1
|
Joshi A, Schott M, la Fleur SE, Barrot M. Role of the striatal dopamine, GABA and opioid systems in mediating feeding and fat intake. Neurosci Biobehav Rev 2022; 139:104726. [PMID: 35691472 DOI: 10.1016/j.neubiorev.2022.104726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Food intake, which is a highly reinforcing behavior, provides nutrients required for survival in all animals. However, when fat and sugar consumption goes beyond the daily needs, it can favor obesity. The prevalence and severity of this health problem has been increasing with time. Besides covering nutrient and energy needs, food and in particular its highly palatable components, such as fats, also induce feelings of joy and pleasure. Experimental evidence supports a role of the striatal complex and of the mesolimbic dopamine system in both feeding and food-related reward processing, with the nucleus accumbens as a key target for reward or reinforcing-associated signaling during food intake behavior. In this review, we provide insights concerning the impact of feeding, including fat intake, on different types of receptors and neurotransmitters present in the striatal complex. Reciprocally, we also cover the evidence for a modulation of palatable food intake by different neurochemical systems in the striatal complex and in particular the nucleus accumbens, with a focus on dopamine, GABA and the opioid system.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marion Schott
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
2
|
Abstract
GABA is the main inhibitory neurotransmitter in the mammalian central nervous system (CNS) and acts via metabotropic GABAB receptors. Neurodegenerative diseases are a major burden and affect an ever increasing number of humans. The actual therapeutic drugs available are partially effective to slow down the progression of the diseases, but there is a clear need to improve pharmacological treatment thus find alternative drug targets and develop newer pharmaco-treatments. This chapter is dedicated to reviewing the latest evidence about GABAB receptors and their inhibitory mechanisms and pathways involved in the neurodegenerative pathologies.
Collapse
Affiliation(s)
- Alessandra P Princivalle
- Department of Bioscience and Chemistry, Biomolecular Research Centre, College of Health, Wellbeing and Life Sciences at Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
3
|
Sebastianutto I, Goyet E, Andreoli L, Font-Ingles J, Moreno-Delgado D, Bouquier N, Jahannault-Talignani C, Moutin E, Di Menna L, Maslava N, Pin JP, Fagni L, Nicoletti F, Ango F, Cenci MA, Perroy J. D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson's disease. J Clin Invest 2020; 130:1168-1184. [PMID: 32039920 DOI: 10.1172/jci126361] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine receptor D1 modulates glutamatergic transmission in cortico-basal ganglia circuits and represents a major target of L-DOPA therapy in Parkinson's disease. Here we show that D1 and metabotropic glutamate type 5 (mGlu5) receptors can form previously unknown heteromeric entities with distinctive functional properties. Interacting with Gq proteins, cell-surface D1-mGlu5 heteromers exacerbated PLC signaling and intracellular calcium release in response to either glutamate or dopamine. In rodent models of Parkinson's disease, D1-mGlu5 nanocomplexes were strongly upregulated in the dopamine-denervated striatum, resulting in a synergistic activation of PLC signaling by D1 and mGlu5 receptor agonists. In turn, D1-mGlu5-dependent PLC signaling was causally linked with excessive activation of extracellular signal-regulated kinases in striatal neurons, leading to dyskinesia in animals treated with L-DOPA or D1 receptor agonists. The discovery of D1-mGlu5 functional heteromers mediating maladaptive molecular and motor responses in the dopamine-denervated striatum may prompt the development of new therapeutic principles for Parkinson's disease.
Collapse
Affiliation(s)
- Irene Sebastianutto
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elise Goyet
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laura Andreoli
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joan Font-Ingles
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - David Moreno-Delgado
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Nathalie Bouquier
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Enora Moutin
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Luisa Di Menna
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Natallia Maslava
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Fagni
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ferdinando Nicoletti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Fabrice Ango
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Julie Perroy
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
4
|
Masilamoni GJ, Smith Y. Group I metabotropic glutamate receptors in the primate motor thalamus: subsynaptic association with cortical and sub-cortical glutamatergic afferents. Brain Struct Funct 2019; 224:2787-2804. [PMID: 31422483 DOI: 10.1007/s00429-019-01937-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
Preclinical evidence indicates that mGluR5 is a potential therapeutic target for Parkinson's disease and L-DOPA-induced dyskinesia. However, the mechanisms through which these therapeutic benefits are mediated remain poorly understood. Although the regulatory role of mGluR5 on glutamatergic transmission has been examined in various basal ganglia nuclei, very little is known about the localization and function of mGluR5 in the ventral motor and intralaminar thalamic nuclei, the main targets of basal ganglia output in mammals. Thus, we used immuno-electron microscopy to map the cellular and subcellular localization of group I mGluRs (mGluR1a and mGluR5) in the ventral motor and caudal intralaminar thalamic nuclei in rhesus monkeys. Furthermore, using double immuno-electron microscopy, we examined the subsynaptic localization of mGluR5 in relation to cortical and sub-cortical glutamatergic afferents. Four major conclusions can be drawn from these data. First, mGluR1a and mGluR5 are expressed postsynaptically on the plasma membrane of dendrites of projection neurons and GABAergic interneurons in the basal ganglia- and cerebellar-receiving regions of the ventral motor thalamus and in CM. Second, the plasma membrane-bound mGluR5 immunoreactivity is preferentially expressed perisynaptically at the edges of cortical and sub-cortical glutamatergic afferents. Third, the mGluR5 immunoreactivity is more strongly expressed in the lateral than the medial tiers of CM, suggesting a preferential association with thalamocortical over thalamostriatal neurons in the primate CM. Overall, mGluR5 is located to subserve powerful modulatory role of cortical and subcortical glutamatergic transmission in the primate ventral motor thalamus and CM.
Collapse
Affiliation(s)
- Gunasingh Jeyaraj Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30329, USA. .,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
5
|
Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 2016; 111:1-16. [PMID: 27178731 DOI: 10.1016/j.phrs.2016.05.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
Actions of the neurotransmitter dopamine in the brain are mediated by dopamine receptors that belong to the superfamily of G protein-coupled receptors (GPCRs). Mammals have five dopamine receptor subtypes, D1 through D5. D1 and D5 couple to Gs/olf and activate adenylyl cyclase, whereas D2, D3, and D4 couple to Gi/o and inhibit it. Most GPCRs upon activation by an agonist are phosphorylated by GPCR kinases (GRKs). The GRK phosphorylation makes receptors high-affinity binding partners for arrestin proteins. Arrestin binding to active phosphorylated receptors stops further G protein activation and promotes receptor internalization, recycling or degradation, thereby regulating their signaling and trafficking. Four non- visual GRKs are expressed in striatal neurons. Here we describe known effects of individual GRKs on dopamine receptors in cell culture and in the two in vivo models of dopamine-mediated signaling: behavioral response to psychostimulants and L-DOPA- induced dyskinesia. Dyskinesia, associated with dopamine super-sensitivity of striatal neurons, is a debilitating side effect of L-DOPA therapy in Parkinson's disease. In vivo, GRK subtypes show greater receptor specificity than in vitro or in cultured cells. Overexpression, knockdown, and knockout of individual GRKs, particularly GRK2 and GRK6, have differential effects on signaling of dopamine receptor subtypes in the brain. Furthermore, deletion of GRK isoforms in select striatal neuronal types differentially affects psychostimulant-induced behaviors. In addition, anti-dyskinetic effect of GRK3 does not require its kinase activity: it is mediated by the binding of its RGS-like domain to Gαq/11, which suppresses Gq/11 signaling. The data demonstrate that the dopamine signaling in defined neuronal types in vivo is regulated by specific and finely orchestrated actions of GRK isoforms.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA.
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; Skolkovo Institute of Science and Technology, Skolkovo, 143025, Moscow, Russia
| | | |
Collapse
|
6
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
7
|
Eid L, Parent M. Chemical anatomy of pallidal afferents in primates. Brain Struct Funct 2016; 221:4291-4317. [PMID: 27028222 DOI: 10.1007/s00429-016-1216-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
Neurons of the globus pallidus receive massive inputs from the striatum and the subthalamic nucleus, but their activity, as well as those of their striatal and subthalamic inputs, are modulated by brainstem afferents. These include serotonin (5-HT) projections from the dorsal raphe nucleus, cholinergic (ACh) inputs from the pedunculopontine tegmental nucleus, and dopamine (DA) afferents from the substantia nigra pars compacta. This review summarizes our recent findings on the distribution, quantitative and ultrastructural aspects of pallidal 5-HT, ACh and DA innervations. These results have led to the elaboration of a new model of the pallidal neuron based on a precise knowledge of the hierarchy and chemical features of the various synaptic inputs. The dense 5-HT, ACh and DA innervations disclosed in the associative and limbic pallidal territories suggest that these brainstem inputs contribute principally to the planification of motor behaviors and the regulation of attention and mood. Although 5-HT, ACh and DA inputs were found to modulate pallidal neurons and their afferents mainly through asynaptic (volume) transmission, genuine synaptic contacts occur between these chemospecific axon varicosities and pallidal dendrites, revealing that these brainstem projections have a direct access to pallidal neurons, in addition to their indirect input through the striatum and subthalamic nucleus. Altogether, these findings reveal that the brainstem 5-HT, ACh and DA pallidal afferents act in concert with the more robust GABAergic inhibitory striatopallidal and glutamatergic excitatory subthalamopallidal inputs. We hypothesize that a fragile equilibrium between forebrain and brainstem pallidal afferents plays a key role in the functional organization of the primate basal ganglia, in both health and disease.
