1
|
Brown CH, Ludwig M, Tasker JG, Stern JE. Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. J Neuroendocrinol 2020; 32:e12856. [PMID: 32406599 PMCID: PMC9134751 DOI: 10.1111/jne.12856] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/29/2020] [Accepted: 04/11/2020] [Indexed: 12/29/2022]
Abstract
Somato-dendritic secretion was first demonstrated over 30 years ago. However, although its existence has become widely accepted, the function of somato-dendritic secretion is still not completely understood. Hypothalamic magnocellular neurosecretory cells were among the first neuronal phenotypes in which somato-dendritic secretion was demonstrated and are among the neurones for which the functions of somato-dendritic secretion are best characterised. These neurones secrete the neuropeptides, vasopressin and oxytocin, in an orthograde manner from their axons in the posterior pituitary gland into the blood circulation to regulate body fluid balance and reproductive physiology. Retrograde somato-dendritic secretion of vasopressin and oxytocin modulates the activity of the neurones from which they are secreted, as well as the activity of neighbouring populations of neurones, to provide intra- and inter-population signals that coordinate the endocrine and autonomic responses for the control of peripheral physiology. Somato-dendritic vasopressin and oxytocin have also been proposed to act as hormone-like signals in the brain. There is some evidence that somato-dendritic secretion from magnocellular neurosecretory cells modulates the activity of neurones beyond their local environment where there are no vasopressin- or oxytocin-containing axons but, to date, there is no conclusive evidence for, or against, hormone-like signalling throughout the brain, although it is difficult to imagine that the levels of vasopressin found throughout the brain could be underpinned by release from relatively sparse axon terminal fields. The generation of data to resolve this issue remains a priority for the field.
Collapse
Affiliation(s)
- Colin H. Brown
- Department of Physiology, Brain Health Research Centre, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Immunology, Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| | - Jeffrey G. Tasker
- Department of Cell and Molecular Biology, Brain Institute, Tulane University, New Orleans, LA, USA
| | - Javier E. Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
2
|
Kirsch M, Buchholz MB. On the Nature of the Mother-Infant Tie and Its Interaction With Freudian Drives. Front Psychol 2020; 11:317. [PMID: 32161562 PMCID: PMC7054235 DOI: 10.3389/fpsyg.2020.00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
The affective bond between an infant and its caregiver, the so-called mother-infant tie, was analyzed by various reputable psychologists (e.g., Ainsworth, Clark, Erikson, Anna Freud, Harlow, Klein, Spitz, and Winnicott) but both the basic tenets of the bond and the importance of the trauma of maternal deprivation for personality disorders in adults were introduced by Bowlby. Although Bowlby was a trained psychoanalyst, he rejected central cornerstones of Freudian theory (esp. drive theory) and used concepts promulgated by renowned ethologists (Tinbergen and Lorenz) to establish his framework of "instinctive behavior" that has been developed further into the concept of "attachment theory" under the influence of Mary Ainsworth. However, since any precise experimental facts were lacking when Bowlby formulated his ideas on the concept of instinctive behavior, the whole framework is a descriptive, category-driven approach (like the ones of Freudian drives). In order to connect the mother-infant tie - as propounded by Bowlby - with experimental data, this manuscript undertakes a biochemical analysis of it because this strategy proved somewhat successful in relation to Freudian drives. The analysis unfolded that the neurochemical oxytocin, released by the action of sensory nerves, is of utmost importance for the operation of the mother-infant tie. Furthermore, multiple evidences have been presented to the fact that there is strong interaction between unconsciously operating Freudian drives and the consciously acting mother-infant tie (that is now classified as a drive). The outlined interaction in conjunction with the classification of attachment urges as drives gave a very detailed insight into how a SEEKING-derived reward can be evoked during operation of the mother-infant tie. In summary, there is no need to marginalize either the mother-infant tie or Freudian drives but rather there is need to respect both (principally different) impulses in moving toward a more extensive description.
Collapse
Affiliation(s)
- Michael Kirsch
- Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | - Michael B. Buchholz
- Department of Social Psychology and Ph.D. Program, International Psychoanalytic University Berlin (IPU), Berlin, Germany
| |
Collapse
|
3
|
Modelling Adaptation through Social Allostasis: Modulating the Effects of Social Touch with Oxytocin in Embodied Agents. MULTIMODAL TECHNOLOGIES AND INTERACTION 2018. [DOI: 10.3390/mti2040067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Social allostasis is a mechanism of adaptation that permits individuals to dynamically adapt their physiology to changing physical and social conditions. Oxytocin (OT) is widely considered to be one of the hormones that drives and adapts social behaviours. While its precise effects remain unclear, two areas where OT may promote adaptation are by affecting social salience, and affecting internal responses of performing social behaviours. Working towards a model of dynamic adaptation through social allostasis in simulated embodied agents, and extending our previous work studying OT-inspired modulation of social salience, we present a model and experiments that investigate the effects and adaptive value of allostatic processes based on hormonal (OT) modulation of affective elements of a social behaviour. In particular, we investigate and test the effects and adaptive value of modulating the degree of satisfaction of tactile contact in a social motivation context in a small simulated agent society across different environmental challenges (related to availability of food) and effects of OT modulation of social salience as a motivational incentive. Our results show that the effects of these modulatory mechanisms have different (positive or negative) adaptive value across different groups and under different environmental circumstance in a way that supports the context-dependent nature of OT, put forward by the interactionist approach to OT modulation in biological agents. In terms of simulation models, this means that OT modulation of the mechanisms that we have described should be context-dependent in order to maximise viability of our socially adaptive agents, illustrating the relevance of social allostasis mechanisms.
