1
|
Roque C, Mendes-Oliveira J, Baltazar G. G protein-coupled estrogen receptor activates cell type-specific signaling pathways in cortical cultures: relevance to the selective loss of astrocytes. J Neurochem 2019; 149:27-40. [PMID: 30570746 DOI: 10.1111/jnc.14648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Selective activation of the G protein-coupled estrogen receptor has been proposed to avoid some of the side effects elicited by the activation of classical estrogen receptors α and β. Although its contribution to neuroprotection triggered by estradiol in brain disorders has been explored, the results regarding ischemic stroke are contradictory, and currently, there is no consensus on the role that this receptor may play. The present study aimed to investigate the role of GPER in the ischemic insult. For that, primary cortical cultures exposed to oxygen and glucose deprivation (OGD) were used as a model. Our results demonstrate that neuronal survival was strongly affected by the ischemic insult and concurrent GPER activation with G1 had no further impact. In contrast, OGD had a smaller impact on astrocytes survival but G1, alone or combined with OGD, promoted their apoptosis. This effect was prevented by the GPER antagonist G15. The results also show that ischemia did not change the expression levels of GPER in neurons and astrocytes. In this study, we also demonstrate that selective activation of GPER induced astrocyte apoptosis via the phospholipase C pathway and subsequent intracellular calcium rise, whereas in neurons, this effect was not observed. Taken together, this evidence supports a direct impact of GPER activity on the viability of astrocytes, which seems to be associated with the regulation of different signaling pathways in astrocytes and neurons.
Collapse
Affiliation(s)
- Cláudio Roque
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
2
|
Jiménez-Maldonado A, Rentería I, García-Suárez PC, Moncada-Jiménez J, Freire-Royes LF. The Impact of High-Intensity Interval Training on Brain Derived Neurotrophic Factor in Brain: A Mini-Review. Front Neurosci 2018; 12:839. [PMID: 30487731 PMCID: PMC6246624 DOI: 10.3389/fnins.2018.00839] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is a protein mainly synthetized in the neurons. Early evidence showed that BDNF participates in cognitive processes as measured at the hippocampus. This neurotrophin is as a reliable marker of brain function; moreover, recent studies have demonstrated that BDNF participates in physiological processes such as glucose homeostasis and lipid metabolism. The BDNF has been also studied using the exercise paradigm to determine its response to different exercise modalities; therefore, BDNF is considered a new member of the exercise-related molecules. The high-intensity interval training (HIIT) is an exercise protocol characterized by low work volume performed at a high intensity [i.e., ≥80% of maximal heart rate (HRmax)]. Recent evidence supports the contention that HIIT elicits higher fat oxidation in skeletal muscle than other forms of exercise. Similarly, HIIT is a good stimulus to increase maximal oxygen uptake (VO2max). Few studies have investigated the impact of HIIT on the BDNF response. The present work summarizes the effects of acute and long-term HIIT on BDNF.
Collapse
Affiliation(s)
| | - Iván Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - José Moncada-Jiménez
- Human Movement Sciences Research Center, University of Costa Rica, San José, Costa Rica
| | | |
Collapse
|
3
|
Then CK, Liu KH, Liao MH, Chung KH, Wang JY, Shen SC. Antidepressants, sertraline and paroxetine, increase calcium influx and induce mitochondrial damage-mediated apoptosis of astrocytes. Oncotarget 2017; 8:115490-115502. [PMID: 29383176 PMCID: PMC5777788 DOI: 10.18632/oncotarget.23302] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023] Open
Abstract
The impacts of antidepressants on the pathogenesis of dementia remain unclear despite depression and dementia are closely related. Antidepressants have been reported may impair serotonin-regulated adaptive processes, increase neurological side-effects and cytotoxicity. An ‘astroglio-centric’ perspective of neurodegenerative diseases proposes astrocyte dysfunction is involved in the impairment of proper central nervous system functioning. Thus, defining whether antidepressants are harmful to astrocytes is an intriguing issue. We used an astrocyte cell line, primary cultured astrocytes and neuron cells, to identify the effects of 11 antidepressants which included selective serotonin reuptake inhibitors, a serotonin-norepinephrine reuptake inhibitor, tricyclic antidepressants, a tetracyclic antidepressant, a monoamine oxide inhibitor, and a serotonin antagonist and reuptake inhibitor. We found that treatment with 10 μM sertraline and 20 μM paroxetine significantly reduced cell viability. We further explored the underlying mechanisms and found induction of the [Ca2+]i level in astrocytes. We also revealed that sertraline and paroxetine induced mitochondrial damage, ROS generation, and astrocyte apoptosis with elevation of cleaved-caspase 3 and cleaved-PARP levels. Ultimately, we validated these mechanisms in primary cultured astrocytes and neuron cells and obtained consistent results. These results suggest that sertraline and paroxetine cause astrocyte dysfunction, and this impairment may be involved in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chee-Kin Then
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kao-Hui Liu
- Department of Dermatology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsuan Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsuan Chung
- Department of Psychiatry and Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Radak Z, Suzuki K, Higuchi M, Balogh L, Boldogh I, Koltai E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic Biol Med 2016; 98:187-196. [PMID: 26828019 DOI: 10.1016/j.freeradbiomed.2016.01.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022]
Abstract
Regular exercise has systemic beneficial effects, including the promotion of brain function. The adaptive response to regular exercise involves the up-regulation of the enzymatic antioxidant system and modulation of oxidative damage. Reactive oxygen species (ROS) are important regulators of cell signaling. Exercise, via intensity-dependent modulation of metabolism and/or directly activated ROS generating enzymes, regulates the cellular redox state of the brain. ROS are also involved in the self-renewal and differentiation of neuronal stem cells and the exercise-mediated neurogenesis could be partly associated with ROS production. Exercise has strong effects on the immune system and readily alters the production of cytokines. Certain cytokines, especially IL-6, IL-1, TNF-α, IL-18 and IFN gamma, are actively involved in the modulation of synaptic plasticity and neurogenesis. Cytokines can also contribute to ROS production. ROS-mediated alteration of lipids, protein, and DNA could directly affect brain function, while exercise modulates the accumulation of oxidative damage. Oxidative alteration of macromolecules can activate signaling processes, membrane remodeling, and gene transcription. The well known neuroprotective effects of exercise are partly due to redox-associated adaptation.
Collapse
Affiliation(s)
- Zsolt Radak
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary; Graduate School of Sport Sciences, Waseda University, Saitama, Japan.
| | - Katsuhiko Suzuki
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Mitsuru Higuchi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Laszlo Balogh
- Institute of Physical Education and Sport Science, University of Szeged, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erika Koltai
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary
| |
Collapse
|
5
|
Saha P, Biswas SC. Amyloid-β induced astrocytosis and astrocyte death: Implication of FoxO3a-Bim-caspase3 death signaling. Mol Cell Neurosci 2015; 68:203-11. [PMID: 26260111 DOI: 10.1016/j.mcn.2015.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/23/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022] Open
Abstract
Astrocytes, the main element of the homeostatic system in the brain, are affected in various neurological conditions including Alzheimer's disease (AD). A common astrocytic reaction in pathological state is known as astrocytosis which is characterized by a specific change in astrocyte shape due to cytoskeletal remodeling, cytokine secretion and cellular proliferation. Astrocytes also undergo apoptosis in various neurological conditions or in response to toxic insults. AD is pathologically characterized by progressive deposition of amyloid-β (Aβ) in senile plaques, intraneuronal neurofibrillary tangles, synaptic dysfunction and neuron death. Astrocytosis and astrocyte death have been reported in AD brain as well as in response to Aβ in vitro. However, how astrocytes undergo both proliferation and death in response to Aβ remains elusive. In this study, we used primary cultures of cortical astrocytes and exposed them to various doses of oligomeric Aβ. We found that cultured astrocytes proliferate and manifest all signs of astrocytosis at a low dose of Aβ. However, at high dose of Aβ the activated astrocytes undergo apoptosis. Astrocytosis was also noticed in vivo in response to Aβ in the rat brain. Next, we investigated the mechanism of astrocyte apoptosis in response to a high dose of Aβ. We found that death of astrocyte induced by Aβ requires a set of molecules that are instrumental for neuron death in response to Aβ. It involves activation of Forkhead transcription factor Foxo3a, induction of its pro-apoptotic target Bim and activation of its downstream molecule, caspase3. Hence, this study demonstrates that the concentration of Aβ decides whether astrocytes do proliferate or undergo apoptosis via a mechanism that is required for neuron death.
