1
|
De Hoest-Thompson C, Marugan-Hernandez V, Dessens JT. Plasmodium LCCL domain-containing modular proteins have their origins in the ancestral alveolate. Open Biol 2024; 14:230451. [PMID: 38862023 DOI: 10.1098/rsob.230451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Plasmodium species encode a unique set of six modular proteins named LCCL lectin domain adhesive-like proteins (LAPs) that operate as a complex and that are essential for malaria parasite transmission from mosquito to vertebrate. LAPs possess complex architectures obtained through unique assemblies of conserved domains associated with lipid, protein and carbohydrate interactions, including the name-defining LCCL domain. Here, we assessed the prevalence of Plasmodium LAP orthologues across eukaryotic life. Our findings show orthologous conservation in all apicomplexans, with lineage-specific repertoires acquired through differential lap gene loss and duplication. Besides Apicomplexa, LAPs are found in their closest relatives: the photosynthetic chromerids, which encode the broadest repertoire including a novel membrane-bound LCCL protein. LAPs are notably absent from other alveolate lineages (dinoflagellates, perkinsids and ciliates), but are encoded by predatory colponemids, a sister group to the alveolates. These results reveal that the LAPs are much older than previously thought and pre-date not only the Apicomplexa but the Alveolata altogether.
Collapse
Affiliation(s)
| | | | - Johannes T Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine , London WC1E 7HT, UK
| |
Collapse
|
2
|
Bennink S, Pradel G. The Multiple Roles of LCCL Domain-Containing Proteins for Malaria Parasite Transmission. Microorganisms 2024; 12:279. [PMID: 38399683 PMCID: PMC10892792 DOI: 10.3390/microorganisms12020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Multi-protein complexes are crucial for various essential biological processes of the malaria parasite Plasmodium, such as protein synthesis, host cell invasion and adhesion. Especially during the sexual phase of the parasite, which takes place in the midgut of the mosquito vector, protein complexes are required for fertilization, sporulation and ultimately for the successful transmission of the parasite. Among the most noticeable protein complexes of the transmission stages are the ones formed by the LCCL domain-containing protein family that play critical roles in the generation of infective sporozoites. The six members of this protein family are characterized by numerous adhesive modules and domains typically found in secreted proteins. This review summarizes the findings of expression and functional studies on the LCCL domain-containing proteins of the human pathogenic P. falciparum and the rodent-infecting P. berghei and discusses the common features and differences of the homologous proteins.
Collapse
Affiliation(s)
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany;
| |
Collapse
|
3
|
Peng Y, Xiang M, Fan T, Zhong X, Dai A, Feng J, Guan P, Gong J, Li J, Wang Y. A Novel COCH p.D544Vfs*3 Variant Associated with DFNA9 Sensorineural Hearing Loss Causes Pathological Multimeric Cochlin Formation. Life (Basel) 2023; 14:33. [PMID: 38255649 PMCID: PMC10817332 DOI: 10.3390/life14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
COCH (coagulation factor C homology) is one of the most frequently mutated genes of autosomal dominant non-syndromic hearing loss. Variants in COCH could cause DFNA9, which is characterized by late-onset hearing loss with variable degrees of vestibular dysfunction. In this study, we report a Chinese family with a novel COCH variant (c.1687delA) causing p.D544Vfs*3 in the cochlin. Comprehensive audiometric tests and vestibular function assessments were taken to acquire the phenotypic profile of the subjects. Next-generation sequencing was conducted and segregation analysis was carried out using Sanger sequencing. The proband presented mild vestibular symptoms and normal functional assessment results in almost every test, while the variant co-segregated with hearing impairment in the pedigree. The variant was located beyond the vWFA2 domain, which was predicted to affect the post-translational cleavage of the cochlin via molecular modeling analysis. Notably, in the overexpressing study, by transient transfecting the HEK 293T cells, we found that the p.D544Vfs*3 variant increased the formation of multimeric cochlin. Our result enriched the spectrum of DFNA9-linked pathological COCH variants and suggested that variants, causative of cochlin multimerization, could be related to DFNA9 with sensorineural hearing loss rather than serious vestibular symptoms.
Collapse
Affiliation(s)
- Yingqiu Peng
- ENT Institute and Department of Otorhinolaryngology, EYE & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Mengya Xiang
- ENT Institute and Department of Otorhinolaryngology, EYE & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Ting Fan
- ENT Institute and Department of Otorhinolaryngology, EYE & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Xiaofang Zhong
- Clinical Laboratory Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Aqiang Dai
- ENT Institute and Department of Otorhinolaryngology, EYE & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jialing Feng
- ENT Institute and Department of Otorhinolaryngology, EYE & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Pengfei Guan
- ENT Institute and Department of Otorhinolaryngology, EYE & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jiamin Gong
- ENT Institute and Department of Otorhinolaryngology, EYE & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jian Li
- Clinical Laboratory Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Yunfeng Wang
- ENT Institute and Department of Otorhinolaryngology, EYE & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| |
Collapse
|
4
|
Solov'eva TF, Bakholdina SI, Naberezhnykh GA. Host Defense Proteins and Peptides with Lipopolysaccharide-Binding Activity from Marine Invertebrates and Their Therapeutic Potential in Gram-Negative Sepsis. Mar Drugs 2023; 21:581. [PMID: 37999405 PMCID: PMC10672452 DOI: 10.3390/md21110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Sepsis is a life-threatening complication of an infectious process that results from the excessive and uncontrolled activation of the host's pro-inflammatory immune response to a pathogen. Lipopolysaccharide (LPS), also known as endotoxin, which is a major component of Gram-negative bacteria's outer membrane, plays a key role in the development of Gram-negative sepsis and septic shock in humans. To date, no specific and effective drug against sepsis has been developed. This review summarizes data on LPS-binding proteins from marine invertebrates (ILBPs) that inhibit LPS toxic effects and are of interest as potential drugs for sepsis treatment. The structure, physicochemical properties, antimicrobial, and LPS-binding/neutralizing activity of these proteins and their synthetic analogs are considered in detail. Problems that arise during clinical trials of potential anti-endotoxic drugs are discussed.
Collapse
Affiliation(s)
- Tamara Fedorovna Solov'eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Svetlana Ivanovna Bakholdina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | | |
Collapse
|
5
|
Honda T, Kawasaki N, Yanagihara R, Tamura R, Murakami K, Ichimiya T, Matsumoto N, Nishihara S, Yamamoto K. Involvement of cochlin binding to sulfated heparan sulfate/heparin in the pathophysiology of autosomal dominant late-onset hearing loss (DFNA9). PLoS One 2022; 17:e0268485. [PMID: 35901072 PMCID: PMC9333281 DOI: 10.1371/journal.pone.0268485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022] Open
Abstract
Late-onset non-syndromic autosomal dominant hearing loss 9 (DFNA9) is a hearing impairment caused by mutations in the coagulation factor C homology gene (COCH). COCH encodes for cochlin, a major component of the cochlear extracellular matrix. Though biochemical and genetic studies have characterized the properties of wild-type and mutated cochlins derived from DFNA9, little is known about the underlying pathogenic mechanism. In this study, we established a cochlin reporter cell, which allowed us to monitor the interaction of cochlin with its ligand(s) by means of a β-galactosidase assay. We found a class of highly sulfated glycosaminoglycans (GAGs), heparin, that were selectively bound to cochlin. The interaction was distinctly abrogated by N-desulfation, but not by 2-O- or 6-O-desulfation. The binding of cochlin to GAG was diminished by all of the point mutations found in DFNA9 patients. Through GAG composition analysis and immunostaining using mouse cochlin/immunoglobulin-Fc fusion protein, we identified moderately sulfated GAGs in mouse cochlea tissue; this implies that cochlin binds to such sulfated GAGs in the cochlea. Since GAGs play an important role in cell growth and survival as co-receptors of signal transduction mechanisms, the interaction of cochlin with GAGs in the extracellular matrix could aid the pathological research of autosomal dominant late-onset hearing loss in DFNA9.
Collapse
Affiliation(s)
- Tomoko Honda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Norihito Kawasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Rei Yanagihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Ryo Tamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Karin Murakami
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tomomi Ichimiya
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Naoki Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
- Glycan & Life System Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
6
|
Rhyu HJ, Bae SH, Jung J, Hyun YM. Cochlin-cleaved LCCL is a dual-armed regulator of the innate immune response in the cochlea during inflammation. BMB Rep 2021. [PMID: 32635986 PMCID: PMC7526977 DOI: 10.5483/bmbrep.2020.53.9.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The inner ear is a complex and delicate structure composed of the cochlea and the vestibular system. To maintain normal auditory function, strict homeostasis of the inner ear is needed. A proper immune response against infection, thus, is crucial. Also, since excessive immune reaction can easily damage the normal architecture within the inner ear, the immune response should be fine regulated. The exact mechanism how the inner ear’s immune response, specifically the innate immunity, is regulated was unknown. Recently, we reported a protein selectively localized in the inner ear during bacterial infection, named cochlin, as a possible mediator of such regulation. In this review, the immunological function of cochlin and the mechanism behind its role within inner ear immunity is sum-marized. Cochlin regulates innate immunity by physically en-trapping pathogens within scala tympani and recruiting innate immune cells. Such mechanism enables efficient removal of pathogen while preserving the normal inner ear structure from inflammatory damage.
