1
|
Association between autophagy and rapid eye movement sleep loss-associated neurodegenerative and patho-physio-behavioral changes. Sleep Med 2019; 63:29-37. [DOI: 10.1016/j.sleep.2019.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/26/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
2
|
Abstract
Sleep is a behavioral phenomenon conserved among mammals and some invertebrates, yet the biological functions of sleep are still being elucidated. In humans, sleep time becomes shorter, more fragmented, and of poorer quality with advancing age. Epidemiologically, the development of age-related neurodegenerative diseases such as Alzheimer's and Parkinson's disease is associated with pronounced sleep disruption, whereas emerging mechanistic studies suggest that sleep disruption may be causally linked to neurodegenerative pathology, suggesting that sleep may represent a key therapeutic target in the prevention of these conditions. In this review, we discuss the physiology of sleep, the pathophysiology of neurodegenerative disease, and the current literature supporting the relationship between sleep, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Thierno M Bah
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - James Goodman
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA.
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA.
- Veterans Integrated Service Network 20 Mental Illness Research, Education and Clinical Center, Puget Sound Health Care System, Mail Stop 116-MIRECC, 1660 South Columbian Way, Seattle, Washington, 98108, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA.
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
3
|
The Role of Sleep in Song Learning Processes in Songbird. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-12-813743-7.00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
4
|
Nasehi M, Mosavi-Nezhad SM, Khakpai F, Zarrindast MR. The role of omega-3 on modulation of cognitive deficiency induced by REM sleep deprivation in rats. Behav Brain Res 2018; 351:152-160. [DOI: 10.1016/j.bbr.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023]
|
5
|
Mizuseki K, Miyawaki H. Hippocampal information processing across sleep/wake cycles. Neurosci Res 2017; 118:30-47. [DOI: 10.1016/j.neures.2017.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023]
|
6
|
Giret N, Edeline JM, Del Negro C. Neural mechanisms of vocal imitation: The role of sleep replay in shaping mirror neurons. Neurosci Biobehav Rev 2017; 77:58-73. [PMID: 28288397 DOI: 10.1016/j.neubiorev.2017.01.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/19/2023]
Abstract
Learning by imitation involves not only perceiving another individual's action to copy it, but also the formation of a memory trace in order to gradually establish a correspondence between the sensory and motor codes, which represent this action through sensorimotor experience. Memory and sensorimotor processes are closely intertwined. Mirror neurons, which fire both when the same action is performed or perceived, have received considerable attention in the context of imitation. An influential view of memory processes considers that the consolidation of newly acquired information or skills involves an active offline reprocessing of memories during sleep within the neuronal networks that were initially used for encoding. Here, we review the recent advances in the field of mirror neurons and offline processes in the songbird. We further propose a theoretical framework that could establish the neurobiological foundations of sensorimotor learning by imitation. We propose that the reactivation of neuronal assemblies during offline periods contributes to the integration of sensory feedback information and the establishment of sensorimotor mirroring activity at the neuronal level.
Collapse
Affiliation(s)
- Nicolas Giret
- Neuroscience Paris-Saclay Institute, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France.
| | - Jean-Marc Edeline
- Neuroscience Paris-Saclay Institute, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France.
| | - Catherine Del Negro
- Neuroscience Paris-Saclay Institute, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France.
| |
Collapse
|
7
|
Wanger T, Wetzel W, Scheich H, Ohl FW, Goldschmidt J. Spatial patterns of neuronal activity in rat cerebral cortex during non-rapid eye movement sleep. Brain Struct Funct 2015; 220:3469-84. [PMID: 25113606 PMCID: PMC4575691 DOI: 10.1007/s00429-014-0867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/29/2014] [Indexed: 11/06/2022]
Abstract
It is commonly assumed that cortical activity in non-rapid eye movement sleep (NREMS) is spatially homogeneous on the mesoscopic scale. This is partly due to the limited observational scope of common metabolic or imaging methods in sleep. We used the recently developed technique of thallium-autometallography (TlAMG) to visualize mesoscopic patterns of activity in the sleeping cortex with single-cell resolution. We intravenously injected rats with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC) during spontaneously occurring periods of NREMS and mapped the patterns of neuronal uptake of the potassium (K+) probe thallium (Tl+). Using this method, we show that cortical activity patterns are not spatially homogeneous during discrete 5-min episodes of NREMS in unrestrained rats-rather, they are complex and spatially diverse. Along with a relative predominance of infragranular layer activation, we find pronounced differences in metabolic activity of neighboring neuronal assemblies, an observation which lends support to the emerging paradigm that sleep is a distributed process with regulation on the local scale.