Collapse
|
4
|
Zanos P, Georgiou P, Weber C, Robinson F, Kouimtsidis C, Niforooshan R, Bailey A. Oxytocin and opioid addiction revisited: old drug, new applications. Br J Pharmacol 2018; 175:2809-2824. [PMID: 28378414 PMCID: PMC6016632 DOI: 10.1111/bph.13757] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 12/28/2022] Open
Abstract
Opioid addiction has devastating health and socio-economic consequences, and current pharmacotherapy is limited and often accompanied by side effects, thus novel treatment is warranted. Traditionally, the neurohypophyseal peptide oxytocin (OT) is known for its effects on mediating reward, social affiliation and bonding, stress and learning and memory. There is now strong evidence that OT is a possible candidate for the treatment of drug addiction and depression-addiction co-morbidities. This review summarizes and critically discusses the preclinical evidence surrounding the consequences of pharmacological manipulation of the oxytocinergic system on opioid addiction-related processes, as well as the effects of opioids on the OT system at different stages of the addiction cycle. The mechanisms underlying the effects of OT on opioid addiction, including OT' interaction with the monoaminergic, glutamatergic, opioidergic systems and its effect on the amygdala, the hypothalamic-pituitary-adrenal axis and on memory consolidation of traumatic memories, are also reviewed. We also review clinical evidence on the effects of intranasal OT administration on opioid-dependent individuals and discuss the therapeutic potential along with the limitations that accompany OT-based pharmacotherapies. Review of these studies clearly indicates that the OT system is profoundly affected by opioid use and abstinence and points towards the OT system as an important target for developing pharmacotherapies for the treatment of opioid addiction and co-existing affective disorders, thereby preventing relapse. Therefore, there is a clear need for clinical studies assessing the efficacy of OT-based pharmacotherapies in opioid addiction. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Panos Zanos
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Polymnia Georgiou
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Carol Weber
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Fiona Robinson
- Surrey and Borders Partnership NHS Foundation TrustChertseySurreyUK
| | | | | | - Alexis Bailey
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Institute of Medical and Biomedical EducationSt George's University of LondonLondonUK
| |
Collapse
|
5
|
Gotovina J, Pranger CL, Jensen AN, Wagner S, Kothgassner OD, Mothes-Luksch N, Palme R, Larenas-Linnemann D, Singh J, Mösges R, Felnhofer A, Glenk LM, Jensen-Jarolim E. Elevated oxytocin and noradrenaline indicate higher stress levels in allergic rhinitis patients: Implications for the skin prick diagnosis in a pilot study. PLoS One 2018; 13:e0196879. [PMID: 29813071 PMCID: PMC5973608 DOI: 10.1371/journal.pone.0196879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/21/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND & AIMS The effects of acute stress on allergic symptoms are little understood. The intention of this clinical study was to study the effects of acute stress and related mediators in allergic rhinitis (AR), taking the wheal and flare reaction in skin prick testing (SPT) as a readout. METHODS 19 healthy and 21 AR patients were first subjected to SPTs with grass pollen-, birch pollen- and house dust mite allergen extracts, histamine and negative control. Subsequently, participants were exposed to a standardized Trier Social Stress Test (TSST), followed by SPT on the contralateral forearm. Stress responders were identified based on the salivary cortisol levels and State-subscale of State-Trait-Anxiety Inventory (STAI-S). Blood samples were collected before and after TSST and adrenaline, noradrenaline, serotonin, oxytocin, platelet activating factor and prostaglandin D2 were analyzed by enzyme immunoassay (EIA). RESULTS SPT results of 14/21 allergics and 11/19 healthy who responded with stress after TSST were evaluated. No significant differences regarding SPT to allergens or histamine before and after the stress test could be calculated at the group level. But, the wheal and flare sizes after TSST increased or decreased substantially in several individuals, and unmasked sensitization in one "healthy" person, which could not be correlated with any mediator tested. The most significant finding, however, was that, independent of TSST, the baseline levels of oxytocin and noradrenaline were significantly higher in allergics. CONCLUSION High baseline levels of noradrenaline points toward higher stress levels in allergic patients, which might be counterregulated by elevated oxytocin. Moreover, our data indicate that acute stress may have a significant influence on SPT fidelity in susceptible individuals.