Collapse
Affiliation(s)
- Lara Eid
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Université Laval, F-6530-1, 2601, de la Canardière, Quebec, QC, G1J 2G3, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Université Laval, F-6530-1, 2601, de la Canardière, Quebec, QC, G1J 2G3, Canada.
| |
Collapse
|
8
|
Gurevich EV, Gainetdinov RR, Gurevich VV. Regulation of Dopamine-Dependent Behaviors by G Protein-Coupled Receptor Kinases. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3798-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
GRK3 suppresses L-DOPA-induced dyskinesia in the rat model of Parkinson's disease via its RGS homology domain. Sci Rep 2015; 5:10920. [PMID: 26043205 PMCID: PMC4455246 DOI: 10.1038/srep10920] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Degeneration of dopaminergic neurons causes Parkinson’s disease. Dopamine replacement therapy with L-DOPA is the best available treatment. However, patients develop L-DOPA-induced dyskinesia (LID). In the hemiparkinsonian rat, chronic L-DOPA increases rotations and abnormal involuntary movements modeling LID, via supersensitive dopamine receptors. Dopamine receptors are controlled by G protein-coupled receptor kinases (GRKs). Here we demonstrate that LID is attenuated by overexpression of GRK3 in the striatum, whereas knockdown of GRK3 by microRNA exacerbated it. Kinase-dead GRK3 and its separated RGS homology domain (RH) suppressed sensitization to L-DOPA, whereas GRK3 with disabled RH did not. RH alleviated LID without compromising anti-akinetic effect of L-DOPA. RH binds striatal Gq. GRK3, kinase-dead GRK3, and RH inhibited accumulation of ∆FosB, a marker of LID. RH-dead mutant was ineffective, whereas GRK3 knockdown exacerbated ∆FosB accumulation. Our findings reveal a novel mechanism of GRK3 control of the dopamine receptor signaling and the role of Gq in LID.
Collapse
|
10
|
Jourdain VA, Morin N, Grégoire L, Morissette M, Di Paolo T. Changes in glutamate receptors in dyskinetic parkinsonian monkeys after unilateral subthalamotomy. J Neurosurg 2015; 123:1383-93. [PMID: 25932606 DOI: 10.3171/2014.10.jns141570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Unilateral subthalamotomy is a surgical procedure that may be used to alleviate disabling levodopa-induced dyskinesias (LIDs) in patients with Parkinson disease (PD). However, the mechanisms involved in LID remain largely unknown. The subthalamic nucleus (STN) is the sole glutamatergic nucleus within the basal ganglia, and its lesion may produce changes in glutamate receptors in various areas of the basal ganglia. The authors aimed to investigate the biochemical changes in glutamate receptors in striatal and pallidal regions of the basal ganglia after lesion of the STN in parkinsonian macaque monkeys. METHODS The authors treated 12 female ovariectomized monkeys with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD-like symptoms, treated 8 of these animals with 3,4-dihydroxy-l-phenylalanine (L-DOPA; levodopa) to induce LID, and performed unilateral subthalamotomy in 4 of these 8 monkeys. Four additional monkeys were treated with saline only and were used as controls. The MPTP monkeys had previously been shown to respond behaviorally to lower doses of levodopa after the STN lesion. Autoradiography of slices from postmortem brain tissues was used to visualize changes in the specific binding of striatal and pallidal ionotropic glutamate receptors (that is, of the α-amino-3-hydroxy 5-methyl-4-isoxazole propionate [AMPA] and N-methyl-d-aspartate [NMDA] NR1/NR2B subunit receptors) and of metabotropic glutamate (mGlu) receptors (that is, mGlu2/3 and mGlu5 receptors). The specific binding and distribution of glutamate receptors in the basal ganglia of the levodopa-treated, STN-lesioned MPTP monkeys were compared with those in the saline-treated control monkeys and in the saline-treated and levodopa-treated MPTP monkeys. RESULTS The autoradiographic results indicated that none of the pharmacological and surgical treatments produced changes in the specific binding of AMPA receptors in the basal ganglia. Levodopa treatment increased the specific binding of NMDA receptors in the basal ganglia. Subthalamotomy reversed these increases in the striatum, but in the globus pallidus (GP), the subthalamotomy reversed these increases only contralaterally. Levodopa treatment reversed MPTP-induced increases in mGlu2/3 receptors only in the GP. mGlu2/3 receptor-specific binding in the striatum and GP decreased bilaterally in the levodopa-treated, STN-lesioned MPTP monkeys compared with the other 3 groups. Compared with mGlu5 receptor-specific binding in the control monkeys, that of the levodopa-treated MPTP monkeys increased in the dorsal putamen and remained unchanged in the caudate nucleus and in the GP. CONCLUSIONS These results implicate glutamate receptors in the previously observed benefits of unilateral subthalamotomy to improve motor control.
Collapse
Affiliation(s)
- Vincent A Jourdain
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec; and.,Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Nicolas Morin
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec; and.,Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Laurent Grégoire
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec; and
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec; and
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec; and.,Faculty of Pharmacy, Laval University, Quebec, Canada
| |
Collapse
|
11
|
Toyohara J, Sakata M, Oda K, Ishii K, Ito K, Hiura M, Fujinaga M, Yamasaki T, Zhang MR, Ishiwata K. Initial Human PET Studies of Metabotropic Glutamate Receptor Type 1 Ligand 11C-ITMM. J Nucl Med 2013; 54:1302-7. [DOI: 10.2967/jnumed.113.119891] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Toyohara J, Sakata M, Fujinaga M, Yamasaki T, Oda K, Ishii K, Zhang MR, Moriguchi Jeckel CM, Ishiwata K. Preclinical and the first clinical studies on [11C]ITMM for mapping metabotropic glutamate receptor subtype 1 by positron emission tomography. Nucl Med Biol 2013; 40:214-20. [DOI: 10.1016/j.nucmedbio.2012.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/19/2012] [Accepted: 11/19/2012] [Indexed: 01/29/2023]
|
13
|
Zysk JR, Spear N, Fieles W, Stein MM, Sygowski LS, King MM, Hoesch V, Hastings R, Brockel B, Do M, Ström P, Gadient R, Chhajlani V, Elmore CS, Maier DL. In vitro binding of a radio-labeled positive allosteric modulator for metabotropic glutamate receptor subtype 5. Synapse 2012; 67:135-44. [PMID: 23150216 DOI: 10.1002/syn.21625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 11/06/2012] [Indexed: 12/21/2022]
Abstract
The positive allosteric modulator (PAM) binding site for metabotropic glutamate receptor subtype 5 (mGlu(5)) lacks a readily available radio-labeled tracer fordetailed structure-activity studies. This communication describes a selective mGlu(5) compound, 7-methyl-2-(4-(pyridin-2-yloxy)benzyl)-5-(pyridin-3-yl)isoindolin-1-one (PBPyl) that binds with high affinity to human mGlu(5) and exhibits functional PAM activity. Analysis of PBPyl by FLIPR revealed an EC(50) of 87 nM with an 89% effect in transfected HEK293 cells and an EC(50) of 81 nM with a 42% effect in rat primary neurons. PBPyl exhibited 5-fold higher functional selectivity for mGlu(5) in a full mGlu receptor panel. Unlabeled PBPyl was tested for specific binding using a liquid chromatography mass spectrometry (LC/MS/MS)-based filtration binding assay and exhibited 40% specific binding in recombinant membranes, a value higher than any candidate compound tested. In competition binding studies with [(3)H]MPEP, the mGlu(5) receptor negative allosteric modulator (NAM), PBPyl exhibited a k(i) value of 34 nM. PBPyl also displaced [(3)H]ABP688, a mGluR(5) receptor NAM, in tissue sections from mouse and rat brain using autoradiography. Areas of specific binding included the frontal cortex, striatum and nucleus accumbens. PBPyl was radiolabeled to a specific activity of 15 Ci/mmol and tested for specific binding in a filter plate format. In recombinant mGlu(5b) membranes, [(3)H] PBPyl exhibited saturable binding with a K(d) value of 18.6 nM. In competition binding experiments, [(3)H] PBPyl was displaced by high affinity mGlu(5) positive and negative modulators. Further tests showed that PBPyl displays less than optimal characteristics as an in vivo tool, including a high volume of distribution and ClogP, making it more suitable as an in vitro compound. However, as a first report of direct binding of an mGlu(5) receptor PAM, this study offers value toward the development of novel PET imaging agents for this important therapeutic target.