Collapse
Affiliation(s)
- Hyeong-Jun Rhyu
- Departments of Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seong Hoon Bae
- Departments of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jinsei Jung
- Departments of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Young-Min Hyun
- Departments ofAnatomy, Yonsei University College of Medicine, Seoul 03722; BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
7
|
Alhamoudi KM, Barhoumi T, Al-Eidi H, Asiri A, Nashabat M, Alaamery M, Alharbi M, Alhaidan Y, Tabarki B, Umair M, Alfadhel M. A homozygous nonsense mutation in DCBLD2 is a candidate cause of developmental delay, dysmorphic features and restrictive cardiomyopathy. Sci Rep 2021; 11:12861. [PMID: 34145321 PMCID: PMC8213761 DOI: 10.1038/s41598-021-92026-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
DCBLD2 encodes discodin, CUB and LCCL domain-containing protein 2, a type-I transmembrane receptor that is involved in intracellular receptor signalling pathways and the regulation of cell growth. In this report, we describe a 5-year-old female who presented severe clinical features, including restrictive cardiomyopathy, developmental delay, spasticity and dysmorphic features. Trio-whole-exome sequencing and segregation analysis were performed to identify the genetic cause of the disease within the family. A novel homozygous nonsense variant in the DCBLD2 gene (c.80G > A, p.W27*) was identified as the most likely cause of the patient's phenotype. This nonsense variant falls in the extracellular N-terminus of DCBLD2 and thus might affect proper protein function of the transmembrane receptor. A number of in vitro investigations were performed on the proband's skin fibroblasts compared to normal fibroblasts, which allowed a comprehensive assessment resulting in the functional characterization of the identified DCBLD2 nonsense variant in different cellular processes. Our data propose a significant association between the identified variant and the observed reduction in cell proliferation, cell cycle progression, intracellular ROS, and Ca2 + levels, which would likely explain the phenotypic presentation of the patient as associated with lethal restrictive cardiomyopathy.
Collapse
Affiliation(s)
- Kheloud M Alhamoudi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Tlili Barhoumi
- Medical Core Facility and Research Platforms, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Hamad Al-Eidi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Abdulaziz Asiri
- Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil, 225, Bisha, 67714, Kingdom of Saudi Arabia
| | - Marwan Nashabat
- Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Masheal Alharbi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia. .,Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.
| |
Collapse
|
8
|
Gaikwad AS, Hu J, Chapple DG, O'Bryan MK. The functions of CAP superfamily proteins in mammalian fertility and disease. Hum Reprod Update 2020; 26:689-723. [PMID: 32378701 DOI: 10.1093/humupd/dmaa016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Members of the cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5) and pathogenesis-related 1 (Pr-1) (CAP) superfamily of proteins are found across the bacterial, fungal, plant and animal kingdoms. Although many CAP superfamily proteins remain poorly characterized, over the past decade evidence has accumulated, which provides insights into the functional roles of these proteins in various processes, including fertilization, immune defence and subversion, pathogen virulence, venom toxicology and cancer biology. OBJECTIVE AND RATIONALE The aim of this article is to summarize the current state of knowledge on CAP superfamily proteins in mammalian fertility, organismal homeostasis and disease pathogenesis. SEARCH METHODS The scientific literature search was undertaken via PubMed database on all articles published prior to November 2019. Search terms were based on following keywords: 'CAP superfamily', 'CRISP', 'Cysteine-rich secretory proteins', 'Antigen 5', 'Pathogenesis-related 1', 'male fertility', 'CAP and CTL domain containing', 'CRISPLD1', 'CRISPLD2', 'bacterial SCP', 'ion channel regulator', 'CatSper', 'PI15', 'PI16', 'CLEC', 'PRY proteins', 'ASP proteins', 'spermatogenesis', 'epididymal maturation', 'capacitation' and 'snake CRISP'. In addition to that, reference lists of primary and review article were reviewed for additional relevant publications. OUTCOMES In this review, we discuss the breadth of knowledge on CAP superfamily proteins with regards to their protein structure, biological functions and emerging significance in reproduction, health and disease. We discuss the evolution of CAP superfamily proteins from their otherwise unembellished prokaryotic predecessors into the multi-domain and neofunctionalized members found in eukaryotic organisms today. At least in part because of the rapid evolution of these proteins, many inconsistencies in nomenclature exist within the literature. As such, and in part through the use of a maximum likelihood phylogenetic analysis of the vertebrate CRISP subfamily, we have attempted to clarify this confusion, thus allowing for a comparison of orthologous protein function between species. This framework also allows the prediction of functional relevance between species based on sequence and structural conservation. WIDER IMPLICATIONS This review generates a picture of critical roles for CAP proteins in ion channel regulation, sterol and lipid binding and protease inhibition, and as ligands involved in the induction of multiple cellular processes.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jinghua Hu
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
9
|
Chen J, Cai Y, Xu R, Pan J, Zhou J, Mei J. Identification of four hub genes as promising biomarkers to evaluate the prognosis of ovarian cancer in silico. Cancer Cell Int 2020; 20:270. [PMID: 32595417 PMCID: PMC7315561 DOI: 10.1186/s12935-020-01361-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/17/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ovarian cancer (OvCa) is one of the most fatal cancers among females in the world. With growing numbers of individuals diagnosed with OvCa ending in deaths, it is urgent to further explore the potential mechanisms of OvCa oncogenesis and development and related biomarkers. METHODS The gene expression profiles of GSE49997 were downloaded from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was applied to explore the most potent gene modules associated with the overall survival (OS) and progression-free survival (PFS) events of OvCa patients, and the prognostic values of these genes were exhibited and validated based on data from training and validation sets. Next, protein-protein interaction (PPI) networks were built by GeneMANIA. Besides, enrichment analysis was conducted using DAVID website. RESULTS According to the WGCNA analysis, a total of eight modules were identified and four hub genes (MM > 0.90) in the blue module were reserved for next analysis. Kaplan-Meier analysis exhibited that these four hub genes were significantly associated with worse OS and PFS in the patient cohort from GSE49997. Moreover, we validated the short-term (4-years) and long-term prognostic values based on the GSE9891 data, respectively. Last, PPI networks analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed several potential mechanisms of four hub genes and their co-operators participating in OvCa progression. CONCLUSION Four hub genes (COL6A3, CRISPLD2, FBN1 and SERPINF1) were identified to be associated with the prognosis in OvCa, which might be used as monitoring biomarkers to evaluate survival time of OvCa patients.
Collapse
Affiliation(s)
- Jingxuan Chen
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166 China
- Cytoskeleton Research Group & First Clinical Medicine College, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166 China
| | - Yun Cai
- Department of Bioinformatics, Nanjing Medical University, Nanjing, 211166 China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166 China
- Cytoskeleton Research Group & First Clinical Medicine College, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166 China
| | - Jiadong Pan
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166 China
| | - Jie Zhou
- Department of Gynecology and Obstetrics, Affiliated Wuxi Maternal and Child Health Hospital of Nanjing Medical University, No.48, Huaishu Road, Wuxi, 214023 China
| | - Jie Mei
- Cytoskeleton Research Group & First Clinical Medicine College, Nanjing Medical University, No. 101 Longmian Road, Nanjing, 211166 China
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
10
|
Wang H, Ding C, Wang J, Zhao X, Jin S, Liang J, Luo H, Li D, Li R, Li Y, Xiao T. Molecular cloning and expression analysis of coagulation factor VIII and plasminogen involved in immune response to GCRV, and immunity activity comparison of grass carp Ctenopharyngodon idella with different viral resistance. FISH & SHELLFISH IMMUNOLOGY 2019; 86:794-804. [PMID: 30557607 DOI: 10.1016/j.fsi.2018.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The grass carp reovirus (GCRV) has been shown to cause lethal infections in the grass carp Ctenopharyngodon idella (C. idella). In order to investigate the immune response to GCRV infection, the full-length cDNA sequences of coagulation factor VIII (CiFVIII) and plasminogen (CiPLG) from C. idella were cloned and their involvement in the immune response was studied. The immunity factor levels in C. idella with different GCRV resistances were also analyzed. The full-length 2478 bp cDNA of CiFVIII contained an open reading frame of 1965 bp and encoded a putative polypeptide of 654 amino acid residues. The full-length 2907 bp cDNA of CiPLG contained an open reading frame of 2133 bp and encoded a putative polypeptide of 710 amino acid residues. CiFVIII was closely clustered with that of Clupea harengus. CiPLG was first clustered with those of Cyprinus carpio and Danio rerio. CiFVIII transcripts were most abundant in the liver and least in the skin. The highest expression level of CiPLG was observed in liver and the lowest in muscle. Expression levels of CiFVIII in gill, head kidney and spleen, and expression levels of CiPLG in gill, intestine and liver all reached the maximum at 72 h post GCRV infection. In spleen, expression levels of CiFVIII and CiPLG were significantly positively correlated. The activities of T-AOC, LSZ and IgM in R♂ were significantly higher than those in O♂. Likewise, T-AOC and LSZ activities in F1 were significantly higher than f1 individuals (P < 0.01). These results indicated that CiFVIII and CiPLG may play important roles in the immune response to GCRV infection. In addition, antioxidant ability and serum immune factor activity may confer a different viral resistance to C. idella.