Collapse
Affiliation(s)
- Jelena Gotovina
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christina L. Pranger
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Annika N. Jensen
- AllergyCare, Allergy Diagnosis and Study Center, Vienna, Austria
| | - Stefanie Wagner
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Oswald D. Kothgassner
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | | | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Jaswinder Singh
- Institute for Medical Statistics, Informatics and Epidemiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Ralph Mösges
- Institute for Medical Statistics, Informatics and Epidemiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Anna Felnhofer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Lisa-Maria Glenk
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- AllergyCare, Allergy Diagnosis and Study Center, Vienna, Austria
| |
Collapse
|
6
|
Ikeda K, Onimaru H, Kawakami K. Knockout of sodium pump α3 subunit gene ( Atp1a3 −/− ) results in perinatal seizure and defective respiratory rhythm generation. Brain Res 2017; 1666:27-37. [DOI: 10.1016/j.brainres.2017.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/02/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
7
|
Intranasal oxytocin administration improves depression-like behaviors in adult rats that experienced neonatal maternal deprivation. Behav Pharmacol 2016; 27:689-696. [PMID: 27644094 DOI: 10.1097/fbp.0000000000000248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Abstract
The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016.
Collapse
Affiliation(s)
- Colin H Brown
- Brain Health Research Centre, Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
The oxytocin analogue carbetocin prevents priming-induced reinstatement of morphine-seeking: Involvement of dopaminergic, noradrenergic and MOPr systems. Eur Neuropsychopharmacol 2015; 25:2459-64. [PMID: 26475574 DOI: 10.1016/j.euroneuro.2015.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/08/2015] [Accepted: 09/24/2015] [Indexed: 11/21/2022]
Abstract
Relapse to illicit drug-seeking following abstinence is a major challenge for the treatment of addiction as no effective pharmacotherapy is available. We have recently shown that activating the central oxytocinergic system prevents emotional impairment and stress-induced reinstatement associated with opioid withdrawal. Here, we investigated whether the oxytocin analogue carbetocin (CBT) is able to reverse morphine-primed reinstatement of conditioned-place preference (CPP) in mice. The mechanism underlining the behavioural effect of CBT was investigated by assessing the involvement of the striatal noradrenergic and dopaminergic systems in CBT reversal of priming- and stress-induced reinstatement of opioid CPP. In addition, given recent evidence suggesting the presence of oxytocin receptor (OTR)-μ-opioid receptor (MOPr) interactions in the brain, we further explored these interactions by carrying out OTR autoradiographic binding in brain of mice lacking MOPr. CBT administration prevented priming-induced reinstatement of morphine CPP. While an acute effect of CBT in enhancing dopamine turnover was observed following stress- and priming-induced reinstatement, CBT significantly decreased striatal noradrenaline turnover only following priming-induced reinstatement. Moreover, a significant brain region- specific increase in OTR binding was observed in MOPr knockout mice, indicating the presence of a possible OTR-MOPr interaction, which may be involved in the modulation of relapse. These results support the oxytocinergic system as a promising target for the prevention of relapse to opioid use and highlight the differential involvement of monoaminergic systems on the effects of OTR stimulation in preventing stress- and priming-induced reinstatement of opioid CPP behaviour.
Collapse
|
10
|
Abstract
Prolactin (PRL) released from lactotrophs of the anterior pituitary gland in response to the suckling by the offspring is the major hormonal signal responsible for stimulation of milk synthesis in the mammary glands. PRL secretion is under chronic inhibition exerted by dopamine (DA), which is released from neurons of the arcuate nucleus of the hypothalamus into the hypophyseal portal vasculature. Suckling by the young activates ascending systems that decrease the release of DA from this system, resulting in enhanced responsiveness to one or more PRL-releasing hormones, such as thyrotropin-releasing hormone. The neuropeptide oxytocin (OT), synthesized in magnocellular neurons of the hypothalamic supraoptic, paraventricular, and several accessory nuclei, is responsible for contracting the myoepithelial cells of the mammary gland to produce milk ejection. Electrophysiological recordings demonstrate that shortly before each milk ejection, the entire neurosecretory OT population fires a synchronized burst of action potentials (the milk ejection burst), resulting in release of OT from nerve terminals in the neurohypophysis. Both of these neuroendocrine systems undergo alterations in late gestation that prepare them for the secretory demands of lactation, and that reduce their responsiveness to stimuli other than suckling, especially physical stressors. The demands of milk synthesis and release produce a condition of negative energy balance in the suckled mother, and, in laboratory rodents, are accompanied by a dramatic hyperphagia. The reduction in secretion of the adipocyte hormone, leptin, a hallmark of negative energy balance, may be an important endocrine signal to hypothalamic systems that integrate lactation-associated food intake with neuroendocrine systems.