Collapse
Affiliation(s)
- Tim Wanger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany.
| | - Wolfram Wetzel
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Henning Scheich
- Emeritus Group Lifelong Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
- Otto-von-Guericke University, 39106, Magdeburg, Germany
- Center for Behavioral Brain Science (CBBS), Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
- Otto-von-Guericke University, 39106, Magdeburg, Germany
| |
Collapse
|
8
|
Hutchison IC, Rathore S. The role of REM sleep theta activity in emotional memory. Front Psychol 2015; 6:1439. [PMID: 26483709 PMCID: PMC4589642 DOI: 10.3389/fpsyg.2015.01439] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023] Open
Abstract
While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.
Collapse
Affiliation(s)
- Isabel C Hutchison
- School of Psychological Sciences, Faculty of Medical and Human Sciences, University of Manchester , Manchester, UK
| | - Shailendra Rathore
- Neuroscience, Physiology and Pharmacology, University College London , London, UK ; Centre of Mathematics and Physics in the Life Sciences and Experimental Biology, University College London , London, UK
| |
Collapse
|
9
|
The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol Learn Mem 2015; 122:110-21. [PMID: 25638277 DOI: 10.1016/j.nlm.2015.01.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 01/01/2023]
Abstract
Over the years, rapid eye movement (REM) sleep has been associated with general memory consolidation, specific consolidation of perceptual, procedural, emotional and fear memories, brain maturation and preparation of waking consciousness. More recently, some of these associations (e.g., general and procedural memory consolidation) have been shown to be unlikely, while others (e.g., brain maturation and consciousness) remain inconclusive. In this review, we argue that both behavioral and neurophysiological evidence supports a role of REM sleep for amygdala-related memory processing: the amygdala-hippocampus-medial prefrontal cortex network involved in emotional processing, fear memory and valence consolidation shows strongest activity during REM sleep, in contrast to the hippocampus-medial prefrontal cortex only network which is more active during non-REM sleep. However, more research is needed to fully understand the mechanisms.
Collapse
|
10
|
Ravassard P, Hamieh AM, Joseph MA, Fraize N, Libourel PA, Lebarillier L, Arthaud S, Meissirel C, Touret M, Malleret G, Salin PA. REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP. Cereb Cortex 2015; 26:1488-1500. [DOI: 10.1093/cercor/bhu310] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Schneider F, Baldauf K, Wetzel W, Reymann KG. Behavioral and EEG changes in male 5xFAD mice. Physiol Behav 2014; 135:25-33. [PMID: 24907698 DOI: 10.1016/j.physbeh.2014.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
Abstract
Transgenic animal models of Alzheimer's disease (AD) are widely used to investigate mechanisms of pathophysiology and cognitive dysfunctions. A model with a very early development of parenchymal plaque load at the age of 2months is the 5xFAD mouse (Tg6799, Oakley et al. 2006). These 5xFAD mice over-express both human amyloid precursor protein (APP) and human presenilin 1 (PS1). Mice from this line have a high APP expression correlating with a high burden and an accelerated accumulation of the 42 amino acid species of amyloid-β (Aβ). The aim of this study was the behavioral and functional investigations of 5xFAD males because in most studies females of this strain were characterized. In comparison to literature of transgenic 5xFAD females, transgenic 5xFAD males showed decreased anxiety in the elevated plus maze, reduced locomotion and exploration in the open field and disturbances in learning performance in the Morris water maze starting at 9months of age. Electroencephalogram (EEG) recordings on 6month old transgenic mice revealed a decrease of delta, theta, alpha, beta and gamma frequency bands whereas the subdelta frequency was increased. EEG recordings during sleep showed a reduction of rapid eye movement sleep in relation to the amount of total sleep. Thus, 5xFAD males develop early functional disturbances and subsequently behavioral deficits and therefore they are a good mouse model for studying Alzheimer's disease.
Collapse
Affiliation(s)
- F Schneider
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.
| | - K Baldauf
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.
| | - W Wetzel
- Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany.
| | - K G Reymann
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany.
| |
Collapse
|
12
|
Borel M, Guadagna S, Jang HJ, Kwag J, Paulsen O. Frequency dependence of CA3 spike phase response arising from h-current properties. Front Cell Neurosci 2013; 7:263. [PMID: 24399930 PMCID: PMC3872302 DOI: 10.3389/fncel.2013.00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/03/2013] [Indexed: 02/02/2023] Open
Abstract
The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarization-activated mixed cation current (I h ), which differs between CA3 and CA1 pyramidal neurons. Here, we compared the phase response of these two cell types, as well as their intrinsic membrane properties. We found that both CA3 and CA1 pyramidal neurons show a voltage sag in response to negative current steps but that this voltage sag is significantly smaller in CA3 cells. Moreover, CA3 pyramidal neurons have less prominent resonance properties compared to CA1 pyramidal neurons. This is consistent with differential expression of I h by the two cell types. Despite their distinct intrinsic membrane properties, both CA3 and CA1 pyramidal neurons displayed bidirectional spike phase control by excitatory conductance inputs during theta oscillations. In particular, excitatory inputs delivered at the descending phase of a dynamic clamp-induced membrane potential oscillation delayed the subsequent spike by nearly 50 mrad. The effect was shown to be mediated by I h and was counteracted by increasing inhibitory conductance driving the membrane potential oscillation. Using our experimental data to feed a computational model, we showed that differences in I h between CA3 and CA1 pyramidal neurons could predict frequency-dependent differences in phase response properties between these cell types. We confirmed experimentally such frequency-dependent spike phase control in CA3 neurons. Therefore, a decrease in theta frequency, which is observed in intact animals during novelty, might switch the CA3 spike phase response from unidirectional to bidirectional and thereby promote encoding of the new context.
