1
|
Yamaguchi Y, Saito T, Takagi M, Nakazawa T, Tamura K. Changes in 5-Fluorouracil-induced external granular cell damage during the time-course of the developing cerebellum of infant rats. J Toxicol Pathol 2022; 35:299-311. [PMID: 36406170 PMCID: PMC9647215 DOI: 10.1293/tox.2022-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/06/2022] [Indexed: 07/06/2024] Open
Abstract
5-Fluorouracil (5-FU) is widely used as a chemotherapeutic agent that blocks DNA synthesis and replication by inhibiting thymidylate synthetase. This study aimed to elucidate 5-FU-induced changes in the external granular cells (EGCs) in the cerebellum of infant rats and the possible underlying mechanism. Six-day-old infant rats were injected subcutaneously with 40 mg/kg of 5-FU, and their cerebellums were examined at 6, 9, 12, and 24 h after treatment (HAT), and 2, 4, and 10 d after treatment (DAT). The width of the external granular layer (EGL) decreased from 24 HAT to 4 DAT in the 5-FU group compared to that in the control group. However, the width in the 5-FU group was comparable to that of the control group at 10 DAT. The number of apoptotic cells, cleaved caspase 3-labeling index (LI%), p21cip1-LI%, and expression levels of p53, p21cip1, and Fas mRNAs increased at 24 HAT. However, no changes were detected in the expression levels of Puma and Bax mRNAs at any time point. BrdU-LI% increased at 6 and 12 HAT but decreased at 24 HAT. The phospho-histone H3-LI% decreased from 6 HAT to 2 DAT. The width of the molecular layer decreased compared to that of the control group at 10 DAT. No differences were observed in Purkinje cell development. These results indicate that 5-FU inhibited cell proliferation by inducing apoptosis of EGCs via activation of Fas and caspase-3 without the involvement of the mitochondrial pathway and induced p53-dependent G1-S and G2-M phase arrest.
Collapse
Affiliation(s)
- Yuko Yamaguchi
- Pathology Division, Gotemba Laboratories, BoZo Research
Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Tsubasa Saito
- Pathology Division, Gotemba Laboratories, BoZo Research
Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Mizuho Takagi
- Pathology Division, Gotemba Laboratories, BoZo Research
Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Tomomi Nakazawa
- Pathology Division, Gotemba Laboratories, BoZo Research
Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Kazutoshi Tamura
- Pathology Division, Gotemba Laboratories, BoZo Research
Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| |
Collapse
|
2
|
Yamaguchi Y, Fukunaga Y, Takagi M, Saito T, Tamura K, Hoshiya T. Time-course changes in 5-fluorouracil-induced neural progenitor cell damages in the developing rat brain. J Toxicol Pathol 2021; 34:299-308. [PMID: 34621107 PMCID: PMC8484929 DOI: 10.1293/tox.2020-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
5-Fluorouracil (5-Fu) is a DNA-damaging agent and teratogenic in rodents. This study
aimed to investigate its influence on neural progenitor cells (NPCs) in the developing
fetal rat brain. Dams were intraperitoneally injected with 5-Fu (50 mg/kg b.w.) on
gestation day 13 and its effects on fetal NPCs were observed from 3 to 72 hours after
treatment (HAT), via periodic examination at six intervals. In NPCs of the fetal brain,
the p53-labeling index (LI%) was markedly elevated at 3 HAT. Pyknosis and cleaved
caspase-3-LI% also increased at 3 HAT, reaching peak values at 9 and 12 HAT. These
parallel changes suggested the induction of apoptosis through a p53-mediated pathway.
Pyknotic NPCs were distributed across the ventricular zone (VZ) of the telencephalic wall
until 12 HAT, and became localized in the medial and dorsal layers at 12 and 48 HAT.
Significant decreases in the numbers of mitotic NPCs and BrdU-LI% were noted from 3 HAT
and 24 HAT, respectively. BrdU-positive NPCs were located in the ventral and middle layer
at 24 and 48 HAT. p21-positive cells were detected at 12 and 24 HAT. The present results
demonstrated that p53-mediated apoptosis was induced in all phases of the cell cycle of
the NPCs in the early stage after 5-FU treatment. Furthermore, apoptosis of NPCs and
suppression of cell proliferative activity are the events that take place in parallel
leading to prominent reduction in the width of the telencephalic wall.
Collapse
Affiliation(s)
- Yuko Yamaguchi
- Pathology Division, Gotemba Laboratories, BoZo Research Center Inc, 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Yachiyo Fukunaga
- Pathology Division, Gotemba Laboratories, BoZo Research Center Inc, 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Mizuho Takagi
- Pathology Division, Gotemba Laboratories, BoZo Research Center Inc, 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Tsubasa Saito
- Pathology Division, Gotemba Laboratories, BoZo Research Center Inc, 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Kazutoshi Tamura
- Pathology Division, Gotemba Laboratories, BoZo Research Center Inc, 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Toru Hoshiya
- Pathology Division, Gotemba Laboratories, BoZo Research Center Inc, 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| |
Collapse
|
3
|
El-Desoky GE, Wabaidur SM, AlOthman ZA, Habila MA. Regulatory Role of Nano-Curcumin against Tartrazine-Induced Oxidative Stress, Apoptosis-Related Genes Expression, and Genotoxicity in Rats. Molecules 2020; 25:E5801. [PMID: 33316931 PMCID: PMC7763955 DOI: 10.3390/molecules25245801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
The present study evaluates the regulatory effect of Nano-Curcumin (Nano-CUR) against tartrazine (TZ)-induced injuries on apoptosis-related gene expression (i.e., p53, CASP-3 and CASP-9), antioxidant status, and DNA damages in bone marrow in treated rats. Male rats were arbitrarily separated into five groups, and each group was comprised of 10 rats each. The 1st group served as control (G1). The 2nd group ingested 7.5 mg TZ/kg. b.w. (body weight). The 3rd group ingested Nano-CUR 1 g/kg b.w. The 4th and 5th groups were respectively administered with (1 g Nano-CUR + 7.5 mg TZ/kg. b.w.) and (2 g Nano-CUR + 7.5 mg TZ/kg. b.w.). At the end of the experiment, blood samples, livers, and kidneys were collected. Livers and kidneys were homogenized and used for the analysis of reduced glutathione, malonaldhyde, total antioxidant capacity, lipid peroxide antioxidant enzyme activities, apoptosis-related gene expression, and genotoxicity by comit test. The ingestion of TZ for 50 days resulted in significant decreases in body, and kidney weights in rats and a relative increase in the liver weight compared to control. In contrast, the ingestion of Nano-CUR with TZ remarkably upgraded the body weight and relative liver weight compared to the normal range in the control. Aditionally, TZ ingestion in rats increased the oxidative stress biomarkers lipid peroxide (LPO) and malonaldehyde (MDA) significantly, whereas it decreased the reduced glutathione (GSH) levels and total antioxidant capacity (TAC). Similarly, the levels of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) significantly deteriorated in response to TZ ingestion. Moreover, the results revealed a remarkable up-regulation in the level of expression for the three examined genes, including p53, CASP-3, and CASP-9 in TZ-ingested rats compared to the control. On the other hand, the comet assay result indicates that the ingestion of TZ induced DNA damage in bone marrow. Notably, the administration of Nano-CUR protected the kidney and liver of TZ-ingested rats as evidenced by a significant elevation in all antioxidant activities of tested enzymes (i.e, SOD, GPx, and CAT), vital recovery in GSH and TAC levels, and a statistical decrease in LPO and MDA compared to TZ-ingested rats. Interestingly, the ingestion of rats with TZ modulates the observed up-regulation in the level of expression for the chosen genes, indicating the interfering role in the signaling transduction process of TZ-mediated poisoning. The results indicate that the administration of Nano-CUR may protect against TZ-induced DNA damage in bone marrow. According to the results, Nano-CUR exerted a potential protective effect against oxidative stress, DNA damage, and the up-regulation of apoptosis-related genes induced by TZ ingested to rats.
Collapse
Affiliation(s)
- Gaber E. El-Desoky
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.W.); (Z.A.A.); (M.A.H.)
| | | | | | | |
Collapse
|
4
|
Jian C, Dong W, Wang J, Guo K, Ning P, Zhang Y. Retracted article: Using firefly luciferase-based apoptosis detection to determine the participation of rotavirus NSP4-induced NF-κB activation in apoptosis. Jian et al. 2014, Virus Genes. Virus Genes 2014; 50:349. [PMID: 25216914 DOI: 10.1007/s11262-014-1115-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
|
5
|
Zhai D, Chin K, Wang M, Liu F. Disruption of the nuclear p53-GAPDH complex protects against ischemia-induced neuronal damage. Mol Brain 2014; 7:20. [PMID: 24670206 PMCID: PMC3986870 DOI: 10.1186/1756-6606-7-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/28/2014] [Indexed: 12/24/2022] Open
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is conventionally considered a critical enzyme that involves in glycolysis for energy production. Recent previous studies have suggested that GAPDH is important in glutamate-induced neuronal excitotoxicity, while accumulated evidence also demonstrated that GAPDH nuclear translocation plays a critical role in cell death. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we showed that GAPDH translocates to the nucleus in a Siah1-dependent manner upon glutamate stimulation. The nuclear GAPDH forms a protein complex with p53 and enhances p53 expression and phosphorylation. Disruption of the GAPDH-p53 interaction with an interfering peptide blocks glutamate-induced cell death and GAPDH-mediated up-regulation of p53 expression and phosphorylation. Furthermore, administration of the interfering peptide in vivo protects against ischemia-induced cell death in rats subjected to tMCAo. Our data suggest that the nuclear p53-GAPDH complex is important in regulating glutamate-mediated neuronal death and could serve as a potential therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
| | | | | | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, Clarke Division, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
6
|
Zhong B, Ma Y, Fu D, Zhang C. Induction of apoptosis in osteosarcoma s180 cells by polysaccharide from dictyophora indusiata. Cell Biochem Funct 2013; 31:719-23. [PMID: 23400947 DOI: 10.1002/cbf.2961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/26/2012] [Accepted: 01/02/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Biao Zhong
- Department of Orthopaedic Surgery, Shanghai 6th People's Hospital; Shanghai Jiao Tong University; Shanghai China
| | - Yushui Ma
- The Key Laboratory of Stem Cell Biology; Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Da Fu
- The Key Laboratory of Stem Cell Biology; Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Chi Zhang
- Department of Orthopaedic Surgery, Shanghai 6th People's Hospital; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
7
|
Conformational altered p53 affects neuronal function: relevance for the response to toxic insult and growth-associated protein 43 expression. Cell Death Dis 2013; 4:e484. [PMID: 23392172 PMCID: PMC3734841 DOI: 10.1038/cddis.2013.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of p53 in neurodegenerative diseases is essentially associated with neuronal death. Recently an alternative point of view is emerging, as altered p53 conformation and impaired protein function have been found in fibroblasts and blood cells derived from Alzheimer's disease patients. Here, using stable transfected SH-SY5Y cells overexpressing APP751wt (SY5Y-APP) we demonstrated that the expression of an unfolded p53 conformation compromised neuronal functionality. In particular, these cells showed (i) augmented expression of amyloid precursor protein (APP) and its metabolites, including the C-terminal fragments C99 and C83 and β-amyloid peptide (ii) high levels of oxidative markers, such as 4-hydroxy-2-nonenal Michael-adducts and 3-nitro-tyrosine and (iii) altered p53 conformation, mainly due to nitration of its tyrosine residues. The consequences of high-unfolded p53 expression resulted in loss of p53 pro-apoptotic activity, and reduction of growth-associated protein 43 (GAP-43) mRNA and protein levels. The role of unfolded p53 in cell death resistance and lack of GAP-43 transcription was demonstrated by ZnCl2 treatment. Zinc supplementation reverted p53 wild-type tertiary structure, increased cells sensitivity to acute cytotoxic injury and GAP-43 levels in SY5Y-APP clone.