Collapse
Affiliation(s)
- Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
6
|
Nagano T, Kimura SH, Takemura M. Prostaglandin E2 induces apoptosis in cultured rat microglia. Brain Res 2014; 1568:1-9. [PMID: 24845544 DOI: 10.1016/j.brainres.2014.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/05/2014] [Accepted: 05/10/2014] [Indexed: 12/15/2022]
Abstract
Prostaglandin E2 (PGE2) plays a critical role in the modulation of microglial function including migration and phagocytosis through EP2, which increases intracellular cyclic adenosine monophosphate (AMP) concentration. In the present study, we found that PGE2 reduces cell viability in microglia. PGE2 decreased 3-(4,5-dimethylthiazol-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reduction and increased lactate dehydrogenase release, deoxyribonucleic acid fragmentation, and poly(ADP-ribose) polymerase cleavage after 24h incubation, suggesting that PGE2 induces apoptosis in these cells. An EP2 agonist, butaprost, and an EP4 agonist, PGE1 alcohol, also induced apoptosis, while an EP1 agonist, 17-phenyl trinor PGE2, or an EP3 agonist, sulprostone, at 10(-6)M did not. On the other hand, EP1-EP4 antagonists, SC-51322, AH6809, L-798106, or GW627368X, up to 10(-5)M did not affect the decrease in MTT reduction by PGE2. Intracellular cyclic AMP accumulation was induced by butaprost, but not 17-phenyl trinor PGE2, sulprostone, or PGE1 alcohol at 10(-6)M. Additionally, we previously reported that PGE2-induced intracellular cyclic AMP accumulation was reversed by AH6809. Besides EP receptors, one of other targets was thought to be prostaglandin transporter, but its inhibitors, bromocresol green or U-46619 up to 10(-5)M did not affect the decrease in MTT reduction by PGE2. These results suggest that PGE2 induces apoptosis in microglia independent of intracellular cyclic AMP concentration, and there are different mechanisms between PGE2-induced apoptosis and the modulation of microglial function.
Collapse
MESH Headings
- Alprostadil/analogs & derivatives
- Alprostadil/metabolism
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Blotting, Western
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Cyclic AMP/metabolism
- DNA Fragmentation
- Dinoprostone/metabolism
- L-Lactate Dehydrogenase/metabolism
- Microglia/physiology
- Poly(ADP-ribose) Polymerases/metabolism
- Rats, Wistar
- Receptors, Prostaglandin E, EP1 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/agonists
- Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/agonists
- Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
Collapse
Affiliation(s)
- Takayuki Nagano
- Department of Pharmacology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Shinya H Kimura
- Department of Pharmacology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Motohiko Takemura
- Department of Pharmacology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|
7
|
Xu M, Yang L, Rong JG, Ni Y, Gu WW, Luo Y, Ishidoh K, Katunuma N, Li ZS, Zhang HL. Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway. Glia 2014; 62:855-80. [PMID: 24616078 DOI: 10.1002/glia.22645] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 11/08/2022]
Abstract
The roles of cathepsins in the ischemic astrocytic injury remain unclear. Here, we test the hypothesis that activation of cathepsin B and L contributes to the ischemic astrocyte injury via the tBid-mitochondrial apoptotic signaling pathways. In the rat models of pMCAO, CA-074Me or Clik148, a selective inhibitor of cathepsin B or cathepsin L, reduced the infarct volume, improved the neurological deficits and increased the MAP2 and GFAP levels. In OGD-induced astrocyte injury, CA-074Me or Clik148 decreased the LDH leakage and increased the GFAP levels. In the ischemic cortex or OGD-induced astrocytes injury, Clik148 or CA-074Me reversed pMCAO or OGD-induced increase in active cathepsin L or cathepsin B at 3 h or 6 h, increase in tBid, reduction in mitochondrial cytochrome-c (Cyt-c) and increase in cytoplastic Cyt-c and active caspase-3 at 12-24 h of the late stage of pMCAO or OGD. CA-074Me or Clik148 also reduced cytosolic and mitochondrial tBid, increased mitochondrial Cyt-c and decreased cytoplastic Cyt-c and active caspase-3 at 6 h of the early stage of Bid activation. CA-074Me or Clik148 blocked the pMCAO-induced release of cathepsin B or L from the lysosomes into the cytoplasm and activation of caspase-3 in ischemic astrocytes at 12 h after ischemia. Concurrent inhibition of cathepsin B and cathepsin L provided better protection on the OGD-induced astrocytic apoptosis than obtained with separate use of each inhibitor. These results suggest that inhibition of the cysteine cathepsin B and cathepsin L activation in ischemic astrocytes contributes to neuroprotection via blocking the tBid-mitochondrial apoptotic signaling pathway.
Collapse
Affiliation(s)
- Min Xu
- Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Effect of a novel nuclear factor-κB activation inhibitor on renal ischemia-reperfusion injury. Transplantation 2014; 96:863-70. [PMID: 23958925 DOI: 10.1097/tp.0b013e3182a3df74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND In kidney transplantation, the relationship between prolonged warm or cold ischemic storage of kidneys and a higher incidence of delayed graft function is previously known, and delayed graft function has been known to aggravate poor long-term graft survival. We investigated the effect of a novel nuclear factor-κB activation inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on renal ischemia-reperfusion (I/R) injury. METHODS DHMEQ was administered to Lewis rats once just before renal artery clamping (DHMEQ pretreatment group), and the effect on I/R injury was investigated. RESULTS In the DHMEQ pretreatment group, the 24-hr urine volume on days 1 to 3 after I/R was significantly larger, and the protein concentration of the urine on days 2 to 7 was significantly smaller than in the untreated group. The serum creatinine level was significantly improved, and significantly lower levels of the inflammatory cells and inflammatory cytokines were present in the kidneys on day 1. The relative ratio of nuclear to cytoplasmic nuclear factor-κB and oxidative stress of kidney tissue on day 1 were significantly decreased. CONCLUSIONS Treatment with DHMEQ before renal artery clamping may therefore be useful for renal I/R injury and application to renal transplantation is expected.
Collapse
|
9
|
Quan W, Yin Y, Xi M, Zhou D, Zhu Y, Guan Y, Guo C, Wang Y, Duan J, Wen A. Antioxidant properties of magnesium lithospermate B contribute to the cardioprotection against myocardial ischemia/reperfusion injury in vivo and in vitro. J TRADIT CHIN MED 2013; 33:85-91. [DOI: 10.1016/s0254-6272(13)60106-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Xu M, Yang L, Hong LZ, Zhao XY, Zhang HL. Direct protection of neurons and astrocytes by matrine via inhibition of the NF-κB signaling pathway contributes to neuroprotection against focal cerebral ischemia. Brain Res 2012; 1454:48-64. [PMID: 22503072 DOI: 10.1016/j.brainres.2012.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 02/02/2023]
Abstract
Matrine (Mat) and oxymatrine are two major alkaloids of the Chinese herb Sophora flavescens Ait. (Leguminosae). Previous study has demonstrated that Mat reduces brain edema induced by focal cerebral ischemia. More recently, oxymatrine has been reported to produce neuroprotective effects against focal cerebral ischemia via inhibiting the activation of NF-κB in the ischemic brain tissue. In the current study, we investigated whether direct protection on neurons and astrocytes via inhibition of NF-κB signaling pathway is associated with Mat's neuroprotective effects against cerebral ischemia. In a model of permanent middle cerebral artery occlusion (pMCAO), Mat (12.5, 25 and 50 mg/kg) reduced the infarction volume and improved the neurological deficits in a dose-dependent manner, administered 10 min, 3h and even 6h following pMCAO. Mat 50 mg/kg also decreased the hemispheric water content. The number of GFAP-positive cells was markedly decreased in the ischemic cortex at 12h after ischemia. In contrast, Mat increased the number of GFAP-positive cells. Mat 50mg/kg has no effect on the cerebral blood flow (CBF). Primary neuron or astrocyte cultures were exposed to a paradigm of ischemic insult by using an oxygen-glucose deprivation (OGD), Mat (50-200 μM) reduced LDH leakage and the number of neuronal and astrocytic apoptosis, and increased the number of MAP2-positive and GFAP-positive cells. Further observations revealed that Mat increased the protein levels of IκBα, and blocked the translocation of NF-κB p65 from the cytosol to the nucleus in the ischemic cortex and injured neurons and astrocytes induced by in vitro OGD. Moreover, Mat could down-regulate NF-κB p65 downstream pro-apoptotic gene p53 and/or c-Myc in the injured neurons and astrocytes induced by OGD. The present findings suggest that Mat, even when administrated 6h after ischemia, has neuroprotective effects against focal cerebral ischemia and directly protects neurons and astrocytes via inhibition of NF-κB signaling pathway, contributing to matrine's neuroprotection against focal cerebral ischemia.
Collapse
Affiliation(s)
- Min Xu
- Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | | | | | | | | |
Collapse
|
11
|
Spilsbury A, Vauzour D, Spencer JP, Rattray M. Regulation of NF-κB activity in astrocytes: effects of flavonoids at dietary-relevant concentrations. Biochem Biophys Res Commun 2012; 418:578-83. [DOI: 10.1016/j.bbrc.2012.01.081] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 01/01/2023]
|
12
|
The specific Na+/Ca2+ exchange inhibitor SEA0400 prevents nitric oxide-induced cytotoxicity in SH-SY5Y cells. Neurochem Int 2011; 59:51-8. [DOI: 10.1016/j.neuint.2011.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 12/13/2022]
|
13
|
Kitao T, Takuma K, Kawasaki T, Inoue Y, Ikehara A, Nashida T, Ago Y, Matsuda T. The Na+/Ca2+ exchanger-mediated Ca2+ influx triggers nitric oxide-induced cytotoxicity in cultured astrocytes. Neurochem Int 2010; 57:58-66. [PMID: 20447431 DOI: 10.1016/j.neuint.2010.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 04/13/2010] [Accepted: 04/20/2010] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is involved in many pathological conditions including neurodegenerative disorders. We have previously found that sodium nitroprusside (SNP), an NO donor, stimulates mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulating kinase (ERK), c-jun N-terminal protein kinase (JNK) and p38 MAPK, leading to caspase-independent apoptosis in cultured astrocytes. In view of the previous observation that NO stimulates the activity of the Na(+)/Ca(2+) exchanger (NCX), this study examines the involvement of NCX in cytotoxicity. The specific NCX inhibitor SEA0400 blocked SNP-induced phosphorylation of ERK, JNK and p38 MAPK, and decrease in cell viability. SNP-induced phosphorylation of ERK, JNK and p38 MAPK was blocked by removal of external Ca(2+), and SNP treatment caused an increase in (45)Ca(2+) influx. This increase in (45)Ca(2+) influx was blocked by SEA0400, but not the Ca(2+) channel blocker nifedipine. In addition, SNP-induced (45)Ca(2+) influx and cytotoxicity were reduced in NCX1-deficient cells which were transfected with NCX1 siRNA. Inhibitors of intracellular Ca(2+)-dependent proteins such as calpain and calmodulin blocked SNP-induced ERK phosphorylation and decrease in cell viability. Furthermore, the guanylate cyclase inhibitor LY83583 and the cGMP-dependent protein kinase inhibitor KT5823 blocked SNP-induced cytotoxicity. These findings suggest that NCX-mediated Ca(2+) influx triggers SNP-induced apoptosis in astrocytes, which may be mediated by a cGMP-dependent pathway.