Collapse
Affiliation(s)
- William R Crowley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
11
|
McQuaid RJ, McInnis OA, Abizaid A, Anisman H. Making room for oxytocin in understanding depression. Neurosci Biobehav Rev 2014; 45:305-22. [DOI: 10.1016/j.neubiorev.2014.07.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/17/2014] [Accepted: 07/04/2014] [Indexed: 01/01/2023]
|
12
|
Broadbear J, Kabel D, Tracy L, Mak P. Oxytocinergic regulation of endogenous as well as drug-induced mood. Pharmacol Biochem Behav 2014; 119:61-71. [DOI: 10.1016/j.pbb.2013.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/12/2013] [Accepted: 07/01/2013] [Indexed: 01/25/2023]
|
13
|
Calcagnoli F, de Boer SF, Althaus M, den Boer JA, Koolhaas JM. Antiaggressive activity of central oxytocin in male rats. Psychopharmacology (Berl) 2013; 229:639-51. [PMID: 23624810 DOI: 10.1007/s00213-013-3124-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/15/2013] [Indexed: 02/04/2023]
Abstract
RATIONALE A substantial body of research suggests that the neuropeptide oxytocin promotes social affiliative behaviors in a wide range of animals including humans. However, its antiaggressive action has not been unequivocally demonstrated in male laboratory rodents. OBJECTIVE Our primary goal was to examine the putative serenic effect of oxytocin in a feral strain (wild type Groningen, WTG) of rats that generally show a much broader variation and higher levels of intermale aggression than commonly used laboratory strains of rats. METHODS Resident animals were intracerebroventricularly (icv) administered with different doses of synthetic oxytocin and oxytocin receptor antagonist, alone and in combination, in order to manipulate brain oxytocin functioning and to assess their behavioral response to an intruder. RESULTS Our data clearly demonstrate that acute icv administered oxytocin produces dose-dependent and receptor-selective changes in social behavior, reducing aggression and potentiating social exploration. These antiaggressive effects are stronger in the more offensive rats. On the other hand, administration of an oxytocin receptor antagonist tends to increase (nonsignificantly) aggression only in low-medium aggressive animals. CONCLUSIONS These results suggest that transiently enhancing brain oxytocin function has potent antiaggressive effects, whereas its attenuation tends to enhance aggressiveness. In addition, a possible inverse relationship between trait aggression and endogenous oxytocinergic signaling is revealed. Overall, this study emphasizes the importance of brain oxytocinergic signaling for regulating intermale offensive aggression. This study supports the suggestion that oxytocin receptor agonists could clinically be useful for curbing heightened aggression seen in a range of neuropsychiatric disorders like antisocial personality disorder, autism, and addiction.
Collapse
Affiliation(s)
- Federica Calcagnoli
- Department of Behavioral Physiology, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands,
| | | | | | | | | |
Collapse
|
14
|
Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 2013; 25:678-710. [PMID: 23701531 PMCID: PMC3852704 DOI: 10.1111/jne.12051] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023]
Abstract
The hypothalamic supraoptic and paraventricular nuclei contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the antidiuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. Although it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity.
Collapse
Affiliation(s)
- C H Brown
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
15
|
Vahaba DM, Lacey WH, Tomaszycki ML. DSP-4, a noradrenergic neurotoxin, produces sex-specific effects on pairing and courtship behavior in zebra finches. Behav Brain Res 2013; 252:164-75. [PMID: 23747610 DOI: 10.1016/j.bbr.2013.05.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 11/28/2022]
Abstract
Norepinephrine (NE) is involved in a variety of behaviors across vertebrate species. In songbirds, NE is involved in singing and auditory perception, fundamental components of pair formation. Mechanisms of pairing remain poorly understood in avian species. NE is likely involved given its role in vocal communication and perception. Here, we tested the hypothesis that DSP-4 treatments (a noradrenergic neurotoxin that decreases NE) decreases singing in males, song perception in females and pairing in both sexes using a naturalistic paradigm. Females were tested for preferences of either control or DSP-4 males in a two-choice paradigm using live males. Both sexes were then tested for courtship and pair formation in aviaries. In the two-choice paradigm, control females showed a significant preference for control males over DSP-4 males, whereas DSP-4 females showed no such preference. In the aviary tests, DSP-4 males engaged in less courtship behavior, showed decreased pairing behaviors and increased pair latencies compared to control males. In females, DSP-4 treatments did not alter courtship or pairing behavior. Lower neural densities of noradrenergic fibers in song, auditory, and affiliative regions were observed in DSP-4 animals of both sexes. Furthermore, DBH-ir densities in these regions explained variations in courtship and pairing behaviors, as well as pairing status. Our results extend previous findings to naturalistic contexts, provide evidence that DBH-ir densities in specific regions correlate with pairing-related behaviors, and inform us of sex differences in the role of NE in pairing.
Collapse
Affiliation(s)
- Daniel M Vahaba
- Department of Psychology, Wayne State University, 5057 Woodward Ave, 7th Floor, Detroit, MI 48202, USA
| | | | | |
Collapse
|
16
|
Lazarovici P, Cohen G, Arien-Zakay H, Chen J, Zhang C, Chopp M, Jiang H. Multimodal neuroprotection induced by PACAP38 in oxygen-glucose deprivation and middle cerebral artery occlusion stroke models. J Mol Neurosci 2012; 48:526-40. [PMID: 22678884 DOI: 10.1007/s12031-012-9818-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/21/2012] [Indexed: 01/30/2023]
Abstract
Pituitary adenylate cyclase activating peptide (PACAP), a potent neuropeptide which crosses the blood-brain barrier, is known to provide neuroprotection in rat stroke models of middle cerebral artery occlusion (MCAO) by mechanism(s) which deserve clarification. We confirmed that following i.v. injection of 30 ng/kg of PACAP38 in rats exposed to 2 h of MCAO focal cerebral ischemia and 48 h reoxygenation, 50 % neuroprotection was measured by reduced caspase-3 activity and volume of cerebral infarction. Similar neuroprotective effects were measured upon PACAP38 treatment of oxygen-glucose deprivation and reoxygenation of brain cortical neurons. The neuroprotection was temporally associated with increased expression of brain-derived neurotrophic factor, phosphorylation of its receptor-tropomyosin-related kinase receptor type B (trkB), activation of phosphoinositide 3-kinase and Akt, and reduction of extracellular signal-regulated kinases 1/2 phosphorylation. PACAP38 increased expression of neuronal markers beta-tubulin III, microtubule-associated protein-2, and growth-associated protein-43. PACAP38 induced stimulation of Rac and suppression of Rho GTPase activities. PACAP38 downregulated the nerve growth factor receptor (p75(NTR)) and associated Nogo-(Neurite outgrowth-A) receptor. Collectively, these in vitro and in vivo results propose that PACAP exhibits neuroprotective effects in cerebral ischemia by three mechanisms: a direct one, mediated by PACAP receptors, and two indirect, induced by neurotrophin release, activation of the trkB receptors and attenuation of neuronal growth inhibitory signaling molecules p75(NTR) and Nogo receptor.