Collapse
Affiliation(s)
- Hongquan Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jing'an Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Shengzhen Jin
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Liang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Hong Luo
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Dongfang Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| |
Collapse
|
11
|
A systematic review of hearing and vestibular function in carriers of the Pro51Ser mutation in the COCH gene. Eur Arch Otorhinolaryngol 2019; 276:1251-1262. [DOI: 10.1007/s00405-019-05322-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/30/2019] [Indexed: 01/08/2023]
|
12
|
Saeed S, Lau CI, Tremp AZ, Crompton T, Dessens JT. Dysregulated gene expression in oocysts of Plasmodium berghei LAP mutants. Mol Biochem Parasitol 2019; 229:1-5. [PMID: 30753856 PMCID: PMC6452916 DOI: 10.1016/j.molbiopara.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023]
Abstract
Plasmodium berghei LAP null mutant oocysts display highly reduced levels of CSP. Transcription of other sporozoite genes and transcription factors is dysregulated. A minority oocyst population can bypass the developmental block in cytokinesis.
Malaria parasite oocysts generate sporozoites by a process termed sporogony. Essential for successful sporogony of Plasmodium berghei in Anopheles stephensi mosquitoes is a complex of six LCCL lectin domain adhesive-like proteins (LAPs). LAP null mutant oocysts undergo growth and mitosis but fail to form sporozoites. At a cytological level, LAP null mutant oocyst development is indistinguishable from its wildtype counterparts for the first week, supporting the hypothesis that LAP null mutant oocysts develop normally before cytokinesis. We show here that LAP1 null mutant oocysts display highly reduced expression of sporozoite proteins and their transcription factors. Our findings indicate that events leading up to the cytokinesis defect in LAP null mutants occur early in oocyst development.
Collapse
Affiliation(s)
- Sadia Saeed
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| | - Annie Z Tremp
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| | - Johannes T Dessens
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|
13
|
Saeed S, Tremp AZ, Dessens JT. The Plasmodium LAP complex affects crystalloid biogenesis and oocyst cell division. Int J Parasitol 2018; 48:1073-1078. [PMID: 30367865 PMCID: PMC6284103 DOI: 10.1016/j.ijpara.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023]
Abstract
Fusion of GFP to Plasmodium berghei LAP4 causes abnormal crystalloid formation. LAP4/GFP oocysts have reduced size. LAP4/GFP oocyst populations show earlier sporulation dynamics. LAP4/GFP sporozoites are not transmitted by mosquito bite.
Malaria parasite oocysts located on the mosquito midgut generate sporozoites by a process called sporogony. Plasmodium berghei parasites express six LCCL lectin domain adhesive-like proteins (LAPs), which operate as a complex and share a localisation in the crystalloid – an organelle found in the ookinete and young oocyst. Depletion of LAPs prevents crystalloid formation, increases oocyst growth, and blocks sporogony. Here, we describe a LAP4 mutant that has abnormal crystalloid biogenesis and produces oocysts that display reduced growth and premature sporogony. These findings provide evidence for a role of the LAP complex in regulating oocyst cell division via the crystalloid.
Collapse
Affiliation(s)
- Sadia Saeed
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Annie Z Tremp
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Johannes T Dessens
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|
14
|
Gerdol M, Luo YJ, Satoh N, Pallavicini A. Genetic and molecular basis of the immune system in the brachiopod Lingula anatina. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:7-30. [PMID: 29278680 DOI: 10.1016/j.dci.2017.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
The extension of comparative immunology to non-model systems, such as mollusks and annelids, has revealed an unexpected diversity in the complement of immune receptors and effectors among evolutionary lineages. However, several lophotrochozoan phyla remain unexplored mainly due to the lack of genomic resources. The increasing accessibility of high-throughput sequencing technologies offers unique opportunities for extending genome-wide studies to non-model systems. As a result, the genome-based study of the immune system in brachiopods allows a better understanding of the alternative survival strategies developed by these immunologically neglected phyla. Here we present a detailed overview of the molecular components of the immune system identified in the genome of the brachiopod Lingula anatina. Our findings reveal conserved intracellular signaling pathways as well as unique strategies for pathogen detection and killing in brachiopods.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy; Anton Dohrn Zoological Station, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
15
|
Ge X, Shi QM, Ding Z, Ju Q, Wang H, Wang Q, Li MX, Chen G, Wang HX, Xu LC. Association Between CRISPLD2 Polymorphisms and the Risk of Nonsyndromic Clefts of the Lip and/or Palate: A Meta-analysis. Cleft Palate Craniofac J 2018; 55:328-334. [PMID: 29437515 DOI: 10.1177/1055665617738995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Nonsyndromic clefts of the lip and/or palate (NSCL/P) are one of the most common polygenic diseases. Recently, many studies focused on the association between CRISPLD2 polymorphisms and NSCL/P risk. However, some studies have shown opposite results. In this study, meta-analysis was used to confirm whether CRISPLD2 polymorphism was associated with NSCL/P, and the possible mechanism between CRISPLD2 and NSCL/P was explored. METHODS Relevant studies were conducted on PubMed, Ovid, EBSCO, CINAHL, FMRS, Web of Science, CNKI, and Wanfang databases from their inception up to June 31, 2016. Review Manager 5.0.24 was used to analyze whether CRISPLD2 polymorphism was involved in NSCL/P by pooling odds ratios (ORs) and 95% confidence intervals (CIs). Potential publication bias was evaluated by visual inspection of the funnel plot. RESULTS CRISPLD2 rs4783099 was associated with cleft lip and/or palate (CL/P) statistically (OR = 3.18, P < .01). Compared to genotype TT, genotypes CC and CT were correlated significantly (OR = 2.04, P = .04) with CL/P. No evidence showed an association between genetic variation at the CRISPLD2 locus and cleft palate only (CP). CONCLUSION The polymorphism of CRISPLD2 rs4783099 is correlated with an increased risk of CL/P.
Collapse
Affiliation(s)
- Xing Ge
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiao-Mei Shi
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen Ding
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiang Ju
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Wang
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Wang
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Xue Li
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Gang Chen
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Heng-Xue Wang
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li-Chun Xu
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
16
|
Tracing the Evolutionary History of the CAP Superfamily of Proteins Using Amino Acid Sequence Homology and Conservation of Splice Sites. J Mol Evol 2017; 85:137-157. [DOI: 10.1007/s00239-017-9813-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022]
|
17
|
Zhang H, Kho AT, Wu Q, Halayko AJ, Limbert Rempel K, Chase RP, Sweezey NB, Weiss ST, Kaplan F. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells. Physiol Rep 2017; 4:4/17/e12942. [PMID: 27597766 PMCID: PMC5027350 DOI: 10.14814/phy2.12942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/24/2022] Open
Abstract
Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid‐regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal–epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/− mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal–epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)‐induced human fetal lung fibroblast line (MRC5). LPS‐induced upregulation of the proinflammatory cytokines IL‐8 and CCL2 was exacerbated in MRC5‐CRISPLD2knockdown cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL‐8, IL‐6, CCL2. LPS‐stimulated expression of proinflammatory mediators by human lung epithelial HAEo‐ cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF‐CRISPLD2knockdown suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood.
Collapse
Affiliation(s)
- Hui Zhang
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alvin T Kho
- Children's Hospital Informatics Program Boston Children's Hospital, Boston, Massachusetts
| | - Qing Wu
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Karen Limbert Rempel
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Robert P Chase
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts
| | - Neil B Sweezey
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada Departments of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts
| | - Feige Kaplan
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada Departments of Human Genetics and Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Parzefall T, Frohne A, Koenighofer M, Kirchnawy A, Streubel B, Schoefer C, Gstoettner W, Frei K, Lucas T. Identification of a rare COCH mutation by whole-exome sequencing : Implications for personalized therapeutic rehabilitation in an Austrian family with non-syndromic autosomal dominant late-onset hearing loss. Wien Klin Wochenschr 2017; 130:299-306. [PMID: 28733840 PMCID: PMC5966484 DOI: 10.1007/s00508-017-1230-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/26/2017] [Indexed: 12/24/2022]
Abstract
Background Non-syndromic autosomal dominant hearing impairment is characteristically postlingual in onset. Genetic diagnostics are essential for genetic counselling, disease prognosis and understanding of the molecular mechanisms of disease. To date, 36 causative genes have been identified, many in only individual families. Gene selection for genetic screening by traditional methods and genetic diagnosis in autosomal dominant patients has therefore been fraught with difficulty. Whole-exome sequencing provides a powerful tool to analyze all protein-coding genomic regions in parallel, thus allowing the comprehensive screening of all known genes and associated alterations. Methods In this study, a previously undiagnosed late-onset progressive autosomal dominant hearing loss in an Austrian family was investigated by means of whole-exome sequencing. Results were confirmed by Sanger sequencing. Results A previously described c.151C>T missense (p.Pro51Ser) mutation in the LCCL (limulus factor C, cochlin, late gestation lung protein Lgl1) domain of the cochlin gene (COCH) was identified as causative and segregated with disease in five members of the family. Molecular diagnostics led to the decision to perform cochlear implantation in an index patient who subsequently showed excellent postoperative auditory performance. The c.151C>T mutation was not found in 18 screened Austrian families with autosomal dominant hearing loss but was represented alongside other known pathogenic mutant COCH alleles in the Genome Aggregation Database (gnomAD) in European populations. A combined allele frequency of 0.000128 implies an orphan disease frequency for COCH-induced hearing loss of 1:3900 in Europe. Conclusions Exome sequencing successfully resolved the genetic diagnosis in a family suffering from autosomal dominant hearing impairment and allowed prediction of purported auditory outcome after cochlear implantation in an index patient. Personalized treatment approaches based on the molecular mechanisms of disease may become increasingly important in the future.
