Collapse
Affiliation(s)
- Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Michael Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Luo Sheng
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
14
|
Stamis SA, Heath EI, Lucas S, Boerner J, Slusher LB. Alcohol dehydrogenase expression patterns in normal prostate, benign prostatic hyperplasia, and prostatic adenocarcinoma in African American and Caucasian men. Prostate 2022; 82:666-675. [PMID: 35133686 DOI: 10.1002/pros.24310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In situ metabolism of ethanol by alcohol dehydrogenases (ADHs) contributes to oxidative damage of cells and DNA and has been linked to carcinogenesis in numerous epithelial tissues. The goal of this study was to determine expression patterns of ADH1 and ADH7 isozymes in normal, hyperplastic (benign prostatic hyperplasia [BPH]) and neoplastic (prostate cancer [PCa]) prostate. Furthermore, racial differences in ADH expression between African Americans and Caucasians were investigated. METHODS ADH expression patterns were characterized by density analysis of ADH immunohistochemistry (n = 21) and real-time RT-PCR of total RNAs by laser-capture microdissection (n = 10) and whole tissue formalin-fixed paraffin embedded prostate biopsies (n = 63). RESULTS ADH protein is found in normal prostate and is primarily associated with glandular epithelium. Transcripts of ADH1B are suppressed in PCa compared to BPH (p = 0.0095). Racial differences in ADH7 transcripts exist between African American and Caucasian men. A total of 57.6% of biopsies from African American prostates have detectable ADH7 messenger RNA (mRNA) transcripts compared to the 13.3% of Caucasian prostate biopsies with detectable transcripts (p = 0.0005). This increased frequency of detection contributes to higher mean ADH7 mRNA transcript levels in African Americans (p = 0.001). CONCLUSIONS To our knowledge this study is the first to report downregulation of ADH1B in neoplastic prostate at the transcriptional level, suggesting protective regulatory functions. ADH7 transcripts were not detectable in all samples and was found in higher frequency and amount in our African American samples. Racial differences in ADH7 within the prostate is a novel finding and should be investigated further.
Collapse
Affiliation(s)
- Sarah A Stamis
- Department of Biology, West Chester University of Pennsylvania, West Chester, Pennsylvania, USA
| | - Elisabeth I Heath
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven Lucas
- Department of Urology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Julie Boerner
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Leslie B Slusher
- Department of Biology, West Chester University of Pennsylvania, West Chester, Pennsylvania, USA
| |
Collapse
|
15
|
The multiciliated cells in Rathke's cleft express CYP26A1 and respond to retinoic acid in the pituitary. Cell Tissue Res 2022; 388:583-594. [PMID: 35316373 DOI: 10.1007/s00441-022-03614-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/11/2022] [Indexed: 11/02/2022]
Abstract
The adenohypophysis consists of the anterior and intermediate lobes (AL and IL). The marginal cell layer (MCL), including the ventral region of the IL and the dorsal region of the AL lining the Rathke's cleft, acts as the primary stem/progenitor cell niches in adult adenohypophysis. The cells of the MCL on the IL side consisted of cluster of differentiation 9 (CD9)-positive stem/progenitor cells with or without motile cilia. However, any additional cellular properties of multiciliated CD9-positive cells are not known. The present study aimed to identify the character of the multiciliated cells in stem cell niche of the pituitary gland. We observed the fine structure of the multiciliated cells in the MCL of male Wistar rats at an early stage after birth and in adulthood (P60) using scanning electron microscopy. Since the previous study showed that the MCL cells of adult rats synthesize retinoic acid (RA), the present study determined whether the multiciliated cells are involved in RA regulation by the expression of retinal aldehyde dehydrogenase 1 (RALDH1) and CYP26A1, an enzyme synthesizing and degrading RA, respectively. Results showed that 96% of multiciliated cells in adult male rats expressed CYP26A1, while 60% expressed RALDH1. Furthermore, the isolated CD9-positive cells from the IL side MCL responded to RA and activated the degradation system of RA by increasing Cyp26a1 expression. These findings indicated that multiciliated cells are involved in RA metabolism in the MCL. Our observations provide novel insights regarding the stem cell niche of the adult pituitary.
Collapse
|
16
|
Clinical significance of ALDH1A1 expression and its association with E-cadherin and N-cadherin in resected large cell neuroendocrine carcinoma. Transl Oncol 2022; 19:101379. [PMID: 35219092 PMCID: PMC8881670 DOI: 10.1016/j.tranon.2022.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
It is the first study on the effect of ALDH1A1 on the prognosis of LCNEC. And we found ALDH1A1 acts as a favorable independent prognostic factor in LCNEC. We investigated the relationship between ALDH1A1 and EMT markers (E-cadherin/ N-cadherin) and found that ALDH1A1 is associated with epithelial phenotype marker E-cadherin in LCNEC. Our sample size is large and simple and the clinical data is complete. The exploration of the prognostic mechanism of LCNEC is of great significance to its classification, treatment and prognosis.
Background The roles of cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) in solid tumors are well established. However, the interaction between CSCs and EMT in pulmonary large cell neuroendocrine carcinoma (LCNEC) remains unknown. The aim of this study was to investigate the expression and clinical significance of a CSC marker (ALDH1A1) and its correlation with Epithelial-like phenotype marker (E-cadherin) and Mesenchymal-like phenotype marker (N-cadherin) in LCNEC patients. Methods Immunohistochemistry (IHC) for ALDH1A1, E-cadherin and N-cadherin expression was conducted on tissue microarrays made from 79 resected LCNEC patient samples. ALDH1A1 protein expression was evaluated by the IHC score, and its correlations with the expression of E-cadherin, N-cadherin and clinicopathological features were determined based on IHC data. Survival analyses were also performed. Results ALDH1A1 was positively expressed in 75.9% (60/79 cases) of LCNEC patients. No significant difference in clinicopathological variables was observed between the ALDH1A1-negative and ALDH1A1-positive groups. However, ALDH1A1 expression was positively correlated with E-cadherin (Spearman's rho = 0.229, p-value = 0.007), which represents the epithelial-like phenotype, but not with N-cadherin. Patients with expression of ALDH1A1 had significantly longer disease-free survival (DFS) and overall survival (OS) than those who were ALDH1A1 negative (median DFS: 52 vs 12 months, p = 0.028; median OS: not reached; p = 0.027). Multivariate analysis showed that ALDH1A1 was an independent favorable prognostic factor for DFS (p = 0.032, HR: 0.438, 95% CI: 0.206–0.932) and OS (p = 0.025, HR: 0.279, 95% CI: 0.091–0.852) in LCNEC patients. Conclusion This study suggests that ALDH1A1 can act as a favorable independent prognostic factor for LCNEC, which related to the epithelioid phenotype in EMT, and its internal mechanism needs further study.
Collapse
|
17
|
Zhuang S, Zheng W, Na Y, Chen N, Gong F, Huang B, Charles SB, Liu C, Cheng J, Ma L, Liu H. Changes in the content and antioxidative activity of β‐carotene and its metabolite vitamin A during gastrointestinal digestion and absorption and optimisation of HPLC‐based detection. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shanshan Zhuang
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Wenxiong Zheng
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Yunong Na
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Naiyi Chen
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Fan Gong
- Henan Institute of Quality Supervision and Inspection Zhengzhou Henan 450047 China
| | - Bingxuan Huang
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | | | - Congyi Liu
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Jian Cheng
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Lukai Ma
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Huifan Liu
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Guangzhou Guangdong 510225 China
| |
Collapse
|
18
|
Action and Interaction between Retinoic Acid Signaling and Blood–Testis Barrier Function in the Spermatogenesis Cycle. Cells 2022; 11:cells11030352. [PMID: 35159162 PMCID: PMC8834282 DOI: 10.3390/cells11030352] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023] Open
Abstract
Spermatogenesis is a complex process occurring in mammalian testes, and constant sperm production depends on the exact regulation of the microenvironment in the testes. Many studies have indicated the crucial role of blood–testis barrier (BTB) junctions and retinoic acid (RA) signaling in the spermatogenesis process. The BTB consists of junctions between adjacent Sertoli cells, comprised mainly of tight junctions and gap junctions. In vitamin A-deficient mice, halted spermatogenesis could be rebooted by RA or vitamin A administration, indicating that RA is absolutely required for spermatogenesis. Accordingly, this manuscript will review and discuss how RA and the BTB regulate spermatogenesis and the interaction between RA signaling and BTB function.