Collapse
Affiliation(s)
- Philip Lazarovici
- School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, POB 12065, Jerusalem 91120, Israel.
| | | | | | | | | | | | | |
Collapse
|
17
|
Onaka T, Takayanagi Y, Yoshida M. Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 2012; 24:587-98. [PMID: 22353547 DOI: 10.1111/j.1365-2826.2012.02300.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxytocin neurones are activated by stressful stimuli, food intake and social attachment. Activation of oxytocin neurones in response to stressful stimuli or food intake is mediated, at least in part, by noradrenaline/prolactin-releasing peptide (PrRP) neurones in the nucleus tractus solitarius, whereas oxytocin neurones are activated after social stimuli via medial amygdala neurones. Activation of oxytocin neurones induces the release of oxytocin not only from their axon terminals, but also from their dendrites. Oxytocin acts locally where released or diffuses and acts on remote oxytocin receptors widely distributed within the brain, resulting in anxiolytic, anorexic and pro-social actions. The action sites of oxytocin appear to be multiple. Oxytocin shows anxiolytic actions, at least in part, via serotoninergic neurones in the median raphe nucleus, has anorexic actions via pro-opiomelanocortin neurones in the nucleus tractus solitarius and facilitates social recognition via the medial amygdala. Stress, obesity and social isolation are major risk factors for mortality in humans. Thus, the oxytocin-oxytocin receptor system is a therapeutic target for the promotion of human health.
Collapse
Affiliation(s)
- T Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shinotsuke-shi, Tochigi-ken, Japan.
| | | | | |
Collapse
|
18
|
Broadbear JH, Tunstall B, Beringer K. Examining the role of oxytocin in the interoceptive effects of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') using a drug discrimination paradigm in the rat. Addict Biol 2011; 16:202-14. [PMID: 21070509 DOI: 10.1111/j.1369-1600.2010.00267.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') use results in distinctive mood changes of a prosocial nature, most likely through its enhancement of serotonin (5HT) neurotransmission. Activation of 5HT-1A postsynaptic receptors has been shown to stimulate the release of oxytocin in the central nervous system where it regulates aspects of mood and behavior. Using a drug discrimination paradigm, we examined whether modulation of oxytocin receptor activity would affect conditioned behavioral responses to MDMA. Male and female Sprague Dawley rats (n=24) were trained to reliably differentiate between MDMA and a related stimulant, amphetamine (AMP), and saline using a three-lever drug discrimination paradigm. The extent to which substitution with carbetocin (an oxytocin analog) or co-administration with atosiban (an oxytocin receptor antagonist) affected drug-appropriate responding was evaluated. The tricyclic antidepressant imipramine was included as a negative control. The results supported the hypotheses that substitution with an oxytocin analog (carbetocin) would partially generalize to the MDMA training cue, whereas blocking oxytocin receptors with atosiban would result in a selective disruption of MDMA--but not AMP-appropriate responding. These findings were specific to the oxytocin receptor ligands as imipramine pre-treatment did not affect drug-appropriate responding. The results of this study implicate oxytocin receptor activation as a key MDMA-specific interoceptive cue in male and female rats and support the conclusion that this is one of the features of MDMA's subjective effects that distinguishes it from AMP.
Collapse
Affiliation(s)
- Jillian H Broadbear
- School of Psychology and Psychiatry, Monash University, Clayton, Vic. 3800, Australia
| | | | | |
Collapse
|
19
|
Tobin VA, Leng G, Ludwig M, Douglas AJ. Increased sensitivity of monoamine release in the supraoptic nucleus in late pregnancy: region- and stimulus-dependent responses. J Neuroendocrinol 2010; 22:430-7. [PMID: 20088909 DOI: 10.1111/j.1365-2826.2010.01957.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxytocin neurone activation at birth depends upon noradrenaline-mediated signals from the uterus via a brainstem pathway, as well as on factors within the supraoptic nucleus (SON), including oxytocin itself, and the system adapts during pregnancy to optimise the delivery process. We determined whether noradrenaline release in the SON in response to stimuli activating brainstem inputs or antidromically activating magnocellular neurones is enhanced at term pregnancy. Noradrenaline, serotonin and dopamine concentrations were measured in microdialysis samples collected from the dorsal and ventral SON before, during and after either i.v. cholecystokinin (CCK) or neural stalk stimulation in virgin and late pregnant rats. Each stimulus transiently increased noradrenaline and serotonin but not dopamine concentration in the dorsal SON, and responses were increased on days 21 and 22 of pregnancy compared to day 20 pregnant and virgin rats. Neural stalk stimulation induced sensitisation to subsequent stalk stimulation and so the responses in the dorsal SON were doubled; on day 22 of pregnancy, the area under the curve of monoamine concentration was 3.4-fold greater than in virgins, suggesting that adaptations perinatally enhance responsiveness. In conclusion, there are enhanced responses of noradrenaline and serotonin release in the SON that can generate very high, transient extracellular concentrations at term. This may be a consequence of neuroendocrine adaptations in late pregnancy and probably contributes to optimal oxytocin neurone activation during parturition.