Collapse
Affiliation(s)
- John R Zysk
- AstraZeneca Pharmaceuticals, Department of Neuroscience, CNS R&D, Wilmington, Delaware, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ciruela F, Fernández-Dueñas V, Llorente J, Borroto-Escuela D, Cuffí ML, Carbonell L, Sánchez S, Agnati LF, Fuxe K, Tasca CI. G protein-coupled receptor oligomerization and brain integration: focus on adenosinergic transmission. Brain Res 2012; 1476:86-95. [PMID: 22575562 DOI: 10.1016/j.brainres.2012.04.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
The control of glutamatergic corticostriatal transmission is essential for the induction and expression of plasticity mechanisms in the striatum, a phenomenon thickly regulated by G protein-coupled receptors (GPCRs). Interestingly, in addition to dopamine receptors, adenosine and metabotropic glutamate receptors also play a key role in striatal functioning. The existence of a supramolecular organization (i.e. oligomer) containing dopamine, adenosine and metabotropic glutamate receptors in the striatal neurons is now being widely accepted by the scientific community. Indeed, these oligomers may enhance the diversity and performance by which extracellular striatal signals are transferred to the G-proteins in the process of receptor transduction, and also may allow unpredictable receptor-receptor allosteric regulations. Overall, here we want to review how formations of adenosine, dopamine and metabotropic glutamate receptors-containing oligomers impinge into striatal functioning in both normal and pathological conditions. This article is part of a Special Issue entitled: Brain Integration.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Brown RM, Mustafa S, Ayoub MA, Dodd PR, Pfleger KDG, Lawrence AJ. mGlu5 Receptor Functional Interactions and Addiction. Front Pharmacol 2012; 3:84. [PMID: 22586398 PMCID: PMC3345582 DOI: 10.3389/fphar.2012.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/16/2012] [Indexed: 12/22/2022] Open
Abstract
The idea of “receptor mosaics” is that proteins may form complex and dynamic networks with respect to time and composition. These have the potential to markedly expand the diversity and specificity of G protein-coupled receptors (GPCR) signaling, particularly in neural cells, where a few key receptors have been implicated in many neurological and psychiatric disorders, including addiction. Metabotropic glutamate type 5 receptors (mGlu5) can form complexes with other GPCRs, including adenosine A2A and dopamine D2 receptors. mGlu5-containing complexes have been reported in the striatum, a brain region critical for mediating the rewarding and incentive motivational properties of drugs of abuse. mGlu5-containing complexes and/or downstream interactions between divergent receptors may play roles in addiction–relevant behaviors. Interactions between mGlu5 receptors and other GPCRs can regulate the rewarding and conditioned effects of drugs as well as drug-seeking behaviors. mGlu5 complexes may influence striatal function, including GABAergic output of striatopallidal neurons and glutamatergic input from corticostriatal afferents. Given their discrete localization, mGlu5-[non-mGlu5] receptor interactions and/or mGlu5-containing complexes may minimize off-target effects and thus provide a novel avenue for drug discovery. The therapeutic targeting of receptor–receptor functional interactions and/or receptor mosaics in a tissue specific or temporal manner (for example, a sub-population of receptors in a “pathological state”) might reduce detrimental side effects that may otherwise impair vital brain functions.
Collapse
Affiliation(s)
- Robyn M Brown
- Addiction Neuroscience, Behavioural Neuroscience, Florey Neuroscience Institutes, University of Melbourne Parkville, VIC, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Dickerson JW, Conn PJ. Therapeutic potential of targeting metabotropic glutamate receptors for Parkinson's disease. Neurodegener Dis Manag 2012; 2:221-232. [PMID: 23526920 DOI: 10.2217/nmt.12.6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disorder predominantly characterized by motor symptoms including bradykinesia and resting tremor. The gold standard of treatment for PD remains dopamine replacement therapy, which eventually fails due to continued progression of the disease and the development of debilitating side effects. Recent breakthroughs are providing the first major advances in the development of fundamentally new pharmacological strategies for the treatment of PD that do not rely on dopamine replacement strategies, but rather aim to reduce the overactive indirect pathway within the basal ganglia. In this article, we will review the role of metabotropic glutamate receptors within the basal ganglia and discuss the potential for modulation of metabotropic glutamate receptors as a treatment for PD.
Collapse
Affiliation(s)
- Jonathan W Dickerson
- Vanderbilt University Medical Center, Department of Pharmacology & Center for Neuroscience Drug Discovery, 1205 LH, Nashville, TN 37232, USA
| | | |
Collapse
|
17
|
Modulation of in vivo GABA-evoked responses by nitric oxide-active compounds in the globus pallidus of rat. J Neural Transm (Vienna) 2012; 119:911-21. [DOI: 10.1007/s00702-011-0760-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/25/2011] [Indexed: 10/14/2022]
|
18
|
Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012; 37:213-46. [PMID: 21956442 PMCID: PMC3238085 DOI: 10.1038/npp.2011.212] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022]
Abstract
The demonstration that dopamine loss is the key pathological feature of Parkinson's disease (PD), and the subsequent introduction of levodopa have revolutionalized the field of PD therapeutics. This review will discuss the significant progress that has been made in the development of new pharmacological and surgical tools to treat PD motor symptoms since this major breakthrough in the 1960s. However, we will also highlight some of the challenges the field of PD therapeutics has been struggling with during the past decades. The lack of neuroprotective therapies and the limited treatment strategies for the nonmotor symptoms of the disease (ie, cognitive impairments, autonomic dysfunctions, psychiatric disorders, etc.) are among the most pressing issues to be addressed in the years to come. It appears that the combination of early PD nonmotor symptoms with imaging of the nigrostriatal dopaminergic system offers a promising path toward the identification of PD biomarkers, which, once characterized, will set the stage for efficient use of neuroprotective agents that could slow down and alter the course of the disease.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
19
|
Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [18F]FITM. Eur J Nucl Med Mol Imaging 2011; 39:632-41. [DOI: 10.1007/s00259-011-1995-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/03/2011] [Indexed: 11/26/2022]
|
20
|
Jaeger D, Kita H. Functional connectivity and integrative properties of globus pallidus neurons. Neuroscience 2011; 198:44-53. [PMID: 21835227 DOI: 10.1016/j.neuroscience.2011.07.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
The globus pallidus consists of the external (GPe) and the internal (GPi) segments. The GPe and GPi have different functional roles. The GPe is located centrally within multiple basal ganglia feedforward and feedback connections. The GPi is an output nucleus of the basal ganglia. A complex interplay between intrinsic pacemaking conductances and the balance of glutamatergic and GABAergic input largely determines the rate and pattern of firing of pallidal neurons. The initial part of this article introduces recent findings made in vivo that are related to the roles of glutamatergic and GABAergic inputs in the control of pallidal activity. The latter part describes the roles of intrinsic mechanisms of GPe neurons in the integration of the synaptic inputs. The presence of dendritic voltage-gated sodium channels may allow the initiation of dendritic spikes, giving distal inputs on the long and thin GPe dendrites an opportunity to strongly shape spiking activity. Basal ganglia disorders including Parkinson's disease, hemiballismus, and dystonias are accompanied by increased irregularity and synchronized bursts of pallidal activity. These changes may be in part due to changes in the GABA release in the GPe and GPi, but also involve intrinsic cellular changes in pallidal neurons.
Collapse
Affiliation(s)
- D Jaeger
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
21
|
Ciruela F, Gómez-Soler M, Guidolin D, Borroto-Escuela DO, Agnati LF, Fuxe K, Fernández-Dueñas V. Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1245-55. [PMID: 21316336 DOI: 10.1016/j.bbamem.2011.02.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/02/2011] [Accepted: 02/05/2011] [Indexed: 02/05/2023]
Abstract
While the G protein-coupled receptor (GPCR) oligomerization has been questioned during the last fifteen years, the existence of a multi-receptor complex involving direct receptor-receptor interactions, called receptor oligomers, begins to be widely accepted. Eventually, it has been postulated that oligomers constitute a distinct functional form of the GPCRs with essential receptorial features. Also, it has been proven, under certain circumstances, that the GPCR oligomerization phenomenon is crucial for the receptor biosynthesis, maturation, trafficking, plasma membrane diffusion, and pharmacology and signalling. Adenosine receptors are GPCRs that mediate the physiological functions of adenosine and indeed these receptors do also oligomerize. Accordingly, adenosine receptor oligomers may improve the molecular mechanism by which extracellular adenosine signals are transferred to the G proteins in the process of receptor transduction. Importantly, these adenosine receptor-containing oligomers may allow not only the control of the adenosinergic function but also the fine-tuning modulation of other neurotransmitter systems (i.e. dopaminergic and glutamatergic transmission). Overall, we underscore here recent significant developments based on adenosine receptor oligomerization that are essential for acquiring a better understanding of neurotransmission in the central nervous system under normal and pathological conditions.
Collapse
Affiliation(s)
- Francisco Ciruela
- Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, 08097 L'Hospitalet de Llobregat, Spain.
| | | | | | | | | | | | | |
Collapse
|
22
|
Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2010; 60:1017-41. [PMID: 21036182 DOI: 10.1016/j.neuropharm.2010.10.022] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/15/2010] [Accepted: 10/21/2010] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson's disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Li C, Xu B, Wang WW, Yu XJ, Zhu J, Yu HM, Han D, Pei DS, Zhang GY. Coactivation of GABA receptors inhibits the JNK3 apoptotic pathway via disassembly of GluR6-PSD-95-MLK3 signaling module in KA-induced seizure. Epilepsia 2010; 51:391-403. [PMID: 19694794 DOI: 10.1111/j.1528-1167.2009.02270.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
PURPOSE Past work has demonstrated that kainic acid (KA)-induced seizures could cause the enhancement of excitation and lead to neuronal death in rat hippocampus. To counteract such an imbalance between excitation and inhibition, we designed experiments by activating the inhibitory gamma-aminobutyric acid (GABA) receptor to investigate whether such activation suppresses the excitatory glutamate signaling induced by KA and to elucidate the underlying molecular mechanisms. METHODS Muscimol coapplied with baclofen was intraperitoneally administrated to the rats 40 min before KA injection by intracerebroventricular infusion. Subsequently we used a series of methods including immunoprecipitation, immunoblotting, histologic analysis, and immunohistochemistry to analyze the interaction, expression, and phosphorylation of relevant proteins as well as the survival of the CA1/CA3 pyramidal neurons. RESULTS Coadministration of muscimol and baclofen exerted neuroprotection against neuron death induced by KA; inhibited the increased assembly of the GluR6-PSD-95-MLK3 module induced by KA; and suppressed the activation of MLK3, MKK7, and JNK3. DISCUSSION Taken together, we demonstrate that coactivation of the inhibitory GABA receptors can attenuate the excitatory JNK3 apoptotic signaling pathway via inhibiting the increased assembly of the GluR6-PSD-95-MLK3 signaling module induced by KA. This provides a new insight into the therapeutic approach to epileptic seizure.