Collapse
|
19
|
Pavone ME, Grover AR, Confino R, Pearson EK, Malpani S, Cheng YH, Fazleabas A, Bulun S. Retinoic acid action is altered within endometrium of baboons affected with endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2022. [DOI: 10.1177/22840265211062008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: Using a baboon model, we determined the changing expression of Retinoic Acid (RA) target genes during the menstrual cycle and during disease progression. This change could explain the cellular response and changes characteristic of endometriosis. In previous studies, we established that endometriosis affects the CRABP2:FABP5 ratio in an in vitro environment, shifting toward apoptosis and differentiation with higher CRABP2, and anti-apoptosis with higher levels of FABP5. Intervention(s): Endometriosis was induced in female baboons with intraperitoneal inoculation of menstrual endometrium ( n = 2–4). Tissue was harvested via endometrectomy during different stages of the menstrual cycle as well at 3, 6, and 12 month timepoints after inoculation with endometriosis. Main outcome measure(s): Real time PCR was used to quantify STRA6 (a gene responsible for retinol uptake), CRABP2 (a gene necessary for apoptotic and anti-apoptotic estrogenic RA effects), and FABP5 (a gene that mediates the anti-apoptotic actions of RA). Results: STRA6 and CRABP2 expression were highest in the proliferative phase and lowest in the late secretory phase. FABP5 expression remained stable throughout the 12 months following the induction of the disease, whereas STRA6 and CRABP2 continued to decrease during the same period. Conclusions: Our study confirms that a shift in the CRABP2:FABP5 ratio has similar in vivo effects as it does in vitro: changing RA expression with disease induction and progression. As CRABP2 may be important in determining cell fate in the endometrium, gene expression changes could contribute to the anti-apoptotic behavior of affected cells. As expression changes more during progression, earlier rather than later treatment becomes more critical in reducing the rate of disease progression.
Collapse
Affiliation(s)
- Mary Ellen Pavone
- Division of Reproductive Endocrinology and Infertility, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Allison R Grover
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rafael Confino
- Division of Reproductive Endocrinology and Infertility, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth K Pearson
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Saurabh Malpani
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - You-Hong Cheng
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Serdar Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
20
|
Shen M, Zhou Z, Li BB, Lv M, Feng C, Chen S, Shi S, Kang M, Zhao T. Investigation of miR-21-5p Key Target Genes and Pathways in Head and Neck Squamous Cell Carcinoma Based on TCGA Database and Bioinformatics Analysis. Technol Cancer Res Treat 2022; 21:15330338221081245. [PMID: 35235474 PMCID: PMC9114514 DOI: 10.1177/15330338221081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Head and neck squamous cell carcinoma (HNSCC) is the sixth most
commonly diagnosed malignancy worldwide. Overexpressed of microRNA-21-5p
(miR-21-5p) has been reported to be involved in the development of HNSCC.
However, the role of miR-21-5p in HNSCC is still not fully elucidated. The
purpose of this study was to explore the underlying molecular mechanisms of
miR-21-5p in HNSCC. Methods: RT-qPCR was used to determine the
differential expression levels of miR-21-5p in tissue samples of HNSCC patients.
Meta-analysis was performed based on miRNA expression data collected from the
Gene Expression Omnibus (GEO) database, The Cancer Genome Atlas (TCGA), and
published articles to evaluate the expression of miR-21-5p in HNSCC. We
investigated the biological function of miR-21-5P by gene ontology enrichment
and target prediction analysis. Furthermore, RT-qPCR and IHC were conducted to
verify the expression of target genes. Finally, Kaplan–Meier survival analysis
was performed to assessed the prognostic value of the putative miR-21-5p target
genes. Results: MiR-21-5p was significantly overexpressed in HNSCC
compared to healthy tissues (P < .05) and showed potent
predictive power with a summary receiver operating characteristic of 0.90.
Meanwhile, the expression of miR-21-5p was significantly correlated with tumor
stage, T stage and smoking in HNSCC (P < .05). A total of 71
down-regulated genes, both HNSCC-related and miR-21-p5-related, were obtained
from the analytical integration. Two predicted genes (ADH7, RDH12) were
down-regulated in HNSCC, and significantly negatively correlated with miR-21-5p.
IHC and RT-qPCR demonstrated that the expression of ADH7 and RDH12 in HNSCC
samples was significantly lower than control. And high expression of ADH7 was
associated with better DFS of HNSCC patients. Conclusions:
miR-21-5p may target at ADH7, RDH12 and participate in regulation of retinol
metabolism, which might affect the prognosis of HNSCC. High expression of ADH7
may indicate better prognosis in HNSCC patients.
Collapse
Affiliation(s)
- Mingjun Shen
- 117742The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China.,Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, Guangxi, P.R. China
| | - Ziyan Zhou
- 117742The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China.,Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, Guangxi, P.R. China
| | - Bai Bei Li
- 74626Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Meixin Lv
- 74626Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Chunling Feng
- 74626Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Sixia Chen
- 117742The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China.,Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, Guangxi, P.R. China
| | - Shuo Shi
- 117742The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Min Kang
- 117742The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China.,Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, Guangxi, P.R. China
| | - Tingting Zhao
- 74626Guangxi Medical University, Nanning, Guangxi, P.R. China
| |
Collapse
|
21
|
Duong TB, Waxman JS. Patterning of vertebrate cardiac progenitor fields by retinoic acid signaling. Genesis 2021; 59:e23458. [PMID: 34665508 DOI: 10.1002/dvg.23458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
The influence of retinoic acid (RA) signaling on vertebrate development has a well-studied history. Cumulatively, we now understand that RA signaling has a conserved requirement early in development restricting cardiac progenitors within the anterior lateral plate mesoderm of vertebrate embryos. Moreover, genetic and pharmacological manipulations of RA signaling in vertebrate models have shown that proper heart development is achieved through the deployment of positive and negative feedback mechanisms, which maintain appropriate RA levels. In this brief review, we present a chronological overview of key work that has led to a current model of the critical role for early RA signaling in limiting the generation of cardiac progenitors within vertebrate embryos. Furthermore, we integrate the previous work in mice and our recent findings using zebrafish, which together show that RA signaling has remarkably conserved influences on the later-differentiating progenitor populations at the arterial and venous poles. We discuss how recognizing the significant conservation of RA signaling on the differentiation of these progenitor populations offers new perspectives and may impact future work dedicated to examining vertebrate heart development.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Wang X, Huang J, Zheng Y, Long S, Lin H, Zhang N, Tian M, Wu X, An R, Ma S, Tan H. Study on the relationship between DNA methylation of target CpG sites in peripheral blood and gestational diabetes during early pregnancy. Sci Rep 2021; 11:20455. [PMID: 34650136 PMCID: PMC8516930 DOI: 10.1038/s41598-021-99836-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/28/2021] [Indexed: 11/15/2022] Open
Abstract
Genome-wide DNA methylation profiling have been used to find maternal CpG sites related to the occurrence of gestational diabetes mellitus (GDM). However, none of these differential sites found has been verified in a larger sample. Here, our aim was to evaluate whether first trimester changes in target CpG sites in the peripheral blood of pregnancy women predict subsequent development of GDM. This nested case–control study was based upon an early pregnancy follow-up cohort (ChiCTR1900020652). Target CpG sites were extracted from related published literature and bioinformatics analysis. The DNA methylation levels at 337 CpG sites of 80 GDM cases and 80 matched healthy controls during the early pregnancy (10–15 weeks) were assessed using MethylTarget sequencing. The best cut-off level for methylation of CpG site was determined using the generated ROC curve. The independent effect of CpG site methylation status on GDM was analyzed using conditional logistic regression. Methylation levels at 6 CpG sites were significantly higher in the GDM group than in controls, whereas those at another 6 CpG sites were significantly lower (FDR < 0.05). The area under the ROC curve at each methylation level of the significant CpG sites ranged between 0.593 and 0.650 for the occurrence of GDM. After adjusting for possible confounders, the hypermethylation status of CpG site 68167324 (OR = 3.168, 1.038–9.666) and 24837915 (OR = 5.232, 1.659–16.506) was identified as more strongly associated with GDM; meanwhile, the hypermethylation of CpG site 157130156 (OR = 0.361, 0.135–0.966) and 89438648 (OR = 0.206, 0.065–0.655) might indicate lower risk of GDM. The methylation status of target CpG sites in the peripheral blood of pregnant women during the first trimester may be associated with GDM pathogenesis, and has potential as a predictor of GDM.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Jin Huang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Yixiang Zheng
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha City, Hunan Province, 410078, China
| | - Sisi Long
- Hospital Infection Control Center, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, 410078, China
| | - Huijun Lin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Na Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Mengyuan Tian
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Xinrui Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Rongjing An
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Shujuan Ma
- Reproductive and Genetic Hospital of CITIC-Xiangya, Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha City, Hunan Province, 410008, China.