Collapse
Affiliation(s)
- Melodie Borel
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
| | - Simone Guadagna
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
| | - Hyun Jae Jang
- Department of Brain and Cognitive Engineering, Korea UniversitySeoul, Korea
| | - Jeehyun Kwag
- Department of Brain and Cognitive Engineering, Korea UniversitySeoul, Korea,*Correspondence: Jeehyun Kwag, Department of Brain and Cognitive Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea e-mail:
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK,Ole Paulsen, Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK e-mail:
| |
Collapse
|
13
|
Scriba MF, Ducrest AL, Henry I, Vyssotski AL, Rattenborg NC, Roulin A. Linking melanism to brain development: expression of a melanism-related gene in barn owl feather follicles covaries with sleep ontogeny. Front Zool 2013; 10:42. [PMID: 23886007 PMCID: PMC3734112 DOI: 10.1186/1742-9994-10-42] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022] Open
Abstract
Background Intra-specific variation in melanocyte pigmentation, common in the animal kingdom, has caught the eye of naturalists and biologists for centuries. In vertebrates, dark, eumelanin pigmentation is often genetically determined and associated with various behavioral and physiological traits, suggesting that the genes involved in melanism have far reaching pleiotropic effects. The mechanisms linking these traits remain poorly understood, and the potential involvement of developmental processes occurring in the brain early in life has not been investigated. We examined the ontogeny of rapid eye movement (REM) sleep, a state involved in brain development, in a wild population of barn owls (Tyto alba) exhibiting inter-individual variation in melanism and covarying traits. In addition to sleep, we measured melanistic feather spots and the expression of a gene in the feather follicles implicated in melanism (PCSK2). Results As in mammals, REM sleep declined with age across a period of brain development in owlets. In addition, inter-individual variation in REM sleep around this developmental trajectory was predicted by variation in PCSK2 expression in the feather follicles, with individuals expressing higher levels exhibiting a more precocial pattern characterized by less REM sleep. Finally, PCSK2 expression was positively correlated with feather spotting. Conclusions We demonstrate that the pace of brain development, as reflected in age-related changes in REM sleep, covaries with the peripheral activation of the melanocortin system. Given its role in brain development, variation in nestling REM sleep may lead to variation in adult brain organization, and thereby contribute to the behavioral and physiological differences observed between adults expressing different degrees of melanism.
Collapse
Affiliation(s)
- Madeleine F Scriba
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-str.11, Seewiesen 82319, Germany.,Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Isabelle Henry
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich and ETH Zürich, Zürich 8057, Switzerland
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-str.11, Seewiesen 82319, Germany
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
14
|
Leenaars CHC, Girardi CEN, Joosten RNJMA, Lako IM, Ruimschotel E, Hanegraaf MAJ, Dematteis M, Feenstra MGP, Van Someren EJW. Instrumental learning: an animal model for sleep dependent memory enhancement. J Neurosci Methods 2013; 217:44-53. [PMID: 23603331 DOI: 10.1016/j.jneumeth.2013.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 10/27/2022]
Abstract
The relationship between learning and sleep is multifaceted; learning influences subsequent sleep characteristics, which may in turn influence subsequent memory. Studies in humans indicate that sleep may not only prevent degradation of acquired memories, but even enhance performance without further practice. In a rodent instrumental learning task, individual differences occur in how fast rats learn to associate lever pressing with food reward. Rats habitually sleep between learning sessions, and may differ in this respect. The current study assessed if the instrumental leaning paradigm could serve as a model to study sleep-dependent memory enhancement. Male Wistar rats performed 2 sessions of instrumental learning per day for 1-3 days. Electroencephalography was recorded both before and after the sessions. Sleep deprivation (3 h) was applied between the first and second session in a subgroup of rats. Measurements comprised the number of lever presses in each session, slow wave sleep (SWS) duration, Rapid Eye Movement Sleep (REMS) duration and sleep spindles. Baseline sleep parameters were similar for fast and slow learning rats. Task-exposure increased REMS-duration. The increase in REMS-duration was observed specifically after sessions in which learning occurred, but not after a later session. Sleep deprivation during the 3h period between the initial two sessions interfered with performance enhancement, but did not prevent this in all rats. Our considered movement control protocol induced partial sleep deprivation and also interfered with performance enhancement. The classic instrumental learning task provides a practical model for animal studies on sleep-dependent memory enhancement.