Collapse
Affiliation(s)
- Chong Li
- Research Center of Biochemistry and Molecular Biology, Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jiménez A, Bonastre M, Aguilar E, Marin C. Effect of the metabotropic glutamate antagonist MPEP on striatal expression of the Homer family proteins in levodopa-treated hemiparkinsonian rats. Psychopharmacology (Berl) 2009; 206:233-42. [PMID: 19636538 DOI: 10.1007/s00213-009-1600-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 06/21/2009] [Indexed: 01/02/2023]
Abstract
RATIONALE Striatal glutamatergic hyperactivity through the metabotropic receptors and their intracellular signaling pathways is considered critical in the development of levodopa-induced dyskinesias in Parkinson's disease and in experimental parkinsonism. OBJECTIVE We investigated whether the administration of the metabotropic glutamate antagonist, MPEP, modifies striatal expression of Homer family proteins which are involved in the intracellular mechanisms mediated by these receptors. MATERIALS AND METHODS Sprague-Dawley rats were unilaterally lesioned in the nigrostriatal pathway with 6-hydroxydopamine (8 microg) and treated with: levodopa (12 mg/kg, i.p.) plus vehicle (n=10) divided in two daily injections; levodopa plus MPEP (1.5 and 3 mg/kg, i.p.; n=6-13) divided in two daily injections; or saline (n=7) for 10 consecutive days. Axial, limb, and orolingual dyskinesias were evaluated. Striatal expression of tyrosine hydroxylase (TH), Homer 1a, 1b/c, and deltaFosB were measured by Western Blot. RESULTS Animals treated with levodopa showed an increase of dyskinesia score (p<0.01) that was attenuated by the administration of MPEP (p<0.01). In the ipsilateral side of the lesion, striatal TH expression was decreased (p<0.01). No significant differences in striatal Homer 1a or b/c expression were observed between the groups of treatment. Striatal deltaFosB expression increased in the animals treated with levodopa (p<0.05) being attenuated after MPEP administration (p<0.05). MPEP effect was not paralleled by any modification of striatal Homer proteins expression. CONCLUSIONS These results suggest that Homer protein family is not causally involved in the development of dyskinetic movements induced by levodopa treatment in this animal model of parkinsonism.
Collapse
Affiliation(s)
- Anna Jiménez
- Laboratori de Neurologia Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | |
Collapse
|
25
|
Besheer J, Grondin JJM, Salling MC, Spanos M, Stevenson RA, Hodge CW. Interoceptive effects of alcohol require mGlu5 receptor activity in the nucleus accumbens. J Neurosci 2009; 29:9582-91. [PMID: 19641121 PMCID: PMC2845172 DOI: 10.1523/jneurosci.2366-09.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/17/2009] [Accepted: 06/17/2009] [Indexed: 11/21/2022] Open
Abstract
The interoceptive effects of alcohol are major determinants of addiction liability. Metabotropic glutamate (mGlu) receptors are widely expressed in striatal circuits known to modulate drug-seeking. Given that the interoceptive effects of drugs can be important determinants of abuse liability, we hypothesized that striatal mGlu receptors modulate the interoceptive effects of alcohol. Using drug discrimination learning, rats were trained to discriminate alcohol (1 g/kg, i.g.) versus water. We found that systemic antagonism of metabotropic glutamate subtype 5 (mGlu5) receptors [10 mg/kg 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 3 mg/kg 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine], but not mGlu1 receptors ([0.3-3 mg/kg JNJ16259685) (3,4-dihydro-2H-pyrano[2,3]beta-quinolin-7-yl)(cis-4-methoxycyclohexyl) methanone)], inhibited the discriminative stimulus effects of alcohol. Furthermore, mGlu5 receptor antagonism (10 mg/kg MPEP) significantly inhibited neuronal activity in the nucleus accumbens core as levels of the transcription factor c-Fos were significantly reduced. Accordingly, targeted inhibition of mGlu5 receptors (20 microg of MPEP) in the nucleus accumbens core blunted the discriminative stimulus effects of alcohol (1 g/kg). Anatomical specificity was confirmed by the lack of effect of inhibition of mGlu5 receptors (10-30 microg of MPEP) in the dorsomedial caudate-putamen and the similar cytological expression patterns and relative density of mGlu5 receptors between the brain regions. Functional involvement of intra-accumbens mGlu5 receptors was confirmed as activation of mGlu5 receptors [10 microg of (RS)-2-amino-2-(2-chloro-5-hydroxyphenyl)acetic acid sodium salt] enhanced the discriminative stimulus effects of a low alcohol dose (0.5 g/kg), and mGlu5 receptor inhibition (20 microg of MPEP) prevented the agonist-induced enhancement. These results show that mGlu5 receptor activity in the nucleus accumbens is required for the expression of the interoceptive effects of alcohol.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Allen K, Waldvogel H, Glass M, Faull R. Cannabinoid (CB1), GABAA and GABAB receptor subunit changes in the globus pallidus in Huntington's disease. J Chem Neuroanat 2009; 37:266-81. [DOI: 10.1016/j.jchemneu.2009.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
|
27
|
Zhou C, Li C, Yu HM, Zhang F, Han D, Zhang GY. Neuroprotection of gamma-aminobutyric acid receptor agonists via enhancing neuronal nitric oxide synthase (Ser847) phosphorylation through increased neuronal nitric oxide synthase and PSD95 interaction and inhibited protein phosphatase activity in cerebral ischemia. J Neurosci Res 2008; 86:2973-83. [PMID: 18512761 DOI: 10.1002/jnr.21728] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is well documented that exitotoxicity induced by N-methyl-D-aspartate (NMDA) receptor activation plays a pivotal role in delayed neuronal death in the hippocampal CA1 region after transient global ischemia. However, the effect of gamma-aminobutyric acid (GABA) receptor activation is uncertain in ischemia brain injury. The aim of this study was to investigate whether the enhancement of GABA receptor activity could inhibit NMDA receptor-mediated nitric oxide (NO) production by neuronal NO synthase (nNOS) in brain ischemic injury. The results showed that both the GABA(A) receptor agonist muscimol and the GABA(B) receptor agonist baclofen had neuroprotective effect, and the combination of two agonists could significantly protect neurons against death induced by ischemia/reperfusion. Coapplication of muscimol with baclofen not only enhanced nNOS (Ser847) phosphorylation but also increased the interaction of nNOS with PSD95 at 6 hr and 1 day of reperfusion. Interestingly, the inhibitors of calcineurin and PP1/PP2A could enhance nNOS phosphorylation at Ser847 site at 1 day of reperfusion after ischemia but not at 6 hr of reperfusion. From these data, we conclude that GABA receptor activation could exert its neuroprotective effect through increasing nNOS (Ser847) phosphorylation by different mechanisms at 6 hr and 1 day of reperfusion. The increased interaction of nNOS and postsynaptic density-95 induced by GABA agonists is responsible for nNOS (Ser847) phosphorylation at both time points, but at 1 day of reperfusion the inhibition of protein phosphatase activity by GABA agonists also contributes to the neuroprotection. Our results suggest that GABA receptor agonists may serve as a potential and important neuroprotectant in therapy for ischemic stroke.
Collapse
Affiliation(s)
- Cui Zhou
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
28
|
Chen L, Wang HT, Han XH, Li YL, Cui QL, Xie JX. Behavioral and electrophysiological effects of pallidal GABAB receptor activation and blockade on haloperidol-induced akinesia in rats. Brain Res 2008; 1244:65-70. [DOI: 10.1016/j.brainres.2008.09.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/14/2008] [Accepted: 09/16/2008] [Indexed: 02/05/2023]
|
29
|
Enhanced binding of metabotropic glutamate receptor type 5 (mGluR5) PET tracers in the brain of parkinsonian primates. Neuroimage 2008; 42:248-51. [PMID: 18501638 DOI: 10.1016/j.neuroimage.2008.04.170] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/31/2008] [Accepted: 04/05/2008] [Indexed: 11/23/2022] Open
Abstract
The interplay between dopamine and glutamate in the basal ganglia regulates critical aspects of motor learning and behavior. Metabotropic glutamate receptors (mGluR) are increasingly regarded as key modulators of neuroadaptation in these circuits, in normal and disease conditions. Using PET, we demonstrate a significant upregulation of mGluR type 5 in the striatum of MPTP-lesioned, parkinsonian primates, providing the basis for therapeutic exploration of mGluR5 antagonists in Parkinson disease.