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China. .,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China.
| |
Collapse
|
23
|
Herlin M, Sánchez-Pérez I, Esteban J, Korkalainen M, Barber X, Finnilä MAJ, Hamscher G, Joseph B, Viluksela M, Håkansson H. Bone toxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the retinoid system: A causality analysis anchored in osteoblast gene expression and mouse data. Reprod Toxicol 2021; 105:25-43. [PMID: 34363983 DOI: 10.1016/j.reprotox.2021.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Dioxin exposures impact on bone quality and osteoblast differentiation, as well as retinoic acid metabolism and signaling. In this study we analyzed associations between increased circulating retinol concentrations and altered bone mineral density in a mouse model following oral exposure to 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD). Additionally, effects of TCDD on differentiation marker genes and genes involved with retinoic acid metabolism were analysed in an osteoblast cell model followed by benchmark dose-response analyses of the gene expression data. Study results show that the increased trabecular and decreased cortical bone mineral density in the mouse model following TCDD exposure are associated with increased circulating retinol concentrations. Also, TCDD disrupted the expression of genes involved in osteoblast differentiation and retinoic acid synthesis, degradation, and nuclear translocation in directions compatible with increasing cellular retinoic acid levels. Further evaluation of the obtained results in relation to previously published data by the use of mode-of-action and weight-of-evidence inspired analytical approaches strengthened the evidence that TCDD-induced bone and retinoid system changes are causally related and compatible with an endocrine disruption mode of action.
Collapse
Affiliation(s)
- Maria Herlin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Ismael Sánchez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain.
| | - Javier Esteban
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain.
| | - Merja Korkalainen
- Environmental Health Unit, Finnish Institute for Health and Welfare (THL), Kuopio, Finland.
| | - Xavier Barber
- Centro de Investigación Operativa, Universidad Miguel Hernández, Elche, Alicante, Spain.
| | - Mikko A J Finnilä
- Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 10 Giessen, Germany.
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Matti Viluksela
- Environmental Health Unit, Finnish Institute for Health and Welfare (THL), Kuopio, Finland; School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Ma Z, Jiang L, Li B, Liang D, Feng Y, Liu L, Jiang C. Discovery of benzimidazole derivatives as potent and selective aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors with glucose consumption improving activity. Bioorg Med Chem 2021; 46:116352. [PMID: 34403955 DOI: 10.1016/j.bmc.2021.116352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) plays vital physiological and toxicological functions in many areas, such as CNS, inflammation, metabolic disorders, and cancers. Overexpression of ALDH1A1 has been disclosed to play an important role in obesity, diabetes and other diseases, indicating the potential need for the identification and development of small molecule ALDH1A1 inhibitors. Herein, a series of benzimidazole derivatives was designed, synthesized and evaluated. Among them, compounds 21, 27, 29, 61 and 65 exhibited excellent inhibitory activity against ALDH1A1 with IC50 values in the low micromolar range and high selectivity over ALDH1A2, ALDH1A3, ALDH2 and ALDH3A1. Moreover, an in vitro study demonstrated that all five compounds effectively improved glucose consumption in HepG2 cells, of which, 61 and 65 at 10 µM produced nearly equal glucose consumption with positive control Metformin (Met) at 1 mM. Furthermore, 61 and 65 showed desirable metabolic stability in human liver microsomes. All these results suggest that 61 and 65 are suitable for further studies.
Collapse
Affiliation(s)
- Zonghui Ma
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China.
| | - Ling Jiang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Bingyan Li
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Dailin Liang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Yu Feng
- Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Li Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China.
| | - Cheng Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China.
| |
Collapse
|
25
|
Cannon A, Thompson CM, Bhatia R, Armstrong KA, Solheim JC, Kumar S, Batra SK. Molecular mechanisms of pancreatic myofibroblast activation in chronic pancreatitis and pancreatic ductal adenocarcinoma. J Gastroenterol 2021; 56:689-703. [PMID: 34279724 PMCID: PMC9052363 DOI: 10.1007/s00535-021-01800-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 02/04/2023]
Abstract
Pancreatic fibrosis (PF) is an essential component of the pathobiology of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Activated pancreatic myofibroblasts (PMFs) are crucial for the deposition of the extracellular matrix, and fibrotic reaction in response to sustained signaling. Consequently, understanding of the molecular mechanisms of PMF activation is not only critical for understanding CP and PDAC biology but is also a fertile area of research for the development of novel therapeutic strategies for pancreatic pathologies. This review analyzes the key signaling events that drive PMF activation including, initiating signals from transforming growth factor-β1, platelet derived growth factor, as well as other microenvironmental cues, like hypoxia and extracellular matrix rigidity. Further, we discussed the intracellular signal events contributing to PMF activation, and crosstalk with different components of tumor microenvironment. Additionally, association of epidemiologically established risk factors for CP and PDAC, like alcohol intake, tobacco exposure, and metabolic factors with PMF activation, is discussed to comprehend the role of lifestyle factors on pancreatic pathologies. Overall, this analysis provides insight into the biology of PMF activation and highlights salient features of this process, which offer promising therapeutic targets.
Collapse
Affiliation(s)
- Andrew Cannon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Christopher Michael Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | - Joyce Christopher Solheim
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
26
|
Whiteley SL, Holleley CE, Wagner S, Blackburn J, Deveson IW, Marshall Graves JA, Georges A. Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination. PLoS Genet 2021; 17:e1009465. [PMID: 33857129 PMCID: PMC8049264 DOI: 10.1371/journal.pgen.1009465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
How temperature determines sex remains unknown. A recent hypothesis proposes that conserved cellular mechanisms (calcium and redox; 'CaRe' status) sense temperature and identify genes and regulatory pathways likely to be involved in driving sexual development. We take advantage of the unique sex determining system of the model organism, Pogona vitticeps, to assess predictions of this hypothesis. P. vitticeps has ZZ male: ZW female sex chromosomes whose influence can be overridden in genetic males by high temperatures, causing male-to-female sex reversal. We compare a developmental transcriptome series of ZWf females and temperature sex reversed ZZf females. We demonstrate that early developmental cascades differ dramatically between genetically driven and thermally driven females, later converging to produce a common outcome (ovaries). We show that genes proposed as regulators of thermosensitive sex determination play a role in temperature sex reversal. Our study greatly advances the search for the mechanisms by which temperature determines sex.
Collapse
Affiliation(s)
- Sarah L. Whiteley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Clare E. Holleley
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Susan Wagner
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - James Blackburn
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Ira W. Deveson
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Jennifer A. Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Latrobe University, Melbourne, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
27
|
Martins MD, Silveira FM, Martins MAT, Almeida LO, Bagnato VS, Squarize CH, Castilho RM. Photobiomodulation therapy drives massive epigenetic histone modifications, stem cells mobilization and accelerated epithelial healing. JOURNAL OF BIOPHOTONICS 2021; 14:e202000274. [PMID: 33025746 DOI: 10.1002/jbio.202000274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidence indicates the clinical benefits of photobiomodulation therapy (PBMT) in the management of skin and mucosal wounds. Here, we decided to explore the effects of different regiments of PBMT on epithelial cells and stem cells, and the potential implications over the epigenetic circuitry during healing. Scratch-wound migration, immunofluorescence (anti-acetyl-Histone H3, anti-acetyl-CBP/p300 and anti-BMI1), nuclear morphometry and western blotting (anti-Phospho-S6, anti-methyl-CpG binding domain protein 2 [MBD2]) were performed. Epithelial stem cells were identified by the aldehyde dehydrogenase enzymatic levels and sphere-forming assay. We observed that PBMT-induced accelerated epithelial migration and chromatin relaxation along with increased levels of histones acetylation, the transcription cofactors CBP/p300 and mammalian target of rapamycin. We further observed a reduction of the transcription repression-associated protein MBD2 and a reduced number of epithelial stem cells and spheres. In this study, we showed that PBMT could induce epigenetic modifications of epithelial cells and control stem cell fate, leading to an accelerated healing phenotype.