Collapse
Affiliation(s)
- Cathalijn H C Leenaars
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
16
|
Silva GE, Goodwin JL, Parthasarathy S, Sherrill DL, Vana KD, Drescher AA, Quan SF. Longitudinal association between short sleep, body weight, and emotional and learning problems in Hispanic and Caucasian children. Sleep 2011; 34:1197-205. [PMID: 21886357 PMCID: PMC3157661 DOI: 10.5665/sleep.1238] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVE To determine the impact of lower amounts of childhood sleep assessed by polysomnogram on development of obesity, being anxious or depressed, or having learning problems 5 years later. DESIGN Prospective cohort. PARTICIPANTS Subjects were 304 community participants from the Tucson Children's Assessment of Sleep Apnea study, aged 6-12 years old at baseline. MEASUREMENTS AND RESULTS Children were classified according to baseline sleep as those who slept ≥ 9 h/night, those who slept > 7.5 to < 9 h/night, and those who slept ≤ 7.5 h/night. Odds of overweight/obese (≥ 85(th) BMI percentile), obese (≥ 95(th) BMI percentile), anxious or depressed, and learning problems at follow-up were assessed according to baseline sleep categories. Children who slept ≤ 7.5 h/night had higher odds of being obese (OR = 3.3, P < 0.05) at follow-up than children who slept ≥ 9 h/night. Borderline significance for overweight/obese (OR = 2.2, P < 0.1), anxious or depressed (OR = 3.3, P < 0.1), and having learning problems (OR = 11.1, P < 0.1) were seen for children who slept ≤ 7.5 h/night as compared to those who slept ≥ 9 h/night. A mean increase in BMI of 1.7 kg/m(2) (P = 0.01) over the 5 years of follow-up was seen for children who slept ≤ 7.5 h/night compared to those who slept ≥ 9 h/night. These relationships did not differ between Hispanic and Caucasian children. CONCLUSIONS Children with reduced amounts of sleep (≤ 7.5 h/night) had an increased risk for higher body weight in early adolescence. Similarly, children who slept ≤ 7.5 h/night had higher risk of being anxious or depressed or having learning problems in early adolescence.
Collapse
Affiliation(s)
- Graciela E Silva
- College of Nursing & Health Innovation, Arizona State University, Phoenix, AZ 85004-0698, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Gerstner JR, Vanderheyden WM, Shaw PJ, Landry CF, Yin JCP. Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila. PLoS One 2011; 6:e15890. [PMID: 21298037 PMCID: PMC3029266 DOI: 10.1371/journal.pone.0015890] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 11/25/2010] [Indexed: 11/18/2022] Open
Abstract
Sleep is thought to be important for memory consolidation, since sleep deprivation has been shown to interfere with memory processing. However, the effects of augmenting sleep on memory formation are not well known, and testing the role of sleep in memory enhancement has been limited to pharmacological and behavioral approaches. Here we test the effect of overexpressing the brain-type fatty acid binding protein (Fabp7) on sleep and long-term memory (LTM) formation in Drosophila melanogaster. Transgenic flies carrying the murine Fabp7 or the Drosophila homologue dFabp had reduced baseline sleep but normal LTM, while Fabp induction produced increases in both net sleep and LTM. We also define a post-training consolidation “window” that is sufficient for the observed Fabp-mediated memory enhancement. Since Fabp overexpression increases consolidated daytime sleep bouts, these data support a role for longer naps in improving memory and provide a novel role for lipid-binding proteins in regulating memory consolidation concurrently with changes in behavioral state.
Collapse
Affiliation(s)
- Jason R. Gerstner
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (JRG); (JCPY)
| | - William M. Vanderheyden
- Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul J. Shaw
- Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - Jerry C. P. Yin
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (JRG); (JCPY)
| |
Collapse
|
19
|
Sleep and hippocampus: do we search for the right things? Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:806-12. [PMID: 19348866 DOI: 10.1016/j.pnpbp.2009.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 03/30/2009] [Indexed: 11/22/2022]
Abstract
In addition to its established function in brain restoration, energy saving, circadian homeostasis, thermoregulation, and ontogenetic brain development, sleep is involved in replay and restructuring of memory representations that may lead to memory consolidation. The degree of availability of these memory-related functions in various species, and in disparate environmental and behavioral situations is widely debated. Generally it seems that species which can afford to sleep deeply show an involvement of sleep in learning and memory, both, hippocampus-dependent and hippocampus-independent. Inconsistencies in the sleep literature concerning the importance of certain sleep states for learning of various tasks and the involvement of different types of memory do not disprove that sleep plays a role in memory consolidation. In this review, we attempt to reconcile some of the seemingly antagonistic theories of sleep function in a succinct and unbiased manner and develop an eclectic view of its role in learning and memory.