Collapse
Affiliation(s)
- Thomas Parzefall
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexandra Frohne
- Department for Cell and Developmental Biology, Orphan disease genetics group, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Koenighofer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Andreas Kirchnawy
- Department for Cell and Developmental Biology, Orphan disease genetics group, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Berthold Streubel
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Christian Schoefer
- Department for Cell and Developmental Biology, Orphan disease genetics group, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Gstoettner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Klemens Frei
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Trevor Lucas
- Department for Cell and Developmental Biology, Orphan disease genetics group, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
LCCL protein complex formation in Plasmodium is critically dependent on LAP1. Mol Biochem Parasitol 2017; 214:87-90. [PMID: 28414172 PMCID: PMC5482319 DOI: 10.1016/j.molbiopara.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/03/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Abstract
Successful sporogony of Plasmodium berghei in vector mosquitoes requires expression of a family of six modular proteins named LCCL lectin domain adhesive-like proteins (LAPs). The LAPs share a subcellular localization in the crystalloid, a unique parasite organelle that forms during ookinete development. Here, LAP interactions in P. berghei were studied using a series of parasite lines stably expressing reporter-tagged LAPs combined with affinity purification and high accuracy label free quantitative mass spectrometry. Our results show that abundant complexes containing LAP1, LAP2 and LAP3 are formed in gametocytes through high avidity interactions. Following fertilization, LAP4, LAP5 and LAP6 are recruited to this complex, a process that is facilitated by LAP1 chiefly through its scavenger receptor cysteine-rich modules. These collective findings provide new insight into the temporal and molecular dynamics of protein complex formation that lead up to, and are required for, crystalloid biogenesis and downstream sporozoite transmission of malaria parasites.
Collapse
|
20
|
Jalovecka M, Bonsergent C, Hajdusek O, Kopacek P, Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasit Vectors 2016; 9:439. [PMID: 27502772 PMCID: PMC4977898 DOI: 10.1186/s13071-016-1731-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/27/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Babesia divergens is the most common blood parasite in Europe causing babesiosis, a tick-borne malaria-like disease. Despite an increasing focus on B. divergens, especially regarding veterinary and human medicine, the sexual development of Babesia is poorly understood. Development of Babesia sexual stages in the host blood (gametocytes) plays a decisive role in parasite acquisition by the tick vector. However, the exact mechanism of gametocytogenesis is still unexplained. METHODS Babesia divergens gametocytes are characterized by expression of bdccp1, bdccp2 and bdccp3 genes. Using previously described sequences of bdccp1, bdccp2 and bdccp3, we have established a quantitative real-time PCR (qRT-PCR) assay for detection and assessment of the efficiency of B. divergens gametocytes production in bovine blood. We analysed fluctuations in expression of bdccp genes during cultivation in vitro, as well as in cultures treated with different drugs and stimuli. RESULTS We demonstrated that all B. divergens clonal lines tested, originally derived from naturally infected cows, exhibited sexual stages. Furthermore, sexual commitment was stimulated during continuous growth of the cultures, by addition of specific stress-inducing drugs or by alternating cultivation conditions. Expression of bdccp genes was greatly reduced or even lost after long-term cultivation, suggesting possible problems in the artificial infections of ticks in feeding assays in vitro. CONCLUSIONS Our research provides insight into sexual development of B. divergens and may facilitate the development of transmission models in vitro, enabling a more detailed understanding of Babesia-tick interactions.
Collapse
Affiliation(s)
- Marie Jalovecka
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France. .,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France. .,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic. .,Faculty of Science, University of South Bohemia, CZ-370 05, Ceske Budejovice, Czech Republic.
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France.,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France.,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France
| |
Collapse
|
21
|
Rao PN, Santos JM, Pain A, Templeton TJ, Mair GR. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium. Parasitol Int 2016; 65:463-71. [PMID: 27312996 DOI: 10.1016/j.parint.2016.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In Plasmodium falciparum and Plasmodium berghei blood stage parasites, the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. By establishing a luciferase transgene assay, we show that the 3' untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.
Collapse
Affiliation(s)
- Pavitra N Rao
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Jorge M Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo 001-0020, Japan
| | - Thomas J Templeton
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki 852-8523, Japan.
| | - Gunnar R Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Santana SS, Gebrim LC, Carvalho FR, Barros HS, Barros PC, Pajuaba ACAM, Messina V, Possenti A, Cherchi S, Reiche EMV, Navarro IT, Garcia JL, Pozio E, Mineo TWP, Spano F, Mineo JR. CCp5A Protein from Toxoplasma gondii as a Serological Marker of Oocyst-driven Infections in Humans and Domestic Animals. Front Microbiol 2015; 6:1305. [PMID: 26635770 PMCID: PMC4656833 DOI: 10.3389/fmicb.2015.01305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/09/2015] [Indexed: 11/14/2022] Open
Abstract
Considering that the current immunoassays are not able to distinguish the infective forms that cause Toxoplasma gondii infection, the present study was carried out to evaluate the reactivity of two recombinant proteins (CCp5A and OWP1) from oocyst/sporozoite, in order to differentiate infections occurring by ingestion of oocysts or tissue cysts. The reactivity of the recombinant proteins was assessed against panels of serum samples from animals (chickens, pigs, and mice) that were naturally or experimentally infected by different infective stages of the parasite. Also, we tested sera from humans who have been infected by oocysts during a well-characterized toxoplasmosis outbreak, as well as sera from pregnant women tested IgM+/IgG+ for T. gondii, which source of infection was unknown. Only the sporozoite-specific CCp5A protein was able to differentiate the parasite stage that infected chickens, pigs and mice, with specific reactivity for oocyst-infected animals. Furthermore, the CCp5A showed preferential reactivity for recent infection by oocyst/sporozoite in pigs and mice. In humans, CCp5A showed higher reactivity with serum samples from the outbreak, compared with serum from pregnant women. Altogether, these findings demonstrate the usefulness of the CCp5A protein as a new tool to identify the parasite stage of T. gondii infection, allowing its application for diagnosis and epidemiological investigations in animals and humans. The identification of parasite infective stage can help to design effective strategies to minimize severe complications in immunocompromised people and, particularly, in pregnant women to prevent congenital infection.
Collapse
Affiliation(s)
- Silas S Santana
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Luiz C Gebrim
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Fernando R Carvalho
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Heber S Barros
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Patrício C Barros
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Ana C A M Pajuaba
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Valeria Messina
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Alessia Possenti
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Simona Cherchi
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Edna M V Reiche
- Department of Clinical Medicine, State University of Londrina - University Hospital Londrina, Brazil
| | - Italmar T Navarro
- Department of Preventive Veterinary Medicine, State University of Londrina Londrina, Brazil
| | - João L Garcia
- Department of Preventive Veterinary Medicine, State University of Londrina Londrina, Brazil
| | - Edoardo Pozio
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Tiago W P Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Furio Spano
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - José R Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| |
Collapse
|
23
|
Brangulis K, Jaudzems K, Petrovskis I, Akopjana I, Kazaks A, Tars K. Structural and functional analysis of BB0689 from Borrelia burgdorferi, a member of the bacterial CAP superfamily. J Struct Biol 2015; 192:320-330. [PMID: 26407658 DOI: 10.1016/j.jsb.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
Abstract
Spirochete Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted from infected Ixodes ticks to a mammalian host after a tick bite. The outer surface protein BB0689 from B. burgdorferi is up-regulated when the tick feeds, which indicates a potential role for BB0689 in Lyme disease pathogenesis. We have determined the crystal structure of BB0689, which revealed that the protein belongs to the CAP superfamily. Though the CAP domain is widespread in all three cellular domains of life, thus far the CAP domain has been studied only in eukaryotes, in which it is usually linked to certain other domains to form a multi-domain protein and is associated with the mammalian reproductive tract, the plant response to pathogens, venom allergens from insects and reptiles, and the growth of human brain tumors. Though the exact function of the isolated CAP domain remains ambiguous, several functions, including the binding of cholesterol, lipids and heparan sulfate, have been recently attributed to different CAP domain proteins. In this study, the bacterial CAP domain structure was analyzed and compared with the previously solved crystal structures of representative CAPs, and the function of BB0689 was examined. To determine the potential function of BB0689 and ascertain whether the functions that have been attributed to the CAP domain proteins are conserved, the binding of previously reported CAP domain interaction partners was analyzed, and the results suggested that BB0689 has a unique function that is yet to be discovered.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia; Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia.
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Ivars Petrovskis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia; University of Latvia, Kronvalda bulv. 4, LV-1586 Riga, Latvia
| |
Collapse
|
24
|
Bae SH, Robertson NG, Cho HJ, Morton CC, Jung DJ, Baek JI, Choi SY, Lee J, Lee KY, Kim UK. Identification of pathogenic mechanisms of COCH mutations, abolished cochlin secretion, and intracellular aggregate formation: genotype-phenotype correlations in DFNA9 deafness and vestibular disorder. Hum Mutat 2015; 35:1506-1513. [PMID: 25230692 DOI: 10.1002/humu.22701] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/08/2014] [Indexed: 11/06/2022]
Abstract
Mutations in COCH (coagulation factor C homology) cause autosomal-dominant nonsyndromic hearing loss with variable degrees of clinical onset and vestibular malfunction. We selected eight uncharacterized mutations and performed immunocytochemical and Western blot analyses to track cochlin through the secretory pathway. We then performed a comprehensive analysis of clinical information from DFNA9 patients with all 21 known COCH mutations in conjunction with cellular and molecular findings to identify genotype-phenotype correlations. Our studies revealed that five mutants were not secreted into the media: two von Willebrand factor A (vWFA) domain mutants, which were not transported from the endoplasmic reticulum to Golgi complex and formed high-molecular-weight aggregates in cell lysates, and three LCCL domain mutants, which were detected as intracellular dimeric cochlins. Mutant cochlins that were not secreted and accumulated in cells result in earlier age of onset of hearing defects. In addition, individuals with LCCL domain mutations show accompanying vestibular dysfunction, whereas those with vWFA domain mutations exhibit predominantly hearing loss. This is the first report showing failure of mutant cochlin transport through the secretory pathway, abolishment of cochlin secretion, and formation and retention of dimers and large multimeric intracellular aggregates, and high correlation with earlier onset and progression of hearing loss in individuals with these DFNA9-causing mutations.