Collapse
|
30
|
Grabowska D, Jayaraman M, Kaltenbronn KM, Sandiford SL, Wang Q, Jenkins S, Slepak VZ, Smith Y, Blumer KJ. Postnatal induction and localization of R7BP, a membrane-anchoring protein for regulator of G protein signaling 7 family-Gbeta5 complexes in brain. Neuroscience 2008; 151:969-82. [PMID: 18248908 PMCID: PMC2292831 DOI: 10.1016/j.neuroscience.2007.11.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 11/28/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
Members of the regulator of G protein signaling 7 (RGS7) (R7) family and Gbeta5 form obligate heterodimers that are expressed predominantly in the nervous system. R7-Gbeta5 heterodimers are GTPase-activating proteins (GAPs) specific for Gi/o-class Galpha subunits, which mediate phototransduction in retina and the action of many modulatory G protein-coupled receptors (GPCRs) in brain. Here we have focused on the R7-family binding protein (R7BP), a recently identified palmitoylated protein that can bind R7-Gbeta5 complexes and is hypothesized to control the intracellular localization and function of the resultant heterotrimeric complexes. We show that: 1) R7-Gbeta5 complexes are obligate binding partners for R7BP in brain because they co-immunoprecipitate and exhibit similar expression patterns. Furthermore, R7BP and R7 protein accumulation in vivo requires Gbeta5. 2) Expression of R7BP in Neuro2A cells at levels approximating those in brain recruits endogenous RGS7-Gbeta5 complexes to the plasma membrane. 3) R7BP immunoreactivity in brain concentrates in neuronal soma, dendrites, spines or unmyelinated axons, and is absent or low in glia, myelinated axons, or axon terminals. 4) RGS7-Gbeta5-R7BP complexes in brain extracts associate inefficiently with detergent-resistant lipid raft fractions with or without G protein activation. 5) R7BP and Gbeta5 protein levels are upregulated strikingly during the first 2-3 weeks of postnatal brain development. Accordingly, we suggest that R7-Gbeta5-R7BP complexes in the mouse or rat could regulate signaling by modulatory Gi/o-coupled GPCRs in the developing and adult nervous systems.
Collapse
Affiliation(s)
- D Grabowska
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ferré S, Agnati LF, Ciruela F, Lluis C, Woods AS, Fuxe K, Franco R. Neurotransmitter receptor heteromers and their integrative role in 'local modules': the striatal spine module. BRAIN RESEARCH REVIEWS 2007; 55:55-67. [PMID: 17408563 PMCID: PMC2039920 DOI: 10.1016/j.brainresrev.2007.01.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 01/17/2007] [Accepted: 01/18/2007] [Indexed: 12/01/2022]
Abstract
'Local module' is a fundamental functional unit of the central nervous system that can be defined as the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit. This review focuses on the importance of neurotransmitter receptor heteromers for the operation of local modules. To illustrate this, we use the striatal spine module (SSM), comprised of the dendritic spine of the medium spiny neuron (MSN), its glutamatergic and dopaminergic terminals and astroglial processes. The SSM is found in the striatum, and although aspects such as neurotransmitters and receptors will be specific to the SSM, some general principles should apply to any local module in the brain. The analysis of some of the receptor heteromers in the SSM shows that receptor heteromerization is associated with particular elaborated functions in this local module. Adenosine A(2A) receptor-dopamine D(2) receptor-glutamate metabotropic mGlu(5) receptor heteromers are located adjacent to the glutamatergic synapse of the dendritic spine of the enkephalin MSN, and their cross-talk within the receptor heteromers helps to modulate postsynaptic plastic changes at the glutamatergic synapse. A(1) receptor-A(2A) receptor heteromers are found in the glutamatergic terminals and the molecular cross-talk between the two receptors in the heteromer helps to modulate glutamate release. Finally, dopamine D(2) receptor-non-alpha(7) nicotinic acetylcholine receptor heteromers, which are located in dopaminergic terminals, introduce the new concept of autoreceptor heteromer.
Collapse
Affiliation(s)
- Sergi Ferré
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The external segment of the pallidum (GP(e)) is a relatively large nucleus located caudomedial to the neostriatum (Str). The GP(e) receives major inputs from two major basal ganglia input nuclei, the Str and the subthalamic nucleus (STN), and sends its output to many basal ganglia nuclei including the STN, the Str, the internal pallidal segment (GP(i)), and the substantia nigra (SN). Thus, the GPe can be placed at the center of the basal ganglia connection diagram (Fig. 1(A)). From the viewpoint that emphasizes the direct and indirect pathways of the basal ganglia, the GP(e) is a component of the indirect pathway that relays Str inputs to the STN. The indirect pathway can be traced in Fig. 1(A), although it comprises only a part of multiple indirect pathways. This chapter begins with a brief description of the anatomical organization of the GP(e) followed by physiological and pharmacological characterizations of GABAergic responses in the GP(e).
Collapse
Affiliation(s)
- Hitoshi Kita
- Department of Anatomy and Neurobiology, The University of Tennessee Memphis, 855 Monroe Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
33
|
Samadi P, Rouillard C, Bédard PJ, Di Paolo T. Functional neurochemistry of the basal ganglia. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:19-66. [DOI: 10.1016/s0072-9752(07)83002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Galvan A, Kuwajima M, Smith Y. Glutamate and GABA receptors and transporters in the basal ganglia: what does their subsynaptic localization reveal about their function? Neuroscience 2006; 143:351-75. [PMID: 17059868 PMCID: PMC2039707 DOI: 10.1016/j.neuroscience.2006.09.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 09/10/2006] [Accepted: 09/13/2006] [Indexed: 01/29/2023]
Abstract
GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in monkey and rat basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia.
Collapse
Affiliation(s)
- A Galvan
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
35
|
Calò L, Cinque C, Patanè M, Schillaci D, Battaglia G, Melchiorri D, Nicoletti F, Bruno V. Interaction between ephrins/Eph receptors and excitatory amino acid receptors: possible relevance in the regulation of synaptic plasticity and in the pathophysiology of neuronal degeneration. J Neurochem 2006; 98:1-10. [PMID: 16805791 DOI: 10.1111/j.1471-4159.2006.03844.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is increasing evidence that Eph receptors and their transmembrane ligands, named ephrins, interact with glutamate receptors in both developing and adult neurons. EphB receptors interact with proteins that regulate the membrane trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunits, and both ephrins and EphB receptors have been found to co-localize with N-methyl-d-aspartate (NMDA) receptors and to positively modulate NMDA receptor function. Moreover, pharmacologic activation of ephrin-Bs amplifies group-I metabotropic glutamate receptor signaling through mechanisms that involve NMDA receptors. The interaction with ionotropic or metabotropic glutamate receptors provides a substrate for the emerging role of ephrins and Eph receptors in the regulation of activity-dependent forms of synaptic plasticity, such as long-term potentiation and long-term depression, which are established electrophysiologic models of associative learning. In addition, these interactions explain the involvement of ephrins/Eph receptors in the regulation of pain threshold and epileptogenesis, as well as their potential implication in processes of neuronal degeneration. This may stimulate the search for new drugs that might modulate excitatory synaptic transmission by interacting with the ephrin/Eph receptor system.
Collapse
Affiliation(s)
- Laura Calò
- Department of Human Physiology and Pharmacology, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bonsi P, Cuomo D, Picconi B, Sciamanna G, Tscherter A, Tolu M, Bernardi G, Calabresi P, Pisani A. Striatal metabotropic glutamate receptors as a target for pharmacotherapy in Parkinson’s disease. Amino Acids 2006; 32:189-95. [PMID: 16715415 DOI: 10.1007/s00726-006-0320-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 01/12/2006] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopamine (DA)-containing neurons in the substantia nigra pars compacta (SNc). The symptoms are resting tremor, slowness of movement, rigidity and postural instability. Evidence that an imbalance between dopaminergic and cholinergic transmission takes place within the striatum led to the utilization of DA precursors, DA receptor agonists and anticholinergic drugs in the symptomatic therapy of PD. However, upon disease progression the therapy becomes less effective and debilitating effects such as dyskinesias and motor fluctuations appear. Hence, the need for the development of alternative therapeutic strategies has emerged. Several observations in different experimental models of PD suggest that blockade of excitatory amino acid transmission exerts antiparkinsonian effects. In particular, recent studies have focused on metabotropic glutamate receptors (mGluRs). Drugs acting on group I and II mGluRs have indeed been proven useful in ameliorating the parkinsonian symptoms in animal models of PD and therefore might represent promising therapeutic targets. This beneficial effect could be due to the reduction of both glutamatergic and cholinergic transmission. A novel target for drugs acting on mGluRs in PD therapy might be represented by striatal cholinergic interneurons. Indeed, the activation of mGluR2, highly expressed on this cell type, is able to reduce calcium-dependent plateau potentials by interfering with somato-dendritic N-type calcium channel activity, in turn reducing ACh release in the striatum. Similarly, the blockade of both group I mGluR subtypes reduces cholinergic interneuron excitability, and decreases striatal ACh release. Thus, targeting mGluRs located onto cholinergic interneurons might result in a beneficial pharmacological effect in the parkinsonian state.