Collapse
Affiliation(s)
- V A Tobin
- Centre for Integrative Physiology, The College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9, UK
| | | | | | | |
Collapse
|
20
|
Chaviaras S, Mak P, Ralph D, Krishnan L, Broadbear JH. Assessing the antidepressant-like effects of carbetocin, an oxytocin agonist, using a modification of the forced swimming test. Psychopharmacology (Berl) 2010; 210:35-43. [PMID: 20232054 DOI: 10.1007/s00213-010-1815-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE The distribution of oxytocin receptors in limbic regions, as well as evidence that exogenous oxytocin modulates affect and fear processing, suggests that this neuropeptide may have a role to play in the treatment of mood disorders. OBJECTIVES This study compared the effects of acute treatment with the oxytocin receptor agonist, carbetocin with the tricyclic antidepressant, imipramine, using male Sprague-Dawley rats. METHODS Intracerebroventricular (i.c.v.; 1, 10, 100 microg/rat), intravenous (i.v.; 2.5, 5 mg/kg), and intraperitoneal (i.p.; 2, 6.4, 20 mg/kg) carbetocin and imipramine (1.8, 5.6, 10 mg/kg, i.p.) were examined in the modified forced swim and open field tests. The mechanism of action of carbetocin was investigated by co-administering it with the oxytocin antagonist, atosiban, either centrally (5 microg/rat, i.c.v.) or systemically (1 mg/kg, i.v.). RESULTS Imipramine and carbetocin (all three routes of administration) both significantly reduced immobility and increased swimming and/or climbing behavior in the forced swim test. The systemic effects of carbetocin were blocked by central and systemic atosiban co-administration. Only amphetamine (2 mg/kg, i.p.), included as a false positive in order to distinguish whether antidepressant-like effects were due to psychomotor stimulation, increased locomotor activity in the open field test. CONCLUSIONS Carbetocin produced antidepressant-like changes in behavior via activation of oxytocin receptors in the CNS. The similarities between imipramine and carbetocin in the forced swim test suggest that drugs which target the oxytocinergic system may aid both the understanding and pharmacological treatment of depressive illness.
Collapse
Affiliation(s)
- Stella Chaviaras
- School of Psychology and Psychiatry, Monash University, Building 17, Clayton, Vic 3800, Australia
| | | | | | | | | |
Collapse
|
21
|
Abstract
Oxytocin (Oxt) is secreted both peripherally and centrally and is involved in several functions including parturition, milk let-down reflex, social behavior, and food intake. Recently, it has been shown that mice deficient in Oxt receptor develop late-onset obesity. In this study, we characterized a murin model deficient in Oxt peptide (Oxt(-/-)) to evaluate food intake and body weight, glucose tolerance and insulin tolerance, leptin and adrenaline levels. We found that Oxt(-/-) mice develop late-onset obesity and hyperleptinemia without any alterations in food intake in addition to having a decreased insulin sensitivity and glucose intolerance. The lack of Oxt in our murin model also results in lower adrenalin levels which led us to hypothesize that the metabolic changes observed are associated with a decreased sympathetic nervous tone. It has been shown that Oxt neurons in the paraventricular nucleus (PVN) are a component of a leptin-sensitive signaling circuit between the hypothalamus and caudal brain stem for the regulation of food intake and energy homeostasis. Nevertheless, the lack of Oxt in these mice does not have a direct impact on feeding behavior whose regulation is probably dependent on the complex interplay of several factors. The lack of hyperphagia evident in the Oxt(-/-) mice may, in part, be attributed to the developmental compensation of other satiety factors such as cholecystokinin or bombesin-related peptides which merits further investigation. These findings identify Oxt as an important central regulator of energy homeostasis.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Human Anatomy and Histology, Medical School, University of Bari, Bari, Italy.