Collapse
Affiliation(s)
- Manoela D Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Felipe Martins Silveira
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Marco A T Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Oral Medicine, Hospital de Clínicas de Porto Alegre (HCPA/UFRGS), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana O Almeida
- Laboratory of Tissue Culture, Department of Basic and Oral Biology, University of Sao Paulo School of Dentistry, Ribeirao Preto, Rio Grande do Sul, Brazil
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
The demethylase inhibitor GSK-J4 limits inflammatory colitis by promoting de novo synthesis of retinoic acid in dendritic cells. Sci Rep 2021; 11:1342. [PMID: 33446666 PMCID: PMC7809056 DOI: 10.1038/s41598-020-79122-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/26/2020] [Indexed: 02/08/2023] Open
Abstract
Dendritic cells (DCs) promote T-cell mediated tolerance to self-antigens and induce inflammation to innocuous-antigens. This dual potential makes DCs fundamental players in inflammatory disorders. Evidence from inflammatory colitis mouse models and inflammatory bowel diseases (IBD) patients indicated that gut inflammation in IBD is driven mainly by T-helper-1 (Th1) and Th17 cells, suggesting an essential role for DCs in the development of IBD. Here we show that GSK-J4, a selective inhibitor of the histone demethylase JMJD3/UTX, attenuated inflammatory colitis by reducing the inflammatory potential and increasing the tolerogenic features of DCs. Mechanistic analyses revealed that GSK-J4 increased activating epigenetic signals while reducing repressive marks in the promoter of retinaldehyde dehydrogenase isoforms 1 and 3 in DCs, enhancing the production of retinoic acid. This, in turn, has an impact on regulatory T cells (Treg) increasing their lineage stability and gut tropism as well as potentiating their suppressive activity. Our results open new avenues for the treatment of IBD patients.
Collapse
|
29
|
Li B, Yang K, Liang D, Jiang C, Ma Z. Discovery and development of selective aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors. Eur J Med Chem 2020; 209:112940. [PMID: 33328099 DOI: 10.1016/j.ejmech.2020.112940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022]
Abstract
ALDH1A1, one important member of 19 ALDHs, can metabolize reactive aldehydes to their corresponding carboxylic acid derivatives and play important physiological and toxicological roles in many areas, including CNS, metabolic disorders, and cancers. Overexpression of ALDH1A1 correlates with poor prognosis and tumor aggressiveness, is associated with drug resistance in traditional chemotherapy for cancer treatment and contributes to obesity, diabetes, and inflammation. So, inhibition of ALDH1A1 may offer new therapeutic options for patients with cancer, obesity, diabetes, and inflammation. Up to now, many ALDH1A1 inhibitors with different scaffolds have been identified and developed as useful chemical tools for better understanding of the functions of ALDH1A1 in physiologic and pathophysiologic conditions. In this review, the advances in the discovery and development of selective ALDH1A1 inhibitors are summarized, and opportunities and challenges associated with this field are also discussed.
Collapse
Affiliation(s)
- Bingyan Li
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Kang Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Dailin Liang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Cheng Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| | - Zonghui Ma
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| |
Collapse
|
30
|
Singh RK, Nasonkin IO. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front Cell Neurosci 2020; 14:179. [PMID: 33132839 PMCID: PMC7513806 DOI: 10.3389/fncel.2020.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The self-formation of retinal tissue from pluripotent stem cells generated a tremendous promise for developing new therapies of retinal degenerative diseases, which previously seemed unattainable. Together with use of induced pluripotent stem cells or/and CRISPR-based recombineering the retinal organoid technology provided an avenue for developing models of human retinal degenerative diseases "in a dish" for studying the pathology, delineating the mechanisms and also establishing a platform for large-scale drug screening. At the same time, retinal organoids, highly resembling developing human fetal retinal tissue, are viewed as source of multipotential retinal progenitors, young photoreceptors and just the whole retinal tissue, which may be transplanted into the subretinal space with a goal of replacing patient's degenerated retina with a new retinal "patch." Both approaches (transplantation and modeling/drug screening) were projected when Yoshiki Sasai demonstrated the feasibility of deriving mammalian retinal tissue from pluripotent stem cells, and generated a lot of excitement. With further work and testing of both approaches in vitro and in vivo, a major implicit limitation has become apparent pretty quickly: the absence of the uniform layer of Retinal Pigment Epithelium (RPE) cells, which is normally present in mammalian retina, surrounds photoreceptor layer and develops and matures first. The RPE layer polarize into apical and basal sides during development and establish microvilli on the apical side, interacting with photoreceptors, nurturing photoreceptor outer segments and participating in the visual cycle by recycling 11-trans retinal (bleached pigment) back to 11-cis retinal. Retinal organoids, however, either do not have RPE layer or carry patches of RPE mostly on one side, thus directly exposing most photoreceptors in the developing organoids to neural medium. Recreation of the critical retinal niche between the apical RPE and photoreceptors, where many retinal disease mechanisms originate, is so far unattainable, imposes clear limitations on both modeling/drug screening and transplantation approaches and is a focus of investigation in many labs. Here we dissect different retinal degenerative diseases and analyze how and where retinal organoid technology can contribute the most to developing therapies even with a current limitation and absence of long and functional outer segments, supported by RPE.
Collapse
|
31
|
Eduardo VG, Silvia S, Jose PC, Tiebing L, Samer G, Oscar C, Wanqing L, Naga C. ADH1B∗2 Is Associated With Reduced Severity of Nonalcoholic Fatty Liver Disease in Adults, Independent of Alcohol Consumption. Gastroenterology 2020; 159:929-943. [PMID: 32454036 PMCID: PMC7502531 DOI: 10.1053/j.gastro.2020.05.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Alcohol dehydrogenase 1B (ADH1B) is involved in alcohol metabolism. The allele A (ADH1B∗2) of the rs1229984: A>G variant in ADH1B is associated with a higher alcohol metabolizing activity compared to the ancestral allele G (ADH1B∗1). Moderate alcohol consumption is associated with reduced severity of nonalcoholic fatty liver disease (NAFLD), based on histologic analysis, compared with no alcohol consumption. However, it is unclear whether ADH1B∗2 modifies the relationship between moderate alcohol consumption and severity of NAFLD. We examined the association between ADH1B∗2 and moderate alcohol consumption and histologic severity of NAFLD. METHODS We collected data from 1557 multiethnic adult patients with biopsy-proven NAFLD enrolled into 4 different studies conducted by the Nonalcoholic Steatohepatitis (NASH) Clinical Research Network. Histories of alcohol consumption were obtained from answers to standardized questionnaires. Liver biopsy samples were analyzed by histology and scored centrally according to the NASH Clinical Research Network criteria. We performed covariate adjusted logistic regressions to identify associations between histologic features of NAFLD severity and moderate alcohol consumption and/or ADH1B∗2. RESULTS A higher proportion of Asians/Pacific Islanders/Hawaiians carried the ADH1B∗2 allele (86%) than other racial groups (4%-13%). However, the study population comprised mostly non-Hispanic whites (1153 patients, 74%), so the primary analysis focused on this group. Among them, 433 were moderate drinkers and 90 were ADH1B∗2 carriers. After we adjusted for confounders, including alcohol consumption status, ADH1B∗2 was associated with lower frequency of steatohepatitis (odds ratio [OR], 0.52; P < .01) or fibrosis (odds ratio, 0.69; P = .050) compared with ADH1B∗1. Moderate alcohol consumption (g/d) reduced the severity of NAFLD in patients with ADH1B∗1 or ADH1B∗2. However, ADH1B∗2, compared to ADH1B∗1, was associated with a reduced risk of definite NASH (ADH1B∗2: OR, 0.80; P < .01 vs ADH1B∗1: OR, 0.96; P = .036) and a reduced risk of an NAFLD activity score of 4 or higher (ADH1B∗2: OR, 0.83; P = .012 vs ADH1B∗1: OR, 0.96; P = .048) (P < .01 for the difference in the effect of moderate alcohol consumption between alleles). The relationship between body mass index and NAFLD severity was significantly modified by ADH1B∗2, even after we controlled for alcohol consumption. CONCLUSIONS ADH1B∗2 reduces the risk of NASH and fibrosis in adults with NAFLD regardless of alcohol consumption status. ADH1B∗2 might modify the association between high body mass index and NAFLD severity.
Collapse
Affiliation(s)
- Vilar-Gomez Eduardo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Sookoian Silvia
- Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| | - Pirola Carlos Jose
- Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| | - Liang Tiebing
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Gawrieh Samer
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Cummings Oscar
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Liu Wanqing
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences; Department of Pharmacology, School of Medicine; Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | - Chalasani Naga
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
32
|
Giuli MV, Hanieh PN, Giuliani E, Rinaldi F, Marianecci C, Screpanti I, Checquolo S, Carafa M. Current Trends in ATRA Delivery for Cancer Therapy. Pharmaceutics 2020; 12:E707. [PMID: 32731612 PMCID: PMC7465813 DOI: 10.3390/pharmaceutics12080707] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
All-Trans Retinoic Acid (ATRA) is the most active metabolite of vitamin A. It is critically involved in the regulation of multiple processes, such as cell differentiation and apoptosis, by activating specific genomic pathways or by influencing key signaling proteins. Furthermore, mounting evidence highlights the anti-tumor activity of this compound. Notably, oral administration of ATRA is the first choice treatment in Acute Promyelocytic Leukemia (APL) in adults and NeuroBlastoma (NB) in children. Regrettably, the promising results obtained for these diseases have not been translated yet into the clinics for solid tumors. This is mainly due to ATRA-resistance developed by cancer cells and to ineffective delivery and targeting. This up-to-date review deals with recent studies on different ATRA-loaded Drug Delivery Systems (DDSs) development and application on several tumor models. Moreover, patents, pre-clinical, and clinical studies are also reviewed. To sum up, the main aim of this in-depth review is to provide a detailed overview of the several attempts which have been made in the recent years to ameliorate ATRA delivery and targeting in cancer.