Collapse
Affiliation(s)
- P Bonsi
- Laboratorio di Neurofisiologia, I.R.C.C.S. Fondazione Santa Lucia - C.E.R.C., European Brain Research Institute, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Villalba RM, Raju DV, Hall RA, Smith Y. GABA(B) receptors in the centromedian/parafascicular thalamic nuclear complex: an ultrastructural analysis of GABA(B)R1 and GABA(B)R2 in the monkey thalamus. J Comp Neurol 2006; 496:269-87. [PMID: 16538684 DOI: 10.1002/cne.20950] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Strong gamma-aminobutyric acid type B (GABA(B)) receptor binding has been shown throughout the thalamus, but the distribution of the two GABA(B) receptor subunits, GABA(B) receptor subunit 1 (GABA(B)R1) and GABA(B) receptor subunit 2 (GABA(B)R2), remains poorly characterized. In primates, the caudal intralaminar nuclei, centromedian and parafascicular (CM/PF), are an integral part of basal ganglia circuits and a main source of inputs to the striatum. In this study, we analyzed the subcellular and subsynaptic distribution of GABA(B) receptor subunits by using light and electron microscopic immunocytochemical techniques. Quantitative immunoperoxidase and immunogold analysis showed that both subunits display a similar pattern of distribution in CM/PF, being expressed largely at extrasynaptic and perisynaptic sites in neuronal cell bodies, dendrites, and axon-like processes and less abundantly in axon terminals. Postsynaptic GABA(B)R1 labeling was found mostly on the plasma membrane (70-80%), whereas GABA(B)R2 was more evenly distributed between the plasma membrane and intracellular compartments of CM/PF neurons. A few axon terminals forming symmetric and asymmetric synapses were also labeled for GABA(B)R1 and GABA(B)R2, but the bulk of presynaptic labeling was expressed in small axon-like processes. About 20% of presynaptic vesicle-containing dendrites of local circuit neurons displayed GABA(B)R1/R2 immunoreactivity. Vesicular glutamate transporters (vGluT1)-containing terminals forming asymmetric synapses expressed GABA(B)R1 and/or displayed postsynaptic GABA(B)R1 at the edges of their asymmetric specialization. Overall, these findings provide evidence for multiple sites where GABA(B) receptors could modulate GABAergic and glutamatergic transmission in the primate CM/PF complex.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
38
|
Calò L, Bruno V, Spinsanti P, Molinari G, Korkhov V, Esposito Z, Patanè M, Melchiorri D, Freissmuth M, Nicoletti F. Interactions between ephrin-B and metabotropic glutamate 1 receptors in brain tissue and cultured neurons. J Neurosci 2006; 25:2245-54. [PMID: 15745950 PMCID: PMC6726088 DOI: 10.1523/jneurosci.4956-04.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the interaction between ephrins and metabotropic glutamate (mGlu) receptors in the developing brain and cultured neurons. EphrinB2 coimmunoprecipitated with mGlu1a receptors, in all of the brain regions examined, and with mGlu5 receptors in the corpus striatum. In striatal slices, activation of ephrinB2 by a clustered form of its target receptor, EphB1, amplified the mGlu receptor-mediated stimulation of polyphosphoinositide (PI) hydrolysis. This effect was abolished in slices treated with mGlu1 or NMDA receptor antagonists but was not affected by pharmacological blockade of mGlu5 receptors. An interaction among ephrinB2, mGlu1 receptor, and NMDA was supported by the following observations: (1) the NR1 subunit of NMDA receptors coimmunoprecipitated with mGlu1a receptors and ephrinB2 in striatal lysates; (2) clustered EphB1 amplified excitatory amino acid-stimulated PI hydrolysis in cultured granule cells grown under conditions that favored the expression of mGlu1a receptors; and (3) clustered EphB1 amplified the enhancing effect of mGlu receptor agonists on NMDA toxicity in cortical cultures, and its action was sensitive to mGlu1 receptor antagonists. Finally, fluorescence resonance energy transfer and coclustering analysis in human embryonic kidney 293 cells excluded a physical interaction between ephrinB2 and mGlu1a (or mGlu5 receptors). A functional interaction between ephrinB and mGlu1 receptors, which likely involves adaptor or scaffolding proteins, might have an important role in the regulation of developmental plasticity.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/metabolism
- Blotting, Western/methods
- Brain/cytology
- Brain/growth & development
- Brain/metabolism
- Carrier Proteins/metabolism
- Cells, Cultured
- Coculture Techniques/methods
- Dose-Response Relationship, Drug
- Drug Interactions
- Embryo, Mammalian
- Enzyme Activation/drug effects
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Fluorescence Resonance Energy Transfer/methods
- Glial Fibrillary Acidic Protein/metabolism
- Homer Scaffolding Proteins
- Humans
- Hydrolysis/drug effects
- Immunoprecipitation/methods
- Luminescent Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/drug effects
- Neurons/physiology
- Peptide Fragments/pharmacology
- Phosphatidylinositol Phosphates/metabolism
- Potassium/pharmacology
- Protein Structure, Tertiary/physiology
- Quisqualic Acid/pharmacology
- RGS Proteins
- Rats
- Rats, Sprague-Dawley
- Receptor, Metabotropic Glutamate 5
- Receptors, Dopamine D1/metabolism
- Receptors, Eph Family/chemistry
- Receptors, Eph Family/metabolism
- Receptors, Metabotropic Glutamate/deficiency
- Receptors, Metabotropic Glutamate/metabolism
- Repressor Proteins/metabolism
- Spectrometry, Fluorescence/methods
- Time Factors
- Transfection/methods
- Tritium/metabolism
Collapse
Affiliation(s)
- L Calò
- Department of Human Physiology and Pharmacology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kachroo A, Orlando LR, Grandy DK, Chen JF, Young AB, Schwarzschild MA. Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J Neurosci 2006; 25:10414-9. [PMID: 16280580 PMCID: PMC6725827 DOI: 10.1523/jneurosci.3660-05.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evidence for heteromeric receptor complexes comprising adenosine A2A and metabotropic glutamate 5 (mGlu5) receptors in striatum has raised the possibility of synergistic interactions between striatal A2A and mGlu5 receptors. We investigated the role of striatal A2A receptors in the locomotor stimulant and antiparkinsonian properties of mGlu5 antagonists using complementary pharmacologic and genetic approaches. Locomotion acutely stimulated by the mGlu5 antagonist [2-methyl-6-(phenylethynyl)-pyridine (MPEP)] was absent in mGlu5 knock-out (KO) mice and was potentiated by an A2A antagonist KW-6002 [(E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methylxanthine], both in normal and in dopamine-depleted (reserpinized) mice. Conversely, the MPEP-induced motor response was markedly attenuated in single and double A2A and D2 receptor KO mice. In contrast, motor stimulation by a D1 dopamine agonist was not attenuated in the KO mice. The A2A receptor dependence of MPEP-induced motor stimulation was investigated further using a postnatal forebrain-specific conditional (Cre/loxP system) KO of the A2A receptor. MPEP loses the ability to stimulate locomotion in conditional KO mice, suggesting that this mGlu5 antagonist effect requires the postdevelopmental action of striatal A2A receptors. The potentiation of mGlu5 antagonist-induced motor stimulation by an A2A antagonist and its dependence on both D2 and forebrain A2A receptors highlight the functional interdependence of these receptors. These data also strengthen a rationale for pursuing a combinational drug strategy for enhancing the antiparkinsonian effects of A2A and mGlu5 antagonists.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Analysis of Variance
- Animals
- Animals, Newborn
- Behavior, Animal/drug effects
- Blotting, Western/methods
- Disease Models, Animal
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Excitatory Amino Acid Antagonists/pharmacology
- Locomotion/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Parkinson Disease/drug therapy
- Parkinson Disease/genetics
- Parkinson Disease/metabolism
- Purines/pharmacology
- Pyridines/pharmacology
- Receptor, Adenosine A2A/deficiency
- Receptor, Adenosine A2A/physiology
- Receptor, Metabotropic Glutamate 5
- Receptors, Dopamine D2/deficiency
- Receptors, Metabotropic Glutamate/deficiency
- Receptors, Metabotropic Glutamate/physiology
- Time Factors
Collapse
Affiliation(s)
- Anil Kachroo
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ferré S, Borycz J, Goldberg SR, Hope BT, Morales M, Lluis C, Franco R, Ciruela F, Cunha R. ROLE OF ADENOSINE IN THE CONTROL OF HOMOSYNAPTIC PLASTICITY IN STRIATAL EXCITATORY SYNAPSES. J Integr Neurosci 2005; 4:445-64. [PMID: 16385640 DOI: 10.1142/s0219635205000987] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 09/01/2005] [Indexed: 01/08/2023] Open
Abstract
Long-lasting, activity-dependent changes in synaptic efficacy at excitatory synapses are critical for experience-dependent synaptic plasticity. Synaptic plasticity at excitatory synapses is determined both presynaptically by changes in the probability of neurotransmitter release, and postsynaptically by changes in the availability of functional postsynaptic glutamate receptors. Two kinds of synaptic plasticity have been described. In homosynaptic or Hebbian plasticity, the events responsible for synaptic strengthening occur at the same synapse as is being strengthened. Homosynaptic plasticity is activity-dependent and associative, because it associates the firing of a postsynaptic neuron with that of the presynaptic neuron. Heterosynaptic plasticity, on the other hand, is activity-independent and the synaptic strength is modified as a result of the firing of a third, modulatory neuron. It has been suggested that long-term changes in synaptic strength, which are associated with gene transcription, can only be induced with the involvement of heterosynaptic plasticity. The neuromodulator adenosine plays an elaborated pre- and postsynaptic control of glutamatergic neurotransmission. This paper reviews the evidence suggesting that in some striatal excitatory synapses, adenosine can provide the heterosynaptic-like modulation essential for stabilizing homosynaptic plasticity without the need of a "third, modulatory neuron".