Collapse
|
20
|
Effect of corticotropin-like intermediate lobe peptide on presynaptic and postsynaptic glutamate receptors and postsynaptic GABA receptors in rat brain. Bull Exp Biol Med 2009; 147:319-22. [PMID: 19529852 DOI: 10.1007/s10517-009-0499-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We studied the effect of corticotropin-like intermediate lobe peptide (CLIP) on presynaptic NMDA receptors and postsynaptic GABA, NMDA, and AMPA receptors in rat brain. CLIP inhibited presynaptic and postsynaptic NMDA receptors, but potentiated postsynaptic GABA and AMPA receptors. Our results indicate that CLIP modulates function of ionotropic receptors for glutamate and GABA.
Collapse
|
21
|
Abstract
Chronic insomnia and cognitive impairment are both common complaints among older adults. This study explores the association between chronic insomnia and changes in cognitive functioning among older adults. The study population comprised two groups: 64 older adults without insomnia and 35 older adult insomniacs. The cognitive capacity of each participant was tested at the participant's home using the computerized "MindFit" test (CogniFit, Inc.). In five categories of cognitive functioning, older adult insomniacs displayed impaired performance compared to older adult good sleepers. Specifically, significant differences were found between insomniacs and good sleepers on memory span, allocating attention to a target, time estimation, executive functioning, and integration of two dimensions (visual and semantic) tests. The findings imply that insomnia may have detrimental effects on some cognitive functions in healthy older adults.
Collapse
Affiliation(s)
- Iris Haimov
- Department of Behavioral Science Max Stern Academic College of Emek, Yezreel, Israel.
| | | | | |
Collapse
|
22
|
Tannenbaum E. Temporal differentiation and the optimization of system output. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:011922. [PMID: 18351891 DOI: 10.1103/physreve.77.011922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 11/13/2007] [Indexed: 05/26/2023]
Abstract
We develop two simplified dynamical models with which to explore the conditions under which temporal differentiation leads to increased system output. By temporal differentiation, we mean a division of labor whereby different subtasks associated with performing a given task are done at different times. The idea is that, by focusing on one particular set of subtasks at a time, it is possible to increase the efficiency with which each subtask is performed, thereby allowing for faster completion of the overall task. In the first model, we consider the filling and emptying of a tank in the presence of a time-varying resource profile. If a given resource is available, the tank may be filled at some rate rf. As long as the tank contains a resource, it may be emptied at a rate re, corresponding to processing into some product, which is either the final product of a process or an intermediate that is transported for further processing. Given a resource-availability profile over some time interval T, we develop an algorithm for determining the fill-empty profile that produces the maximum quantity of processed resource at the end of the time interval. We rigorously prove that the basic algorithm is one where the tank is filled when a resource is available and emptied when a resource is not available. In the second model, we consider a process whereby some resource is converted into some final product in a series of three agent-mediated steps. Temporal differentiation is incorporated by allowing the agents to oscillate between performing the first two steps and performing the last step. We find that temporal differentiation is favored when the number of agents is at intermediate values and when there are process intermediates that have long lifetimes compared to other characteristic time scales in the system. Based on these results, we speculate that temporal differentiation may provide an evolutionary basis for the emergence of phenomena such as sleep, distinct REM and non-REM sleep states, and circadian rhythms in general. The essential argument is that in sufficiently complex biological systems, a maximal amount of information and tasks can be processed and completed if the system follows a temporally differentiated "work plan," whereby the system focuses on one or a few tasks at a time.
Collapse
Affiliation(s)
- Emmanuel Tannenbaum
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
23
|
Silvestri AJ, Root DH. Effects of REM deprivation and an NMDA agonist on the extinction of conditioned fear. Physiol Behav 2007; 93:274-81. [PMID: 17920644 DOI: 10.1016/j.physbeh.2007.08.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 08/22/2007] [Accepted: 08/29/2007] [Indexed: 12/23/2022]
Abstract
Rapid eye movement sleep (REM) has been implicated in a number of learning and memory tasks. Previous research has demonstrated that REM deprivation impairs the development of extinction of conditioned fear responses. However, the neurobiological mechanisms of this effect remain unclear. The present study investigated the effects of systemic administration of d-cycloserine (DCS), an NMDA agonist, on the extinction of a conditioned fear response following 6 h of REM deprivation. In experiment 1, rats were administered DCS between fear training and REM deprivation. In experiment 2, rats were administered DCS prior to extinction training. The results of experiment 1 indicated that both DCS alone and REM deprivation alone impaired extinction learning. Administration of DCS to REM deprived animals partially, but not completely, reversed the deficit in extinction. The results of experiment 2 indicated that regardless of prior REM deprivation history, DCS facilitated extinction learning. The results provide further evidence for a role of REM in the extinction of cued fear learning and indicate that this effect appears to be partially mediated by NMDA-dependent mechanisms.