Collapse
Affiliation(s)
- Tatsuya Kitao
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Durand D, Caruso C, Carniglia L, Lasaga M. Metabotropic glutamate receptor 3 activation prevents nitric oxide-induced death in cultured rat astrocytes. J Neurochem 2010; 112:420-33. [PMID: 20085613 DOI: 10.1111/j.1471-4159.2009.06469.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Altered glial function may contribute to the initiation or progression of neuronal death in neurodegenerative diseases. Thus, modulation of astrocyte death may be essential for preventing pathological processes in the CNS. In recent years, metabotropic glutamate receptor (mGluR) activation has emerged as a key target for neuroprotection. We investigated the effect of subtype 3 mGluR (mGluR3) activation on nitric oxide (NO)-induced astroglial death. A mGluR3 selective agonist, LY379268, reduced inducible NO synthase expression and NO release induced by bacterial lipopolysaccharide and interferon-gamma in cultured rat astrocytes. In turn, a NO donor (diethylenetriamine/NO) induced apoptotic-like death in cultured astrocytes, which showed apoptotic morphology and DNA fragmentation, but no caspase 3 activation. LY379268 prevented astrocyte death induced by NO exposure, which correlates with a reduction in: phosphatidylserine externalization, p53 and Bax activation and mitochondrial permeability. The reported effects of LY379268 were prevented by the mGluR3 antagonist (s)-alpha-ethylglutamic acid. All together, these findings show the protective effect of mGluR3 activation on astroglial death and provide further evidence of a role of these receptors in preventing CNS injury triggered by several inflammatory processes associated with dysregulated NO production.
Collapse
Affiliation(s)
- Daniela Durand
- Research Center in Reproduction, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
15
|
Shiga toxin 1-induced inflammatory response in lipopolysaccharide-sensitized astrocytes is mediated by endogenous tumor necrosis factor alpha. Infect Immun 2009; 78:1193-201. [PMID: 20008539 DOI: 10.1128/iai.00932-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hemolytic-uremic syndrome (HUS) is generally caused by Shiga toxin (Stx)-producing Escherichia coli. Endothelial dysfunction mediated by Stx is a central aspect in HUS development. However, inflammatory mediators such as bacterial lipopolysaccharide (LPS) and polymorphonuclear neutrophils (PMN) contribute to HUS pathophysiology by potentiating Stx effects. Acute renal failure is the main feature of HUS, but in severe cases, patients can develop neurological complications, which are usually associated with death. Although the mechanisms of neurological damage remain uncertain, alterations of the blood-brain barrier associated with brain endothelial injury is clear. Astrocytes (ASTs) are the most abundant inflammatory cells of the brain that modulate the normal function of brain endothelium and neurons. The aim of this study was to evaluate the effects of Stx type 1 (Stx1) alone or in combination with LPS in ASTs. Although Stx1 induced a weak inflammatory response, pretreatment with LPS sensitized ASTs to Stx1-mediated effects. Moreover, LPS increased the level of expression of the Stx receptor and its internalization. An early inflammatory response, characterized by the release of tumor necrosis factor alpha (TNF-alpha) and nitric oxide and PMN-chemoattractant activity, was induced by Stx1 in LPS-sensitized ASTs, whereas activation, evidenced by higher levels of glial fibrillary acid protein and cell death, was induced later. Furthermore, increased adhesion and PMN-mediated cytotoxicity were observed after Stx1 treatment in LPS-sensitized ASTs. These effects were dependent on NF-kappaB activation or AST-derived TNF-alpha. Our results suggest that TNF-alpha is a pivotal effector molecule that amplifies Stx1 effects on LPS-sensitized ASTs, contributing to brain inflammation and leading to endothelial and neuronal injury.
Collapse
|
16
|
Ferlazzo N, Condello S, Currò M, Parisi G, Ientile R, Caccamo D. NF-kappaB activation is associated with homocysteine-induced injury in Neuro2a cells. BMC Neurosci 2008; 9:62. [PMID: 18606001 PMCID: PMC2474632 DOI: 10.1186/1471-2202-9-62] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 07/07/2008] [Indexed: 12/19/2022] Open
Abstract
Background Perinatal exposure to hyperhomocysteinemia might disturb neurogenesis during brain development and growth. Also, high levels of homocysteine trigger neurodegeneration in several experimental models. However, the putative mechanisms of homocysteine-induced toxicity in the developing nervous system have poorly been elucidated. This study was aimed to investigate homocysteine effects in undifferentiated neuroblastoma cells, Neuro2a. Results A 4 h exposure to homocysteine in a concentration range of 10–100 μM did not affect cell viability and ROS production in Neuro2a cell cultures. Instead, ROS levels were increased by two-three folds in cells treated with 250 μM and 500 μM homocysteine, respectively, in comparison with control cells. Also, the highest homocysteine dose significantly reduced the viable cell number by 40%. Notably, the treatment with homocysteine (250 μM–500 μM) in the presence of antioxidants, such as N-acetylcysteine and IRFI 016, a synthetic α-tocopherol analogue, recovered cell viability and significantly reduced homocysteine-evoked increases in ROS production. Moreover, antioxidants, particularly IRFI 016, were able to counteract NF-κB activation induced by 250 μM homocysteine. Cell treatment with 250 μM homocysteine also triggered the onset of apoptosis, as demonstrated by the increased expression of early apoptotic markers such as Bax, caspase-3 and p53. In contrast, Bcl2 expression was not affected by homocysteine exposure. Interestingly, the specific inhibition of NF-κB nuclear translocation by the synthetic peptide SN50 was able to almost completely suppress the homocysteine-evoked rises in pro-apoptotic protein expression as well as in caspase-3 activity. Further, also IRFI 016 and N-acetylcysteine were able to significantly reduce caspase-3 activation induced by homocysteine treatment. Conclusion These observations suggest an involvement of redox state alterations and activated NF-κB in apoptosis onset triggered by homocysteine in neuroblastoma cells Neuro2a. However, further investigations are needed to characterize molecular events involved in the NF-κB activation induced by homocysteine.
Collapse
Affiliation(s)
- Nadia Ferlazzo
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina - Messina, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Neuron is the primary target of Ca2+ paradox-type insult-induced cell injury in neuron/astrocyte co-cultures. Neurochem Int 2008; 52:887-96. [DOI: 10.1016/j.neuint.2007.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 11/22/2022]
|
18
|
Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther 2008; 117:280-95. [DOI: 10.1016/j.pharmthera.2007.09.008] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 09/21/2007] [Indexed: 11/17/2022]
|
19
|
Kawasaki T, Kitao T, Nakagawa K, Fujisaki H, Takegawa Y, Koda K, Ago Y, Baba A, Matsuda T. Nitric oxide-induced apoptosis in cultured rat astrocytes: protection by edaravone, a radical scavenger. Glia 2007; 55:1325-33. [PMID: 17626263 DOI: 10.1002/glia.20541] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nitric oxide induces apoptosis-like cell death in cultured astrocytes, but the exact mechanism is not known. This study further characterized the mechanism of nitric oxide-induced cytotoxicity, and examined the effect of edaravone, a radical scavenger, on cytotoxicity. Treatment of cultured rat astrocytes with sodium nitroprusside (SNP), a nitric oxide donor, for 72 h, decreased cell viability by causing apoptosis-like cell death. The injury was accompanied by increases in the production of reactive oxygen species and in the level of nuclear apoptosis-inducing factor, but not in caspase activity. SNP-induced cytotoxicity was blocked by the c-jun N-terminal protein kinase (JNK) inhibitor SP600125 (20 microM), the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580 (20 microM), and the extracellular signal-regulating kinase (ERK) inhibitor U0126 (10 microM), and the nitric oxide donor stimulated the phosphorylation of p38 MAP kinase, JNK, and ERK. Edaravone (10 microM) protected astrocytes against SNP-induced cell injury and it inhibited SNP-induced phosphorylation of p38 MAP kinase, JNK, and ERK, and the production of reactive oxygen species. Edaravone also attenuated SNP-induced increase in nuclear apoptosis-inducing factor levels. These results suggest that MAP kinase pathways play a key role in nitric oxide-induced apoptosis and that edaravone protects against nitric oxide-induced cytotoxicity by inhibiting nitric oxide-induced MAP kinase activation in astrocytes.