Collapse
Affiliation(s)
- Sergi Ferré
- National Institute on Drug Abuse, IRP, NIH, DHHS, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lacey CJ, Boyes J, Gerlach O, Chen L, Magill PJ, Bolam JP. GABA(B) receptors at glutamatergic synapses in the rat striatum. Neuroscience 2005; 136:1083-95. [PMID: 16226840 DOI: 10.1016/j.neuroscience.2005.07.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/06/2005] [Accepted: 07/01/2005] [Indexed: 12/12/2022]
Abstract
Although multiple effects of GABA(B) receptor activation on synaptic transmission in the striatum have been described, the precise locations of the receptors mediating these effects have not been determined. To address this issue, we carried out pre-embedding immunogold electron microscopy in the rat using antibodies against the GABA(B) receptor subunits, GABA(B1) and GABA(B2). In addition, to investigate the relationship between GABA(B) receptors and glutamatergic striatal afferents, we used antibodies against the vesicular glutamate transporters, vesicular glutamate transporter 1 and vesicular glutamate transporter 2, as markers for glutamatergic terminals. Immunolabeling for GABA(B1) and GABA(B2) was widely and similarly distributed in the striatum, with immunogold particles localized at both presynaptic and postsynaptic sites. The most commonly labeled structures were dendritic shafts and spines, as well as terminals forming asymmetric and symmetric synapses. In postsynaptic structures, the majority of labeling associated with the plasma membrane was localized at extrasynaptic sites, although immunogold particles were also found at the postsynaptic specialization of some symmetric, putative GABAergic synapses. Labeling in axon terminals was located within, or at the edge of, the presynaptic active zone, as well as at extrasynaptic sites. Double labeling for GABA(B) receptor subunits and vesicular glutamate transporters revealed that labeling for both GABA(B1) and GABA(B2) was localized on glutamatergic axon terminals that expressed either vesicular glutamate transporter 1 or vesicular glutamate transporter 2. The patterns of innervation of striatal neurons by the vesicular glutamate transporter 1- and vesicular glutamate transporter 2-positive terminals suggest that they are selective markers of corticostriatal and thalamostriatal afferents, respectively. These results thus provide evidence that presynaptic GABA(B) heteroreceptors are in a position to modulate the two major excitatory inputs to striatal spiny projection neurons arising in the cortex and thalamus. In addition, presynaptic GABA(B) autoreceptors are present on the terminals of spiny projection neurons and/or striatal GABAergic interneurons. Furthermore, the data indicate that GABA may also affect the excitability of striatal neurons via postsynaptic GABA(B) receptors.
Collapse
Affiliation(s)
- C J Lacey
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
| | | | | | | | | | | |
Collapse
|
42
|
Conn PJ, Battaglia G, Marino MJ, Nicoletti F. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 2005; 6:787-98. [PMID: 16276355 DOI: 10.1038/nrn1763] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years there have been tremendous advances in our understanding of the circuitry of the basal ganglia and our ability to predict the behavioural effects of specific cellular changes in this circuit on voluntary movement. These advances, combined with a new understanding of the rich distribution and diverse physiological roles of metabotropic glutamate receptors in the basal ganglia, indicate that these receptors might have a key role in motor control and raise the exciting possibility that they might provide therapeutic targets for the treatment of Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- P Jeffrey Conn
- Program in Translational Neuropharmacology, Department of Pharmacology, Vanderbilt University Medical Center, 23rd Avenue South at Pierce, 417-D Preson Research Building, Nashville, Tennessee 37232-6600, USA.
| | | | | | | |
Collapse
|
43
|
Kaneda K, Kita H. Synaptically released GABA activates both pre- and postsynaptic GABA(B) receptors in the rat globus pallidus. J Neurophysiol 2005; 94:1104-14. [PMID: 16061489 DOI: 10.1152/jn.00255.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The globus pallidus (GP) contains abundant GABAergic synapses and GABA(B) receptors. To investigate whether synaptically released GABA can activate pre- and postsynaptic GABA(B) receptors in the GP, physiological recordings were performed using rat brain slice preparations. Cell-attached recordings from GABA(A) antagonist-treated preparations revealed that repetitive local stimulation induced a GABA(B) antagonist-sensitive pause in spontaneous firings of GP neurons. Whole cell recordings revealed that the repetitive stimulation evoked fast excitatory postsynaptic potentials followed by a slow inhibitory postsynaptic potential (IPSP) in GP neurons. The slow IPSP was insensitive to a GABA(A) receptor antagonist, increased in amplitude with the application of ionotropic glutamate receptor antagonists, and was suppressed by the GABA(B) antagonist CGP55845. The reversal potential of the slow IPSP was close to the potassium equilibrium potential. These results suggest that synaptically released GABA activated postsynaptic GABA(B) receptors and induced the pause and the slow IPSP. On the other hand, in the neurons that were treated to block postsynaptic GABA(B) responses, CGP55845 increased the amplitudes of repetitive local stimulation-induced GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) but not the ionotropic glutamate-mediated excitatory postsynaptic currents. Moreover, the GABA(B) receptor specific agonist baclofen reduced the frequency of miniature IPSCs without altering their amplitude distributions. These results suggest that synaptically released GABA also activated presynaptic GABA(B) autoreceptors, resulting in decreased GABA release in the GP. Together, we infer that both pre- and postsynaptic GABA(B) receptors may play crucial roles in the control of GP neuronal activity.
Collapse
Affiliation(s)
- Katsuyuki Kaneda
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, TN 38163, USA
| | | |
Collapse
|
44
|
Charara A, Pare JF, Levey AI, Smith Y. Synaptic and extrasynaptic GABA-A and GABA-B receptors in the globus pallidus: an electron microscopic immunogold analysis in monkeys. Neuroscience 2005; 131:917-33. [PMID: 15749345 DOI: 10.1016/j.neuroscience.2004.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2004] [Indexed: 10/25/2022]
Abstract
GABA-A and GABA-B receptors mediate differential effects in the CNS. To better understand the role of these receptors in regulating pallidal functions, we compared their subcellular and subsynaptic localization in the external and internal segments of the globus pallidus (GPe and GPi) in monkeys, using pre- and post-embedding immunocytochemistry with antibodies against GABA-A (alpha1, beta2/3 subunits) and GABA-BR1 receptor subtype. Our results demonstrate that GABA-A and GABA-B receptors display a differential pattern of subcellular and subsynaptic localization in both segments of the globus pallidus. The majority of GABA-BR1 immunolabeling is intracellular, whereas immunoreactivity for GABA-A receptor subunits is mostly bound to the plasma membrane. A significant proportion of both GABA-BR1 and GABA-A receptor immunolabeling is extrasynaptic, but GABA-A receptor subunits also aggregate in the main body of putative GABAergic symmetric synapses established by striatal- and pallidal-like terminals. GABA-BR1 immunoreactivity is expressed presynaptically in putative glutamatergic terminals, while GABA-A alpha1 and beta2/3 receptor subunits are exclusively post-synaptic and often coexist at individual symmetric synapses in both GPe and GPi. In conclusion, our findings corroborate the concept that ionotropic and metabotropic GABA receptors are located to subserve different effects in pallidal neurons. Although the aggregation of GABA-A receptors at symmetric synapses is consistent with their role in fast inhibitory synaptic transmission, the extrasynaptic distribution of both GABA-A and GABA-B receptors provides a substrate for complex modulatory functions that rely predominantly on the spillover of GABA.
Collapse
Affiliation(s)
- A Charara
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
45
|
Xu K, Bastia E, Schwarzschild M. Therapeutic potential of adenosine A2A receptor antagonists in Parkinson's disease. Pharmacol Ther 2005; 105:267-310. [PMID: 15737407 DOI: 10.1016/j.pharmthera.2004.10.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
In the pursuit of improved treatments for Parkinson's disease (PD), the adenosine A(2A) receptor has emerged as an attractive nondopaminergic target. Based on the compelling behavioral pharmacology and selective basal ganglia expression of this G-protein-coupled receptor, its antagonists are now crossing the threshold of clinical development as adjunctive symptomatic treatment for relatively advanced PD. The antiparkinsonian potential of A(2A) antagonism has been boosted further by recent preclinical evidence that A(2A) antagonists might favorably alter the course as well as the symptoms of the disease. Convergent epidemiological and laboratory data have suggested that A(2A) blockade may confer neuroprotection against the underlying dopaminergic neuron degeneration. In addition, rodent and nonhuman primate studies have raised the possibility that A(2A) receptor activation contributes to the pathophysiology of dyskinesias-problematic motor complications of standard PD therapy--and that A(2A) antagonism might help prevent them. Realistically, despite being targeted to basal ganglia pathophysiology, A(2A) antagonists may be expected to have other beneficial and adverse effects elsewhere in the central nervous system (e.g., on mood and sleep) and in the periphery (e.g., on immune and inflammatory processes). The thoughtful design of new clinical trials of A(2A) antagonists should take into consideration these counterbalancing hopes and concerns and may do well to shift toward a broader set of disease-modifying as well as symptomatic indications in early PD.
Collapse
Affiliation(s)
- Kui Xu
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
46
|
Dalfó E, Albasanz JL, Martín M, Ferrer I. Abnormal metabotropic glutamate receptor expression and signaling in the cerebral cortex in diffuse Lewy body disease is associated with irregular alpha-synuclein/phospholipase C (PLCbeta1) interactions. Brain Pathol 2004; 14:388-98. [PMID: 15605986 PMCID: PMC8095885 DOI: 10.1111/j.1750-3639.2004.tb00082.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diffuse Lewy body disease (DLBD) is a degenerative disease of the nervous system, involving the brain stem, diencephalic nuclei and cerebral cortex, associated with abnormal a-synuclein aggregation and widespread formation of Lewy bodies and Lewy neurites. DLBD presents as pure forms (DLBDp) or in association with Alzheimer disease (AD) in the common forms (DLBDc). Several neurotransmitter abnormalities have been reported including those of the nigrostriatal and mesocorticolimbic dopaminergic system, and central noradrenergic, serotoninergic and cholinergic pathways. The present work examines metabotropic glutamate receptor (mGluR) expression and signaling in the frontal cortex of DLBDp and DLBDc cases in comparison with age-matched controls. Abnormal L-[3H]glutamate specific binding to group I and II mGluRs, and abnormal mGluR1 levels have been found in DLBD. This is associated with reduced expression levels of phospholipase C beta1 (PLCbeta1), the effector of group I mGluRs following protein G activation upon glutamate binding. Additional modification in the solubility of PLCbeta1 and reduced PLCbeta1 activity in pure and common DLBD further demonstrates for the first time abnormal mGluR signaling in the cerebral cortex in DLBD. In order to look for a possible link between abnormal mGluR signaling and a-synuclein accumulation in DLBD, immunoprecipitation studies have shown alpha-synuclein/PLCbeta1 binding in controls and decreased alpha-synuclein/PLCbeta1 binding in DLBD. This is accompanied by a shift in the distribution of a-synuclein, but not of PLCbeta1, in DLBD when compared with controls. Together, these results support the concept that abnormal a-synuclein in DLBD produces functional effects on cortical glutamatergic synapses, which are associated with reduced alpha-synuclein/PLCbeta1 interactions, and, therefore, that mGluRs are putative pharmacological targets in DLBD. Finally, these results emphasize the emergence of a functional neuropathology that has to be explored for a better understanding of the effects of abnormal protein interactions in degenerative diseases of the nervous system.