Collapse
Affiliation(s)
- Amy J Silvestri
- Department of Psychology, Seton Hall University, South Orange, NJ 07079, USA.
| | | |
Collapse
|
24
|
Silva RH, Abílio VC, Kameda SR, Takatsu-Coleman AL, Carvalho RC, Ribeiro RDA, Tufik S, Frussa-Filho R. Effects of 3-nitropropionic acid administration on memory and hippocampal lipid peroxidation in sleep-deprived mice. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:65-70. [PMID: 16876303 DOI: 10.1016/j.pnpbp.2006.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 11/26/2022]
Abstract
Numerous studies have described memory deficits following sleep deprivation. There is also evidence that the absence of sleep increases brain oxidative stress. The present study investigates the effects of a pro-oxidant agent--3-nitropropionic acid (3-NP)--on hippocampal oxidative stress and passive avoidance performance of sleep-deprived mice. Mice were repeatedly treated i.p. with saline or 5 or 15 mg/kg 3-NP and sleep-deprived for 24 h by the multiple platform method--groups of 4-5 animals placed in water tanks, containing 12 platforms (3 cm in diameter) surrounded by water up to 1 cm beneath the surface or kept in their home cage (control groups). The results showed that: (1) neither a 24 h sleep deprivation period nor 3-NP repeated treatment alone were able to induce memory deficits and increased hippocampal lipid peroxidation; (2) this same protocol of sleep deprivation, combined with 15 mg/kg 3-NP repeated treatment, induced memory deficits and an increase in hippocampal lipid peroxidation. The results support the involvement of hippocampal oxidative stress in the memory deficits induced by sleep deprivation and the hypothesis that normal sleep would prevent oxidative stress.
Collapse
Affiliation(s)
- Regina H Silva
- Department of Physiology, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE The aim of the study was to define sleep disturbances in pentylenetetrazole (PTZ)-kindled rats and to explore the effects of the nootropic drug piracetam (Pir; 100 mg/kg) and the noncompetitive N-methyl-D-aspartate (NMDA)-antagonist MK-801 (0.3 mg/kg), which normalized learning performance in PTZ-kindled rats, on altered sleep parameters. METHODS This is the first report showing a significant reduction in paradoxical sleep (PS) as a consequence of PTZ kindling. A correlation analysis revealed a significant correlation between seizure severity and PS deficit. RESULTS Pir did not interfere with seizure severity, and the substance did not ameliorate the PS deficit. However, the substance disconnected the correlation between seizure severity and PS deficit. MK-801, which reduced the severity of kindled seizures, counteracted the PS deficit efficaciously. CONCLUSIONS The results suggest that seizure severity and alterations in sleep architecture are two factors in the comprehensive network underlying learning impairments associated with epilepsy. Considering the results obtained in the experiments with Pir, reduction of seizure severity does not guarantee the reduction of impairments in the domain of learning.
Collapse
Affiliation(s)
- Markus Schilling
- O.-v.-Guericke University Magdeburg, Faculty of Medicine, Institute of Pharmacology and Toxicology, Magdeburg, Germany
| | | | | | | |
Collapse
|
26
|
Abstract
Chronic insomnia and memory impairment are both common complaints among older adults. Even so, only a few studies to date have examined the effects of chronic insomnia on memory processes among older people, and the results of these studies are contradictory. Therefore, in the current study we examined whether late-life insomnia is associated with the memory status of older adults. The study population comprised two groups: 50 older adult subjects without sleep disorders, and 23 older adult insomniacs. Memory processing for each of the two groups was evaluated using the Rey Auditory Verbal Learning Test (AVLT). The results demonstrate that chronic insomnia in older adults is associated with impairment in memory. Specifically, we found that older people suffering from late-life insomnia exhibit significantly reduced performance in learning rate and in temporal order judgment as well as significantly reduced resistance to proactive interference. The present findings suggest that late-life insomnia may be one of the factors contributing to the decline in memory processing seen among older people.
