1
|
Zhang M, Zhao F, Zhu Y, Brouwer LA, Van der Veen H, Burgess JK, Harmsen MC. Physical Properties and Biochemical Composition of Extracellular Matrix-Derived Hydrogels Dictate Vascularization Potential in an Organ-Dependent Fashion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29930-29945. [PMID: 38819955 PMCID: PMC11181272 DOI: 10.1021/acsami.4c05864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
The inherent extracellular matrix (ECM) originating from a specific tissue impacts the process of vascularization, specifically vascular network formation (VNF) orchestrated by endothelial cells (ECs). The specific contribution toward these processes of ECM from highly disparate organs such as the skin and lungs remains a relatively unexplored area. In this study, we compared VNF and ECM remodeling mediated by microvascular ECs within gel, lung, and combinations thereof (hybrid) ECM hydrogels. Irrespective of the EC source, the skin-derived ECM hydrogel exhibited a higher propensity to drive and support VNF compared to both lung and hybrid ECM hydrogels. There were distinct disparities in the physical properties of the three types of hydrogels, including viscoelastic properties and complex architectural configurations, including fiber diameter, pore area, and numbers among the fibers. The hybrid ECM hydrogel properties were unique and not the sum of the component ECM parts. Furthermore, cellular ECM remodeling responses varied with skin ECM hydrogels promoting matrix metalloproteinase 1 (MMP1) secretion, while hybrid ECM hydrogels exhibited increased MMP9, fibronectin, and collagen IV deposition. Principal component analysis (PCA) indicated that the influence of a gel's mechanical properties on VNF was stronger than the biochemical composition. These data indicate that the organ-specific properties of an ECM dictate its capacity to support VNF, while intriguingly showing that ECs respond to more than just the biochemical constituents of an ECM. The study suggests potential applications in regenerative medicine by strategically selecting ECM origin or combinations to manipulate vascularization, offering promising prospects for enhancing wound healing through pro-regenerative interventions.
Collapse
Affiliation(s)
- Meng Zhang
- Department
of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
- University
Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering
and Materials Science-FB41, University of
Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Fenghua Zhao
- University
Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering
and Materials Science-FB41, University of
Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
- University
Medical Center Groningen, Department of Biomedical Engineering-FB40, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Yuxuan Zhu
- Department
of Computer Science, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
| | - Linda A. Brouwer
- Department
of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
| | - Hasse Van der Veen
- Department
of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
| | - Janette K. Burgess
- Department
of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
- University
Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering
and Materials Science-FB41, University of
Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
- University
Medical Center Groningen, Groningen Research Institute for Asthma
and COPD (GRIAC), University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 AV, The Netherlands
| | - Martin C. Harmsen
- Department
of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
- University
Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering
and Materials Science-FB41, University of
Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
- University
Medical Center Groningen, Groningen Research Institute for Asthma
and COPD (GRIAC), University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 AV, The Netherlands
| |
Collapse
|
2
|
Kurt-Celep I, Zheleva-Dimitrova D, Sinan KI, Uba AI, Nilofar, Mahomoodally MF, Aumeeruddy MZ, Cakilcioglu U, Dall'Acqua S, Zengin G. Uncovering chemical profiles, biological potentials, and protection effect against ECM destruction in H 2 O 2 -treated HDF cells of the extracts of Stachys tundjeliensis. Arch Pharm (Weinheim) 2024; 357:e2300528. [PMID: 37974540 DOI: 10.1002/ardp.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The genus Stachys L., one of the largest genera of the Lamiaceae family, is highly represented in Turkey. This study was conducted to determine the bio-pharmaceutical potential and phenolic contents of six different extracts from aerial parts of Stachys tundjeliensis. The obtained results showed that the ethanol extract exhibited the highest antioxidant activity in the antioxidant assays. Meanwhile, the ethanol extract displayed strong inhibitory activity against α-tyrosinase, the dichloromethane extract exhibited potent inhibition against butyrylcholinesterase, and the n-hexane extract against α-amylase. Based on ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry analysis, more than 90 secondary metabolites, including hydroxybenzoic acid, hydroxycinnamic acid, and their glycosides, acylquinic acids, phenylethanoid glycosides, and various flavonoids were identified or tentatively annotated in the studied S. tundjeliensis extracts. It was observed that the application of S. tundjeliensis eliminated H2 O2 -induced oxidative stress. It was determined that protein levels of phospho-nuclear factor kappa B (NF-κB), receptor for advanced glycation endproducts, and activator protein-1, which are activated in the nucleus, decreased, and the synthesis of matrix metalloproteinase (MMP)-2 and MMP-9 also decreased to basal levels. Overall, these findings suggest that S. tundjeliensis contains diverse bioactive compounds for the development of nutraceuticals or functional foods with potent biological properties.