Collapse
Affiliation(s)
- Toshiyuki Kawasaki
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baba A. [Molecular pharmacologic approaches to functional analysis of new biological target molecules for drug discovery]. YAKUGAKU ZASSHI 2007; 127:1643-54. [PMID: 17917422 DOI: 10.1248/yakushi.127.1643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review focuses on two pharmacologic approaches to the functional evaluation of new target molecules for drug discovery. One is the development of a novel specific antagonist of the Na(+)-Ca(++) exchanger (NCX) SEA0400. The other is a comprehensive analysis of the functions of pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide ligand for G protein-coupled receptors. NCX is the one of the last target molecules regulating the cellular Ca(++) concentration. There was no efficient way to address the pathophysiologic roles of NCX until a specific antagonist, 2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline (SEA0400), was developed. Our recent studies using SEA0400 clearly showed the possible roles of NCX in several pathologic states of cardiovascular and nervous tissues. In our second approach including gene-targeting methods, we found new, unexpected roles of PACAP in higher brain functions, such as psychomotor, cognition, photoentrainment, and nociception. Based on these experimental findings, a genetic association study in schizophrenia patients revealed that the single-nucleotide polymorphisms of the PACAP gene are significantly associated with the hypofunction of the hippocampus. Regarding the peripheral roles of PACAP, we found that PACAP is involved not only in the regulation of insulin secretion in pancreatic islets, but also in the regulation of islet turnover. In subsequent phenotypic analysis of PACAP transgenic mice, we identified novel candidate genes that probably have promising functional roles.
Collapse
Affiliation(s)
- Akemichi Baba
- Molecular Pharmacological Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita City 565-0871, Japan.
| |
Collapse
|
21
|
Takuma K. [Mitochondrial dysfunction and apoptosis in neurodegenerative diseases]. Nihon Yakurigaku Zasshi 2006; 127:349-54. [PMID: 16819239 DOI: 10.1254/fpj.127.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Van Hoecke M, Prigent-Tessier A, Bertrand N, Prevotat L, Marie C, Beley A. Apoptotic cell death progression after photothrombotic focal cerebral ischaemia: effects of the lipophilic iron chelator 2,2'-dipyridyl. Eur J Neurosci 2006; 22:1045-56. [PMID: 16176346 DOI: 10.1111/j.1460-9568.2005.04297.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two different forms of cell death have been distinguished morphologically following cerebral ischaemia: necrotic and apoptotic cell death. The aim of this study was to investigate the contribution of apoptosis to ischaemic damage by carefully depicting the temporal and spatial neuronal death following focal ischaemia. For this purpose, rats were subjected to chemical photothrombosis, and histological and biochemical analyses were performed over a period of 24 h after the onset of ischaemia. In addition, the effects of the lipophilic antioxidant iron chelator 2,2'-dipyridyl (DP) were evaluated 24 h after photothrombosis when the lesion volume was maximal. Our results showed two separate waves of neuronal death. In the first wave, shrunken dark neurons were massively present as early as 2 h after photothrombosis in the infarct core. From this initial neuronal abnormal population, progressive and time-dependent changes of both necrotic and apoptotic cell death were observed, leading to ghost neurons and apoptotic bodies after 24 h. The extension of the lesion coincided with a second wave of cell death. Massive and rapid neuronal loss occurred at the infarct border, which appeared as a sharply demarcated pale region. Procaspase and poly(ADP-ribose) polymerase-1 (PARP-1) cleavages were also detected in the infarct core and surrounding damaged tissue. DP treatment markedly blocked the enlargement of the lesion, the infarct border being rescued from infarction. Furthermore, a large decrease of apoptotic bodies was associated with a significant drop of caspase and PARP-1 cleavages, suggesting that the protective effect of DP closely correlates with limitation of apoptosis expansion.
Collapse
Affiliation(s)
- Michaël Van Hoecke
- Laboratoire de Pharmacodynamie et Physiologie Pharmaceutique (L3P), Faculté de Pharmacie, BP 87900, 21079 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Caccamo D, Campisi A, Currò M, Aguennouz M, Li Volti G, Avola R, Ientile R. Nuclear factor-kappab activation is associated with glutamate-evoked tissue transglutaminase up-regulation in primary astrocyte cultures. J Neurosci Res 2005; 82:858-65. [PMID: 16273541 DOI: 10.1002/jnr.20683] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously demonstrated that alterations of cell redox state, evoked by glutamate, are associated with tissue transglutaminase increases in primary astrocyte cultures. Furthermore, glutamate exposure activated the nuclear factor (NF)-kappaB pathway, and its effects were significantly reduced by antioxidants. Here, we investigated the possible involvement of activated NF-kappaB pathway in glutamate-evoked tissue transglutaminase up-regulation in primary astrocytes. The presence of DNA binding activity by NF-kappaB in nuclear extracts of astrocytes, treated for 24 hr with glutamate (500 microM) or untreated, was assessed by EMSA, using an oligonucleotide probe containing the NF-kappaB consensus sequence present in the tissue transglutaminase promoter. Supershifting with monoclonal antibodies revealed that activated NF-kappaB dimer complexes were composed of p50 and p65 subunits. Interestingly, the specific NF-kappaB inhibitor SN50 (but not its inactive analogue SN50M), when added to cell cultures 30 min prior to glutamate treatment, was able gradually to reduce glutamate-induced NF-kappaB activation. Western blot analysis confirmed the reduction of the p50 amount in nuclear extracts. Notably, the preincubation with SN50 also diminished glutamate-increased tissue transglutaminase expression, as showed by both RT-PCR and Western blotting. Competition experiments, carried out with an excess of a probe containing the NF-kappaB consensus sequence present in the kappa-light-chain promoter, demonstrated a preferential binding of the tissue transglutaminase specific NF-kappaB probe in the nuclear extracts of glutamate-treated astrocytes compared with untreated astrocytes. These preliminary data suggest that NF-kappaB activation, which has been demonstrated to be involved in astrocyte response to glutamate, could also be associated with the molecular pathway leading to glutamate-evoked tissue transglutaminase up-regulation.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Policlinico Universitario, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Caccamo D, Campisi A, Currò M, Bramanti V, Tringali M, Li Volti G, Vanella A, Ientile R. Antioxidant Treatment Inhibited Glutamate-Evoked NF-κB Activation in Primary Astroglial Cell Cultures. Neurotoxicology 2005; 26:915-21. [PMID: 15894376 DOI: 10.1016/j.neuro.2005.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 01/24/2005] [Accepted: 01/27/2005] [Indexed: 11/16/2022]
Abstract
In glial cells, glutamate exposure causes alterations in cell redox status, mainly mediated by glutathione depletion and reactive oxygen species generation. These effects finally lead to astrocyte dysfunction which contributes to the pathogenesis of several neurological disorders. This study was aimed to investigate the involvement of the NF-kappaB pathway in oxidative stress induced by glutamate exposure in primary cultures of astrocytes. Further, we evaluated the power of the antioxidants genistein (0.1-10 microM) and IRFI 016 (20-80 microM), a synthetic tocopherol analogue, compared with glutathione ethyl ester (10-50 microM) and cysteamine-HCl (100-500 microM), to antagonize the effects elicited by glutamate (500 microM). Alterations of cell redox status were reduced, in a dose-dependent way, by antioxidants; in particular, 80 microM IRFI 016 and 10 microM genistein almost completely restored glutathione basal levels and significantly diminished ROS production, as well as 100 microM glutathione ethyl ester. These antioxidant effects were stronger than those caused by 500 microM cysteamine-HCl. Further, glutamate promoted the up-regulation of p50 and p65 NF-kappaB subunits and their nuclear translocation, as revealed by Western blot analysis and electrophoretic mobility shift assay of both subunits. The activation of p50 and p65 NF-kappaB subunits induced by glutamate exposure was significantly reduced by IRFI 016, acting in a dose-dependent manner. Altogether, these data confirm that the NF-kappaB pathway is involved in cell response to oxidative stress induced by glutamate injury in primary astrocyte cultures, and suggest that the use of antioxidants, such as IRFI 016, may be a helpful pharmacological strategy for neuroprotection.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Via Consolare Valeria, Policlinico Universitario, 98125 Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Caccamo D, Campisi A, Marini H, Adamo EB, Li Volti G, Squadrito F, Ientile R. Glutamate promotes NF-κB pathway in primary astrocytes: protective effects of IRFI 016, a synthetic vitamin E analogue. Exp Neurol 2005; 193:377-83. [PMID: 15869940 DOI: 10.1016/j.expneurol.2005.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 01/11/2005] [Accepted: 01/19/2005] [Indexed: 11/22/2022]
Abstract
Oxidative stress has been implicated in several neurodegenerative diseases affecting both neuronal and glial cells. The aim of this study was to investigate the involvement of reactive oxygen species in glutamate-evoked activation of NF-kappaB in primary astrocytes. A prolonged exposure to glutamate (24 h) caused a depletion of intracellular glutathione that, in astroglial cells, has been considered a biochemical change typical of early astrocyte dysfunction, leading to cell alterations occurring in the gliosis. These effects were initiated by AMPA/KA receptor activation and almost completely blocked by anti-oxidants. Indeed, we provide evidence that the incubation of primary astrocytes with a hydrophilic derivative of tocopherol, such as IRFI 016, was useful to reduce glutamate-induced oxidative effects. This agent also reduced in a dose-dependent manner the nuclear translocation of both p50 and p65 subunits of NF-kappaB. Altogether, these data confirm that GSH content plays a pivotal role to determine oxidative response to glutamate injury in primary astrocyte cultures and that NF-kappaB pathway is involved in this response. Furthermore, the positive effects obtained by IRFI 016 to prevent nuclear translocation of NF-kappaB may suggest new pharmacological strategies for antioxidant therapy and neuroprotection.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Via Consolare Valeria, Policlinico Universitario, 98125 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Matsuda T, Koyama Y, Baba A. Functional proteins involved in regulation of intracellular Ca(2+) for drug development: pharmacology of SEA0400, a specific inhibitor of the Na(+)-Ca(2+) exchanger. J Pharmacol Sci 2005; 97:339-43. [PMID: 15764845 DOI: 10.1254/jphs.fmj04007x2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The Na(+)-Ca(2+) exchanger (NCX) is involved in regulation of intracellular Ca(2+) concentration. A specific inhibitor of NCX has been required for clarification of the physiological and pathological roles of NCX. We have developed 2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline (SEA0400), a highly potent and selective inhibitor of NCX. SEA0400 in the concentration range that inhibits NCX exhibits negligible affinities for the Ca(2+) channels, Na(+) channels, K(+) channels, noradrenaline transporter, and 14 receptors; and it does not affect the activities of the store-operated Ca(2+) channel, Na(+)-H(+) exchanger, and several enzymes including Na(+),K(+)-ATPase and Ca(2+)-ATPase. Furthermore, recent studies show that SEA0400 attenuates ischemia-reperfusion injury in the brain, heart, and kidney and radiofrequency lesion-induced edema in rat brain. These findings suggest that NCX plays a key role in ischemia-reperfusion injury and may be a target molecule for treatment of reperfusion injury-related diseases.