Collapse
Affiliation(s)
- E. Dalfó
- Instituto de Neuropatología, Servicio de Anatomía Patológica, IDIBELL‐Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Spain
| | - J. L. Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla‐La Mancha, Ciudad Real, Spain
| | - M. Martín
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla‐La Mancha, Ciudad Real, Spain
| | - I. Ferrer
- Instituto de Neuropatología, Servicio de Anatomía Patológica, IDIBELL‐Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Spain
- Departamento de Biología Celular y Anatomía Patológica, Facultad de Medicina, Universidad de Barcelona, campus de Bellvitge, Hospitalet de Llobregat, Spain
| |
Collapse
|
47
|
Charara A, Galvan A, Kuwajima M, Hall RA, Smith Y. An electron microscope immunocytochemical study of GABA(B) R2 receptors in the monkey basal ganglia: a comparative analysis with GABA(B) R1 receptor distribution. J Comp Neurol 2004; 476:65-79. [PMID: 15236467 DOI: 10.1002/cne.20210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Functional gamma-aminobutyric acid (GABA)(B) receptors are heterodimers made up of GABA(B) R1 and GABA(B) R2 subunits. The subcellular localization of GABA(B) R2 receptors remains poorly known in the central nervous system. Therefore, we performed an ultrastructural analysis of the localization of GABA(B) R2 receptor immunoreactivity in the monkey basal ganglia. Furthermore, to characterize better the neuronal sites at which GABA(B) R1 and GABA(B) R2 may interact to form functional receptors, we compared the relative distribution of immunoreactivity of the two GABA(B) receptors in various basal ganglia nuclei. Light to moderate GABA(B) R2 immunoreactivity was found in cell bodies and neuropil elements in all basal ganglia nuclei. At the electron microscope level, GABA(B) R2 immunoreactivity was commonly expressed postsynaptically, although immunoreactive preterminal axonal segments were also frequently encountered, particularly in the globus pallidus and substantia nigra, where they accounted for the third of the total number of GABA(B) R2-containing elements. A few labeled terminals that displayed the ultrastructural features of glutamatergic boutons were occasionally found in most basal ganglia nuclei, except for the subthalamic nucleus, which was devoid of GABA(B) R2-immunoreactive boutons. The relative distribution of GABA(B) R2 immunoreactivity in the monkey basal ganglia was largely consistent with that of GABA(B) R1, but some exceptions were found, most noticeably in the globus pallidus and substantia nigra, which contained a significantly larger proportion of presynaptic elements labeled for GABA(B) R1 than GABA(B) R2. These findings suggest the possible coexistence and heterodimerization of GABA(B) R1 and GABA(B) R2 at various pre- and postsynaptic sites, but also raise the possibility that the formation of functional GABA(B) receptors in specific compartments of basal ganglia neurons relies on mechanisms other than GABA(B) R1/R2 heterodimerization.
Collapse
Affiliation(s)
- Ali Charara
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
48
|
Coccurello R, Breysse N, Amalric M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 2004; 29:1451-61. [PMID: 15039773 DOI: 10.1038/sj.npp.1300444] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence suggest that antagonism of adenosine A2A receptors represent an alternative therapeutic approach to Parkinson's disease (PD). Coactivation of A2A and the glutamate subtype 5 metabotropic receptors (mGlu5) synergistically stimulates DARPP-32 phosphorylation and c-fos expression in the striatum. This study therefore tested the effects of a joint blockade of these receptors to alleviate the motor dysfunction in a rat model of PD. 6-Hydroxydopamine infusions in the striatum produced akinetic deficits in rats trained to release a lever after a stimulus in a reaction time (RT) task. At 2 weeks after the lesion, A2A and mGlu5 receptors selective antagonists 8-(3-chlorostyryl)caffeine (CSC) and 2-methyl-6-(phenylethynyl)-pyridine (MPEP) were administered daily for 3 weeks either as a single or joint treatment. Injections of CSC (1.25 mg/kg) and MPEP (1.5 mg/kg) separately or in combination reduced the increase of delayed responses and RTs induced by 6-OHDA lesions, while the same treatment had no effect in controls. Furthermore, coadministration of lower doses of 0.625 mg/kg CSC and 0.375 mg/kg MPEP noneffective as a single treatment promoted a full and immediate recovery of akinesia, which was found to be more efficient than the separate blockade of these receptors. These results demonstrate that the combined inactivation of A2A and mGlu5 receptor potentiate their beneficial effects supporting this pharmacological strategy as a promising anti-Parkinsonian therapy.
Collapse
Affiliation(s)
- Roberto Coccurello
- Laboratoire de Neurobiologie de la Cognition, CNRS and Université de Provence, Marseille cedex, France
| | | | | |
Collapse
|
49
|
Hubert GW, Smith Y. Age-related changes in the expression of axonal and glial group I metabotropic glutamate receptor in the rat substantia nigra pars reticulata. J Comp Neurol 2004; 475:95-106. [PMID: 15176087 DOI: 10.1002/cne.20163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuronal systems undergo many significant changes during the course of brain development. To characterize the developmental changes in the substantia nigra pars reticulata (SNr) associated with the expression of group I metabotropic glutamate receptors (mGluRs), we used the immunoperoxidase and immunogold methods at the electron microscope level to determine whether the subcellular and subsynaptic patterns of distribution of mGluR1a and mGluR5 differ between young (P14-P18) and adult (>2 months) rats. The SNr of young rats contained a significantly higher density of labeled unmyelinated axons for both receptor subtypes. In addition, mGluR5-immunoreactive glial processes were very abundant in young rats but absent in the adults. On the other hand, the relative proportion of immunoreactive dendrites was the same for both age groups. Analysis of immunogold-labeled rat SNr revealed similar proportions of plasma membrane-bound mGluR1a and mGluR5 in adult (59.8 and 19.4%, respectively) and young (60.6 and 18.4%, respectively) rats. The pattern of subsynaptic localization of mGluR1a also remained the same between young and adults. However, the proportion of extrasynaptic mGluR5 decreased, whereas proportions of gold particles associated with symmetric synapses increased in adults. The results of this study demonstrate significant differences in the expression of group I mGluRs in the SNr of young and adult rats. These findings support a role for group I mGluRs during development and emphasize the importance of using brain tissue from age-matched subjects when attempting to correlate functional data from young rat brain slices with immunocytochemical localization of group I mGluRs.
Collapse
Affiliation(s)
- George Walton Hubert
- Yerkes National Primate Research Center, Division of Neuroscience and Department of Neurology, Emory University, 954 Gatewood Road NE, Atlanta, GA 30322, USA
| | | |
Collapse
|
50
|
Chen L, Boyes J, Yung WH, Bolam JP. Subcellular localization of GABAB receptor subunits in rat globus pallidus. J Comp Neurol 2004; 474:340-52. [PMID: 15174078 DOI: 10.1002/cne.20143] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The inhibitory amino acid gamma-aminobutyric acid (GABA) is the major neurotransmitter in the globus pallidus. Although electrophysiological studies have indicated that functional GABA(B) receptors exist in rat globus pallidus, the subcellular localization of GABA(B) receptor subunits and their spatial relationship to glutamatergic and GABAergic synapses are unknown. Here, we use pre-embedding immunogold labeling to study the subcellular localization of GABA(B) receptor subunits, GABA(B1) and GABA(B2), in globus pallidus neurons and identified populations of afferent terminals. Immunolabeling for GABA(B1) and GABA(B2) was observed throughout the globus pallidus, with GABA(B1) more strongly expressed in perikarya and GABA(B2) mainly expressed in the neuropil. Electron microscopic analysis revealed that the majority of GABA(B1) labeling was localized within the cytoplasm, whereas most of GABA(B2) labeling was associated with the plasma membrane. At the subcellular level, both the GABA(B1) and GABA(B2) immunogold labeling was localized at pre- and postsynaptic sites. At asymmetric, putative excitatory, synapses, GABA(B1) and GABA(B2) immunogold labeling was found at perisynaptic sites of both pre- and postsynaptic specializations. Double immunolabeling, using the vesicular glutamate transporter 2 (VGLUT2), revealed the glutamatergic nature of most immunogold-labeled asymmetric synapses. At symmetric, putative GABAergic, synapses, including those formed by anterogradely labeled striatopallidal terminals, GABA(B1) and GABA(B2) immunogold labeling was found in the main body of both pre- and postsynaptic specializations. These results demonstrate the existence of presynaptic GABA(B) auto- and heteroreceptors and postsynaptic GABA(B) receptors, which may be involved in modulating synaptic transmission in the globus pallidus.
Collapse
Affiliation(s)
- Lei Chen
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford OX1 3TH, United Kingdom
| | | | | | | |
Collapse
|