Collapse
|
8
|
Lanni C, Racchi M, Memo M, Govoni S, Uberti D. p53 at the crossroads between cancer and neurodegeneration. Free Radic Biol Med 2012; 52:1727-33. [PMID: 22387179 DOI: 10.1016/j.freeradbiomed.2012.02.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 12/20/2022]
Abstract
Aging, dementia, and cancer share a critical set of altered cellular functions in response to DNA damage, genotoxic stress, and other insults. Recent data suggest that the molecular machinery involved in maintaining neural function in neurodegenerative disease may be shared with oncogenic pathways. Cancer and neurodegenerative diseases may be influenced by common signaling pathways regulating the balance of cell survival versus death, a decision often governed by checkpoint proteins. This paper focuses on one such protein, p53, which represents one of the most extensively studied proteins because of its role in cancer prevention and which, furthermore, has been recently shown to be involved in aging and Alzheimer disease (AD). The contribution of a conformational change in p53 to aging and neurodegenerative processes has yet to be elucidated. In this review we discuss the multiple functions of p53 and how these correlate between cancer and neurodegeneration, focusing on various factors that may have a role in regulating p53 activity. The observation that aging and AD interfere with proteins controlling duplication and cell cycle may lead to the speculation that, in senescent neurons, aberrations in proteins generally dealing with cell cycle control and apoptosis could affect neuronal plasticity and functioning rather than cell duplication.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, 27100 Pavia, Italy.
| | | | | | | | | |
Collapse
|
9
|
Wang M, Li S, Zhang H, Pei L, Zou S, Lee FJS, Wang YT, Liu F. Direct interaction between GluR2 and GAPDH regulates AMPAR-mediated excitotoxicity. Mol Brain 2012; 5:13. [PMID: 22537872 PMCID: PMC3407747 DOI: 10.1186/1756-6606-5-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 04/26/2012] [Indexed: 12/30/2022] Open
Abstract
Over-activation of AMPARs (α−amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptors) is implicated in excitotoxic neuronal death associated with acute brain insults, such as ischemic stroke. However, the specific molecular mechanism by which AMPARs, especially the calcium-impermeable AMPARs, induce neuronal death remains poorly understood. Here we report the identification of a previously unrecognized molecular pathway involving a direct protein-protein interaction that underlies GluR2-containing AMPAR-mediated excitotoxicity. Agonist stimulation of AMPARs promotes GluR2/GAPDH (glyceraldehyde-3-phosphate dehydrogenase) complex formation and subsequent internalization. Disruption of GluR2/GAPDH interaction by administration of an interfering peptide prevents AMPAR-mediated excitotoxicity and protects against damage induced by oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia.
Collapse
Affiliation(s)
- Min Wang
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Doi K. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals. J Toxicol Sci 2012; 36:695-712. [PMID: 22129734 DOI: 10.2131/jts.36.695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.
Collapse
Affiliation(s)
- Kunio Doi
- Nippon Institute for Biological Science, Ome, Tokyo, Japan.
| |
Collapse
|
11
|
Aboul-Soud MAM, Al-Othman AM, El-Desoky GE, Al-Othman ZA, Yusuf K, Ahmad J, Al-Khedhairy AA. Hepatoprotective effects of vitamin E/selenium against malathion-induced injuries on the antioxidant status and apoptosis-related gene expression in rats. J Toxicol Sci 2011; 36:285-96. [PMID: 21628957 DOI: 10.2131/jts.36.285] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study is undertaken to evaluate the protective effect of vitamin E (α-tocopherol) and selenium (Se) against malathion (MTN)-induced oxidative stress and hepatic injuries in experimental rats. Male rats were randomly divided into eight groups comprised of 10 rats each. The 1(st) group served as a negative control (C(N)), whereas the 2(nd) was supplemented with a combination of α-tocopherol (100 mg kg(-1) body weight, b.w.)/Se (0.1 mg kg(-1) bw). The 3(rd), 4(th) and 5(th) groups were respectively administered with increasing doses of MTN equivalent to (1/50 )LD(50) (M(1/50)), (1/25) LD(50) (M(1/25)) and (1/10) LD(50) (M(1/10)), respectively. The 6(th), 7(th) and 8(th) groups were administered the same doses of MTN as in the 3(rd), 4(th) and 5(th) groups with a concomitant supplementation with α-tocopherol/Se. Subchronic exposure of rats to MTN for 45 days resulted in statistical dose-dependent decrease in acetylcholinestrase (AChE) activity, increase in oxidative stress marker lipid peroxidation (LPO) and reduction in reduced glutathione (GSH) level. Moreover, the levels of glutathione persoxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were significantly decline in response to MTN exposure in a dose-dependent fashion. Furthermore, histopathological studies of liver in the rats which received MTN exhibited, moderate to severe degenerative and necrotic changes in the hepatocytes. Notably, the administration of α-tocopherol/Se protected the liver of rats exposed to MTN as evidenced by the appearance of normal histological structures, significant attenuation of the decline in all antioxidant enzymes tested (i.e. GPx, SOD and CAT), significant recovery in the GSH level and statistical reduction in LPO, as compared to the experimental rat. The effect of α-tocopherol/Se supplementation on transcriptional activity of three key stress and apoptosis-related genes (i.e., Tp53, CASP3 and CASP9), in response to MTN exposure in rats, was investigated. Results revealed a significant concentration-dependent up-regulation in the level of expression for the three genes examined, in response to MTN exposure, compared with the control. Interestingly, the supplementation of MTN-treated rats with α-tocopherol/Se modulates the observed significant dose-dependent up-regulation in the level of expression for three selected genes, indicative of an interfering role in the signaling transduction process of MTN-mediated poisoning. Taken together, these data suggest that the administration of α-tocopherol/Se may partially protect against MTN-induced hepatic oxidative stress and injuries.
Collapse
Affiliation(s)
- Mourad A M Aboul-Soud
- Abdul Rahman Al-Jeraisy Chair for DNA Research, Zoology Department, College of Science, Riyadh 11451, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang HL, Xu M, Wei C, Qin AP, Liu CF, Hong LZ, Zhao XY, Liu J, Qin ZH. Neuroprotective effects of pioglitazone in a rat model of permanent focal cerebral ischemia are associated with peroxisome proliferator-activated receptor gamma-mediated suppression of nuclear factor-κB signaling pathway. Neuroscience 2011; 176:381-95. [DOI: 10.1016/j.neuroscience.2010.12.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/12/2010] [Accepted: 12/19/2010] [Indexed: 11/16/2022]
|
13
|
Gao X, Yang X, Zhang B. Neuroprotection of taurine against bilirubin-induced elevation of apoptosis and intracellular free calcium ion in vivo. Toxicol Mech Methods 2011; 21:383-7. [PMID: 21250777 DOI: 10.3109/15376516.2010.546815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous work has shown that taurine protected neurons against unconjugated bilirubin (UCB)-induced neurotoxicity by preventing cell apoptosis and maintaining intracellular Ca²⁺ homeostasis in primary neuron culture. This study investigates the neurotoxicity of hyperbilirubinemia and neuroprotection of taurine in a clinically relevant murine model in vivo. A hyperbilirubinemia baby mice model was established by intraperitoneal injection with UCB. After 24 h, the neural apoptotic level, transcriptional activity of caspase-3, and iCa²⁺ concentration were detected. It was found that UCB injection significantly increased both intracellular free Ca²⁺ concentrations and the activities of proapoptosis protease caspase-3, which is related to the elevation of neural apoptosis level. When baby mice were pretreated with 7.5 or 15 mg/kg body weight (bw) taurine for 4 h and then exposed to UCB, apoptotic death was significantly attenuated through down-regulation of activity of caspase-3 and i[Ca²⁺] in the brain. From these observations, it was concluded that taurine limits bilirubin-induced neural damage by inhibiting iCa²⁺ overload as well as decreasing activation of proapoptotic proteases caspase-3. This study might contribute to the development of taurine as a broad-spectrum agent for preventing and/or treating neural damage in neonatal jaundice.