Collapse
Affiliation(s)
- Maria Valeria Giuli
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Patrizia Nadia Hanieh
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Eugenia Giuliani
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Federica Rinaldi
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, 04100 Latina, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| |
Collapse
|
33
|
Beedle MT, Stevison F, Zhong G, Topping T, Hogarth C, Isoherranen N, Griswold MD. Sources of all-trans retinal oxidation independent of the aldehyde dehydrogenase 1A isozymes exist in the postnatal testis†. Biol Reprod 2020; 100:547-560. [PMID: 30247516 DOI: 10.1093/biolre/ioy200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/01/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
Despite the essential role of the active metabolite of vitamin A, all-trans retinoic acid (atRA) in spermatogenesis, the enzymes, and cellular populations responsible for its synthesis in the postnatal testis remain largely unknown. The aldehyde dehydrogenase 1A (ALDH1A) family of enzymes residing within Sertoli cells is responsible for the synthesis of atRA, driving the first round of spermatogenesis. Those studies also revealed that the atRA required to drive subsequent rounds of spermatogenesis is possibly derived from the ALDH1A enzymes residing within the meiotic and post-meiotic germ cells. Three ALDH1A isozymes (ALDH1A1, ALDH1A2, and ALDH1A3) are present in the testis. Although, ALDH1A1 is expressed in adult Sertoli cells and is suggested to contribute to the atRA required for the pre-meiotic transitions, ALDH1A2 is proposed to be the essential isomer involved in testicular atRA biosynthesis. In this report, we first examine the requirement for ALDH1A2 via the generation and analysis of a conditional Aldh1a2 germ cell knockout and a tamoxifen-induced Aldh1a2 knockout model. We then utilized the pan-ALDH1A inhibitor (WIN 18446) to test the collective contribution of the ALDH1A enzymes to atRA biosynthesis following the first round of spermatogenesis. Collectively, our data provide the first in vivo evidence demonstrating that animals severely deficient in ALDH1A2 postnatally proceed normally through spermatogenesis. Our studies with a pan-ALDH1A inhibitor (WIN 18446) also suggest that an alternative source of atRA biosynthesis independent of the ALDH1A enzymes becomes available to maintain atRA levels for several spermatogenic cycles following an initial atRA injection.
Collapse
Affiliation(s)
- My-Thanh Beedle
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Faith Stevison
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Guo Zhong
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Traci Topping
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cathryn Hogarth
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Michael D Griswold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
34
|
Yin SJ, Park MW, Lee BN, Yang JM, Park YD, Qian GY. Functional study of acetaldehyde dehydrogenase 1 (ALDH1) in keratinocytes: microarray integrating bioinformatics approaches. J Biomol Struct Dyn 2020; 39:2133-2151. [PMID: 32189581 DOI: 10.1080/07391102.2020.1745281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The function of acetaldehyde dehydrogenase 1 (ALDH1) has been gradually elucidated in several diseases, especially in various cancers. However, the role of ALDH1 in skin-related diseases has been mostly unknown. Previously, we found that ALDH1 is involved in the pathogenesis of atopic dermatitis (AD). In this study, we used high-throughput screening (HTS) approaches to identify critical factors associated with ALDH1 in human keratinocytes to reveal its functions in skin. We overexpressed ALDH1 in human HaCaT keratinocytes and then conducted serial HTS studies, a DNA microarray and antibody array integrated with bioinformatics algorithms. Together, those tests identified several novel genes associated with the function of ALDH1 in keratinocytes, as well as AD, including CTSG and CCL11. In particular, GNB3, GHSR, TAS2R9, FFAR1, TAS2R16, CCL21, GPR32, NPFFR1, GPR15, FBXW12, CCL19, EDNRA, FFAR3, and RXFP3 proteins were consistently detected as hub proteins in the PPI maps. By integrating the datasets obtained from these HTS studies and using the strengths of each method, we obtained new insights into the functional role of ALDH1 in skin keratinocytes. The approach used here could contribute to the clinical understanding of ALDH1-associated applications for the treatment of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Min-Woo Park
- Genomic Research Center, EBIOGEN Inc, Seoul, Korea
| | - Bit-Na Lee
- Genomic Research Center, EBIOGEN Inc, Seoul, Korea
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China.,Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea.,Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| |
Collapse
|
35
|
Ahi EP, Lecaudey LA, Ziegelbecker A, Steiner O, Glabonjat R, Goessler W, Hois V, Wagner C, Lass A, Sefc KM. Comparative transcriptomics reveals candidate carotenoid color genes in an East African cichlid fish. BMC Genomics 2020; 21:54. [PMID: 31948394 PMCID: PMC6966818 DOI: 10.1186/s12864-020-6473-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Carotenoids contribute significantly to animal body coloration, including the spectacular color pattern diversity among fishes. Fish, as other animals, derive carotenoids from their diet. Following uptake, transport and metabolic conversion, carotenoids allocated to body coloration are deposited in the chromatophore cells of the integument. The genes involved in these processes are largely unknown. Using RNA-Sequencing, we tested for differential gene expression between carotenoid-colored and white skin regions of a cichlid fish, Tropheus duboisi "Maswa", to identify genes associated with carotenoid-based integumentary coloration. To control for positional gene expression differences that were independent of the presence/absence of carotenoid coloration, we conducted the same analyses in a closely related population, in which both body regions are white. RESULTS A larger number of genes (n = 50) showed higher expression in the yellow compared to the white skin tissue than vice versa (n = 9). Of particular interest was the elevated expression level of bco2a in the white skin samples, as the enzyme encoded by this gene catalyzes the cleavage of carotenoids into colorless derivatives. The set of genes with higher expression levels in the yellow region included genes involved in xanthophore formation (e.g., pax7 and sox10), intracellular pigment mobilization (e.g., tubb, vim, kif5b), as well as uptake (e.g., scarb1) and storage (e.g., plin6) of carotenoids, and metabolic conversion of lipids and retinoids (e.g., dgat2, pnpla2, akr1b1, dhrs). Triglyceride concentrations were similar in the yellow and white skin regions. Extracts of integumentary carotenoids contained zeaxanthin, lutein and beta-cryptoxanthin as well as unidentified carotenoid structures. CONCLUSION Our results suggest a role of carotenoid cleavage by Bco2 in fish integumentary coloration, analogous to previous findings in birds. The elevated expression of genes in carotenoid-rich skin regions with functions in retinol and lipid metabolism supports hypotheses concerning analogies and shared mechanisms between these metabolic pathways. Overlaps in the sets of differentially expressed genes (including dgat2, bscl2, faxdc2 and retsatl) between the present study and previous, comparable studies in other fish species provide useful hints to potential carotenoid color candidate genes.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| | - Laurène A. Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Angelika Ziegelbecker
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Oliver Steiner
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010, Graz, Austria
| | - Ronald Glabonjat
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010, Graz, Austria
| | - Victoria Hois
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/II, 8010, Graz, Austria
| | - Carina Wagner
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/II, 8010, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/II, 8010, Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| |
Collapse
|
36
|
Zheng J, Taylor B, Dodge J, Stephans A, Zheng SG, Chen Q, Chen X. Radiation and host retinoic acid signaling promote the induction of gut-homing donor T cells after allogeneic hematopoietic stem cell transplantation. Am J Transplant 2020; 20:64-74. [PMID: 31207088 PMCID: PMC6918002 DOI: 10.1111/ajt.15501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/25/2023]
Abstract
Intestinal graft-versus-host disease (GVHD) remains a devastating complication after allogeneic hematopoietic stem cell transplantation (HSCT). Although it has been well established that gut-tropic donor T cells expressing integrin α4β7 are required to cause intestinal damage, the factors that control the induction of this pathogenic T cell population remain to be identified. Retinoic acid (RA) plays an important role in inducing α4β7 expression on T cells. In this study, we showed that gene expression of retinaldehyde dehydrogenase, the key enzyme involved in RA biosynthesis, is significantly increased in the spleen and mesenteric lymph nodes (MLNs) of irradiated mice. In a C57BL/6-into-B6D2F1 allogeneic HSCT model, irradiation significantly increased the induction of α4β7+ -donor T cells in mesenteric lymph nodes and spleen. Furthermore, we found that the RA pathway modulates the ability of dendritic cells to imprint gut-homing specificity on alloreactive T cells. We also showed that host dendritic cell RA signaling influences GVHD risk. Our studies identified radiation and recipient RA signaling as 2 primary factors that dictate the magnitude of gut-homing donor T cell induction after allogeneic HSCT. Attenuating radiation-associated inflammation and modulating host RA signaling represent feasible strategies to mitigate intestinal GVHD by reducing gut-seeking pathogenic donor T cells.