Collapse
Affiliation(s)
- Iris Haimov
- Department of Behavioral Science, Max Stern Emek Yezreel College, Emek Yezreel, 19300 Israel
| |
Collapse
|
27
|
Holmes GL, Lenck-Santini PP. Role of interictal epileptiform abnormalities in cognitive impairment. Epilepsy Behav 2006; 8:504-15. [PMID: 16540376 DOI: 10.1016/j.yebeh.2005.11.014] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2005] [Revised: 11/17/2005] [Accepted: 11/25/2005] [Indexed: 10/24/2022]
Abstract
The epileptic encephalopathies are conditions in which neurological deterioration is attributable entirely or partly to epileptic activity and is due to very frequent or severe seizures or severely abnormal electroencephalograms (EEGs), or both. Evidence for the concept that seizures or the abnormal EEGs are responsible for the cognitive deterioration is the observation that patients can improve dramatically when therapy eliminates or reduces seizure frequency and improves or normalizes the EEG. For example, children with the syndrome of continuous spike-wave of sleep (CSWS) have electrical status epilepticus during sleep (ESES) and cognitive regression. Although seizures often occur in the disorder, there are indications that the EEG abnormalities are responsible for the cognitive regression. Interictal spikes, which correspond to a large intracellular depolarization with evoked action potentials, in many ways mimic a "miniseizure." Interictal spikes can result in transitory cognitive impairment with the type of deficit dependent on where in the cortex the spike arises. We suggest that interictal spikes, particularly if frequent and widespread, can impair cognitive abilities, through interference with waking learning and memory, and memory consolidation during sleep.
Collapse
Affiliation(s)
- Gregory L Holmes
- Neuroscience Center at Dartmouth, Section of Neurology, Dartmouth Medical School, Hanover, NH, USA.
| | | |
Collapse
|
28
|
Ruskin DN, Dunn KE, Billiot I, Bazan NG, LaHoste GJ. Eliminating the adrenal stress response does not affect sleep deprivation-induced acquisition deficits in the water maze. Life Sci 2005; 78:2833-8. [PMID: 16325867 DOI: 10.1016/j.lfs.2005.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 11/02/2005] [Indexed: 11/30/2022]
Abstract
Sleep deprivation impairs spatial learning in the rat. Sleep deprivation, however, also causes stress and stress itself can interfere with spatial learning. To address this confound, sleep deprivation effects on Morris water maze training were studied in intact rats and in rats in which the adrenal stress response had been eliminated by adrenalectomy. Stable, physiological levels of corticosterone were maintained in adrenalectomized rats with an implanted pellet. Training occurred 6-7 days after surgery. Seventy-two hours sleep deprivation by the platform-over-water method just prior to training slowed, but did not block, learning. In particular, the robust savings between trials 1 and 2 of the first set found in home cage rats was not present in sleep-deprived rats. Adrenalectomy/corticosterone replacement surgery did not modify the effect of sleep deprivation on acquisition rate, demonstrating that the deficits in spatial task acquisition due to pre-training sleep deprivation are not secondary to the adrenal stress response.
Collapse
Affiliation(s)
- David N Ruskin
- Department of Psychology, University of New Orleans, 2001 Lakeshore Dr., New Orleans, LA 70148, USA.
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Marcos G Frank
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6074, USA.
| | | |
Collapse
|
30
|
Dubiela FP, Oliveira MGMD, Moreira KDM, Nobrega JN, Tufik S, Hipólide DC. Learning deficits induced by sleep deprivation and recovery are not associated with altered [3H]muscimol and [3H]flunitrazepam binding. Brain Res 2005; 1037:157-63. [PMID: 15777764 DOI: 10.1016/j.brainres.2005.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 12/21/2004] [Accepted: 01/01/2005] [Indexed: 10/25/2022]
Abstract
Several studies have shown that sleep deprivation produces deficits in learning tasks, but mechanisms underlying these effects remain unclear. Other lines of evidence indicate an involvement of brain GABA systems in cognitive processes. Here, we investigated the possibility that alterations in GABA(A) or benzodiazepine (BDZ) receptor binding might underlie avoidance deficits induced by sleep deprivation. Rats were deprived of sleep for 96 h using the platform method and then trained in a step-through inhibitory avoidance task, or allowed to recover sleep for 24 h before training (sleep rebound group). Thirty minutes after training, animals were given a retention test. Both sleep-deprived and sleep-recovered animals showed a significant impairment in avoidance responding compared to cage controls, and the sleep-deprived group performed significant worse than the sleep-recovered group. A separate group of animals was sacrificed either immediately after 96 h of sleep deprivation or after 96 h of sleep deprivation followed by 24 h of sleep recovery. [(3)H]muscimol and [(3)H]flunitrazepam binding were examined by quantitative autoradiography in 42 brain regions, including areas involved in cognitive processes. No significant differences among groups were found in any brain region, except for a reduction in [(3)H]flunitrazepam binding in the frontal cortex of sleep-recovered animals. These results confirm the deleterious effects of sleep loss on inhibitory avoidance learning, but suggest that such deficits cannot be attributed to altered GABA(A) or BDZ binding in brain.