Collapse
Affiliation(s)
- Xiaoling Gao
- Molecular Immunology, Center of Clinical laboratory, People's Hospital of Gansu Province, Gansu, P.R. China
| | | | | |
Collapse
|
14
|
Zhong Z, Wang Y, Guo H, Sagare A, Fernández JA, Bell RD, Barrett TM, Griffin JH, Freeman RS, Zlokovic BV. Protein S protects neurons from excitotoxic injury by activating the TAM receptor Tyro3-phosphatidylinositol 3-kinase-Akt pathway through its sex hormone-binding globulin-like region. J Neurosci 2010; 30:15521-34. [PMID: 21084607 PMCID: PMC3012432 DOI: 10.1523/jneurosci.4437-10.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/15/2010] [Indexed: 11/21/2022] Open
Abstract
The anticoagulant factor protein S (PS) protects neurons from hypoxic/ischemic injury. However, molecular mechanisms mediating PS protection in injured neurons remain unknown. Here, we show mouse recombinant PS protects dose-dependently mouse cortical neurons from excitotoxic NMDA-mediated neuritic bead formation and apoptosis by activating the phosphatidylinositol 3-kinase (PI3K)-Akt pathway (EC(50) = 26 ± 4 nm). PS stimulated phosphorylation of Bad and Mdm2, two downstream targets of Akt, which in neurons subjected to pathological overstimulation of NMDA receptors (NMDARs) increased the antiapoptotic Bcl-2 and Bcl-X(L) levels and reduced the proapoptotic p53 and Bax levels. Adenoviral transduction with a kinase-deficient Akt mutant (Ad.Akt(K179A)) resulted in loss of PS-mediated neuronal protection, Akt activation, and Bad and Mdm2 phosphorylation. Using the TAM receptors tyrosine kinases Tyro3-, Axl-, and Mer-deficient neurons, we showed that PS protected neurons lacking Axl and Mer, but not Tyro3, suggesting a requirement of Tyro3 for PS-mediated protection. Consistent with these results, PS dose-dependently phosphorylated Tyro3 on neurons (EC(50) = 25 ± 3 nm). In an in vivo model of NMDA-induced excitotoxic lesions in the striatum, PS dose-dependently reduced the lesion volume in control mice (EC(50) = 22 ± 2 nm) and protected Axl(-/-) and Mer(-/-) transgenic mice, but not Tyro3(-/-) transgenic mice. Using different structural PS analogs, we demonstrated that the C terminus sex hormone-binding globulin-like (SHBG) domain of PS is critical for neuronal protection in vitro and in vivo. Thus, our data show that PS protects neurons by activating the Tyro3-PI3K-Akt pathway via its SHGB domain, suggesting potentially a novel neuroprotective approach for acute brain injury and chronic neurodegenerative disorders associated with excessive activation of NMDARs.
Collapse
Affiliation(s)
- Zhihui Zhong
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Yaoming Wang
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Huang Guo
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Abhay Sagare
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - José A. Fernández
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Robert D. Bell
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Theresa M. Barrett
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - John H. Griffin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Robert S. Freeman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Berislav V. Zlokovic
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| |
Collapse
|
15
|
Abstract
Although p53 is a major cancer preventive factor, under certain extreme stress conditions it may induce severe pathologies. Analyses of animal models indicate that p53 is largely responsible for the toxicity of ionizing radiation or DNA damaging drugs contributing to hematopoietic component of acute radiation syndrome and largely determining severe adverse effects of cancer treatment. p53-mediated damage is strictly tissue specific and occurs in tissues prone to p53-dependent apoptosis (e.g., hematopoietic system and hair follicles); on the contrary, p53 can serve as a survival factor in tissues that respond to p53 activation by cell cycle arrest (e.g., endothelium of small intestine). There are multiple experimental indications that p53 contributes to pathogenicity of acute ischemic diseases. Temporary reversible suppression of p53 by small molecules can be an effective and safe approach to reduce severity of p53-associated pathologies.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | |
Collapse
|
16
|
Folch J, Alvira D, López-Querol M, Tajes M, Sureda FX, Forsby A, Rimbau V, Camins A, Pallàs M. Evaluation of transcriptional activity of caspase-3 gene as a marker of acute neurotoxicity in rat cerebellar granular cells. Toxicol In Vitro 2009; 24:465-71. [PMID: 19815060 DOI: 10.1016/j.tiv.2009.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 11/29/2022]
Abstract
Caspase-3 is a key protein involved in the classical apoptosis mechanism in neurons, as in many other cells types. In the present research, we describe the transcriptional activity of caspase-3 gene as a marker of acute toxicity in a primary culture model of rat cerebellar granule neurons (CGNs). CGNs were incubated for 16h in complete medium containing the chemicals at three concentrations (10, 100microM and 1mM). A total of 48 different compounds were tested. Gene transcriptional activity was determined by low-density array assays, and by single Taqman caspase-3 assays. Results from the PCR arrays showed that the caspase-3 gene was up-regulated when CGNs were exposed to neurotoxic chemicals. Significative correlations were found between the transcriptional activity of caspase-3 and the activity of some other genes related to apoptosis, cell-cycle and ROS detoxification. In our experiments, acute exposure of CGNs to well-documented pro-apoptotic xenobiotics modulated significantly caspase-3 gene expression, whereas chemicals not related to apoptosis did not modify caspase-3 gene expression. In conclusion, acute exposure of CGNs to neurotoxic compounds modulates the transcriptional activity of genes involved in the classical apoptotic pathway, oxidative stress and cell-cycle control. Transcriptional activity of caspase-3 correlates significantly with these changes and it could be a good indicator of acute neurotoxicity.
Collapse
Affiliation(s)
- Jaume Folch
- Unitat de Bioquimica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C./St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu J, Naegele JR, Lin SL. The DNA-PK catalytic subunit regulates Bax-mediated excitotoxic cell death by Ku70 phosphorylation. Brain Res 2009; 1296:164-75. [PMID: 19664609 DOI: 10.1016/j.brainres.2009.07.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
DNA repair deficiency results in neurodegenerative disease and increased susceptibility to excitotoxic cell death, suggesting a critical but undefined role for DNA damage in neurodegeneration. We compared DNA damage, Ku70-Bax interaction, and Bax-dependent excitotoxic cell death in kainic acid-treated primary cortical neurons derived from both wild-type mice and mice deficient in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) encoded by the Prkdc gene. In both wild-type and Prkdc(-/-) neurons, kainic acid treatment resulted in rapid induction of DNA damage (53BP1 foci formation) followed by nuclear pyknosis. Bax deficiency, by either Bax shRNA-mediated knockdown or gene deletion, protected wild-type and heterozygous but not Prkdc(-/-) neurons from kainate-induced excitotoxicity. Cotransfection of DNA-PKcs with Bax shRNA restored Bax shRNA-mediated neuroprotection in Prkdc(-/-) neurons, suggesting that DNA-PKcs is required for kainate-induced activation of the pro-apoptotic Bax pathway. Immunoprecipitation studies revealed that the DNA-PKcs-nonphosphorylatable Ku70 (S6A/S51A) bound 3- to 4-fold greater Bax than wild-type Ku70, suggesting that DNA-PKcs-mediated Ku70 phosphorylation causes release of Bax from Ku70. In support of this, kainic acid induced translocation of a Bax-EGFP fusion protein to the mitochondria in the presence of a cotransfected wild-type, but not mutant Ku70 (S6A/S51A) gene when examined at 4 and 8 h following kainate addition. We conclude that DNA-PKcs links DNA damage to Bax-dependent excitotoxic cell death, by phosphorylating Ku70 on serines 6 and/or 51, to initiate Bax translocation to the mitochondria and directly activate a pro-apoptotic Bax-dependent death cascade.
Collapse
Affiliation(s)
- Jia Liu
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0170, USA
| | | | | |
Collapse
|
18
|
Guo H, Singh I, Wang Y, Deane R, Barrett T, Fernández JA, Chow N, Griffin JH, Zlokovic BV. Neuroprotective activities of activated protein C mutant with reduced anticoagulant activity. Eur J Neurosci 2009; 29:1119-30. [PMID: 19302148 PMCID: PMC2692517 DOI: 10.1111/j.1460-9568.2009.06664.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The anticoagulant activated protein C (APC) protects neurons and endothelium via protease activated receptor (PAR)1, PAR3 and endothelial protein C receptor. APC is neuroprotective in stroke models. Bleeding complications may limit the pharmacologic utility of APC. Here, we compared the 3K3A-APC mutant with 80% reduced anticoagulant activity and wild-type (wt)-APC. Murine 3K3A-APC compared with wt-APC protected mouse cortical neurons from N-methyl-D-aspartate-induced apoptosis with twofold greater efficacy and more potently reduced N-methyl-D-aspartate excitotoxic lesions in vivo. Human 3K3A-APC protected human brain endothelial cells (BECs) from oxygen/glucose deprivation with 1.7-fold greater efficacy than wt-APC. 3K3A-APC neuronal protection required PAR1 and PAR3, as shown by using PAR-specific blocking antibodies and PAR1- and PAR3-deficient cells and mice. BEC protection required endothelial protein C receptor and PAR1. In neurons and BECs, 3K3A-APC blocked caspase-9 and -3 activation and induction of p53, and decreased the Bax/Bcl-2 pro-apoptotic ratio. After distal middle cerebral artery occlusion (dMCAO) in mice, murine 3K3A-APC compared with vehicle given 4:00 h after dMCAO improved the functional outcome and reduced the infarction volume by 50% within 3 days. 3K3A-APC compared with wt-APC multi-dosing therapy at 12:00 h, 1, 3, 5 and 7 days after dMCAO significantly improved functional recovery and reduced the infarction volume by 75% and 38%, respectively, within 7 days. The wt-APC, but not 3K3A-APC, significantly increased the risk of intracerebral bleeding as indicated by a 50% increase in hemoglobin levels in the ischemic hemisphere. Thus, 3K3A-APC offers a new approach for safer and more efficacious treatments of neurodegenerative disorders and stroke with APC.