Collapse
Affiliation(s)
- Seung-Hyun Bae
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.,School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program), Kyungpook National University
| | - Nahid G Robertson
- Department of Obstetrics & Gynecology, Brigham & Women's Hospital, Boston, MA, USA
| | - Hyun-Ju Cho
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Cynthia C Morton
- Departments of Obstetrics & Gynecology and Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, Broad Institute, Cambridge, MA, USA
| | - Da Jung Jung
- Department of Otolaryngology, College of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jeong-In Baek
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Soo-Young Choi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otolaryngology, College of Medicine, Kyungpook National University, Daegu, South Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.,School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program), Kyungpook National University
| |
Collapse
|
25
|
Saeed S, Tremp AZ, Dessens JT. Biogenesis of the crystalloid organelle in Plasmodium involves microtubule-dependent vesicle transport and assembly. Int J Parasitol 2015; 45:537-47. [PMID: 25900212 PMCID: PMC4459735 DOI: 10.1016/j.ijpara.2015.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
Abstract
Malaria parasites possess unique subcellular structures and organelles. One of these is the crystalloid, a multivesicular organelle that forms during the parasite's development in vector mosquitoes. The formation and function of these organelles remain poorly understood. A family of six conserved and modular proteins named LCCL-lectin adhesive-like proteins (LAPs), which have essential roles in sporozoite transmission, localise to the crystalloids. In this study we analyse crystalloid formation using transgenic Plasmodium berghei parasites expressing GFP-tagged LAP3. We show that deletion of the LCCL domain from LAP3 causes retarded crystalloid development, while knockout of LAP3 prevents formation of the organelle. Our data reveal that the process of crystalloid formation involves active relocation of endoplasmic reticulum-derived vesicles to common assembly points via microtubule-dependent transport. Inhibition of microtubule-dependent cargo transport disrupts this process and replicates the LCCL domain deletion mutant phenotype in wildtype parasites. These findings provide the first clear insight into crystalloid biogenesis, demonstrating a fundamental role for the LAP family in this process, and identifying the crystalloid and its formation as potential targets for malaria transmission control.
Collapse
Affiliation(s)
- Sadia Saeed
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Annie Z Tremp
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Johannes T Dessens
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| |
Collapse
|
26
|
Zhang H, Sweezey NB, Kaplan F. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2014; 308:L391-402. [PMID: 25480331 DOI: 10.1152/ajplung.00119.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development.
Collapse
Affiliation(s)
- Hui Zhang
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Neil B Sweezey
- Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; Departments of Pediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Feige Kaplan
- Departments of Human Genetics and Pediatrics, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada;
| |
Collapse
|
27
|
Robertson NG, O’Malley JT, Ong CA, Giersch AB, Shen J, Stankovic KM, Morton CC. Cochlin in normal middle ear and abnormal middle ear deposits in DFNA9 and Coch (G88E/G88E) mice. J Assoc Res Otolaryngol 2014; 15:961-74. [PMID: 25049087 PMCID: PMC4389958 DOI: 10.1007/s10162-014-0481-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 07/01/2014] [Indexed: 12/18/2022] Open
Abstract
DFNA9 sensorineural hearing loss and vestibular disorder, caused by mutations in COCH, has a unique identifying histopathology including prominent acellular deposits in cochlear and vestibular labyrinths. A recent study has shown presence of deposits also in middle ear structures of DFNA9-affected individuals (McCall et al., J Assoc Res Otolaryngol 12:141-149, 2004). To investigate the possible role of cochlin in the middle ear and in relation to aggregate formation, we evaluated middle ear histopathology in our Coch knock-in (Coch (G88E/G88E) ) mouse model, which harbors one of the DFNA9-causative mutations. Our findings reveal accumulation of acellular deposits in the incudomalleal and incudostapedial joints in Coch (G88E/G88E) mice, similar to those found in human DFNA9-affected temporal bones. Aggregates are absent in negative control Coch (+/+) and Coch (-/-) mice. Thickening of the tympanic membrane (TM) found in humans with DFNA9 was not appreciably detected in Coch (G88E/G88E) mice at the evaluated age. We investigated cochlin localization first in the Coch (+/+)mouse and in normal human middle ears, and found prominent and specific cochlin staining in the incudomalleal joint, incudostapedial joint, and the pars tensa of the TM, which are the three sites where abnormal deposits are detected in DFNA9-affected middle ears. Cochlin immunostaining of Coch (G88E/G88E) and DFNA9-affected middle ears showed mutant cochlin localization within areas of aggregates. Cochlin staining was heterogeneous throughout DFNA9 middle ear deposits, which appear as unorganized and overlapping mixtures of both eosinophilic and basophilic substances. Immunostaining for type II collagen colocalized with cochlin in pars tensa of the tympanic membrane. In contrast, immunostaining for type II collagen did not overlap with cochlin in interossicular joints, where type II collagen was localized in the region of the chondrocytes, but not in the thin layer of the articular surface of the ossicles nor in the eosinophilic deposits with specific cochlin staining.
Collapse
Affiliation(s)
- Nahid G. Robertson
- />Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 160, Boston, MA 02115 USA
| | - Jennifer T. O’Malley
- />Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA USA
| | - Cheng Ai Ong
- />Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA USA
- />Department of Otology and Laryngology, Harvard Medical School, Boston, MA USA
| | - Anne B.S. Giersch
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Jun Shen
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Konstantina M. Stankovic
- />Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA USA
- />Department of Otology and Laryngology, Harvard Medical School, Boston, MA USA
| | - Cynthia C. Morton
- />Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 160, Boston, MA 02115 USA
- />Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
28
|
Pauletto M, Milan M, Moreira R, Novoa B, Figueras A, Babbucci M, Patarnello T, Bargelloni L. Deep transcriptome sequencing of Pecten maximus hemocytes: a genomic resource for bivalve immunology. FISH & SHELLFISH IMMUNOLOGY 2014; 37:154-165. [PMID: 24486903 DOI: 10.1016/j.fsi.2014.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Pecten maximus, the king scallop, is a bivalve species with important commercial value for both fisheries and aquaculture, traditionally consumed in several European countries. Major problems in larval rearing, however, still limit hatchery-based seed production. High mortalities during early larval stages, likely related to bacterial pathogens, represent the most relevant bottleneck. To address this issue, understanding host defense mechanisms against microbes is extremely important. In this study next-generation RNA-sequencing was carried on scallop hemocytes. To enrich for immune-related transcripts, cDNA libraries from hemocytes challenged in vivo with inactivated-Vibrio anguillarum and in vitro with pathogen-associated molecular patterns, as well as unchallenged controls, were sequenced yielding 216,444,674 sequence reads. De novo assembly of the scallop hemocyte transcriptome consisted of 73,732 contigs (31% annotated). A total of 934 contigs encoded proteins with a known immune function, grouped into several functional categories. Particular attention was reserved to Toll-like receptors (TLRs), a family of pattern recognition receptors (PRRs) involved in non-self recognition. Through mining the scallop hemocyte transcriptome, at least four TLRs could be identified. The organization of canonical TLR domains demonstrated that single cysteine cluster and multiple cysteine cluster TLRs co-exist in this species. In addition, preliminary data concerning their mRNA level following bacterial challenge suggested that different members of this family could exhibit opposite responses to pathogenic stimuli. Finally, a global analysis of differential expression comparing gene-expression levels in in vitro and in vivo stimulated hemocytes against controls provided evidence on a large set of transcripts involved in the great scallop immune response.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Rebeca Moreira
- Instituto de Investigaciones Marinas (IIM), CSIC, C/Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), CSIC, C/Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM), CSIC, C/Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain.
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| |
Collapse
|
29
|
Both LCCL-domains of human CRISPLD2 have high affinity for lipid A. Biochimie 2013; 97:66-71. [PMID: 24090571 DOI: 10.1016/j.biochi.2013.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/20/2013] [Indexed: 11/22/2022]
Abstract
The LCCL-domain is a recently defined protein module present in diverse extracellular multidomain proteins. Practically nothing is known about the molecular function of these domains; based on functional features of proteins harboring LCCL-domains it has been suggested that these domains might function as lipopolysaccharide-binding domains. Here we show that the two LCCL-domains of human CRISPLD2 protein, a lipopolysaccharide-binding serum protein involved in defense against endotoxin shock, have higher affinity for the lipid A, the toxic moiety of lipopolysaccharides than for ipopolysaccharide. Our observation that the LCCL-domains of CRISPLD2 are specific for the toxic lipid A moiety of the endotoxin suggests that it may block the interaction between endotoxins and the host endotoxin receptors without interfering with the development of antibacterial immunity against the polysaccharide moiety of LPS. We suggest that the anti-inflammatory function of CRISPLD2 protein may account for its role in various pathological and developmental processes.