Collapse
Affiliation(s)
- Jianwei Zheng
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;,Department of Oncology, the Union Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Brian Taylor
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph Dodge
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison Stephans
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University School of Medicine and Wexner Medical Center, Columbus, OH 43201
| | - Qiang Chen
- Department of Oncology, the Union Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao Chen
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
37
|
Viera-Vera J, García-Arrarás JE. Retinoic Acid Signaling Is Associated with Cell Proliferation, Muscle Cell Dedifferentiation, and Overall Rudiment Size during Intestinal Regeneration in the Sea Cucumber, Holothuria glaberrima. Biomolecules 2019; 9:biom9120873. [PMID: 31847189 PMCID: PMC6995554 DOI: 10.3390/biom9120873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Almost every organism has the ability of repairing damaged tissues or replacing lost and worn out body parts, nevertheless the degree of the response substantially differs between each species. Adult sea cucumbers from the Holothuria glaberrima species can eviscerate various organs and the intestinal system is the first one to regenerate. This process involves the formation of a blastema-like structure that derives from the torn mesentery edges by the intervention of specific cellular processes (e.g., cell dedifferentiation and division). Still, the genetic networks controlling the regenerative response in this model system are just starting to be unraveled. In this work we examined if and how the retinoic acid (RA) signaling pathway is involved in the regenerative response of this deuterostome. We first identified and characterized the holothurian orthologs for short chain dehydrogenase/reductase 7 (SDR7) and aldehyde dehydrogenase family 8A1 (ALDH8A1), two enzymes respectively associated with retinaldehyde and RA anabolism. We then showed that the SDR7 transcript was differentially expressed during specific stages of intestinal regeneration while ALDH8A1 did not show significant differences in regenerating tissues when compared to those of normal (non-eviscerated) organisms. Finally, we investigated the consequences of modulating RA signaling during intestinal regeneration using pharmacological tools. We showed that application of an inhibitor (citral) of the enzyme synthesizing RA or a retinoic acid receptor (RAR) antagonist (LE135) resulted in organisms with a significantly smaller intestinal rudiment when compared to those treated with DMSO (vehicle). The two inhibitors caused a reduction in cell division and cell dedifferentiation in the new regenerate when compared to organisms treated with DMSO. Results of treatment with tazarotene (an RAR agonist) were not significantly different from the control. Taken together, these results suggest that the RA signaling pathway is regulating the cellular processes that are crucial for intestinal regeneration to occur. Thus, RA might be playing a role in echinoderm regeneration that is similar to what has been described in other animal systems.
Collapse
|
38
|
Szafarowski T, Sierdziński J, Ludwig N, Głuszko A, Filipowska A, Szczepański MJ. Assessment of cancer stem cell marker expression in primary head and neck squamous cell carcinoma shows prognostic value for aldehyde dehydrogenase (ALDH1A1). Eur J Pharmacol 2019; 867:172837. [PMID: 31811857 DOI: 10.1016/j.ejphar.2019.172837] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022]
Abstract
Cancer stem cells (CSCs) play a key role in carcinogenesis and progression of head and neck squamous cell carcinomas (HNSCC). The most common markers indicating for CSCs are: CD44, CD24, CD133, ALDH1A1. Our objective was to evaluate the prognostic potential of CSC markers in HNSCC. The study included 49 patients treated for primary HNSCC, 11 patients with upper respiratory tract epithelial dysplasia and 12 subjects with the normal pharyngeal mucosa as a control group. The frequency and expression levels of the four CSC markers were assessed by immunohistochemistry. Univariate and multivariate analyses were used to correlate CSC expression levels with tumor stage, lymph node metastases or overall survival (OS). CD44, CD24, CD133, ALDH1A1 were widely expressed in tumors, whereas CD44 was found to be higher in cancer tissue (P = 0.001). ALDH1A1 expression levels were found to be significantly higher in T3-T4 tumors vs. T1-T2 tumors (P = 0.05). Lymph node metastases had significantly higher expression levels of CD24 (P = 0.01) and CD133 (P < 0.05) than primary tumors. Multifactorial analysis revealed that overall survival (OS) for patients with ALDH1A1 negative tumors was 5.25 times higher than for patients with ALDH1A1 positive (ALDH1A1+) tumors (P = 0.01). On univariate and multivariate analysis, only ALDH1A1 positivity had a significant effect on OS of HNSCC patients (HR = 2.47 for P = 0.02). Immunohistochemistry-based assessments of CSC marker expression in HNSCC has significant predictive implications for patients with HNSCC. The frequency of CSCs in the tumor, specifically of ALDH1A1+ cells correlated with five-year OS in these patients.
Collapse
Affiliation(s)
- Tomasz Szafarowski
- Department of Otolaryngology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Stępińska 19/25 Str., 00-739, Warsaw, Poland.
| | - Janusz Sierdziński
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Litewska 14/16 Str., 00-581, Warsaw, Poland.
| | - Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| | - Alicja Głuszko
- Department of Biochemistry, First Faculty of Medicine, Medical University of Warsaw, Banacha 1 Str., 02-097, Warsaw, Poland.
| | - Anna Filipowska
- Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Roosevelta 40 Str., 41-800, Zabrze, Poland.
| | - Mirosław J Szczepański
- Department of Biochemistry, First Faculty of Medicine, Medical University of Warsaw, Banacha 1 Str., 02-097, Warsaw, Poland.
| |
Collapse
|
39
|
Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proc Natl Acad Sci U S A 2019; 116:25214-25221. [PMID: 31767753 DOI: 10.1073/pnas.1913915116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Seasonal adaptation to changes in light:dark regimes (i.e., photoperiod) allows organisms living at temperate latitudes to anticipate environmental changes. In nearly all animals studied so far, the circadian system has been implicated in measurement and response to the photoperiod. In insects, genetic evidence further supports the involvement of several clock genes in photoperiodic responses. Yet, the key molecular pathways linking clock genes or the circadian clock to insect photoperiodic responses remain largely unknown. Here, we show that inactivating the clock in the North American monarch butterfly using loss-of-function mutants for the circadian activators CLOCK and BMAL1 and the circadian repressor CRYPTOCHROME 2 abolishes photoperiodic responses in reproductive output. Transcriptomic approaches in the brain of monarchs raised in long and short photoperiods, summer monarchs, and fall migrants revealed a molecular signature of seasonal-specific rhythmic gene expression that included several genes belonging to the vitamin A pathway. We found that the rhythmic expression of these genes was abolished in clock-deficient mutants, suggesting that the vitamin A pathway operates downstream of the circadian clock. Importantly, we showed that a CRISPR/Cas9-mediated loss-of-function mutation in the gene encoding the pathway's rate-limiting enzyme, ninaB1, abolished photoperiod responsiveness independently of visual function in the compound eye and without affecting circadian rhythms. Together, these results provide genetic evidence that the clock-controlled vitamin A pathway mediates photoperiod responsiveness in an insect. Given previously reported seasonal changes associated with this pathway in the mammalian brain, our findings suggest an evolutionarily conserved function of vitamin A in animal photoperiodism.
Collapse
|
40
|
Hu Z, Wu J, Qin L, Jin H, Lv Y, Zhang R, Xiao C, Cao Y, Zhao Y. ALDH1A1 effect on Yan Yellow Cattle preadipocyte differentiation. Anim Biotechnol 2019; 32:219-228. [PMID: 31646946 DOI: 10.1080/10495398.2019.1679824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) is a cytosolic enzyme that mainly catalyzes the oxidation of acetaldehyde into acetic acid and participates in the regulation of differentiation and gene expression in fat cell growth and development. However, the physiological role of ALDH1A1 in the formation of fat cell precursors in the Yan Yellow Cattle is still not clear. Herein, we investigated the specific regulation of the gene encoding for ALDH1A1 during the differentiation process of the adipocyte cells of the Yan Yellow Cattle by interfering or overexpressing the ALDH1A1 gene. As a result, we found that the mRNA expression levels of ALDH1A1 were significantly increased during the formation of progenitor cells. In addition, the expression levels of the Lipoprotein lipase (LPL) and transcription factors (PPARγ, C/EBPα) were also significantly increased. ALDH1A1 gene overexpression and RNA interfering promoted and inhibited respectively the lipid accumulation and triglyceride production in mature adipocytes, and the expression of the LPL and transcription factors (PPARγ, C/EBPα). The changes in the protein expression levels of ALDH1A1 and adipogenic factors were in accord with the changes observed in the mRNA levels. In conclusion, our results indicate that ALDH1A1 plays an important regulatory role in the differentiation of preadipocyte cells.