Collapse
Affiliation(s)
- Huang Guo
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Itender Singh
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Yaoming Wang
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Rashid Deane
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Theresa Barrett
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - José A. Fernández
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Nienwen Chow
- ZZ Biotech Research Laboratory, Rochester, NY, USA
| | - John H. Griffin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Berislav V. Zlokovic
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| |
Collapse
|
19
|
Damjanac M, Page G, Ragot S, Laborie G, Gil R, Hugon J, Paccalin M. PKR, a cognitive decline biomarker, can regulate translation via two consecutive molecular targets p53 and Redd1 in lymphocytes of AD patients. J Cell Mol Med 2009; 13:1823-1832. [PMID: 19210572 DOI: 10.1111/j.1582-4934.2009.00688.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In Alzheimer's disease (AD), the control of translation is dysregulated, precisely, two opposite pathways: double-stranded RNA-dependent protein kinase (PKR) is up-regulated and mammalian target of rapamycin (mTOR) is down-regulated. These biochemical alterations were found at the periphery in lymphocytes of AD patients and were significantly correlated with cognitive and memory test scores. However, the molecular crosslink between these two opposite signalling pathways remains unknown. The tumour suppressor p53 and Redd1 (regulated in development and DNA damage response) could be two downstream targets of active PKR to explain the breakdown of translation in AD patients. In this study, the protein and gene levels of p53 and Redd1 were assayed in lymphocytes of AD patients and in age-matched controls by Western blotting and RT-PCR. Furthermore, correlations were analysed with both the level of active PKR and the Mini Mental State Examination score (MMSE). The results show that the gene and protein levels of p53 and Redd1 were significantly increased about 1.5-fold for both gene and Redd1 protein and 2.3-fold for active p53 in AD lymphocytes compared to age-matched controls. Furthermore, statistical correlations between proteins and genes suggest that active PKR could phosphorylate p53 which could induce the transcription of Redd1 gene. No correlations were found between MMSE scores and levels of p53 or Redd1, contrary to active PKR levels. PKR represents a cognitive decline biomarker able to dysregulate translation via two consecutive targets p53 and Redd1 in AD lymphocytes.
Collapse
Affiliation(s)
- Milena Damjanac
- Research Group on Brain Aging, University of Poitiers, France
| | - Guylène Page
- Research Group on Brain Aging, University of Poitiers, France
| | - Stéphanie Ragot
- Clinical Investigation Center, Poitiers University Hospital, France
| | | | - Roger Gil
- Research Group on Brain Aging, University of Poitiers, France.,Department of Neurology, Poitiers University Hospital, France
| | - Jacques Hugon
- Departments of Histology and Pathology, Lariboisière Hospital, University of Paris, France
| | - Marc Paccalin
- Research Group on Brain Aging, University of Poitiers, France.,Department of Geriatrics, Poitiers University Hospital, France
| |
Collapse
|
20
|
Cenini G, Sultana R, Memo M, Butterfield DA. Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer's disease. J Cell Mol Med 2008; 12:987-94. [PMID: 18494939 PMCID: PMC4401131 DOI: 10.1111/j.1582-4934.2008.00163.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease (AD). Both AD and arguably its earlier form, mild cognitive impairment (MCI), have elevated membrane oxidative damage in brain. The tumor suppressor and transcription factor p53 plays a pivotal function in neuronal apoptosis triggered by oxidative stress. Apoptosis contributes to neuronal death in many neurological disorders, including AD. In this study, we investigated p53 expression in a specific region of the cerebral cortex, namely the inferior parietal lobule (IPL), in MCI and AD brain, to test the hypothesis that alterations of this pro-apoptotic protein may be involved in neuronal death in the progression of AD. By immunoprecipitation assay, we also investigated whether 4-hydroxy-2-transnonenal (HNE), an aldehydic product of lipid peroxidation, was bound in excess to p53 in IPL from subjects with MCI and AD compared to control. Overall, the data provide evidence that p53 is involved in the neuronal death in both MCI and AD, suggesting that the observed alterations are early events in the progression of AD. In addition, HNE may be a novel non-protein mediator of oxidative stress-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Giovanna Cenini
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | |
Collapse
|
21
|
Li J, Lu Z, Li WL, Yu SP, Wei L. Cell death and proliferation in NF-kappaB p50 knockout mouse after cerebral ischemia. Brain Res 2008; 1230:281-9. [PMID: 18657523 DOI: 10.1016/j.brainres.2008.06.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/20/2008] [Accepted: 06/27/2008] [Indexed: 11/18/2022]
Abstract
The transcription factor NF-kappaB is a key regulator of inflammation and cell survival. NF-kappaB activation increases following cerebral ischemia. We previously showed accelerated aging process in NF-kappaB p50 subunit knockout (p50 -/-) mice under physiological condition. The present investigation concerned the role of NF-kappaB p50 gene in ischemia-induced neuronal cell death. In an animal model of permanent middle cerebral artery occlusion (MCAO), infarct formation, apoptotic cell death and cell proliferation were examined in adult wild type (WT) and p50-/- mice. The ischemic infarct volume was significantly larger in p50-/- mice than that in WT mice. Consistently, the numbers of cells in the penumbra region positive to terminal deoxynucleotidyltransferase (TdT)-mediated dUTP-biotin nick end-labeling (TUNEL) and caspase-3 staining were significantly more in p50-/- mice than that in WT mice. To identify proliferation after cerebral ischemia, bromodeoxyurindine (BrdU) was intraperitoneal injected daily after MCAO. Ischemia increased BrdU positive cells in the penumbra, subventricular zone, corpus callosum, and cerebral cortex, while cell proliferation was hampered in p50-/- mice. These results suggest that NF-kappaB signaling is a neuroprotective mechanism and may play a role in cell proliferation in the stroke model of permanent MCAO.
Collapse
Affiliation(s)
- Jimei Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
22
|
Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH, Mattson MP. A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid β-peptide. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00220.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Lanni C, Racchi M, Mazzini G, Ranzenigo A, Polotti R, Sinforiani E, Olivari L, Barcikowska M, Styczynska M, Kuznicki J, Szybinska A, Govoni S, Memo M, Uberti D. Conformationally altered p53: a novel Alzheimer's disease marker? Mol Psychiatry 2008; 13:641-7. [PMID: 17684496 DOI: 10.1038/sj.mp.4002060] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The identification of biological markers of Alzheimer's disease (AD) can be extremely useful to improve diagnostic accuracy and/or to monitor the efficacy of putative therapies. In this regard, peripheral cells may be of great importance, because of their easy accessibility. After subjects were grouped according to diagnosis, the expression of conformationally mutant p53 in blood cells was compared by immunoprecipitation or by a cytofluorimetric assay. In total, 104 patients with AD, 92 age-matched controls, 15 patients with Parkinson's disease and 9 with other types of dementia were analyzed. Two independent methods to evaluate the differential expression of a conformational mutant p53 were developed. Mononuclear cells were analyzed by immunoprecipitation or by flow-cytometric analysis, following incubation with a conformation-specific p53 antibody, which discriminates unfolded p53 tertiary structure. Mononuclear cells from AD patients express a higher amount of mutant-like p53 compared to non-AD subjects, thus supporting the study of conformational mutant p53 as a new putative marker to discriminate AD from non-AD patients. We also observed a strong positive correlation between the expression of p53 and the age of patients. The expression of p53 was independent from the length of illness and from the Mini Mental State Examination value.
Collapse
Affiliation(s)
- C Lanni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang G, Liu A, Zhou Y, San X, Jin T, Jin Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. JOURNAL OF ETHNOPHARMACOLOGY 2008; 115:441-448. [PMID: 18083315 DOI: 10.1016/j.jep.2007.10.026] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 10/10/2007] [Accepted: 10/12/2007] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginsenosides, the major active ingredients of Panax ginseng, produce a variety of pharmacological or physiological responses with effects on the central and peripheral nervous systems. AIM OF THE STUDY In this report, we investigated the effects of ginsenoside Rg2 on cerebral ischemia-reperfusion induced impairment of neurological responses, memory and caudate-putamen neuronal apoptosis in a vascular dementia (VD) rat model. MATERIALS AND METHODS Neurological evaluation was performed 24h after reperfusion and Y-maze memory performance was assessed at 48 h after reperfusion. Immunocytochemical techniques were employed to check the protein expression of BCL-2, BAX, heat shock protein 70 and P53, which are related with cell apoptosis. RESULTS Neurological responses and memory ability of the ginsenoside Rg2 or nimodipine groups improved significantly compared with the VD group. The expression of BCL-2 and HSP70 were decreased, while BAX and P53 were increased in the VD model. The expression of BCL-2 and HSP70 proteins were increased, while BAX and P53 decreased after ginsenoside Rg2 (2.5, 5 and 10mg/kg) and nimodipine (50 microg/kg) treatment compared with the VD group. The study suggests that ginsenoside Rg2 improved neurological performance and memory ability of VD rats through mechanisms related to anti-apoptosis. CONCLUSIONS The capacity for ginsenoside Rg2 to modulate the expression of apoptotic related proteins suggests that ginsenoside Rg2 may represent a potential treatment strategy for vascular dementia or other ischemic insults.
Collapse
Affiliation(s)
- Guizhi Zhang
- Department of Physiology, Medical College of Qingdao University, 308 Ningxia Road, Qingdao 266071, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Kosenko E, Kaminsky Y, Solomadin I, Marov N, Venediktova N, Felipo V, Montoliu C. Acute ammonia neurotoxicity in vivo involves increase in cytoplasmic protein P53 without alterations in other markers of apoptosis. J Neurosci Res 2007; 85:2491-9. [PMID: 17551980 DOI: 10.1002/jnr.21385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acute intoxication with large ammonia doses leads to activation of NMDA receptors in the brain, resulting in oxidative stress and disturbance of mitochondrial function. Altered mitochondrial function is a crucial step in some mechanisms of cellular apoptosis. This study assesses whether ammonia intoxication in vivo leads to induction of apoptotic markers such as permeability transition pore (PTP) formation, caspase-3, and caspase-9 activation, changes in p53 protein, or cytochrome c release. Acute ammonia intoxication did not affect caspase-9 or caspase-3 activities. The mitochondrial membrane potential also remained unaltered in non-synaptic brain mitochondria after injection of ammonia, indicating that ammonia did not induce PTP formation in brain in vivo. The nuclear level of p53 did not change, whereas its cytoplasmic level increased approximately two-fold. In agreement with the theory that translocation of the p53 from cytosol to nuclei is an essential step for induction of apoptosis we did not find apoptotic nuclei in brain of rats injected with ammonia. This supports the idea that ammonia neurotoxicity does not involve apoptosis and points to impaired p53 transfer from cytoplasm to nuclei as a possible preventer of apoptosis. We did not find any release of cytochrome c from mitochondria to cytosol after ammonia injection. Cytochrome c content was significantly reduced (30%) in brain mitochondria from rats injected with ammonia. This decrease may contribute to the reduced state 3 respiration, decreased respiratory control index, and disturbances in the mitochondrial electron transport chain in brain mitochondria from rats injected with ammonia.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical & Experimental Biophysics, RAS, Pushchino, Russia
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Population-based studies of human pregnancies show that periconceptional folate supplementation has a significant protective effect for embryos during early development, resulting in a significant reduction in developmental defects of the face, the neural tube, and the cono-truncal region of the heart. These results have been supported by experiments with animal models. An obvious quality held in common by these three anatomical regions is that the normal development of each region depends on a set of multi-potent cells that originate in the mid-dorsal region of the neural epithelium. However, the reason for the sensitive dependence of these particular cells on folic acid for normal development has not been obvious, and there is no consensus about the biological basis of the dramatic rescue with periconceptional folate supplementation. There are two principal hypotheses for the impact of folate insufficiency on development; each of these hypotheses has a micronutrient component and a genetic component. In the first hypothesis the effect of low folate is direct, limiting the availability of folic acid to cells within the embryo itself; thus compromising normal function and limiting proliferation. The second hypothetical effect is indirect: low folate disrupts methionine metabolism; homocysteine increases in the maternal serum; homocysteine induces abnormal development by inhibiting the function of N-methyl-D-aspartate (NMDA) receptors in the neural epithelium. There are three general families of genes whose level of expression may need to be considered in the context of these two related hypotheses: folate-receptor genes; genes that regulate methionine– homocysteine metabolism; NMDA-receptor genes.