Collapse
|
30
|
Saeed S, Carter V, Tremp AZ, Dessens JT. Translational repression controls temporal expression of the Plasmodium berghei LCCL protein complex. Mol Biochem Parasitol 2013; 189:38-42. [PMID: 23684590 PMCID: PMC3694310 DOI: 10.1016/j.molbiopara.2013.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 11/06/2022]
Abstract
We have GFP-tagged the LCCL proteins PbLAP4, PbLAP5 and PbLAP6 in Plasmodium berghei. PbLAP4, PbLAP5 and PbLAP6 associate with the crystalloid organelle in ookinetes. Translational repression controls expression of the LCCL protein repertoire in gametocytes.
Plasmodium LCCL proteins comprise a family of six proteins that function as a protein complex and have essential roles in sporozoite transmission. In Plasmodium berghei, family members PbLAP1, PbLAP2 and PbLAP3 have been shown to be expressed in gametocytes and, following gametogenesis and fertilization, to be targeted to distinctive multivesicular organelles termed crystalloids that form in the ookinete. Here, we show by GFP-tagging that PbLAP4, PbLAP5 and PbLAP6, like their family members, are associated with the crystalloids. However, in contrast to their family members, protein expression of PbLAP4, PbLAP5 and PbLAP6 was not detected in gametocytes, even though transcription of the corresponding genes is most prominent in the sexual blood stage parasites. These results suggest that translational repression controls expression of the LCCL protein repertoire and, consequently, the temporal function of the protein complex during P. berghei development in the mosquito.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | | | | | |
Collapse
|
31
|
Cho HJ, Park HJ, Trexler M, Venselaar H, Lee KY, Robertson NG, Baek JI, Kang BS, Morton CC, Vriend G, Patthy L, Kim UK. A novel COCH mutation associated with autosomal dominant nonsyndromic hearing loss disrupts the structural stability of the vWFA2 domain. J Mol Med (Berl) 2012; 90:1321-1331. [PMID: 22610276 PMCID: PMC4361775 DOI: 10.1007/s00109-012-0911-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/10/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
Mutations in COCH have been associated with autosomal dominant nonsyndromic hearing loss (DFNA9) and are frequently accompanied by vestibular hypofunction. Here, we report identification of a novel missense mutation, p.F527C, located in the vWFA2 domain in members of a Korean family with late-onset and progressive hearing loss. To assess the molecular characteristics of this cochlin mutant, we constructed both wild-type and mutant cochlin constructs and transfected these into mammalian cell lines. Results of immunocytochemistry analysis demonstrated localization of the cochlin mutant in the endoplasmic reticulum/Golgi complex, whereas western blot analyses of cell lysates revealed that the mutant cochlin tends to form covalent complexes that are retained in the cell. Biochemical analyses of recombinant vWFA2 domain of cochlin carrying the p.F527C mutation revealed that the mutation increases propensity of the protein to form covalent disulfide-bonded dimers and affects the structural stability but not the collagen-affinity of the vWFA2 domain. We suggest that the instability of mutant cochlin is the major driving force for cochlin aggregation in the inner ear in DFNA9 patients carrying the COCH p.F527C mutation.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | | | - Maria Trexler
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Hanka Venselaar
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kyu Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyungpook National University, Daegu, South Korea
| | - Nahid G. Robertson
- Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Ma, USA
| | - Jeong-In Baek
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | - Beom Sik Kang
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, South Korea
| | - Cynthia C. Morton
- Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Ma, USA
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Ma, USA
| | - Gert Vriend
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - László Patthy
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
32
|
Conformational co-dependence between Plasmodium berghei LCCL proteins promotes complex formation and stability. Mol Biochem Parasitol 2012; 185:170-3. [PMID: 22877575 PMCID: PMC3473356 DOI: 10.1016/j.molbiopara.2012.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 11/22/2022]
Abstract
Malaria parasites express a conserved family of LCCL-lectin adhesive-like domain proteins (LAPs) that have essential functions in sporozoite transmission. In Plasmodium falciparum all six family members are expressed in gametocytes and form a multi-protein complex. Intriguingly, knockout of P. falciparum LCCL proteins adversely affects expression of other family members at protein, but not at mRNA level, a phenomenon termed co-dependent expression. Here, we investigate this in Plasmodium berghei by crossing a PbLAP1 null mutant parasite with a parasite line expressing GFP-tagged PbLAP3 that displays strong fluorescence in gametocytes. Selected and validated double mutants show normal synthesis and subcellular localization of PbLAP3::GFP. However, GFP-based fluorescence is dramatically reduced without PbLAP1 present, indicating that PbLAP1 and PbLAP3 interact. Moreover, absence of PbLAP1 markedly reduces the half-life of PbLAP3, consistent with a scenario of misfolding. These findings unveil a potential mechanism of conformational interdependence that facilitates assembly and stability of the functional LCCL protein complex.
Collapse
|
33
|
Transcriptomic analysis of toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. PLoS One 2012; 7:e29998. [PMID: 22347997 PMCID: PMC3278417 DOI: 10.1371/journal.pone.0029998] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022] Open
Abstract
Sexual reproduction of Toxoplasma gondii occurs exclusively within enterocytes of the definitive felid host. The resulting immature oocysts are excreted into the environment during defecation, where in the days following, they undergo a complex developmental process. Within each oocyst, this culminates in the generation of two sporocysts, each containing 4 sporozoites. A single felid host is capable of shedding millions of oocysts, which can survive for years in the environment, are resistant to most methods of microbial inactivation during water-treatment and are capable of producing infection in warm-blooded hosts at doses as low as 1–10 ingested oocysts. Despite its extremely interesting developmental biology and crucial role in initiating an infection, almost nothing is known about the oocyst stage beyond morphological descriptions. Here, we present a complete transcriptomic analysis of the oocyst from beginning to end of its development. In addition, and to identify genes whose expression is unique to this developmental form, we compared the transcriptomes of developing oocysts with those of in vitro-derived tachyzoites and in vivo-derived bradyzoites. Our results reveal many genes whose expression is specifically up- or down-regulated in different developmental stages, including many genes that are likely critical to oocyst development, wall formation, resistance to environmental destruction and sporozoite infectivity. Of special note is the up-regulation of genes that appear “off” in tachyzoites and bradyzoites but that encode homologues of proteins known to serve key functions in those asexual stages, including a novel pairing of sporozoite-specific paralogues of AMA1 and RON2, two proteins that have recently been shown to form a crucial bridge during tachyzoite invasion of host cells. This work provides the first in-depth insight into the development and functioning of one of the most important but least studied stages in the Toxoplasma life cycle.
Collapse
|
34
|
Reassessing domain architecture evolution of metazoan proteins: major impact of gene prediction errors. Genes (Basel) 2011; 2:449-501. [PMID: 24710207 PMCID: PMC3927609 DOI: 10.3390/genes2030449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/14/2011] [Accepted: 06/20/2011] [Indexed: 11/17/2022] Open
Abstract
In view of the fact that appearance of novel protein domain architectures (DA) is closely associated with biological innovations, there is a growing interest in the genome-scale reconstruction of the evolutionary history of the domain architectures of multidomain proteins. In such analyses, however, it is usually ignored that a significant proportion of Metazoan sequences analyzed is mispredicted and that this may seriously affect the validity of the conclusions. To estimate the contribution of errors in gene prediction to differences in DA of predicted proteins, we have used the high quality manually curated UniProtKB/Swiss-Prot database as a reference. For genome-scale analysis of domain architectures of predicted proteins we focused on RefSeq, EnsEMBL and NCBI's GNOMON predicted sequences of Metazoan species with completely sequenced genomes. Comparison of the DA of UniProtKB/Swiss-Prot sequences of worm, fly, zebrafish, frog, chick, mouse, rat and orangutan with those of human Swiss-Prot entries have identified relatively few cases where orthologs had different DA, although the percentage with different DA increased with evolutionary distance. In contrast with this, comparison of the DA of human, orangutan, rat, mouse, chicken, frog, zebrafish, worm and fly RefSeq, EnsEMBL and NCBI's GNOMON predicted protein sequences with those of the corresponding/orthologous human Swiss-Prot entries identified a significantly higher proportion of domain architecture differences than in the case of the comparison of Swiss-Prot entries. Analysis of RefSeq, EnsEMBL and NCBI's GNOMON predicted protein sequences with DAs different from those of their Swiss-Prot orthologs confirmed that the higher rate of domain architecture differences is due to errors in gene prediction, the majority of which could be corrected with our FixPred protocol. We have also demonstrated that contamination of databases with incomplete, abnormal or mispredicted sequences introduces a bias in DA differences in as much as it increases the proportion of terminal over internal DA differences. Here we have shown that in the case of RefSeq, EnsEMBL and NCBI's GNOMON predicted protein sequences of Metazoan species, the contribution of gene prediction errors to domain architecture differences of orthologs is comparable to or greater than those due to true gene rearrangements. We have also demonstrated that domain architecture comparison may serve as a useful tool for the quality control of gene predictions and may thus guide the correction of sequence errors. Our findings caution that earlier genome-scale studies based on comparison of predicted (frequently mispredicted) protein sequences may have led to some erroneous conclusions about the evolution of novel domain architectures of multidomain proteins. A reassessment of the DA evolution of orthologous and paralogous proteins is presented in an accompanying paper [1].