Collapse
Affiliation(s)
- Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka.
| | | | | |
Collapse
|
27
|
Lee WC, Choi CH, Cha SH, Oh HL, Kim- YK. Role of ERK in Hydrogen Peroxide-Induced Cell Death of Human Glioma Cells. Neurochem Res 2005; 30:263-70. [PMID: 15895830 DOI: 10.1007/s11064-005-2449-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Oxidative stress is known to induce cell death in a wide variety of cell types, apparently by modulating intracellular signaling pathways. Activation of extracellular signal-regulated kinase (ERK) in oxidative stress remains controversial. In some cellular systems, the ERK activation is associated with protection against oxidative stress, while in other system, the ERK activation is involved in apoptotic cell death. The present study was undertaken to examine the role of ERK activation in H2O2-induced cell death of human glioma (A172) cells. H2O2 resulted in a time- and dose-dependent cell death, which was largely attributed to apoptosis. H2O2 treatment caused marked sustained activation of ERK. The ERK activation and cell death induced by H2O2 was prevented by catalase, the hydrogen peroxide scavenger, and U0126, an inhibitor of ERK upstream kinase MEK1/2. Transient transfection with constitutive active MEK1, an upstream activator of ERK1/2, increased H2O2-induced cell death, whereas transfection with dominant-negative mutants of MEK1 decreased the cell death. The ERK activation and cell death caused by H2O2 was inhibited by antioxidants (N-acetylcysteine and trolox), Ras inhibitor, and suramin. H2O2 produced depolarization of mitochondrial membrane potential and its effect was prevented by catalase and U0126. Taken together, these findings suggest that growth factor receptor/Ras/MEK/ERK signaling pathway plays an active role in mediating H2O2-induced apoptosis of human glioma cells and functions upstream of mitochondria-dependent pathway to initiate the apoptotic signal.
Collapse
Affiliation(s)
- Won Chang Lee
- Department of Neurosurgery, College of Medicine, Pusan National University, Pusan 602-739, Korea
| | | | | | | | | |
Collapse
|
28
|
Aggarwal BB, Takada Y. Pro-apototic and anti-apoptotic effects of tumor necrosis factor in tumor cells. Role of nuclear transcription factor NF-kappaB. Cancer Treat Res 2005; 126:103-27. [PMID: 16209064 DOI: 10.1007/0-387-24361-5_5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Section, Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
29
|
Choi JW, Shin CY, Yoo BK, Choi MS, Lee WJ, Han BH, Kim WK, Kim HC, Ko KH. Glucose deprivation increases hydrogen peroxide level in immunostimulated rat primary astrocytes. J Neurosci Res 2004; 75:722-31. [PMID: 14991848 DOI: 10.1002/jnr.20009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activated astrocytes produce a large amount of bioactive molecules, including reactive oxygen and nitrogen species. Astrocytes are in general resistant to those reactive species. However, we previously reported that immunostimulated astrocytes became highly vulnerable to metabolic insults, such as glucose deprivation. In this study, we investigated whether H(2)O(2) production was associated with the increased vulnerability. Glucose deprivation for up to 8 hr did not change the intracellular level of H(2)O(2) in astrocytes. Treatment with lipopolysaccharide plus interferon-gamma for 48 hr evoked astroglial H(2)O(2) production; however, no apparent death or injury was observed in immunostimulated astrocytes. Glucose deprivation after 48 hr of immunostimulation markedly increased H(2)O(2) level, depleted adenosine triphosphate (ATP), and enhanced lactate dehydrogenase (LDH) release. The ATP depletion and LDH release were in part prevented by catalase, mannitol, and N-acetyl-L-cysteine. The enhanced level of H(2)O(2) in glucose-deprived immunostimulated astrocytes appeared to be secondary to the depletion of reduced glutathione. 4-(2-Aminoethyl)bebzenesulfonyl fluoride (AEBSF), an inhibitor of NADPH oxidase, reduced H(2)O(2) level and LDH release in glucose-deprived immunostimulated astrocytes. H(2)O(2), either endogenously produced or exogenously added, depolarized mitochondrial transmembrane potential in glucose-deprived astrocytes, leading to their ATP depletion and death. The present results strongly indicate that glucose deprivation causes deterioration of immunostimulated astrocytes by increasing the intracellular concentration of H(2)O(2).
Collapse
Affiliation(s)
- Ji Woong Choi
- Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Enomoto R, Tatsuoka H, Komai T, Sugahara C, Takemura K, Yamauchi A, Nishimura M, Naito S, Matsuda T, Lee E. Involvement of histone phosphorylation in apoptosis of human astrocytes after exposure to saline solution. Neurochem Int 2004; 44:459-67. [PMID: 14687611 DOI: 10.1016/s0197-0186(03)00175-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously found using inhibitors of protein phosphatase that phosphorylation of histones may be involved in thymocyte apoptosis. In this study, we examined whether histone modification occurs in astrocyte apoptosis induced by a pathological condition in the absence of drug. Incubation of cultured human astrocytes with growth medium for 24 h after exposure to saline solution for 30 min induced an increase in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and nuclear condensation, biochemical and morphological hallmarks of apoptotic cell death. Acetic acid-urea-Triton X-100 (AUT) gel electrophoresis of the nuclear histone fraction and N-terminal peptide analysis showed that the treatment with saline solution caused rapid changes in phosphorylation of H2A subfamilies, but not in histone acetylation. The phosphorylation of the two subtypes increased markedly, whereas the phosphorylation of one subtype decreased. In contrast, exposure to ACF-95, an artificial cerebrospinal fluid (CSF), was associated with little induction of apoptotic cell death and induced less changes in histone phosphorylation. These results support the previous idea that chemical modification of histones is involved in the DNA fragmentation in astrocytes undergoing apoptosis.
Collapse
Affiliation(s)
- Riyo Enomoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rouach N, Calvo CF, Duquennoy H, Glowinski J, Giaume C. Hydrogen peroxide increases gap junctional communication and induces astrocyte toxicity: regulation by brain macrophages. Glia 2004; 45:28-38. [PMID: 14648543 DOI: 10.1002/glia.10300] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cultured astrocytes are highly coupled by gap junction channels mainly constituted by connexin 43. We have previously shown that gap junctional communication (GJC) represents a functional property of astrocytes that is a target for their interaction with other brain cell types, including neurons and brain macrophages. In pathological situations, neurons as well as brain macrophages produce superoxide ions leading to the formation of hydrogen peroxide (H2O2) that can be cytotoxic. We report here that 10-min exposure to 100 microM H2O2 increases GJC in astrocytes. Moreover, 30-min exposure to 100 microM H2O2 induces, 24 h later, an astrocyte cell death by both apoptosis and necrosis. This H2O2-induced astrocyte cell death is not affected when gap junctions are inhibited by several uncoupling agents, including 18alpha-glycyrrhetinic acid, halothane, heptanol, and endothelin-1, indicating that the proportion of cell death is not related to the level of GJC. The effect of H2O2 on gap junction channels does not result from the production of free radicals but is rather linked to modification of the redox equilibrium in astrocytes. Indeed, an oxidative agent reproduces the H2O2-evoked response while reducing agents prevent the effect of H2O2. Finally, when astrocytes are cocultured with brain macrophages, the effects of H2O2 on both GJC and toxicity are not observed, revealing a new protective role of brain macrophages during oxidative stress.