Collapse
|
27
|
Uberti D, Ferrari-Toninelli G, Bonini SA, Sarnico I, Benarese M, Pizzi M, Benussi L, Ghidoni R, Binetti G, Spano P, Facchetti F, Memo M. Blockade of the tumor necrosis factor-related apoptosis inducing ligand death receptor DR5 prevents beta-amyloid neurotoxicity. Neuropsychopharmacology 2007; 32:872-80. [PMID: 16936710 DOI: 10.1038/sj.npp.1301185] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We originally suggested that inhibition of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) death pathway could be taken into consideration as a potential therapeutic strategy for Alzheimer's disease (AD). However, because the critical role of TRAIL in immune surveillance, the neutralization of TRAIL protein by an antibody to prevent its binding to death receptors is definitely a risky approach. Here, we demonstrated that the blockade of the TRAIL death receptor DR5 with a specific antibody completely prevented amyloid beta peptide (A beta) neurotoxicity in both neuronal cell line and primary cortical neurons. DR5 was demonstrated to be a key factor in TRAIL death pathway. In fact, whereas TRAIL expression was enhanced dose-dependently by concentrations of beta amyloid ranging from 10 nM to 1 microM, only the highest toxic dose of A beta (25 microM) induced the increased expression of DR5 and neuronal cell death. In addition, the increased expression of DR5 receptor after beta amyloid treatment was sustained by p53 transcriptional activity, as demonstrated by the data showing that the p53 inhibitor Pifithrin alpha prevented both beta amyloid-induced DR5 induction and cell death. These data suggest a sequential activation of p53 and DR5 upon beta amyloid exposure. Further insight into the key role of DR5 in AD was suggested by data showing a significant increase of DR5 receptor in cortical slices of AD brain. Thus, these findings may give intracellular TRAIL pathway a role in AD pathophysiology, making DR5 receptor a possible candidate as a pharmacological target.
Collapse
Affiliation(s)
- Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia Medical School, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Orlandi A, Francesconi A, Marcellini M, Di Lascio A, Spagnoli LG. Propionyl-L-carnitine Reduces Proliferation and Potentiates Bax-related Apoptosis of Aortic Intimal Smooth Muscle Cells by Modulating Nuclear Factor-κB Activity. J Biol Chem 2007; 282:4932-4942. [PMID: 17178728 DOI: 10.1074/jbc.m606148200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Propionyl-l-carnitine (PLC) has been introduced among the therapeutic approaches of peripheral arterial disease, and more recently, an increase of intimal cell apoptosis has been demonstrated to contribute to its effectiveness in rabbit carotid postinjury myointimal hyperplasia prevention. How PLC mediates these effects on vascular smooth muscle cells (SMCs) remains poorly understood. We investigated the role of NF-kappaB in PLC-induced arterial remodeling. In vivo, daily PLC treatment 15 days after injury resulted in a reduction of relative rat aortic intimal volume, an increase of apoptosis, Bax up-regulation without changing the Bcl-2 level, and a reduction of NF-kappaB, vascular cell adhesion molecule-1, monocyte chemotactic protein-1, and survivin in myointimal thickening compared with controls. In the presence of 10% serum, a reduced G(1) --> S phase progression preceded PLC-induced intimal cell apoptosis; in 0.1% serum cultures, in a dose-dependent manner, PLC rapidly induced intimal cell apoptosis and reduced p65, p50, IAP-1, and IAP-2 expression. Inhibiting NF-kappaB activation through SN50 increased apoptotic rate and Bax expression in intimal but not in medial SMCs, and successive PLC treatment failed to induce a further increase in apoptotic rate. Bax antisense oligodeoxynucleotide reduced PLC-induced intimal cell apoptosis and cytochrome c release. The PLC-induced attenuation of NF-kappaB activity in intimal cells was also due to the increase of IkappaB-alpha bioavailability, as the result of a parallel induction of IkappaB-alpha synthesis and reduction of phosphorylation and degradation. Collectively, these findings document that NF-kappaB activity inhibition contributes to PLC-induced proliferative arrest and Bax-related apoptosis of intimal SMCs.
Collapse
Affiliation(s)
- Augusto Orlandi
- Institute of Anatomic Pathology, Tor Vergata University, Rome 00133, Italy and.
| | - Arianna Francesconi
- Institute of Anatomic Pathology, Tor Vergata University, Rome 00133, Italy and
| | | | - Antonio Di Lascio
- Institute of Anatomic Pathology, Tor Vergata University, Rome 00133, Italy and
| | | |
Collapse
|
29
|
Wang C, Sadovova N, Ali HK, Duhart HM, Fu X, Zou X, Patterson TA, Binienda ZK, Virmani A, Paule MG, Slikker W, Ali SF. L-carnitine protects neurons from 1-methyl-4-phenylpyridinium-induced neuronal apoptosis in rat forebrain culture. Neuroscience 2006; 144:46-55. [PMID: 17084538 DOI: 10.1016/j.neuroscience.2006.08.083] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/22/2006] [Accepted: 08/29/2006] [Indexed: 11/23/2022]
Abstract
1-Methyl-4-phenylpyridinium ion (MPP+), an inhibitor of mitochondrial complex I, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with an elevation of intracellular reactive oxygen species (ROS) and apoptosis. L-carnitine plays an integral role in attenuating the brain injury associated with mitochondrial neurodegenerative disorders. The present study investigates the effects of L-carnitine against the toxicity of MPP+ in rat forebrain primary cultures. Cells in culture were treated for 24 h with 100, 250, 500 and 1000 microM MPP+ alone or co-incubated with L-carnitine. MPP+ produced a dose-related increase in DNA fragmentation as measured by cell death ELISA (enzyme-linked immunosorbent assay), an increase in the number of TUNEL (terminal dUTP nick-end labeling)-positive cells and a reduction in the mitochondrial metabolism of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). No significant effect was observed with the release of lactate dehydrogenase (LDH), indicating that cell death presumably occurred via apoptotic mechanisms. Co-incubation of MPP+ with L-carnitine significantly reduced MPP+-induced apoptosis. Western blot analyses showed that neurotoxic concentrations of MPP+ decreased the ratio of BCL-X(L) to Bax and decreased the protein levels of polysialic acid neural cell adhesion molecules (PSA-NCAM), a neuron specific marker. L-carnitine blocked these effects of MPP+ suggesting its potential therapeutic utility in degenerative disorders such as Parkinson's disease, Alzheimer's disease, ornithine transcarbamylase deficiency and other mitochondrial diseases.
Collapse
Affiliation(s)
- C Wang
- Division of Neurotoxicology, HFT-132, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martins RAP, Linden R, Dyer MA. Glutamate regulates retinal progenitors cells proliferation during development. Eur J Neurosci 2006; 24:969-80. [PMID: 16925590 DOI: 10.1111/j.1460-9568.2006.04966.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The precise coordination of cell cycle exit and cell fate specification is essential for generating the correct proportion of retinal cell types during development. The decision to exit the cell cycle is regulated by intrinsic and extrinsic cues. There is growing evidence that neurotransmitters can regulate cell proliferation and cell fate specification during the early stages of CNS development prior to the formation of synaptic connections. We found that the excitatory neurotransmitter glutamate regulates retinal progenitor cell proliferation during embryonic development of the mouse. AMPA/kainate and N-methyl-d-aspartate receptors are expressed in embryonic retinal progenitor cells. Addition of exogenous glutamate leads to a dose-dependent decrease in cell proliferation without inducing cell death or activating the p53 pathway. Activation of AMPA/kainate receptors induced retinal progenitor cells to prematurely exit the cell cycle. Using a replication-incompetent retrovirus to follow the clonal expansion of individual retinal progenitor cells, it was observed that blockade of AMPA/kainate receptors increased the proportion of large clones, showing that modulation of endogenous glutamatergic activity can have long-term consequences on retinal cell proliferation. Real time reverse transcriptase-polymerase chain reaction and immunoblot analyses demonstrated that glutamate does not alter the levels of the mRNA and proteins that regulate the G1/S-phase transition. Instead, the activity of the Cdk2 kinase is reduced in the presence of glutamate. These data indicate that glutamate regulates retinal progenitor cell proliferation by post-translational modulation of cyclin/Cdk2 kinase activity.