Collapse
Affiliation(s)
- Zhongchang Hu
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China.,Agriculture College of Yanbian University, Yanji, China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Affairs, Gongzhuling, China
| | - Jian Wu
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Affairs, Gongzhuling, China
| | - Lihong Qin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Affairs, Gongzhuling, China
| | - Haiguo Jin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China.,Agriculture College of Yanbian University, Yanji, China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Affairs, Gongzhuling, China
| | - Yang Lv
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China.,Agriculture College of Yanbian University, Yanji, China
| | - Ran Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Cheng Xiao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China.,Agriculture College of Yanbian University, Yanji, China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Affairs, Gongzhuling, China
| | - Yumin Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China.,Agriculture College of Yanbian University, Yanji, China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Affairs, Gongzhuling, China
| |
Collapse
|
41
|
Namekawa T, Ikeda K, Horie-Inoue K, Suzuki T, Okamoto K, Ichikawa T, Yano A, Kawakami S, Inoue S. ALDH1A1 in patient-derived bladder cancer spheroids activates retinoic acid signaling leading to TUBB3 overexpression and tumor progression. Int J Cancer 2019; 146:1099-1113. [PMID: 31187490 DOI: 10.1002/ijc.32505] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
Acquired chemoresistance is a critical issue for advanced bladder cancer patients during long-term treatment. Recent studies reveal that a fraction of tumor cells with enhanced tumor-initiating potential, or cancer stem-like cells (CSCs), may particularly contribute to acquired chemoresistance and recurrence. Thus, CSC characterization will be the first step towards understanding the mechanisms underlying advanced disease. Here we generated long-term patient-derived cancer cells (PDCs) from bladder cancer patient specimens in spheroid culture, which is favorable for CSC enrichment. Pathological features of bladder cancer PDCs and PDC-dependent patient-derived xenografts (PDXs) were basically similar to those of their corresponding patients' specimens. Notably, CSC marker aldehyde dehydrogenase 1A1 (ALDH1A1), a critical enzyme that synthesizes retinoic acid (RA), was abundantly expressed in PDCs. ALDH1A1 inhibitors and shRNAs repressed both PDC proliferation and spheroid formation, whereas all-trans RA could rescue ALDH1A1 shRNA-suppressed spheroid formation. ALDH inhibitor also reduced the in vivo growth of PDC-derived xenografts. ALDH1A1 knockdown study showed that tubulin beta III (TUBB3) was one of the downregulated genes in PDCs. We identified functional RA response elements in TUBB3 promoter, whose transcriptional activities were substantially activated by RA. Clinical survival database reveals that TUBB3 expression may associate with poor prognosis in bladder cancer patients. Moreover, TUBB3 knockdown was sufficient to suppress PDC proliferation and spheroid formation. Taken together, our results indicate that ALDH1A1 and its putative downstream target TUBB3 are overexpressed in bladder cancer, and those molecules could be applied to alternative diagnostic and therapeutic options for advanced disease.
Collapse
Affiliation(s)
- Takeshi Namekawa
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Hospital, Tokyo, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akihiro Yano
- Department of Urology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Satoru Kawakami
- Department of Urology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
42
|
Liu B, Calton MA, Abell NS, Benchorin G, Gloudemans MJ, Chen M, Hu J, Li X, Balliu B, Bok D, Montgomery SB, Vollrath D. Genetic analyses of human fetal retinal pigment epithelium gene expression suggest ocular disease mechanisms. Commun Biol 2019; 2:186. [PMID: 31123710 PMCID: PMC6527609 DOI: 10.1038/s42003-019-0430-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The retinal pigment epithelium (RPE) serves vital roles in ocular development and retinal homeostasis but has limited representation in large-scale functional genomics datasets. Understanding how common human genetic variants affect RPE gene expression could elucidate the sources of phenotypic variability in selected monogenic ocular diseases and pinpoint causal genes at genome-wide association study (GWAS) loci. We interrogated the genetics of gene expression of cultured human fetal RPE (fRPE) cells under two metabolic conditions and discovered hundreds of shared or condition-specific expression or splice quantitative trait loci (e/sQTLs). Co-localizations of fRPE e/sQTLs with age-related macular degeneration (AMD) and myopia GWAS data suggest new candidate genes, and mechanisms by which a common RDH5 allele contributes to both increased AMD risk and decreased myopia risk. Our study highlights the unique transcriptomic characteristics of fRPE and provides a resource to connect e/sQTLs in a critical ocular cell type to monogenic and complex eye disorders.
Collapse
Affiliation(s)
- Boxiang Liu
- Department of Biology, Stanford University, Stanford, CA 94305 USA
| | - Melissa A. Calton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Nathan S. Abell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Gillie Benchorin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael J. Gloudemans
- Program in Biomedical Informatics, Stanford University School of Medicine, Stanford, 94305 CA USA
| | - Ming Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Jane Hu
- Department of Ophthalmology, Jules Stein Eye Institute, UCLA, Los Angeles, 90095 CA USA
| | - Xin Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Brunilda Balliu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Dean Bok
- Department of Ophthalmology, Jules Stein Eye Institute, UCLA, Los Angeles, 90095 CA USA
| | - Stephen B. Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
43
|
Pan J, Yu J, Sun L, Xie C, Chang L, Wu J, Hawes S, Saez-Atienzar S, Zheng W, Kung J, Ding J, Le W, Chen S, Cai H. ALDH1A1 regulates postsynaptic μ-opioid receptor expression in dorsal striatal projection neurons and mitigates dyskinesia through transsynaptic retinoic acid signaling. Sci Rep 2019; 9:3602. [PMID: 30837649 PMCID: PMC6401150 DOI: 10.1038/s41598-019-40326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/25/2019] [Indexed: 12/02/2022] Open
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1), a retinoic acid (RA) synthase, is selectively expressed by the nigrostriatal dopaminergic (nDA) neurons that preferentially degenerate in Parkinson’s disease (PD). ALDH1A1–positive axons mainly project to the dorsal striatum. However, whether ALDH1A1 and its products regulate the activity of postsynaptic striatal neurons is unclear. Here we show that μ–type opioid receptor (MOR1) levels were severely decreased in the dorsal striatum of postnatal and adult Aldh1a1 knockout mice, whereas dietary supplement of RA restores its expression. Furthermore, RA treatment also upregulates striatal MOR1 levels and signaling and alleviates L-DOPA–induced dyskinetic movements in pituitary homeobox 3 (Pitx3)–deficient mice that lack of ALDH1A1–expressing nDA neurons. Therefore, our findings demonstrate that ALDH1A1–synthesized RA is required for postsynaptic MOR1 expression in the postnatal and adult dorsal striatum, supporting potential therapeutic benefits of RA supplementation in moderating L-DOPA–induced dyskinesia.
Collapse
Affiliation(s)
- Jing Pan
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jia Yu
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing University of Chinese Medicine, Beijing, 100095, P. R. China
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengsong Xie
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa Chang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Junbing Wu
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Hawes
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara Saez-Atienzar
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wang Zheng
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Children's National Medical Center, Washington, D.C., USA
| | - Justin Kung
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Jinhui Ding
- Bioinformatics Core, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116011, P. R. China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
44
|
Gagaoua M, Bonnet M, De Koning L, Picard B. Reverse Phase Protein array for the quantification and validation of protein biomarkers of beef qualities: The case of meat color from Charolais breed. Meat Sci 2018; 145:308-319. [DOI: 10.1016/j.meatsci.2018.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
|
45
|
Yang Y, Anderson E, Zhang S. Evaluation of six sample preparation procedures for qualitative and quantitative proteomics analysis of milk fat globule membrane. Electrophoresis 2018; 39:2332-2339. [PMID: 29644703 PMCID: PMC6146045 DOI: 10.1002/elps.201800042] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023]
Abstract
Proteomic analysis of membrane proteins is challenged by the proteins solubility and detergent incompatibility with MS analysis. No single perfect protocol can be used to comprehensively characterize the proteome of membrane fraction. Here, we used cow milk fat globule membrane (MFGM) proteome analysis to assess six sample preparation procedures including one in-gel and five in-solution digestion approaches prior to LC-MS/MS analysis. The largest number of MFGM proteins were identified by suspension trapping (S-Trap) and filter-aided sample preparation (FASP) methods, followed by acetone precipitation without clean-up of tryptic peptides method. Protein identifications with highest average coverage was achieved by Chloroform/MeOH, in-gel and S-Trap methods. Most distinct proteins were identified by FASP method, followed by S-Trap. Analyses by Venn diagram, principal-component analysis, hierarchical clustering and the abundance ranking of quantitative proteins highlight differences in the MFGM fraction by the all sample preparation procedures. These results reveal the biased proteins/peptides loss occurred in each protocol. In this study, we found several novel proteins that were not observed previously by in-depth proteomics characterization of MFGM fraction in milk. Thus, a combination of multiple procedures with orthologous properties of sample preparation was demonstrated to improve the protein sequence coverage and expression level accuracy of membrane samples.