Collapse
|
32
|
Yamamuro A, Ago Y, Takuma K, Maeda S, Sakai Y, Baba A, Matsuda T. Possible involvement of astrocytes in neuroprotection by the cognitive enhancer T-588. Neurochem Res 2004; 28:1779-83. [PMID: 14649717 DOI: 10.1023/a:1026103304490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have previously shown that the cognition enhancer (1R)-1-benzo[b]thiophen-5-yl-2-[2-(diethylamino)ethoxy]ethan-1-ol hydrochloride (T-588) protects astrocytes against hydrogen peroxide (H2O2) injury via activation of extracellular signal-regulated kinase (ERK) pathway. The present study examines whether the effect of T-588 on astrocytes contributes to neuroprotection in neuronal injury models. Astrocyte-conditioned medium (ACM) protected against neuronal injury induced by amyloid-beta protein (A beta) in cultured cortical neurons. The effect of ACM on A beta-induced injury was blocked by the ERK kinase inhibitor 2'-amino-3'-methoxyflavone. ACM stimulated ERK phosphorylation in cultured neurons. ACM derived from astrocytes exposed to H2O2 lost the activities to stimulate ERK phosphorylation and protect against neuronal injury. T-588 blocked the H2O2-induced loss of the activities of ACM. These results suggest that ACM protects against neuronal injury by an ERK-dependent mechanism, and the effect of T-588 on astrocytic injury results in neuroprotection.
Collapse
Affiliation(s)
- Akiko Yamamuro
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004; 72:111-27. [PMID: 15063528 DOI: 10.1016/j.pneurobio.2004.02.001] [Citation(s) in RCA: 350] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Accepted: 02/04/2004] [Indexed: 12/21/2022]
Abstract
Astrocytes, the most abundant glial cell types in the brain, provide metabolic and trophic support to neurons and modulate synaptic activity. Accordingly, impairment in these astrocyte functions can critically influence neuronal survival. Recent studies show that astrocyte apoptosis may contribute to pathogenesis of many acute and chronic neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease and Parkinson's disease. We found that incubation of cultured rat astrocytes in a Ca(2+)-containing medium after exposure to a Ca(2+)-free medium causes an increase in intracellular Ca(2+) concentration followed by apoptosis, and that NF-kappa B, reactive oxygen species, and enzymes such as calpain, xanthine oxidase, calcineurin and caspase-3 are involved in reperfusion-induced apoptosis. Furthermore, we demonstrated that heat shock protein, mitogen-activated protein/extracellular signal-regulated kinase, phosphatidylinositol-3 kinase and cyclic GMP phosphodiesterase are target molecules for anti-apoptotic drugs. This review summarizes (1) astrocytic functions in neuroprotection, (2) current evidence of astrocyte apoptosis in both in vitro and in vivo studies including its molecular pathways such as Ca(2+) overload, oxidative stress, NF-kappa B activation, mitochondrial dysfunction, endoplasmic reticulum stress, and protease activation, and (3) several drugs preventing astrocyte apoptosis. As a whole, this article provides new insights into the potential role of astrocytes as targets for neuroprotection. In addition, the advance in the knowledge of molecular mechanisms of astrocyte apoptosis may lead to the development of novel therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Kobe 651-2180, Japan
| | | | | |
Collapse
|
34
|
Wischhusen J, Naumann U, Ohgaki H, Rastinejad F, Weller M. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene 2004; 22:8233-45. [PMID: 14614447 DOI: 10.1038/sj.onc.1207198] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CP-31398 is a prototype small molecule that stabilizes the active conformation of p53 and promotes p53 activity in cancer cell lines with mutant or wild-type p53. Here, we report that CP-31398 induces p53 reporter gene activity and p21 expression in all of 11 glioma cell lines harboring wild-type or mutant p53, but not in p53-null LN-308 cells. Upon prolonged exposure to CP-31398, all glioma cell lines undergo caspase-independent and bcl-x(L)-insensitive cell death with EC(50) concentrations of 10-36 microM. By comparing p53 wild-type U87MG and p53-null LN-308 cells expressing the temperature-sensitive p53(V135A) mutant, we delineate two pathways of CP-31398-induced cell death: an early, p53-dependent pathway that requires (new p53) protein synthesis and a late, p53-independent pathway characterized by aurintricarboxylic acid -sensitive calcium release and epiphenomenal free radical formation. Post-transcriptional repression of p53 synthesis by an intracellularly transcribed short interfering RNA confirmed the presence of these two pathways of cell death. These observations point out some of the liabilities of CP-31398 as a prototype p53-based therapeutic and define a rationale for further refinement of small molecules that specifically target the p53 pathway, but lack the p53-independent effects.
Collapse
Affiliation(s)
- J Wischhusen
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Medical School, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
35
|
Jiang Z, Zhang Y, Chen XQ, Lam PY, Yang H, Xu Q, Yu ACH. Apoptosis and activation of Erkl/2 and Akt in astrocytes postischemia. Neurochem Res 2003; 28:831-7. [PMID: 12718435 DOI: 10.1023/a:1023206906164] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have shown previously that in vitro ischemia could induce apoptosis in primary culture of astrocytes. In this paper we demonstrate that astrocytes in culture could undergo apoptosis during in vitro incubation postischemia. We also measured the changes of phosphorylated Erk1/2 (p-Erk1/2) and phosphorylated Akt (p-Akt) in order to determine whether these two pathways play a role in apoptosis. After 4 h in vitro ischemic incubation of cultured astrocytes, a limited amount of nuclear condensation was demonstrated by Hoechst 33342 staining. When ischemic incubation was halted and the cultures transferred to standard normoxic incubation (postischemia) conditions, DNA fragmentation and apoptosis were demonstrated by TUNEL and DNA laddering analysis. TUNEL-positive astrocytes began to appear at 6 h postischemia and increased in number from 12 h postischemia. Western blot analysis showed that both p-Erk1/2 and p-Akt were elevated in astrocytes subjected to 4 h of ischemia. Elevated p-Erk1/2 levels were sustained during the postischemia incubation for 12 h and decreased significantly afterward, but did not return to the levels in the control cultures that did not experience ischemic insult. In contrast, the p-Akt level continued to increase at 6 and 12 h postischemia before declining significantly. The changes in p-Erk1/2 and p-Akt correlated well with the appearance of apoptotic astrocytes in the culture.
Collapse
Affiliation(s)
- Zhongjian Jiang
- Neuroscience Research Institute, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Takuma K, Kiriu M, Mori K, Lee E, Enomoto R, Baba A, Matsuda T. Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes. Neurochem Int 2003; 42:153-9. [PMID: 12421595 DOI: 10.1016/s0197-0186(02)00077-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Astrocytic apoptosis may play a role in the central nervous system injury. We previously showed that reperfusion of cultured astrocytes with normal medium after exposure to hydrogen peroxide (H(2)O(2))-containing medium causes apoptosis. This study examines the involvement of the lysosomal enzymes cathepsins B and D in the astrocytic apoptosis. Reperfusion after exposure to H(2)O(2) caused a marked increase in caspase-3 and cathepsin D activities and a marked decrease in cathepsin B activity. Pepstatin A, an inhibitor of cathepsin D, and acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspart-1-aldehyde (Ac-DMQD-CHO), a specific inhibitor of caspase-3, blocked the H(2)O(2)-induced decrease in cell viability and DNA ladder formation in cultured rat astrocytes. The (L-3-trans-(propylcarbamoyl)oxirane-2-carbonyl)-L-isoleucyl-L-proline methyl ester (CA074 Me), a specific inhibitor of cathepsin B, did not affect the H(2)O(2)-induced cell injury. On the other hand, CA074 Me decreased cell viability with DNA ladder formation when cultured in the presence of Ac-DMQD-CHO. This caspase-independent apoptosis was attenuated by the addition of the cathepsin D inhibitor pepstatin A. Caspase-3 like activity was markedly inhibited by Ac-DMQD-CHO and partially by pepstatin A. Pepstatin A and CA074 Me inhibited cathepsin B and cathepsin D activities, respectively, in the presence and absence of Ac-DMQD-CHO. These results suggest that cathepsins B and D are involved in astrocytic apoptosis: cathepsin D acts as a death-inducing factor upstream of caspase-3 and the caspase-independent apoptosis is regulated antagonistically by cathepsins B and D.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, High Technology Research Center, Kobe Gakuin University, Kobe 651-2180, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 2002; 14:879-97. [PMID: 12220615 DOI: 10.1016/s0898-6568(02)00053-0] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A progressive rise of oxidative stress due to the altered reduction-oxidation (redox) homeostasis appears to be one of the hallmarks of the processes that regulate gene transcription in physiology and pathophysiology. Reactive oxygen (ROS) and nitrogen (RNS) species serve as signaling messengers for the evolution and perpetuation of the inflammatory process that is often associated with the condition of oxidative stress, which involves genetic regulation. Changes in the pattern of gene expression through ROS/RNS-sensitive regulatory transcription factors are crucial components of the machinery that determines cellular responses to oxidative/redox conditions. Transcription factors that are directly influenced by reactive species and pro-inflammatory signals include nuclear factor-kappaB (NF-kappaB) and hypoxia-inducible factor-1alpha (HIF-1alpha). Here, I describe the basic components of the intracellular oxidative/redox control machinery and its crucial regulation of oxygen- and redox-sensitive transcription factors such as NF-kappaB and HIF-1alpha.