Collapse
|
35
|
Dessens JT, Saeed S, Tremp AZ, Carter V. Malaria crystalloids: specialized structures for parasite transmission? Trends Parasitol 2011; 27:106-10. [PMID: 21237711 PMCID: PMC3133641 DOI: 10.1016/j.pt.2010.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 11/22/2022]
Abstract
Malaria parasites possess many unique subcellular structures and organelles that are essential for the successful completion of the complex life cycle of Plasmodium in the vertebrate host and mosquito vector. Among these are the crystalloids: transient structures whose presence is restricted to the mosquito-specific ookinete and young oocyst stages of the parasite. Nearly five decades after they were first described, the crystalloids are back in the spotlight, with recent discoveries pointing to an important role in protein trafficking and sporozoite transmission that could be exploited as new targets for control of malaria transmission.
Collapse
Affiliation(s)
- Johannes T Dessens
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Shi J, Jiao X, Song T, Zhang B, Qin C, Cao F. CRISPLD2 polymorphisms are associated with non-syndromic cleft lip with or without cleft palate in a northern Chinese population. Eur J Oral Sci 2010; 118:430-3. [PMID: 20662919 DOI: 10.1111/j.1600-0722.2010.00743.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCLP) is the most common craniofacial birth defect. This complex genetic disorder results from interactions between genes and environmental factors. Numerous genes have been reported in studies demonstrating association between the cleft lip and palate phenotypes and the alleles at single-nucleotide polymorphisms (SNPs) within specific genes. Recently, the cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2) has been revealed to be a novel candidate gene for NSCLP. The SNPs rs1546124, rs4783099 and rs16974880 in CRISPLD2 were highly significant in Caucasian and Hispanic multiplex families but showed no association in Colombian and Irish populations. In the current study, we examined these three SNPs in a northern Chinese population and found an association between these polymorphisms and NSCLP in both single-marker and haplotype analyses. Our data further strengthen the conclusion that altered CRISPLD2 is associated with NSCLP susceptibility.
Collapse
Affiliation(s)
- Jinna Shi
- Department of Periodontology, School of Stomatology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
37
|
Expression of Cryptosporidium parvum Cpa135/CpCCP1 chimeras in Giardia duodenalis: organization of the protein domains affects the protein secretion pathway. Exp Parasitol 2010; 127:680-6. [PMID: 21112325 DOI: 10.1016/j.exppara.2010.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 10/25/2010] [Accepted: 11/17/2010] [Indexed: 11/23/2022]
Abstract
Cpa135 is a multidomain antigenic protein secreted at the sporozoite stage of the Apicomplexa protozoan Cryptosporidium parvum. Previous studies have shown that the protozoan flagellate parasite Giardia duodenalis is a suitable system for the heterologous expression of secreted proteins of Apicomplexa. Here, we designed three different Cpa135 variants fused to a C-terminal HA tag in order to test their expression in G. duodenalis under the control of the inducible promoter of the cyst wall protein 1 gene (cwp1). The three Cpa135 chimeras encompassed different portions of the protein; CpaG encodes the entire polypeptide of 1574 amino acids (aa); CpaGΔC includes the first 826 aa at the N-terminus; and CpaGΔN consists in of the final 833 aa at the C-terminus. Immunoblot experiments showed that CpaG and CpaGΔN maintained the epitopes recognized by anti-C. parvum-specific human serum. The intracellular localization and transport of the three Cpa135 variants were studied by immunofluorescence in combination with G. duodenalis-specific antibodies. CpaGΔC was mainly accumulated in the endoplasmic reticulum and the intact form was also excreted in the medium. Differently, the Cpa135 chimeras possessing an intact C-terminus (CpaG and CpaGΔN) were transported towards the forming cyst wall possibly and were not detected in the medium. Furthermore, the full-length CpaG was incorporated into the cyst wall. The data presented suggest that the C-terminus of Cpa135, which includes a cysteine reach domain, could influence the secretion of the chimeric proteins.
Collapse
|
38
|
Cloning and expression of a novel component of the CAP superfamily enhanced in the inflammatory response to LPS of the ascidian Ciona intestinalis. Cell Tissue Res 2010; 342:411-21. [DOI: 10.1007/s00441-010-1072-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/05/2010] [Indexed: 01/26/2023]
|
39
|
Faletra F, Pirastu N, Athanasakis E, Somaschini A, Pianigiani G, Gasparini P. A novel mutation in the vWFA2 domain of the COCH gene in an Italian DFNA9 family. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/1651386x.2010.538523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Li L, Ikezono T, Sekine K, Shindo S, Matsumura T, Pawankar R, Ichimiya I, Yagi T. Molecular cloning of the Coch gene of guinea pig inner ear and its expression analysis in cultured fibrocytes of the spiral ligament. Acta Otolaryngol 2010; 130:868-80. [PMID: 20629486 DOI: 10.3109/00016480903493766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS We have cloned guinea pig Coch cDNA and the sequence information will be useful for future molecular study combined with physiological experiments. Proper Coch gene expression appears to be dependent on the unique extracellular micro-environment of the inner ear in vivo. These results provide insight into the Coch gene expression and its regulation. OBJECTIVE To characterize the guinea pig Coch gene, we performed molecular cloning and expression analysis in the inner ear and cultured fibrocytes of the spiral ligament. METHODS The Coch cDNA was isolated using RACE. Cochlin isofoms were studied by Western blot using three different types of mammalian inner ear. The cochlear fibrocytes were cultured and characterized by immunostaining. Coch gene expression in the fibrocytes was investigated and the influence of cytokine stimulation was evaluated. RESULTS The full-length 1991 bp Coch cDNA that encodes a 553 amino acid protein was isolated. The sequence had significant homology with other mammals, and the sizes of the Cochlin isoforms were identical. In the cultured fibrocytes, Coch mRNA was expressed in a very small amount and the isoform production was different, compared with the results in vivo. Cytokine stimulation did not alter the level of mRNA expression or isoform formation.
Collapse
Affiliation(s)
- Lishu Li
- Department of Otorhinolaryngology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kuehn A, Simon N, Pradel G. Family members stick together: multi-protein complexes of malaria parasites. Med Microbiol Immunol 2010; 199:209-26. [PMID: 20419315 DOI: 10.1007/s00430-010-0157-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Indexed: 11/24/2022]
Abstract
Malaria parasites express a broad repertoire of proteins whose expression is tightly regulated depending on the life-cycle stage of the parasite and the environment of target organs in the respective host. Transmission of malaria parasites from the human to the anopheline mosquito is mediated by intraerythrocytic sexual stages, termed gametocytes, which circulate in the peripheral blood and are essential for the spread of the tropical disease. In Plasmodium falciparum, gametocytes express numerous extracellular proteins with adhesive motifs, which might mediate important interactions during transmission. Among these is a family of six secreted proteins with adhesive modules, termed PfCCp proteins, which are highly conserved throughout the apicomplexan clade. In P. falciparum, the proteins are expressed in the parasitophorous vacuole of gametocytes and are subsequently exposed on the surface of macrogametes during parasite reproduction in the mosquito midgut. One characteristic of the family is a co-dependent expression, such that loss of all six proteins occurs if expression of one member is disrupted via gene knockout. The six PfCCp proteins interact by adhesion domain-mediated binding and thus form complexes on the sexual stage surface having adhesive properties. To date, the PfCCp proteins represent the only protein family of the malaria parasite sexual stages that assembles to multimeric complexes, and only a small number of such protein complexes have so far been identified in other life-cycle stages of the parasite.
Collapse
Affiliation(s)
- Andrea Kuehn
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2, Building D15, Würzburg, Germany
| | | | | |
Collapse
|
42
|
Plasmodium berghei crystalloids contain multiple LCCL proteins. Mol Biochem Parasitol 2009; 170:49-53. [PMID: 19932717 PMCID: PMC2816727 DOI: 10.1016/j.molbiopara.2009.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 11/22/2022]
Abstract
Malaria crystalloids are unique organelles of unknown function that are present only in the mosquito-specific ookinete and early oocyst stages of the parasite. Recently, crystalloid formation in Plasmodium berghei was linked to the parasite protein PbSR, a member of the Plasmodium LCCL protein family composed of six modular multidomain proteins involved in sporozoite development and infectivity. Here, we show by fluorescent protein tagging that two other LCCL protein family members are targeted to the crystalloids in a similar way to PbSR. These results extend the similarities between the LCCL proteins, and provide strong supporting evidence for the hypothesis that members of this protein family work in concert and are involved in a similar molecular process.
Collapse
|
43
|
Wang ZQ, Xing WM, Fan HH, Wang KS, Zhang HK, Wang QW, Qi J, Yang HM, Yang J, Ren YN, Cui SJ, Zhang X, Liu F, Lin DH, Wang WH, Hoffmann MK, Han ZG. The novel lipopolysaccharide-binding protein CRISPLD2 is a critical serum protein to regulate endotoxin function. THE JOURNAL OF IMMUNOLOGY 2009; 183:6646-56. [PMID: 19864597 DOI: 10.4049/jimmunol.0802348] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS is an immunostimulatory component of Gram-negative bacteria. Acting on the immune system in a systemic fashion, LPS exposes the body to the hazard of septic shock. In this study we report that cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2/Crispld2; human and mouse/rat versions, respectively), expressed by multitissues and leukocytes, is a novel LPS-binding protein. As a serum protein, median CRISPLD2 concentrations in health volunteers and umbilical cord blood samples are 607 microg/ml and 290 microg/ml, respectively. Human peripheral blood granulocytes and mononuclear cells including monocytes, NK cells, and T cells spontaneously release CRISPLD2 (range, 0.2-0.9 microg/ml) and enhance CRISPLD2 secretion (range, 1.5-4.2 microg/ml) in response to stimulation of both LPS and humanized anti-human TLR4-IgA Ab in vitro. CRISPLD2 exhibits significant LPS binding affinity similar to that of soluble CD14, prevents LPS binding to target cells, reduces LPS-induced TNF-alpha and IL-6 production, and protects mice against endotoxin shock. In in vivo experiments, serum Crispld2 concentrations increased in response to a nontoxic dose of LPS and correlated negatively with LPS lethality, suggesting that CRISPLD2 serum concentrations not only are indicators of the degree of a body's exposure to LPS but also reflect an individual's LPS sensitivity.