Collapse
Affiliation(s)
- Rodrigo A P Martins
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
31
|
Pietrancosta N, Moumen A, Dono R, Lingor P, Planchamp V, Lamballe F, Bähr M, Kraus JL, Maina F. Imino-tetrahydro-benzothiazole derivatives as p53 inhibitors: discovery of a highly potent in vivo inhibitor and its action mechanism. J Med Chem 2006; 49:3645-52. [PMID: 16759106 DOI: 10.1021/jm060318n] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several neurological disorders manifest symptoms that result from the degeneration and death of specific neurons. p53 is an important modulator of cell death, and its inhibition could be a therapeutic approach to several neuropathologies. Here, we report the design, synthesis, and biological evaluation of novel p53 inhibitors based on the imino-tetrahydrobenzothiazole scaffold. By performing studies on their mechanism of action, we find that cyclic analogue 4b and its open precursor 2b are more potent than pifithrin-alpha (PFT-alpha), which is known to block p53 pro-apoptotic activity in vitro and in vivo without acting on other pro-apoptotic pathways. Using spectroscopic methods, we also demonstrate that open form 2b is more stable than 4b in biological media. Compound 2b is converted into its corresponding active cyclic form through an intramolecular dehydration process and was found two log values more active in vivo than PFT-alpha. Thus, 2b can be considered as a new prodrug prototype that prevents in vivo p53-triggered cell death in several neuropathologies and possibly reduces cancer therapy side effects.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Developmental Biology Institute of Marseille, Université. de la Mediterranée, Inserm UMR623, CNRS, INSERM, Campus de Luminy-Case 907, Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Uberti D, Lanni C, Carsana T, Francisconi S, Missale C, Racchi M, Govoni S, Memo M. Identification of a mutant-like conformation of p53 in fibroblasts from sporadic Alzheimer's disease patients. Neurobiol Aging 2005; 27:1193-201. [PMID: 16165254 DOI: 10.1016/j.neurobiolaging.2005.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 04/29/2005] [Accepted: 06/21/2005] [Indexed: 11/28/2022]
Abstract
Here we show that fibroblasts from sporadic Alzheimer's disease (AD) patients specifically express an anomalous and detectable conformational state of p53 that makes these cells distinct from fibroblasts of age-matched non-AD subjects. In particular, we found that, in contrast to non-AD fibroblasts, p53 in AD fibroblasts is expressed at higher levels in resting condition, and presents a significant impairment of its DNA binding and transcriptional activity. All together, these findings figured out the presence of a mutant-like p53 phenotype. However, gene sequencing of the entire p53 gene from either AD or non-AD did not unravel point mutations. Based on immunoprecipitation studies with conformation-specific p53 antibodies (PAb1620 and PAb240), which discriminated folded versus unfolded p53 tertiary structure, we found that a significant amount of p53 assumed an unfolded tertiary structure in fibroblasts from AD patients. This conformational mutant-like p53 form was virtually undetectable in fibroblasts from non-AD patients. These data, independently from their relevance in understanding the etiopathogenesis of AD, might be useful for supporting AD diagnosis.
Collapse
Affiliation(s)
- Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Viale Europa 11, 25124 Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gudkov AV, Komarova EA. Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun 2005; 331:726-36. [PMID: 15865929 DOI: 10.1016/j.bbrc.2005.03.153] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 10/25/2022]
Abstract
p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-alpha that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
34
|
Garden GA, Morrison RS. The multiple roles of p53 in the pathogenesis of HIV associated dementia. Biochem Biophys Res Commun 2005; 331:799-809. [PMID: 15865935 DOI: 10.1016/j.bbrc.2005.03.185] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Indexed: 02/06/2023]
Abstract
The mechanism by which infection with the human immunodeficiency virus (HIV) leads to injury and dysfunction within the central nervous system (CNS) is not completely understood. Most studies support the hypothesis that neurons are impacted as bystander cells in a tissue environment made hostile by the innate and adaptive immune responses to chronic HIV infection within CNS tissue. The tumor suppressor transcription factor p53 participates in multiple cellular processes within the HIV infected CNS, and experimental evidence suggests that the resulting neurodegeneration occurs by induction of p53-mediated apoptotic pathways. Here we review the evidence for p53 as a participant in the responses of multiple CNS cell types to the presence of HIV and propose the hypothesis that HIV induced alterations in the CNS extracellular milieu converge at neuronal p53 activation.
Collapse
Affiliation(s)
- Gwenn A Garden
- Department of Neurology, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
35
|
Lan KP, Wang CJ, Hsu JD, Chen KM, Lai SC, Lee HH. Induced eosinophilia and proliferation in Angiostrongylus cantonensis-infected mouse brain are associated with the induction of JAK/STAT1, IAP/NF-kappaB and MEKK1/JNK signals. J Helminthol 2005; 78:311-7. [PMID: 15575987 DOI: 10.1079/joh2004256] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eosinophilic meningitis or meningoencephalitis caused by Angiostrongylus cantonensis is endemic to the Pacific area of Asia, especially Taiwan, Thailand, and Japan. Although eosinophilia is an important clinical manifestation of A. cantonensis infection, the role of eosinophils in the progress of the infection remains to be elucidated. In this experiment, we show that A. cantonensis-induced eosinophilia and inflammation might lead to the induction of IAP/NF-kappaB, JAK/STAT1 and MEKK1/JNK signals. The phosphorylation levels of JAK and JNK, STAT1, IAP, NF-kappaB and MEKK1 protein products were significantly increased after 12 days or 15 days of A. cantonensis infection. However, no significant differences in MAPKs such as Raf, MEK-1, ERK1/2 and p38 expression were found between control and infected mice. The activation potency of JAK/STAT1, IAP/NF-kappaB and MEKK1/JNK started increasing on day 3, with significant induction on day 12 or day 15 after A. cantonensis infection. Consistent results were noted in the pathological observations, including eosinophilia, leukocyte infiltration, granulomatous reactions, and time responses in the brain tissues of infected mice. These data suggest that the development of brain injury by eosinophilia of A. cantonensis infection is associated with activation of JAK/STAT1 signals by cytokines, and/or activation of MEKK1/JNK by oxidant stress, and/or activation of NF-kappaB by increasing IAP expression.
Collapse
Affiliation(s)
- K P Lan
- Department of Parasitology, Chung Shan Medical University, 110, Section 1, Chien-Kuo North Road, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Uberti D, Carsana T, Francisconi S, Ferrari Toninelli G, Canonico PL, Memo M. A novel mechanism for pergolide-induced neuroprotection: inhibition of NF-κB nuclear translocation. Biochem Pharmacol 2004; 67:1743-50. [PMID: 15081873 DOI: 10.1016/j.bcp.2004.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 01/16/2004] [Indexed: 01/04/2023]
Abstract
We previously demonstrated that the dopaminergic agonist pergolide, independently from its DA agonist activity, can exert neuroprotective effects against cell death induced in SH-SY5Y neural cells by H(2)O(2) treatment. Since oxidative stress in SH-SY5Y neural cells is known to activate the NF-kappaB pathway we tested the hypothesis that pergolide may interfere with NF-kappaB activity. Based on Western blot analysis and immunocytochemistry, pergolide was found to prevent H(2)O(2)-induced apoptosis by inhibiting NF-kappaB nuclear translocation and activation of p53 signalling pathway. Similarly, the cell-permeable SN50 peptide, which is known to block NF-kappaB nuclear translocation, prevented both H(2)O(2)-induced p53 expression and apoptosis. The mechanism of action of pergolide responsible for neuroprotection differed from that of antioxidants. In fact, Vitamin E, contrary to pergolide and SN50, rescued neuronal cells from H(2)O(2)-induced apoptosis acting upstream NF-kappaB activation, as demonstrated by the prevention of H(2)O(2)-induced IkappaB degradation. These data suggest a novel site of action of pergolide that may account for additional pharmacological properties of this drug.
Collapse
Affiliation(s)
- D Uberti
- Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
OBJECTIVE To summarize clinical observations, animal model experimentation, and in vitro studies that advance knowledge of the protein C system, including activated protein C (APC), in the setting of ischemic stroke. DATA SOURCE Narrative review of selected published primary basic and clinical literature from MEDLINE for 2000-2003. DATA SYNTHESIS Low levels of plasma APC and a poor response to APC in clotting assays may be markers or risk factors for ischemic stroke. Ischemia during routine endarterectomy causes APC generation in the affected region of the human brain. The prospective epidemiologic Atherosclerosis Risk in Communities (ARIC) study reported that plasma protein C may be protective for ischemic stroke. In murine models of focal cerebral ischemia, APC provided remarkable anti-inflammatory and neuroprotective effects in vivo and increased survival at 24 hrs. Recent in vitro and in vivo studies provide remarkable insights into mechanisms of the neuroprotective activities of APC. Independent of its well-known anticoagulant activity, APC acts directly on cells and alters gene expression profiles, inhibits apoptosis, and down-regulates inflammation. These effects require protease-activated receptor-1 and the endothelial protein C receptor. In an in vitro model involving hypoxia-induced apoptosis of human brain endothelial cells, protease-activated receptor-1 and endothelial protein C receptor were required for APC to exert its anti-apoptotic effects. In these cells, APC blunts hypoxia-induced increases in p53 messenger RNA and protein, reduces pro-apoptotic Bax, and increases anti-apoptotic Bcl-2, thereby inhibiting mitochondrial-dependent apoptosis. Murine ischemic stroke model studies have provided in vivo evidence for the physiologic roles of protease-activated receptor-1 and endothelial protein C receptor in the neuroprotective activities of APC. Because the low doses required for recombinant murine APC to provide neuroprotection do not cause observable anticoagulant effects, the in vivo neuroprotective action of APC seems, at least in part, to be independent of its anticoagulant activity and is likely to involve its anti-apoptotic activity. CONCLUSIONS There is compelling evidence that ischemic stroke is an attractive target for therapy with APC.