| |
Collapse
|
22
|
Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 2009; 29:2259-71. [PMID: 19228979 DOI: 10.1523/jneurosci.5593-08.2009] [Citation(s) in RCA: 459] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The oxytocin receptor has been implicated in the regulation of reproductive physiology as well as social and emotional behaviors. The neurochemical mechanisms by which oxytocin receptor modulates social and emotional behavior remains elusive, in part because of a lack of sensitive and selective antibodies for cellular localization. To more precisely characterize oxytocin receptor-expressing neurons within the brain, we generated an oxytocin receptor-reporter mouse in which part of the oxytocin receptor gene was replaced with Venus cDNA (a variant of yellow fluorescent protein). Examination of the Venus expression revealed that, in the raphe nuclei, about one-half of tryptophan hydroxylase-immunoreactive neurons were positive for Venus, suggesting a potential role for oxytocin in the modulation of serotonin release. Oxytocin infusion facilitated serotonin release within the median raphe nucleus and reduced anxiety-related behavior. Infusion of a 5-HT(2A/2C) receptor antagonist blocked the anxiolytic effect of oxytocin, suggesting that oxytocin receptor activation in serotonergic neurons mediates the anxiolytic effects of oxytocin. This is the first demonstration that oxytocin may regulate serotonin release and exert anxiolytic effects via direct activation of oxytocin receptor expressed in serotonergic neurons of the raphe nuclei. These results also have important implications for psychiatric disorders such as autism and depression in which both the oxytocin and serotonin systems have been implicated.
Collapse
|
23
|
Nikolaeva AA, Koroleva SV, Ashmarin IP. Construction of a generalized scheme of inductive connections between norepinephrine and regulatory peptides. NEUROCHEM J+ 2008. [DOI: 10.1134/s1819712408030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Meddle SL, Bishop VR, Gkoumassi E, van Leeuwen FW, Douglas AJ. Dynamic changes in oxytocin receptor expression and activation at parturition in the rat brain. Endocrinology 2007; 148:5095-104. [PMID: 17628000 DOI: 10.1210/en.2007-0615] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxytocin plays a pivotal role in rat parturition, acting within the brain to facilitate its own release in the supraoptic nucleus (SON) and paraventricular nucleus, and to stimulate maternal behavior. We investigated oxytocin receptor (OTR) expression and activation perinatally. Using a (35)S-labeled riboprobe complementary to OTR mRNA, OTR expression was quantified in proestrus virgin, 21- and 22-day pregnant, parturient (90 min. from pup 1 birth), and postpartum (4-12 h from parturition) rats. Peak OTR mRNA expression was observed at parturition in the SON, brainstem regions, medial preoptic area (mPOA), bed nucleus of the stria terminalis (BnST), and olfactory bulbs, but there was no change in the paraventricular nucleus and lateral septum. OTR mRNA expression was increased on the day of expected parturition in the SON and brainstem, suggesting that oxytocin controls the pathway mediating input from uterine signals. Likewise, OTR mRNA expression was increased in the mPOA and BnST during labor/birth. In the olfactory bulbs and medial amygdala, parturition induced increased OTR mRNA expression compared with pre-parturition, reflecting their immediate response to new stimuli at birth. Postpartum OTR expression in all brain regions returned to levels observed in virgin rats. Parturition significantly increased the number of double-immunolabeled cells for Fos and OTR within the SON, brainstem, BnST, and mPOA regions compared with virgin rats. Thus, there are dynamic region-dependent changes in OTR-expressing cells at parturition. This altered OTR distribution pattern in the brain perinatally reflects the crucial role oxytocin plays in orchestrating both birth and maternal behavior.
Collapse
Affiliation(s)
- Simone L Meddle
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, George Square, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Russell JA, Brunton PJ. Neuroactive steroids attenuate oxytocin stress responses in late pregnancy. Neuroscience 2006; 138:879-89. [PMID: 16310312 DOI: 10.1016/j.neuroscience.2005.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 08/03/2005] [Accepted: 09/08/2005] [Indexed: 01/27/2023]
Abstract
In late pregnant rats neuroendocrine stress responses, expressed as increased oxytocin secretion and activation of the hypothalamo-pituitary-adrenal axis, are attenuated. These adaptations preserve the oxytocin store for parturition and prevent pre-term birth, and protect the fetuses from adverse programming by exposure to excess glucocorticoid. Mechanisms of adaptations for oxytocin neurones are reviewed, using challenge with systemic interleukin-1beta, simulating activation of immune signaling by infection, as a stressor of special relevance in pregnancy. In virgin rats, systemic interleukin-1beta stimulates the firing of oxytocin neurones, and hence oxytocin secretion, but interleukin-1beta has no effects in late pregnant rats. This lack of response is reversed by naloxone treatment just before interleukin-1beta administration, indicating endogenous opioid suppression of oxytocin responses in late pregnancy. This opioid presynaptically inhibits noradrenergic terminals impinging on oxytocin neurones. Finasteride pretreatment, inhibiting progesterone conversion to allopregnanolone, a positive GABA(A) receptor allosteric modifier, also restores an oxytocin response to interleukin-1beta. This finasteride effect is reversed by allopregnanolone treatment. In virgin rats allopregnanolone attenuates the oxytocin response to interleukin-1beta, which is exaggerated by naloxone. The effects of naloxone and finasteride in late pregnant rats in restoring an oxytocin response to interleukin-1beta are not additive. Accordingly, allopregnanolone may both enhance GABA inhibition of oxytocin neurone responses to interleukin-1beta, and induce opioid suppression of noradrenaline release onto oxytocin neurones.