Collapse
Affiliation(s)
- John J Haddad
- Molecular Neuroscience Research Division, Department of Anesthesia and Perioperative Care, University of California at San Francisco, School of Medicine, San Francisco, CA 94143-0542, USA.
| |
Collapse
|
38
|
Gabryel B, Adamczyk J, Huzarska M, Pudełko A, Trzeciak HI. Aniracetam attenuates apoptosis of astrocytes subjected to simulated ischemia in vitro. Neurotoxicology 2002; 23:385-95. [PMID: 12387365 DOI: 10.1016/s0161-813x(02)00084-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to establish whether aniracetam is capable of protecting cultured rat astrocytes against ischemic injury. Treatment of the cultures with aniracetam (1, 10 and 100 mM) during 24 h ischemia simulated in vitro significantly decreased the number of apoptotic cells. The antiapoptotic effects of the drug were confirmed by the increase of intracellular ATP and phosphocreatine (PCr) levels and the inhibition of the caspase-3 activity. Aniracetam also attenuated cellular oxidative stress by decreased production of reactive oxygen species (ROS). These effects were associated with the decrease in levels of c-fos and c-jun mRNA in primary astrocyte cultures exposed to 24 h ischemia. When cultured astrocytes were incubated during 24 h simulated ischemia with wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor or PD98059, a mitogen-activated protein (MAP)/extracellular signal regulated kinase (ERK) (MEK) inhibitor the cell apoptosis was accelerated. This effect was antagonized by adding 100 mM aniracetam to the culture medium. These findings suggest that the protective effect of aniracetam is mediated by PI 3-kinase and MEK pathways in the downstream mechanisms.
Collapse
Affiliation(s)
- Bozena Gabryel
- Department of Pharmacology, Silesian Medical University, Katowice, Poland.
| | | | | | | | | |
Collapse
|
39
|
Takuma K, Mori K, Lee E, Enomoto R, Baba A, Matsuda T. Heat shock inhibits hydrogen peroxide-induced apoptosis in cultured astrocytes. Brain Res 2002; 946:232-8. [PMID: 12137926 DOI: 10.1016/s0006-8993(02)02888-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heat shock proteins (HSPs) have been shown to act as inhibitors of apoptosis, but this anti-apoptotic effect is not known in the central nervous system. Prior heat shock has been demonstrated to protect astrocytes from cell death in a model of reperfusion injury (Brain Res. 735 (1996) 265). The present study examines the mechanism underlying the protective effect of the heat shock. Preincubation of astrocytes at 40 degrees C for 10 min attenuated the hydrogen peroxide (H(2)O(2))-induced decrease in cell viability, DNA ladder formation and nuclear condensation, and these effects were blocked by the protein synthesis inhibitor cycloheximide. The thermal stress inhibited the H(2)O(2)-induced increase in caspase-3 like protease activity, but it did not affect the H(2)O(2)-induced loss of mitochondrial membrane potential. The cytosol prepared from preheated cells did not affect Ca(2+)-induced swelling of mitochondria, a marker of the permeable transition pore. The protective effect of the thermal stress on the H(2)O(2)-induced decrease in cell viability was not affected by the mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor 2'-amino-3'-methoxyflavone, the phosphatidylinositol-3 kinase inhibitor wortmannin and the NF-kappaB inhibitor pyrrolidinedithiocarbamate. These findings suggest that HSPs inhibit apoptosis via an inhibition of caspase-3 activation without effect on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Simulated Ischemia Induces Renal Tubular Cell Apoptosis Through a Nuclear Factor-??B Dependent Mechanism. J Urol 2002. [DOI: 10.1097/00005392-200207000-00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Meldrum K, Hile K, Meldrum D, Crone J, Gearhart J, Burnett A. Simulated Ischemia Induces Renal Tubular Cell Apoptosis Through a Nuclear Factor-κB Dependent Mechanism. J Urol 2002. [DOI: 10.1016/s0022-5347(05)64902-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- K.K. Meldrum
- From the Departments of Urology, Johns Hopkins University, Baltimore, Maryland, and Indiana University Medical Center, Indianapolis, Indiana
| | - K. Hile
- From the Departments of Urology, Johns Hopkins University, Baltimore, Maryland, and Indiana University Medical Center, Indianapolis, Indiana
| | - D.R. Meldrum
- From the Departments of Urology, Johns Hopkins University, Baltimore, Maryland, and Indiana University Medical Center, Indianapolis, Indiana
| | - J.A. Crone
- From the Departments of Urology, Johns Hopkins University, Baltimore, Maryland, and Indiana University Medical Center, Indianapolis, Indiana
| | - J.P. Gearhart
- From the Departments of Urology, Johns Hopkins University, Baltimore, Maryland, and Indiana University Medical Center, Indianapolis, Indiana
| | - A.L. Burnett
- From the Departments of Urology, Johns Hopkins University, Baltimore, Maryland, and Indiana University Medical Center, Indianapolis, Indiana
| |
Collapse
|
42
|
Hostettler ME, Knapp PE, Carlson SL. Platelet-activating factor induces cell death in cultured astrocytes and oligodendrocytes: involvement of caspase-3. Glia 2002; 38:228-39. [PMID: 11968060 DOI: 10.1002/glia.10065] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The biologically active lipid metabolite, platelet-activating factor (PAF), is thought to contribute to inflammatory processes and tissue damage in a variety of central nervous system (CNS) injuries. In previous studies, we found that after contusion spinal cord injury, treatment with a PAF antagonist led to significantly increased white matter tissue sparing as well as decreased mRNA levels for pro-inflammatory cytokines. Some studies suggest that PAF can also have toxic effects on neurons in vitro. Few studies, however, have examined the effects of PAF on glial cells of the CNS. In the present study, the potential for PAF to act as a toxin to cultured astrocytes was examined. Also investigated were the effects of PAF on oligodendrocytes at two different stages of development. Treatment with 0.02-2 microM PAF for 72 h resulted in significant levels of cell death in both cell types (P < 0.05), an effect that was blocked by the PAF receptor antagonists, WEB 2170 and BN 52021. To investigate PAF-induced glial cell death further, we looked for activation of the enzyme, caspase-3, which can be indicative of apoptosis. Immunocytochemistry demonstrated that PAF at all concentrations caused activation of caspase-3 at 24, 48, and 72 h after treatment in both cell types. Caspase-3-dependent cell death was further confirmed using knockout mice (-/-) deficient in the caspase-3 gene. Toxicity was lost when astrocytes (-/-) were exposed to 0.02-2 microM PAF (P < 0.01). Oligodendrocytes (-/-) were not susceptible to toxicity at 2 microM PAF (P < 0.001). The results demonstrate that the pro-inflammatory molecule, PAF, induces cell death in cultured CNS glial cells and that this effect is, in part, dependent on caspase-3 activation.
Collapse
Affiliation(s)
- Mary Ellen Hostettler
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington 40536-0398, USA
| | | | | |
Collapse
|
43
|
Takuma K, Phuagphong P, Lee E, Enomoto R, Mori K, Baba A, Matsuda T. The nitric oxide donor NOC12 protects cultured astrocytes against apoptosis via a cGMP-dependent mechanism. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 89:64-71. [PMID: 12083744 DOI: 10.1254/jjp.89.64] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We examined the effect of 3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC12), a nitric oxide (NO) donor, on apoptosis in cultured astrocytes. Reperfusion after hydrogen peroxide (H2O2) exposure caused a decrease in cell viability, loss of mitochondrial membrane potential, caspase-3 activation, DNA ladder formation, and nuclear condensation. NOC12 at 10-100 microM significantly attenuated these apoptotic changes, while the NO donor at 1 mM caused cell injury and exacerbated the H202-induced cell injury. NOC12 increased intracellular cGMP levels in a dose dependent manner with the maximal effect at 100 microM. The protective effect of NOC12 was mimicked by the NO-independent guanylate cyclase activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole, and was attenuated by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and the cGMP-dependent protein kinase inhibitor KT5823. ODQ and KT5823 did not block but rather exacerbated the cytotoxic effect of NOC12 at 1 mM. These findings demonstrate that lower concentrations of NOC12 inhibit the H2O2-induced apoptosis of astrocytes in a cGMP-dependent way, but higher concentrations of NOC12 show a toxic effect on astrocytes in a cGMP-independent way.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Lukaszevicz AC, Sampaïo N, Guégan C, Benchoua A, Couriaud C, Chevalier E, Sola B, Lacombe P, Onténiente B. High sensitivity of protoplasmic cortical astroglia to focal ischemia. J Cereb Blood Flow Metab 2002; 22:289-98. [PMID: 11891434 DOI: 10.1097/00004647-200203000-00006] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The generally accepted concept that astrocytes are highly resistant to hypoxic/ischemic conditions has been challenged by an increasing amount of data. Considering the differences in functional implications of protoplasmic versus fibrous astrocytes, the authors have investigated the possibility that those discrepancies come from specific behaviors of the two cell types. The reactivity and fate of protoplasmic and fibrous astrocytes were observed after permanent occlusion of the medial cerebral artery in mice. A specific loss of glial fibrillary acidic protein (GFAP) immunolabeling in protoplasmic astrocytes occurred within minutes in the area with total depletion of regional CBF (rCBF) levels, whereas "classical" astrogliosis was observed in areas with remaining rCBF. Severe disturbance of cell function, as suggested by decreased GFAP content and increased permeability of the blood-brain barrier to macromolecules, was rapidly followed by necrotic cell death, as assessed by ultrastructure and by the lack of activation of the apoptotic protease caspase-3. In contrast to the response of protoplasmic astrocytes, fibrous astrocytes located at the brain surface and in deep cortical layers displayed a transient and limited hypertrophy, with no conspicuous cell death. These results point to a differential sensitivity of protoplasmic versus fibrous cortical astrocytes to blood deprivation, with a rapid demise of the former, adding to the suggestion that protoplasmic astrocytes play a crucial role in the pathogenesis of ischemic injury.