Collapse
Affiliation(s)
- John H Griffin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
38
|
Guo H, Liu D, Gelbard H, Cheng T, Insalaco R, Fernández JA, Griffin JH, Zlokovic BV. Activated protein C prevents neuronal apoptosis via protease activated receptors 1 and 3. Neuron 2004; 41:563-72. [PMID: 14980205 DOI: 10.1016/s0896-6273(04)00019-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 10/05/2003] [Accepted: 01/07/2004] [Indexed: 02/06/2023]
Abstract
Activated protein C (APC), a serine protease with anticoagulant and anti-inflammatory activities, exerts direct cytoprotective effects on endothelium via endothelial protein C receptor-dependent activation of protease activated receptor 1 (PAR1). Here, we report that APC protects mouse cortical neurons from two divergent inducers of apoptosis, N-methyl-D-aspartate (NMDA) and staurosporine. APC blocked several steps in NMDA-induced apoptosis downstream to nitric oxide, i.e., caspase-3 activation, nuclear translocation of apoptosis-inducing factor (AIF), and induction of p53, and prevented staurosporine-induced apoptosis by blocking caspase-8 activation upstream of caspase-3 activation and AIF nuclear translocation. Intracerebral APC infusion dose dependently reduced NMDA excitotoxicity in mice. By using different anti-PARs antibodies and mice with single PAR1, PAR3, or PAR4 deletion, we demonstrated that direct neuronal protective effects of APC in vitro and in vivo require PAR1 and PAR3. Thus, PAR1 and PAR3 mediate anti-apoptotic signaling by APC in neurons, which may suggest novel treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Huang Guo
- Socratech Laboratories, Rochester, NY 14620, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jordán J, Galindo MF, González-García C, Ceña V. Role and regulation of p53 in depolarization-induced neuronal death. Neuroscience 2004; 122:707-15. [PMID: 14622914 DOI: 10.1016/j.neuroscience.2003.08.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The tumor suppressor gene p53 is a potent transcriptional regulator for genes involved in many cellular activities including cell cycle arrest and apoptosis. In this study, we examined the role of p53 in neuronal death induced by the sodium channel modulator veratridine. We also analyzed the involvement of Ca2+, mitochondria and reactive oxygen species in p53 activation. Exposure of hippocampal neurons to veratridine (0.3-100 microM) resulted in a dose-dependent neuronal death, measured 24 h after treatment. p53-Like immunoreactivity, undetectable in neurons under control conditions, was observed in about 25% of neurons, 7 h after veratridine exposure. Treatments that modified the alkaloid-induced Ca2+ influx including tetrodotoxin or Ca2+ removal, prevented either veratridine-induced cell death or p53 immunoreactivity. Mitochondria were involved in veratridine-induced cell death, as the alkaloid collapsed inner transmembrane mitochondrial potential in a Ca2+ influx dependent manner. Treatments of neuronal cultures with the permeability transitory pore blockers cyclosporin A and bongkrekic acid prevented veratridine-induced p53 immunoreactivity and neuronal death, placing mitochondria upstream of veratridine-induced p53 immunoreactivity. Reactive oxygen species also participated in veratridine-induced neurotoxicity and p53 activation. Antisense knockdown of p53 resulted in a significant increase in neuronal survival after veratridine treatment. This protective effect was maintained on N-methyl-D-aspartate or ischemia-induced death but not on staurosporine cytotoxicity. These results together suggest that p53-expression is involved in veratridine-induced neuronal death and that p53 might be a link between toxic stimuli of different types and neuronal death.
Collapse
Affiliation(s)
- J Jordán
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Edificio Facultad de Medicina, Avda. de Almansa, s/n, 02071 Albacete, Spain
| | | | | | | |
Collapse
|
40
|
Verdaguer E, Jiménez A, Canudas AM, Jordà EG, Sureda FX, Pallàs M, Camins A. Inhibition of Cell Cycle Pathway by Flavopiridol Promotes Survival of Cerebellar Granule Cells after an Excitotoxic Treatment. J Pharmacol Exp Ther 2003; 308:609-16. [PMID: 14610234 DOI: 10.1124/jpet.103.057497] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kainic acid (KA)-induced neuronal damage and the protective effects of flavopiridol were studied in primary cultures of rat cerebellar granule cells (CGNs). When neurons were treated with 500 microM KA, the percentage of cells with condensed nuclei measured by nuclear counting increased by up to 55%. After flavopiridol treatment, an antitumoral drug that is a broad inhibitor of cyclin-dependent kinases, the percentage of condensed nuclei decreased by up to 26%. Furthermore, this KA-mediated cell death was only partially dependent on the activation of the initiator caspase-9 and the effector caspases-3 and -6. This argues for a minor role of caspases in the intracellular pathway leading to KA-induced programmed cell death in CGNs. We examined the possible implication of cell cycle proteins in KA-induced neurotoxicity. We found an increase in the expression of proliferating cell nuclear antigen and E2F-1, two proteins implicated in S-phase, by Western blot. KA increased bromodeoxyuridine incorporation in CGNs, a marker of cell proliferation, and flavopiridol attenuated this effect. These results indicated that flavopiridol decreased the expression of cell cycle markers in CGNs after KA treatment. Flavopiridol might thus be used as a preventive agent against neurodegenerative diseases associated with cell cycle activation.
Collapse
Affiliation(s)
- Ester Verdaguer
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
41
|
Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons. J Neurosci 2003. [PMID: 13679428 DOI: 10.1523/jneurosci.23-24-08586.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and activation of p53 precedes apoptosis in many cell types. Controversial reports exist on the role of the transcription factor nuclear factor-kappaB (NF-kappaB) in p53-mediated apoptosis, depending on the cell type and experimental conditions. Therefore, we sought to elucidate the role of NF-kappaB in p53-mediated neuron death. In cultured neurons DNA damaging compounds induced activation of p53, whereas NF-kappaB activity declined significantly. The p53 inhibitor pifithrin-alpha (PFT) preserved NF-kappaB activity and protected neurons against apoptosis. Immunoprecipitation experiments revealed enhanced p53 binding to the transcriptional cofactor p300 after induction of DNA damage, whereas binding of p300 to NF-kappaB was reduced. In contrast, PFT blocked the interaction of p53 with the cofactor, whereas NF-kappaB binding to p300 was enhanced. Most interestingly, similar results were observed after oxygen glucose deprivation in cultured neurons and in ischemic brain tissue. Ischemia-induced repression of NF-kappaB activity was prevented and brain damage was reduced by the p53 inhibitor PFT in a dose-dependent manner. It is concluded that a balanced competitive interaction of p53 and NF-kappaB with the transcriptional cofactor p300 exists in neurons. Exposure of neurons to lethal stress activates p53 and disrupts NF-kappaB binding to p300, thereby blocking NF-kappaB-mediated survival signaling. Inhibitors of p53 provide pronounced neuroprotective effects because they block p53-mediated induction of cell death and concomitantly enhance NF-kappaB-induced survival signaling.
Collapse
|
42
|
Ciani E, Frenquelli M, Contestabile A. Developmental expression of the cell cycle and apoptosis controlling gene, Lot1, in the rat cerebellum and in cultures of cerebellar granule cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:193-202. [PMID: 12711370 DOI: 10.1016/s0165-3806(03)00092-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Lot1 gene encodes a zinc finger protein that, in vitro, concurrently regulates apoptosis and cell cycle arrest and belongs to a recently identified family of proteins with oncogenic and tumor-supressor functions. The present study, based on the development of the first antibody reportedly produced against rat Lot1, examines protein expression during normal development of the rat cerebellum and following methylazoxymethanol (MAM) administration, which results in hypoplasia of the cerebellar granule cell population. Using light microscopic immunocytochemistry, specific immunostaining for the Lot1 protein was observed at postnatal days 2 to 7 in the superficial external granule layer composed primarily of proliferating neuronal precursor cells. Purkinje cells showed distinct nuclear labeling at P7. In the adult cerebellum, the overall low Lot1 level was essentially associated with Purkinje cells. Experimentally altered developmental conditions, such as those obtained through MAM-induced microencephaly, did not drastically affect the pattern of Lot1 expression. In particular, Purkinje cells continued to show normal levels of immunoreactivity notwithstanding the altered cerebellar architecture. Primary cultures of cerebellar granule cells showed a temporal pattern of Lot1 expression resembling that of in vivo development, with mRNA and protein levels progressively decreasing with differentiation. When cerebellar granule cells were exposed to different neurotoxic challenges, Lot1 appeared not affected by purely apoptotic cell death, while transitorily induced by mixed necrotic-apoptotic cell death.
Collapse
Affiliation(s)
- Elisabetta Ciani
- Department of Biology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | | | | |
Collapse
|
43
|
Mir C, Clotet J, Aledo R, Durany N, Argemí J, Lozano R, Cervós-Navarro J, Casals N. CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J Mol Neurosci 2003; 20:53-60. [PMID: 12663935 DOI: 10.1385/jmn:20:1:53] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Accepted: 08/02/2002] [Indexed: 01/18/2023]
Abstract
Cytidine 5'-diphosphocholine (CDP-choline) has been shown to reduce neuronal degeneration induced in central nervous system (CNS) injury. However, the precise mechanism underlying the neuroprotective properties of this molecule is still unknown. Excitotoxicity causes cell death in CNS injury (trauma or ischemia) and has also been involved in neurodegenerative diseases. We have examined whether CDP-choline prevents glutamate-mediated cell death, determined by trypan blue exclusion and lactate dehydrogenase activity assays. Pretreatment of rat cerebellar granule cells (CGCs) with CDP-choline causes a dose- and time-dependent reduction of glutamate-induced excitotoxicity. Cell death is prevented >50% when 100 microM CDP-choline is added 6 d before the glutamate excitotoxic insult but less than 20% when added concomitantly with glutamate. Pretreatment of CGCs with CDP-choline reduces almost completely (>80%) the number of apoptotic cells analyzed by flow cytometry, suggesting that CDP-choline exerts a neuroprotective effect by inhibiting the apoptotic pathway induced by glutamate.
Collapse
Affiliation(s)
- Cecilia Mir
- Unit of Molecular and Cellular Biology, Faculty of Health Sciences, International University of Catalonia, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Morrison RS, Kinoshita Y, Johnson MD, Guo W, Garden GA. p53-dependent cell death signaling in neurons. Neurochem Res 2003; 28:15-27. [PMID: 12587660 DOI: 10.1023/a:1021687810103] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The p53 tumor suppressor gene is a sequence-specific transcription factor that activates the expression of genes engaged in promoting growth arrest or cell death in response to multiple forms of cellular stress. p53 expression is elevated in damaged neurons in acute models of injury such as ischemia and epilepsy and in brain tissue samples derived from animal models and patients with chronic neurodegenerative diseases. p53 deficiency or p53 inhibition protects neurons from a wide variety of acute toxic insults. Signal transduction pathways associated with p53-induced neuronal cell death are being characterized, suggesting that intervention may prove effective in maintaining neuronal viability and restoring function following neural injury and disease.