Collapse
Affiliation(s)
- J A Russell
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Hugh Robson Building, UK.
| | | |
Collapse
|
26
|
Terenzi MG, Ingram CD. Oxytocin-induced excitation of neurones in the rat central and medial amygdaloid nuclei. Neuroscience 2005; 134:345-54. [PMID: 15961240 DOI: 10.1016/j.neuroscience.2005.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 03/29/2005] [Accepted: 04/01/2005] [Indexed: 11/15/2022]
Abstract
Central oxytocin plays an important role in regulating emotionality. The amygdala expresses gonadal steroid-sensitive oxytocin binding sites in both the central and medial sub-nuclei, although the densities markedly differ between these nuclei. These studies examined the in vitro electrophysiological effects of oxytocin in the two amygdaloid nuclei and compared responses in female rats in different reproductive states (virgin, pregnant and lactating). Oxytocin (10(-9)-10(-6)M) caused a concentration-dependent increase in the firing rate of 20-36% of the neurones in both nuclei. Although autoradiographic studies using the oxytocin receptor antagonist [(125)I]d(CH(2))(5)[Tyr(Me)(2),Thr(4),Orn(8),Tyr-NH(2)(9)]-vasotocin showed a higher density of binding in the central nucleus of the amygdala than medial nucleus of the amygdala, neurones in the central nucleus of the amygdala had a much lower sensitivity to oxytocin: equivalent responses obtained with 10(-6)M in the central nucleus of the amygdala and 10(-8)M in the medial nucleus of the amygdala, and neurones in the central nucleus of the amygdala were insensitive to concentrations below 10(-6)M. Furthermore, repeated applications of oxytocin induced homologous desensitization in the central nucleus of the amygdala, but not medial nucleus of the amygdala-a single application of oxytocin producing long duration suppression of responses. This indicates that oxytocin has contrasting modes of action in the amygdala. Studies made across the reproductive cycle showed that lactating animals exhibited a larger proportion of oxytocin-responsive neurones in the medial nucleus of the amygdala and a smaller proportion in the central nucleus of the amygdala, compared with virgin or pregnant animals, indicating a peripartum shift in relative activation within the amygdala. However, changes in responses were not accompanied by changes in the density of oxytocin binding sites. These data show that oxytocin has a markedly different efficacy on neuronal activation in the central and medial sub-nuclei of the amygdala. The relative shift in excitatory responses between these two nuclei may underlie some of the neuroendocrine, behavioral and anxiolytic effects which have been ascribed to oxytocin in the periparturient rat.
Collapse
Affiliation(s)
- M G Terenzi
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis SC 88040-900, Brazil
| | | |
Collapse
|
27
|
Wang YF, Hatton GI. Burst firing of oxytocin neurons in male rat hypothalamic slices. Brain Res 2005; 1032:36-43. [PMID: 15680939 DOI: 10.1016/j.brainres.2004.10.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2004] [Indexed: 11/20/2022]
Abstract
Burst firing and single spike activity play different roles in the modulation of local neuronal circuit activity and neurosecretion. In hypothalamic oxytocin (OT) neurons in vivo, burst firing is associated with pulsatile secretion of OT in the milk ejection reflex, and can be observed in slices from both immature and lactating rats in vitro. Whether OT neurons from male rats also possess burst firing capability is still an open question. To examine this possibility, whole-cell patch clamp recordings were made in supraoptic nucleus OT neurons in brain slices from male rats. In low Ca(2+) medium, the alpha(1)-adrenoceptor agonist, phenylephrine evoked bursts that were highly similar to those from lactating rats in vivo and in vitro: explosive onset, short-duration, quickly reaching peak firing rate and displaying an exponential decay in returning to the pre-burst rate. During bursts, spike durations increased, and spike amplitudes decreased, while riding on an arc of depolarization around peak rate. In comparison to those from lactating rats in vitro, the rising phase of male bursts was more rapid, the decay phase was slower, and the rising phase of the spike after hyperpolarization was faster. No significant differences, however, were seen in burst characteristics that are most important in determining the amount of peptide release: burst amplitudes (the number of spikes in a burst), firing frequency within bursts or peak firing rate. Thus, we conclude that OT neurons in males are capable of burst firing highly similar to that seen in lactating rats.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
28
|
Abstract
A baby sucks at a mother's breast for comfort and, of course, for milk. Milk is made in specialized cells of the mammary gland, and for a baby to feed, the milk must be released into a collecting chamber from where it can be extracted by sucking. Milk "let-down" is a reflex response to the suckling and kneading of the nipple--and sometimes in response to the sight, smell, and sound of the baby--and is ultimately affected by the secretion of oxytocin. Oxytocin has many physiological roles, but its only irreplaceable role is to mediate milk let-down: oxytocin-deficient mice cannot feed their young; the pups suckle but no milk is let down, and they will die unless cross-fostered. Most other physiological roles of oxytocin, including its role in parturition, are redundant in the sense that the roles can be assumed by other mechanisms in the absence of oxytocin throughout development and adult life. Nevertheless, physiological function in these roles can be altered or impaired by acute interventions that alter oxytocin secretion or change the actions of oxytocin. Here we focus on the diverse stimuli that regulate oxytocin secretion and on the apparent diversity of the roles for oxytocin.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative Physiology, The University of Edinburgh College of Medicine and Veterinary Sciences, Edinburgh EH8 9XD, United Kingdom
| | | | | |
Collapse
|