Collapse
Affiliation(s)
- Anne-Claire Lukaszevicz
- Institut National de la Santé et de la Recherche Médicale, Université Paris XII, Créteil, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Krishnadasan B, Hampton CR, Griscavage-Ennis J, Dabal RJ, Verrier ED. Molecular Mechanisms of Neurologic Injury Following Cardiopulmonary Bypass. Semin Cardiothorac Vasc Anesth 2002. [DOI: 10.1177/108925320200600110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurologic injury is a potentially devastating consequence of heart surgery. Between 1% and 5% of patients undergoing cardiopulmonary bypass have postoperative strokes and 30% to 80% of patients demonstrate some neurologic dysfunction postoperatively. This review focuses on anatomic, molecular and clinical markers of neurologic injury following cardiopulmonary bypass. Attention is directed to the molecular mechanisms underlying neurologic injury and clinical biochemical markers of injury during heart surgery. Novel strategies to modulate injury are also discussed.
Collapse
Affiliation(s)
| | | | | | - Robert J. Dabal
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Washington, Seattle, WA
| | - Edward D. Verrier
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Washington, Seattle, WA; Department of Surgery, Division of Cardiothoracic Surgery, The University of Washington, Box 356310, 1959 NE Pacific Street, Seattle, WA 98195-6310
| |
Collapse
|
46
|
Abstract
Reactive oxygen and nitrogen species can be used as a messengers in normal cell functions. However, at oxidative stress levels they can disrupt normal physiological pathways and cause cell death. Such a switch is largely mediated through Ca(2+) signaling. Oxidative stress causes Ca(2+) influx into the cytoplasm from the extracellular environment and from the endoplasmic reticulum or sarcoplasmic reticulum (ER/SR) through the cell membrane and the ER/SR channels, respectively. Rising Ca(2+) concentration in the cytoplasm causes Ca(2+) influx into mitochondria and nuclei. In mitochondria Ca(2+) accelerates and disrupts normal metabolism leading to cell death. In nuclei Ca(2+) modulates gene transcription and nucleases that control cell apoptosis. Both in nuclei and cytoplasm Ca(2+) can regulate phosphorylation/dephosphorylation of proteins and can modulate signal transduction pathways as a result. Since oxidative stress is associated with many diseases and the aging process, understanding how oxidants alter Ca(2+) signaling can help to understand process of aging and disease, and may lead to new strategies for their prevention.
Collapse
Affiliation(s)
- Gennady Ermak
- Ethel Percy Andrus Gerontology Center, and Division of Molecular Biology, University of Southern California, Rm 306, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | | |
Collapse
|
47
|
Abstract
Apoptosis is a mode of cell death that plays an important role in both pathological and physiological processes. Research during the last decade has delineated the entire machinery needed for cell death, and its constituents were found to pre-exist in cells. The apoptotic cascade is triggered when cells are exposed to an apoptotic stimulus. It has been known for several years that inhibitors of protein synthesis can potentiate apoptosis that is induced by cytokines and other inducers. Until 1996, it was not understood why protein synthesis inhibitors potentiate apoptosis. Then three reports appeared that suggested the role of the transcription factor NF-kappaB activation in protecting the cells from TNF-induced apoptosis. Since then several proteins have been identified that are regulated by NF-kappaB and are involved in cell survival, proliferation, and protection from apoptosis. It now seems that when a cell is attacked by an apoptotic stimulus, the cell responds first by activating anti-apoptotic mechanisms, which may or may not be followed by apoptosis. Whether or not a cell undergoes proliferation, the survival, or apoptosis, appears to involve a balance between the two mechanisms. Inhibitors of protein synthesis seem to suppress the appearance of protein that are involved in anti-apoptosis. The present review discusses how NF-kappaB controls apoptosis.
Collapse
Affiliation(s)
- Shishir Shishodia
- Cytokine Research Section, Department of Bioimmunotherapy, The University of Texas M. D. Anderson Cancer Center, Box 143, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | |
Collapse
|
48
|
Takuma K, Phuagphong P, Lee E, Mori K, Baba A, Matsuda T. Anti-apoptotic effect of cGMP in cultured astrocytes: inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J Biol Chem 2001; 276:48093-9. [PMID: 11677240 DOI: 10.1074/jbc.m108622200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reperfusion of cultured astrocytes with normal medium after exposure to H(2)O(2)-containing medium causes apoptosis. We have recently shown that ibudilast, which has been used for bronchial asthma and cerebrovascular disorders, attenuated the H(2)O(2)-induced apoptosis of astrocytes via the cGMP signaling pathway. This study examines the mechanism underlying the protective effect of cGMP. The membrane-permeable cGMP analog dibutyryl-cGMP attenuated the H(2)O(2)-induced decrease in cell viability, DNA ladder formation, nuclear condensation, reduction of the mitochondrial membrane potential, cytochrome c release from mitochondria, and caspase-3 activation in cultured astrocytes. These effects of dibutyryl-cGMP were almost completely inhibited by the cGMP-dependent protein kinase (PKG) inhibitor KT5823. In isolated rat brain mitochondria, cGMP in the presence of cytosolic extract from astrocytes inhibited the mitochondrial permeability transition pore (PTP) as determined by monitoring Ca(2+)-induced mitochondrial swelling. This ability of the cytosolic extract was inactivated by heat treatment and was mimicked by exogenous PKG. The effect of cGMP on the mitochondrial swelling was blocked by KT5823. The PTP inhibitors cyclosporin A and bongkrekic acid prevented the H(2)O(2)-induced decrease in cell viability and caspase-3 activation. These findings demonstrate that cGMP inhibits the mitochondrial PTP via the activation of PKG, and the prevention of mitochondrial dysfunction contributes to its anti-apoptotic effect.
Collapse
Affiliation(s)
- K Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Kobe 651-2180 Japan
| | | | | | | | | | | |
Collapse
|
49
|
Stanimirovic D, Zhang W, Howlett C, Lemieux P, Smith C. Inflammatory gene transcription in human astrocytes exposed to hypoxia: roles of the nuclear factor-kappaB and autocrine stimulation. J Neuroimmunol 2001; 119:365-76. [PMID: 11585641 DOI: 10.1016/s0165-5728(01)00402-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mechanisms of hypoxia-induced activation of nuclear factor-kappaB (NF-kappaB) and inflammatory genes were investigated in fetal human astrocytes in culture. Astrocytes were subjected to interleukin-1beta (IL-1beta; 50-100 u/ml; 4-24 h), or to a 4-h hypoxia (<2% O2) followed by a 4-24-h reoxygenation. NF-kappaB binding and transcriptional activity increased up to 10-fold in astrocytes exposed to IL-1beta, and up to 3-fold in astrocytes subjected to hypoxia followed by reoxygenation. Both IL-1beta- mRNAs and proteins hypoxia-induced NF-kappaB activation were blocked by the proteasome inhibitor, MG-132. MG-132 inhibited IL-1beta-induced up-regulation of IL-1beta and IL-8 mRNA and protein but increased hypoxia-stimulated expression/release of IL-1beta and IL-8. IL-1 receptor antagonist (IL-1Ra) blocked both hypoxic astrocyte-conditioned media-induced NF-kappaB activation and the expression/release of IL-1beta and IL-8. Astrocytes subjected to hypoxia in the presence of IL-1Ra failed to activate NF-kappaB, but expressed elevated levels of IL-1beta and IL-8. The data suggest that hypoxia/reoxygenation-induced up-regulation of IL-1beta and IL-8 in human astrocytes has two components, a NF-kappaB independent up-regulation during hypoxia, followed by amplification through autocrine IL-1beta-induced NF-kappaB activation during reoxygenation.
Collapse
Affiliation(s)
- D Stanimirovic
- Cellular Neurobiology Group, Institute for Biological Sciences, National Research Council of Canada, Montreal Road Campus, Bldg. M-54, K1A 0R6, Ottawa, ON, Canada.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Astrocytes, the most abundant glial cell type in the brain, are considered to have physiological and pathological roles in neuronal activities. We found that reperfusion of cultured astrocytes after Ca2+ depletion causes Ca2+ overload followed by delayed cell death and the Na(+)-Ca2+ exchanger in the reverse mode is responsible for this Ca(2+)-mediated cell injury (Ca2+ paradox injury). The Ca2+ paradox injury of cultured astrocytes is considered to be an in vitro model of ischemia/reperfusion injury, since a similar paradoxical change in extracellular Ca2+ concentration is reported in ischemic brain tissue. This review summarizes the mechanisms underlying the Ca(2+)-mediated injury of astrocytes and the protective effects of drugs against Ca2+ reperfusion injury. This study shows that Ca2+ reperfusion injury of astrocytes is accompanied by apoptosis as evidenced by DNA fragmentation and nuclear condensation. Calpain, reactive oxygen species, calcineurin, caspase-3, and NF-kappa B are involved in Ca2+ reperfusion-induced delayed apoptosis of astrocytes. Several drugs including CV-2619, T-588 and ibudilast protect astrocytes against the delayed apoptosis. CV-2619 prevents astrocytes from the delayed apoptosis by production of nerve growth factor, resulting in an activation of mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3 (PI3) kinase signal pathways. The protective effect of T-588 is mainly mediated by an activation of MAP/ERK signal cascade. Moreover, ibudilast prevents the Ca2+ reperfusion-induced delayed apoptosis of astrocytes via cyclic GMP signaling pathway. Further studies in this system will contribute to the development of new drugs that attenuate ischemia/reperfusion injury via modulation of astrocytes.
Collapse
Affiliation(s)
- K Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| |
Collapse
|