Collapse
Affiliation(s)
- Francisco Paulino Dubiela
- Psychobiology Department, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925 Vila Clementino, SP, 04024-002 São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Pollock MS, Mistlberger RE. Microinjection of neostigmine into the pontine reticular formation of the mouse: further evaluation of a proposed REM sleep enhancement technique. Brain Res 2005; 1031:253-67. [PMID: 15649451 DOI: 10.1016/j.brainres.2004.10.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2004] [Indexed: 12/29/2022]
Abstract
Microinjections of cholinergic agonists into the pontine reticular formation (PRF) powerfully induce rapid eye movement sleep (REMS) in cats but have comparatively weaker effects in rats. Recently, the cholinomimetic neostigmine has been reported to strongly enhance REMS following microinjection into the PRF of the mouse. That study used behavioral assessments of locomotion in lieu of electrophysiological measures of muscle tone to identify REMS. We sought to confirm that the behavioral state induced in mice by PRF injections of neostigmine meets standard electroencephalogram (EEG) and electromyogram (EMG) criteria for defining REMS. Cortical EEG, nuchal muscle EMG, and PGO waves were recorded from male C57BL/6N mice with chronic indwelling cannulae for the delivery of neostigmine to the PRF. Recordings were made during midday following injections of neostigmine (8.8 mM, 50 nl), 2 h after lights on (LD 12:12). Neostigmine induced a behavioral state characterized by low amplitude, highly desynchronized cortical EEG with little theta, no PGO waves, and a sustained high muscle tone. Behavioral states meeting standard criteria for slow-wave sleep (SWS) and REMS were significantly suppressed compared to baseline recordings, and REMS onset was delayed by 3 h. Consistent with earlier reports, neostigmine did strongly suppress locomotor activity in open field tests and in the home cage. Due to the failure to meet criteria for defining REMS, we conclude that neostigmine microinjection into the PRF of the mouse induces an abnormal waking state rather than REMS.
Collapse
Affiliation(s)
- Michael S Pollock
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | |
Collapse
|
32
|
Abstract
While the functions of sleep remain largely unknown, one of the most exciting and contentious hypotheses is that sleep contributes importantly to memory. A large number of studies offer a substantive body of evidence supporting this role of sleep in what is becoming known as sleep-dependent memory processing. This review will provide evidence of sleep-dependent memory consolidation and sleep-dependent brain plasticity and is divided into five sections: (1) an overview of sleep stages, memory categories, and the distinct stages of memory development; (2) a review of the specific relationships between sleep and memory, both in humans and animals; (3) a survey of evidence describing sleep-dependent brain plasticity, including human brain imaging studies as well as animal studies of cellular neurophysiology and molecular biology. We close (4) with a consideration of unanswered questions as well as existing arguments against the role of sleep in learning and memory and (5) a concluding summary.
Collapse
Affiliation(s)
- Matthew P Walker
- Center for Sleep and Cognition, Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center E/FD 861, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | |
Collapse
|
33
|
Ribeiro S, Nicolelis MAL. Reverberation, storage, and postsynaptic propagation of memories during sleep. Learn Mem 2004; 11:686-96. [PMID: 15576886 PMCID: PMC534697 DOI: 10.1101/lm.75604] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In mammals and birds, long episodes of nondreaming sleep ("slow-wave" sleep, SW) are followed by short episodes of dreaming sleep ("rapid-eye-movement" sleep, REM). Both SW and REM sleep have been shown to be important for the consolidation of newly acquired memories, but the underlying mechanisms remain elusive. Here we review electrophysiological and molecular data suggesting that SW and REM sleep play distinct and complementary roles on memory consolidation: While postacquisition neuronal reverberation depends mainly on SW sleep episodes, transcriptional events able to promote long-lasting memory storage are only triggered during ensuing REM sleep. We also discuss evidence that the wake-sleep cycle promotes a postsynaptic propagation of memory traces away from the neural sites responsible for initial encoding. Taken together, our results suggest that basic molecular and cellular mechanisms underlie the reverberation, storage, and propagation of memory traces during sleep. We propose that these three processes alone may account for several important properties of memory consolidation over time, such as deeper memory encoding within the cerebral cortex, incremental learning several nights after memory acquisition, and progressive hippocampal disengagement.
Collapse
Affiliation(s)
- Sidarta Ribeiro
- Department of Neurobiology, Duke University Medical Center, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
34
|
Gervasoni D, Ribeiro S, Nicolelis M. Neuronal Reverberation and the Consolidation of New Memories across the Wake-Sleep Cycle. Sleep 2004. [DOI: 10.1201/9780203496732.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|