Collapse
Affiliation(s)
- Richard S Morrison
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195-6470, USA.
| | | | | | | | | |
Collapse
|
45
|
Zhu X, Yu QS, Cutler RG, Culmsee CW, Holloway HW, Lahiri DK, Mattson MP, Greig NH. Novel p53 inactivators with neuroprotective action: syntheses and pharmacological evaluation of 2-imino-2,3,4,5,6,7-hexahydrobenzothiazole and 2-imino-2,3,4,5,6,7-hexahydrobenzoxazole derivatives. J Med Chem 2002; 45:5090-7. [PMID: 12408720 DOI: 10.1021/jm020044d] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor suppressor protein, p53, is an intracellular protein that is critical within the biochemical cascade that leads to cell death via apoptosis. Recent studies identified the tetrahydrobenzothiazole analogue, pifithrin-alpha (2), as a p53 inhibitor that was effective in protecting neuronal cells against a variety of lethal insults and reducing the side effects of anticancer drugs. As up-regulation of p53 has been described as a common feature of several neurodegenerative disorders, including Alzheimer's disease, 2 and novel analogues (3-16) were synthesized to (i) assess the value of tetrahydrobenzothiazole analogues as neuroprotective agents and (ii) define the structural requirements for p53 inactivation. Not only did 2 exhibit neuroprotective activity in both tissue culture and in vivo stroke models but also compounds 6, 7, 10, 13, 15, and 16 proved to be highly potent in protecting PC12 cells and compounds 3, 4, and 6 were highly potent in protecting primary hippocampal cells against death induced by the DNA-damaging agent, camptothecin.
Collapse
Affiliation(s)
- Xiaoxiang Zhu
- Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Djebaïli M, De Bock F, Baille V, Bockaert J, Rondouin G. Implication of p53 and caspase-3 in kainic acid but not in N-methyl-D-aspartic acid-induced apoptosis in organotypic hippocampal mouse cultures. Neurosci Lett 2002; 327:1-4. [PMID: 12098486 DOI: 10.1016/s0304-3940(02)00137-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apoptotic death is known to be an active process requiring the activation of several apoptotic proteins. Depending on the tissue studied and the stimulus used, these processes are distinct. In this work, we studied if there is a putative implication of the p53 and the caspase-3 proteins in kainic acid (KA) and N-methyl-D-aspartic acid (NMDA)-induced apoptosis in organotypic cultures and if there is any relationship between their respective expressions. We found that KA and NMDA both induce apoptosis but only KA-induced apoptosis is p53- and caspase-3-dependent. This demonstrates that KA and NMDA induce apoptosis following different intracellular pathways.
Collapse
Affiliation(s)
- Myriam Djebaïli
- UPR CNRS 9023, CCIPE, Laboratoire de Médecine Expérimentale, Institut de Biologie, Boulevard Henri IV, 34094 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
47
|
Verdaguer E, García-Jordà E, Canudas AM, Domínguez E, Jiménez A, Pubill D, Escubedo E, Pallàs JCM, Camins A. Kainic acid-induced apoptosis in cerebellar granule neurons: an attempt at cell cycle re-entry. Neuroreport 2002; 13:413-6. [PMID: 11930151 DOI: 10.1097/00001756-200203250-00010] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study was undertaken to investigate whether kainic acid (KA) may regulate the expression of several proteins which plays an important role in cell-cycle progression in cerebellar granule neurons (CGNs). KA induced decrease in MTT values in a concentration dependent way. Flow cytometric analysis showed that KA was able to induce 30% apoptosis in CGNs. Apoptotic nuclear condensation were detected 24 h of exposure to KA (200 microM). An associated marked increase in DNA synthesis, measured by BrdU incorporation, was observed. Western blot analysis showed that KA induced an increase in the expression of Cdk2, cyclin E and E2F-1. It is proposed that, in post-mitotic cells like CGNs, re-entry cell cycle could be responsible for the apoptotic effect of KA.
Collapse
Affiliation(s)
- Ester Verdaguer
- Unitat de Farmacologia i Farmacognósia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang C, McInnis J, Ross-Sanchez M, Shinnick-Gallagher P, Wiley JL, Johnson KM. Long-term behavioral and neurodegenerative effects of perinatal phencyclidine administration: implications for schizophrenia. Neuroscience 2002; 107:535-50. [PMID: 11720778 DOI: 10.1016/s0306-4522(01)00384-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Both acute and chronic administration of N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine and dizocilpine have been proposed to mimic some of the symptoms of schizophrenia. The purposes of the present study were first, to characterize the long-term behavioral and neurodegenerative effects of subchronic administration of phencyclidine to perinatal rats and second, to determine whether pretreatment with olanzapine could attenuate these effects. On postnatal days 7, 9 and 11 rat pups were pretreated with either vehicle or olanzapine prior to administration of either saline or phencyclidine (10 mg/kg). Some pups were killed on postnatal day 12 for biochemical determinations and others were tested on postnatal days 24-28 for prepulse inhibition of acoustic startle, on postnatal day 42 for phencyclidine-induced locomotor activity and between postnatal days 33 and 70 for acquisition of a delayed spatial learning task. Phencyclidine treatment resulted in a substantial increase in fragmented DNA in the frontal and olfactory cortices consistent with neurodegeneration by an apoptotic mechanism. An increase in the NMDA receptor NR1 subunit mRNA was also observed in the cortex. Gel shift assays showed that phencyclidine also increased the nuclear translocation of nuclear factor-kappaB proteins in the prefrontal cortex. In tissue from the frontal cortex, western blot analysis revealed that phencyclidine treatment increased Bax and decreased Bcl-X(L) proteins. Later in development, it was observed that perinatal phencyclidine treatment significantly retarded baseline prepulse inhibition of acoustic startle measured shortly after weaning. In 42-day-old rats, it was found that challenge with 2 mg/kg phencyclidine increased locomotor activity to a significantly greater extent in the rats that had been pretreated with phencyclidine. Similarly, perinatal phencyclidine treatment significantly delayed the acquisition of a delayed spatial alternation task. Each of the aforementioned changes (except for the spatial learning task, which was not tested) was significantly inhibited by olanzapine pretreatment, an antipsychotic drug known to be effective against both positive and negative symptoms of schizophrenia. Further, olanzapine treatment for 12 days following the administration of phencyclidine was also able to reverse the phencyclidine-induced deficit in baseline prepulse inhibition. Together these data suggest that perinatal administration of phencyclidine results in long-term behavioral changes that may be mechanistically related to the apoptotic neurodegeneration observed in the frontal cortex. It is postulated that these deficits may model the hypofrontality observed in schizophrenia and that this model may be helpful in designing appropriate pharmacotherapy.
Collapse
Affiliation(s)
- C Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston 77555-1031, USA
| | | | | | | | | | | |
Collapse
|
49
|
Amadio S, D'Ambrosi N, Cavaliere F, Murra B, Sancesario G, Bernardi G, Burnstock G, Volonté C. P2 receptor modulation and cytotoxic function in cultured CNS neurons. Neuropharmacology 2002; 42:489-501. [PMID: 11955520 DOI: 10.1016/s0028-3908(01)00197-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study we investigate the presence, modulation and biological function of P2 receptors and extracellular ATP in cultured cerebellar granule neurons. As we demonstrate by RT-PCR and western blotting, both P2X and P2Y receptor subtypes are expressed and furthermore regulated as a function of neuronal maturation. In early primary cultures, mRNA for most of the P2 receptor subtypes, except P2X(6), are found, while in older cultures only P2X(3), P2Y(1) and P2Y(6) mRNA persist. In contrast, P2 receptor proteins are more prominent in mature neurons, with the exception of P2Y(1). We also report that extracellular ATP acts as a cell death mediator for fully differentiated and mature granule neurons, for dissociated striatal primary cells and hippocampal organotypic cultures, inducing both apoptotic and necrotic features of degeneration. ATP causes cell death with EC(50) in the 20-50 microM range within few minutes of exposure and with a time lapse of at most two hours. Additional agonists for P2 receptors induce toxic effects, whereas selected antagonists are protective. Cellular swelling, lactic dehydrogenase release and nuclei fragmentation are among the features of ATP-evoked cell death, which also include direct P2 receptor modulation. Comparably to P2 receptor antagonists previously shown preventing glutamate-toxicity, here we report that competitive and non-competitive NMDA receptor antagonists inhibit the detrimental consequences of extracellular ATP. Due to the massive extracellular release of purine nucleotides and nucleosides often occurring during a toxic insult, our data indicate that extracellular ATP can now be included among the potential causes of CNS neurodegenerative events.
Collapse
Affiliation(s)
- S Amadio
- Fondazione Santa Lucia, Via Ardeatina 354, 00179, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Verdaguer E, García-Jordà E, Jiménez A, Stranges A, Sureda FX, Canudas AM, Escubedo E, Camarasa J, Pallàs M, Camins A. Kainic acid-induced neuronal cell death in cerebellar granule cells is not prevented by caspase inhibitors. Br J Pharmacol 2002; 135:1297-307. [PMID: 11877339 PMCID: PMC1573245 DOI: 10.1038/sj.bjp.0704581] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Revised: 01/03/2002] [Accepted: 01/03/2002] [Indexed: 11/08/2022] Open
Abstract
1. We examined the role of non-NMDA receptors in kainic acid (KA)-induced apoptosis in cultures of rat cerebellar granule cells (CGCs). KA (1 - 500 microM) induced cell death in a concentration-dependent manner, which was prevented by NBQX and GYKI 52466, non-NMDA receptor antagonists. Moreover, AMPA blocked KA-induced excitotoxicity, through desensitization of AMPA receptors. 2. Similarly, KA raised the intracellular calcium concentration of CGCs, which was inhibited by NBQX and GYKI 52466. Again, AMPA (100 microM) abolished the KA (100 microM)-induced increase in intracellular calcium concentration. 3. KA-induced cell death in CGCs had apoptotic features, which were determined morphologically, by DNA fragmentation, and by expression of the prostate apoptosis response-4 protein (Par-4). 5. KA (500 microM) slightly (18%) increased caspase-3 activity, which was strongly enhanced by colchicine (1 microM), an apoptotic stimulus. However, neither Z-VAD.fmk, a pan-caspase inhibitor, nor the more specific caspase-3 inhibitor, Ac-DEVD-CHO, prevented KA-induced cell death or apoptosis. In contrast, both drugs inhibited colchicine-induced apoptosis. 5. The calpain inhibitor ALLN had no effect on KA or colchicine-induced neurotoxicity. 6. Our findings indicate that colchicine-induced apoptosis in CGCs is mediated by caspase-3 activation, unlike KA-induced apoptosis.
Collapse
Affiliation(s)
- Ester Verdaguer
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | - Elvira García-Jordà
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | - Andrés Jiménez
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | - Alessandra Stranges
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | - Francesc X Sureda
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C./St. Llorenç 21, E-43201 Reus, Tarragona, Spain
| | - Anna M Canudas
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | - Elena Escubedo
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | - Jordi Camarasa
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | - Mercè Pallàs
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | - Antoni Camins
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| |
Collapse
|