Collapse
Affiliation(s)
- Yongxin Yang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | | | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
46
|
Ning K, Ning W, Ning X, Wang X, Zhou F. Effect of As 2O 3 on colorectal CSCs stained with ALDH1 in primary cell culture in vitro. Oncol Lett 2018; 16:4008-4012. [PMID: 30128021 DOI: 10.3892/ol.2018.9110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/28/2018] [Indexed: 11/05/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common types of malignant tumor in humans, and its morbidity is on the increase in economically transitioning countries. Due to its high toxicity, the use of the Chinese Traditional Medicine arsenic (As2O3) is limited. However, certain studies have reported that As2O3 induces differentiation of tumor cells, promotes tumor cell apoptosis and inhibits tumor cell proliferation, although the number of studies on the effects of As2O3 on cancer stem cells (CSCs) of CRC is limited. In order to research the effects of different concentrations of As2O3 on CRC cells and colorectal CSCs in vitro, aldehyde dehydrogenase 1 (ALDH1) was sued to stain the cytoplasm of colorectal CSCs and DAPI was used to stain the nuclei of all tumor cells. Through observing the effect of different concentrations of As2O3 on CRC cells and colorectal CSCs, it was demonstrated that a sufficient concentration of As2O3 clearly inhibited the conversion from colorectal CSCs to CRC cells and increased the density of CSCs.
Collapse
Affiliation(s)
- Ke Ning
- Department of Internal Neurology, Baotou Medical School, Inner Mongolia Medical University, Inner Mongolia 014000, P.R. China
| | - Wenlong Ning
- Department of Emergency, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, P.R. China
| | - Xiaoting Ning
- Department of ECG Room of Second Ward, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, P.R. China
| | - Xueyan Wang
- Department of Public Health, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, P.R. China
| | - Fei Zhou
- Second Department of Breast Surgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, P.R. China
| |
Collapse
|
47
|
de Medeiros PHQS, Pinto DV, de Almeida JZ, Rêgo JMC, Rodrigues FAP, Lima AÂM, Bolick DT, Guerrant RL, Oriá RB. Modulation of Intestinal Immune and Barrier Functions by Vitamin A: Implications for Current Understanding of Malnutrition and Enteric Infections in Children. Nutrients 2018; 10:nu10091128. [PMID: 30134532 PMCID: PMC6164597 DOI: 10.3390/nu10091128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 12/24/2022] Open
Abstract
The micronutrient vitamin A refers to a group of compounds with pleiotropic effects on human health. These molecules can modulate biological functions, including development, vision, and regulation of the intestinal barrier. The consequences of vitamin A deficiency and supplementation in children from developing countries have been explored for several years. These children live in an environment that is highly contaminated by enteropathogens, which can, in turn, influence vitamin A status. Vitamin A has been described to modulate gene expression, differentiation and function of diverse immune cells; however, the underlying mechanisms are not fully elucidated. This review aims to summarize the most updated advances on elucidating the vitamin A effects targeting intestinal immune and barrier functions, which may help in further understanding the burdens of malnutrition and enteric infections in children. Specifically, by covering both clinical and in vivo/in vitro data, we describe the effects of vitamin A related to gut immune tolerance/homeostasis, intestinal barrier integrity, and responses to enteropathogens in the context of the environmental enteric dysfunction. Some of the gaps in the literature that require further research are also highlighted.
Collapse
Affiliation(s)
- Pedro Henrique Q S de Medeiros
- Laboratory of Infectious Diseases, Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Daniel V Pinto
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - Juliana Zani de Almeida
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - Juliana M C Rêgo
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
- Department of Nutrition, Christus University Center, Fortaleza 60190-060 CE, Brazil.
| | - Francisco A P Rodrigues
- Laboratory of Infectious Diseases, Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - Aldo Ângelo M Lima
- Laboratory of Infectious Diseases, Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - David T Bolick
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Reinaldo B Oriá
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| |
Collapse
|
48
|
Grace CS, Mikkola HKA, Dou DR, Calvanese V, Ronn RE, Purton LE. Protagonist or antagonist? The complex roles of retinoids in the regulation of hematopoietic stem cells and their specification from pluripotent stem cells. Exp Hematol 2018; 65:1-16. [PMID: 29981365 DOI: 10.1016/j.exphem.2018.06.287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are multipotent cells responsible for the maintenance of the hematopoietic system throughout life. Dysregulation of the balance in HSC self-renewal, death, and differentiation can have serious consequences such as myelodysplastic syndromes or leukemia. All-trans retinoic acid (ATRA), the biologically active metabolite of vitamin A/RA, has been shown to have pleiotropic effects on hematopoietic cells, enhancing HSC self-renewal while also increasing differentiation of more mature progenitors. Furthermore, ATRA has been shown to have key roles in regulating the specification and formation of hematopoietic cells from pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Here, we summarize the known roles of vitamin A and RA receptors in the regulation of hematopoiesis from HSCs, ES, and iPSCs.
Collapse
Affiliation(s)
- Clea S Grace
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Diana R Dou
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Roger E Ronn
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Louise E Purton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| |
Collapse
|
49
|
Fainsod A, Kot-Leibovich H. Xenopus embryos to study fetal alcohol syndrome, a model for environmental teratogenesis. Biochem Cell Biol 2018; 96:77-87. [DOI: 10.1139/bcb-2017-0219] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vertebrate model systems are central to characterize the outcomes of ethanol exposure and the etiology of fetal alcohol spectrum disorder (FASD), taking advantage of their genetic and morphological closeness and similarity to humans. We discuss the contribution of amphibian embryos to FASD research, focusing on Xenopus embryos. The Xenopus experimental system is characterized by external development and accessibility throughout embryogenesis, large clutch sizes, gene and protein activity manipulation, transgenesis and genome editing, convenient chemical treatment, explants and conjugates, and many other experimental approaches. Taking advantage of these methods, many insights regarding FASD have been obtained. These studies characterized the malformations induced by ethanol including quantitative analysis of craniofacial malformations, induction of fetal growth restriction, delay in gut maturation, and defects in the differentiation of the neural crest. Mechanistic, biochemical, and molecular studies in Xenopus embryos identified early gastrula as the high alcohol sensitivity window, targeting the embryonic organizer and inducing a delay in gastrulation movements. Frog embryos have also served to demonstrate the involvement of reduced retinoic acid production and an increase in reactive oxygen species in FASD. Amphibian embryos have helped pave the way for our mechanistic, molecular, and biochemical understanding of the etiology and pathophysiology of FASD.
Collapse
Affiliation(s)
- Abraham Fainsod
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hadas Kot-Leibovich
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
50
|
Jiang Y, Chen L, Taylor RN, Li C, Zhou X. Physiological and pathological implications of retinoid action in the endometrium. J Endocrinol 2018; 236:R169-R188. [PMID: 29298821 DOI: 10.1530/joe-17-0544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 01/02/2023]
Abstract
Retinol (vitamin A) and its derivatives, collectively known as retinoids, are required for maintaining vision, immunity, barrier function, reproduction, embryogenesis and cell proliferation and differentiation. Despite the fact that most events in the endometrium are predominantly regulated by steroid hormones (estrogens and progesterone), accumulating evidence shows that retinoid signaling is also involved in the development and maintenance of the endometrium, stromal decidualization and blastocyst implantation. Moreover, aberrant retinoid metabolism seems to be a critical factor in the development of endometriosis, a common gynecological disease, which affects up to 10% of reproductive age women and is characterized by the ectopic localization of endometrial-like tissue in the pelvic cavity. This review summarizes recent advances in research on the mechanisms and molecular actions of retinoids in normal endometrial development and physiological function. The potential roles of abnormal retinoid signaling in endometriosis are also discussed. The objectives are to identify limitations in current knowledge regarding the molecular actions of retinoids in endometrial biology and to stimulate new investigations toward the development potential therapeutics to ameliorate or prevent endometriosis symptoms.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Lu Chen
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Robert N Taylor
- Departments of Obstetrics and Gynecology and Molecular Medicine and Translational SciencesWake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chunjin Li
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Xu Zhou
- College of Animal SciencesJilin University, Changchun, Jilin, China
| |
Collapse
|