Collapse
Affiliation(s)
- Zhi-Qin Wang
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lan J, Ribeiro L, Mandeville I, Nadeau K, Bao T, Cornejo S, Sweezey NB, Kaplan F. Inflammatory cytokines, goblet cell hyperplasia and altered lung mechanics in Lgl1+/- mice. Respir Res 2009; 10:83. [PMID: 19772569 PMCID: PMC2760518 DOI: 10.1186/1465-9921-10-83] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 09/21/2009] [Indexed: 11/25/2022] Open
Abstract
Background Neonatal lung injury, a leading cause of morbidity in prematurely born infants, has been associated with arrested alveolar development and is often accompanied by goblet cell hyperplasia. Genes that regulate alveolarization and inflammation are likely to contribute to susceptibility to neonatal lung injury. We previously cloned Lgl1, a developmentally regulated secreted glycoprotein in the lung. In rat, O2 toxicity caused reduced levels of Lgl1, which normalized during recovery. We report here on the generation of an Lgl1 knockout mouse in order to determine whether deficiency of Lgl1 is associated with arrested alveolarization and contributes to neonatal lung injury. Methods An Lgl1 knockout mouse was generated by introduction of a neomycin cassette in exon 2 of the Lgl1 gene. To evaluate the pulmonary phenotype of Lgl1+/- mice, we assessed lung morphology, Lgl1 RNA and protein, elastin fibers and lung function. We also analyzed tracheal goblet cells, and expression of mucin, interleukin (IL)-4 and IL-13 as markers of inflammation. Results Absence of Lgl1 was lethal prior to lung formation. Postnatal Lgl1+/- lungs displayed delayed histological maturation, goblet cell hyperplasia, fragmented elastin fibers, and elevated expression of TH2 cytokines (IL-4 and IL-13). At one month of age, reduced expression of Lgl1 was associated with elevated tropoelastin expression and altered pulmonary mechanics. Conclusion Our findings confirm that Lgl1 is essential for viability and is required for developmental processes that precede lung formation. Lgl1+/- mice display a complex phenotype characterized by delayed histological maturation, features of inflammation in the post-natal period and altered lung mechanics at maturity. Lgl1 haploinsufficiency may contribute to lung disease in prematurity and to increased risk for late-onset respiratory disease.
Collapse
Affiliation(s)
- Jie Lan
- McGill University, Montreal Children's Hospital Research Institute Montreal, Quebec, H3Z2Z3, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Balharry D, Sexton K, Oreffo V, Bérubé KA. A novel application for Cocoacrisp protein as a biomarker for experimental pulmonary fibrosis. Biomarkers 2009; 14:366-71. [PMID: 19552621 DOI: 10.1080/13547500903029736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pulmonary fibrosis is a debilitating disease affecting up to 2 million people worldwide, with a median survival rate of only 3 years after diagnosis. The aim of this study was to evaluate a potential protein biomarker (Cocoacrisp, CC) to identify the onset of pulmonary fibrosis. A model of fibrosis was induced via intratracheal instillation of bleomycin, and samples were collected during the early phase of the disease. Immunohistochemical identification of CC was carried out in lung tissue from the bleomycin model. Quantification by image analysis showed CC levels were doubled (p <0.0003), after a single bleomycin dose, but not after double instillation. Microscopic analysis revealed that CC signal was primarily detected on the alveolar surface. The secretion of the novel protein CC during the early stages of bleomycin-induced injury may have the potential to be utilized as a clinical biomarker for the early stages of fibrosis, particularly as it may be detectable in bronchoalveolar lavage fluid.
Collapse
|
46
|
Hildebrand MS, Tack D, Deluca A, Hur IA, Van Rybroek JM, McMordie SJ, Muilenburg A, Hoskinson DP, Van Camp G, Pensak ML, Storper IS, Huygen PLM, Casavant TL, Smith RJH. Mutation in the COCH gene is associated with superior semicircular canal dehiscence. Am J Med Genet A 2009; 149A:280-5. [PMID: 19161137 DOI: 10.1002/ajmg.a.32618] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael S Hildebrand
- Department of Otolaryngology, Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Simon N, Scholz SM, Moreira CK, Templeton TJ, Kuehn A, Dude MA, Pradel G. Sexual stage adhesion proteins form multi-protein complexes in the malaria parasite Plasmodium falciparum. J Biol Chem 2009; 284:14537-46. [PMID: 19304662 DOI: 10.1074/jbc.m808472200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The sexual phase of the malaria parasite Plasmodium falciparum is accompanied by the coordinated expression of stage-specific adhesive proteins. Among these are six secreted proteins with multiple adhesion domains, termed P. falciparum LCCL domain-containing protein (PfCCp) proteins, which are expressed in the parasitophorous vacuole of the differentiating gametocytes and which are later associated with macrogametes. Although the majority of the PfCCp proteins are implicated in parasite development in the mosquito vector, their functions remain unknown. In the present study we investigated the molecular interactions between the PfCCp proteins during gametocyte development and emergence. Using five different gene-disruptant parasite lines, we show that the lack of one PfCCp protein leads to the loss of other PfCCp family members. Co-immunoprecipitation assays on gametocyte lysates revealed formation of complexes involving all PfCCp proteins, and affinity chromatography co-elution binding assays with recombinant PfCCp domains further indicated direct binding between distinct adhesion domains. PfCCp-coated latex beads bind to newly formed macrogametes but not to gametocytes or older macrogametes 6 or 24 h post-activation. In view of these data, we propose that the PfCCp proteins form multi-protein complexes that are exposed during gametogenesis, thereby mediating cell contacts of macrogametes.
Collapse
Affiliation(s)
- Nina Simon
- Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Ouyang XM, Yan D, Yuan HJ, Pu D, Du LL, Han DY, Liu XZ. The genetic bases for non-syndromic hearing loss among Chinese. J Hum Genet 2009; 54:131-40. [PMID: 19197336 DOI: 10.1038/jhg.2009.4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deafness is an etiologically heterogeneous trait with many known genetic, environmental causes or a combination thereof. The identification of more than 120 independent genes for deafness has provided profound new insights into the pathophysiology of hearing. However, recent findings indicate that a large proportion of both syndromic and non-syndromic forms of deafness in the Chinese population are caused by defects in a small number of genes. Studies of the genetic epidemiology and molecular genetic features revealed that there is a clear relevance of genes causing deafness in Chinese deaf patients as well as a unique spectrum of common and rare deafness gene mutations in the Chinese population. This review is focused on the genetic aspects of non-syndromic and mitochondrial deafness, in which unique molecular genetic features of hearing impairment have been identified in the Chinese population. The current China population is approximately 1.3 billion. It is estimated that 30,000 infants are born with congenital sensorineural hearing loss each year. Better understanding of the genetic causes of deafness in the Chinese population is important for accurate genetics counseling and early diagnosis for timely intervention and treatment options.
Collapse
Affiliation(s)
- Xiao Mei Ouyang
- Department of Otolaryngology, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Gibbs GM, Roelants K, O'Bryan MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocr Rev 2008; 29:865-97. [PMID: 18824526 DOI: 10.1210/er.2008-0032] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily members are found in a remarkable range of organisms spanning each of the animal kingdoms. Within humans and mice, there are 31 and 33 individual family members, respectively, and although many are poorly characterized, the majority show a notable expression bias to the reproductive tract and immune tissues or are deregulated in cancers. CAP superfamily proteins are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or prooncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilization. This review describes mammalian CAP superfamily gene expression profiles, phylogenetic relationships, protein structural properties, and biological functions, and it draws into focus their potential role in health and disease. The nine subfamilies of the mammalian CAP superfamily include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. We conclude that overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton 3168, Australia.
| | | | | |
Collapse
|
50
|
Nagy I, Trexler M, Patthy L. The second von Willebrand type A domain of cochlin has high affinity for type I, type II and type IV collagens. FEBS Lett 2008; 582:4003-7. [PMID: 19013156 DOI: 10.1016/j.febslet.2008.10.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 10/25/2008] [Indexed: 10/21/2022]
Abstract
Cochlin is colocalized with type II collagen in the extracellular matrix of cochlea and has been suggested to interact with this collagen. Here we show that the second von Willebrand type A domain of cochlin has affinity for type II collagen, as well as type I and type IV collagens whereas the LCCL-domain of cochlin has no affinity for these proteins. The implications of these findings for the mechanism whereby cochlin mutations cause the dominant negative DFNA9-type hearing loss are discussed.
Collapse
Affiliation(s)
- Ildikó Nagy
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, P.O. Box 7, Karolina út 29, H-1518, Hungary
| | | | | |
Collapse
|