Collapse
Affiliation(s)
- Inci Kurt-Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | | | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | - Nilofar
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | | | - Ugur Cakilcioglu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Tunceli, Turkey
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
3
|
Jayawardena DP, Masciantonio MG, Wang L, Mehta S, DeGurse N, Pape C, Gill SE. Imbalance of Pulmonary Microvascular Endothelial Cell-Expression of Metalloproteinases and Their Endogenous Inhibitors Promotes Septic Barrier Dysfunction. Int J Mol Sci 2023; 24:ijms24097875. [PMID: 37175585 PMCID: PMC10178398 DOI: 10.3390/ijms24097875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Sepsis is a life-threatening disease characterized by excessive inflammation leading to organ dysfunction. During sepsis, pulmonary microvascular endothelial cells (PMVEC) lose barrier function associated with inter-PMVEC junction disruption. Matrix metalloproteinases (MMP) and a disintegrin and metalloproteinases (ADAM), which are regulated by tissue inhibitors of metalloproteinases (TIMPs), can cleave cell-cell junctional proteins, suggesting a role in PMVEC barrier dysfunction. We hypothesize that septic PMVEC barrier dysfunction is due to a disruption in the balance between PMVEC-specific metalloproteinases and TIMPs leading to increased metalloproteinase activity. The effects of sepsis on TIMPs and metalloproteinases were assessed ex vivo in PMVEC from healthy (sham) and septic (cecal ligation and perforation) mice, as well as in vitro in isolated PMVEC stimulated with cytomix, lipopolysaccharide (LPS), and cytomix + LPS vs. PBS. PMVEC had high basal Timp expression and lower metalloproteinase expression, and septic stimulation shifted expression in favour of metalloproteinases. Septic stimulation increased MMP13 and ADAM17 activity associated with a loss of inter-PMVEC junctional proteins and barrier dysfunction, which was rescued by treatment with metalloproteinase inhibitors. Collectively, our studies support a role for metalloproteinase-TIMP imbalance in septic PMVEC barrier dysfunction, and suggest that inhibition of specific metalloproteinases may be a therapeutic avenue for septic patients.
Collapse
Affiliation(s)
- Devika P Jayawardena
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Marcello G Masciantonio
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Natalie DeGurse
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
4
|
Peng BX, Li F, Mortimer M, Xiao X, Ni Y, Lei Y, Li M, Guo LH. Perfluorooctanoic acid alternatives hexafluoropropylene oxides exert male reproductive toxicity by disrupting blood-testis barrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157313. [PMID: 35842142 DOI: 10.1016/j.scitotenv.2022.157313] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
As alternatives to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide (HFPO) homologues, including hexafluoropropylene oxide dimer acid (HFPO-DA), hexafluoropropylene oxide trimer acid (HFPO-TA), and hexafluoropropylene oxide tetramer acid (HFPO-TeA), have attracted widespread attention recently due to their environmental ubiquity and high potential for bioaccumulation and toxicity. In the present study, a set of in vivo mouse and in vitro mouse testicular Sertoli TM4 cell experiments were employed to explore the male reproductive toxicity and underlying mechanisms of HFPO homologues on blood-testis barrier. Tissue and permeability analyses of mice testes after 28-day treatment with 5 mg/kg/day HFPO-DA or PFOA, or 0.05 mg/kg/day HFPO-TA or HFPO-TeA indicated that there was an increase in the degradation of TJ protein occludin in mice with a disrupted blood-testis barrier (BTB). Following exposure to 100 μM HFPO-DA, HFPO-TA or 10 μM PFOA, HFPO-TeA, transepithelial electrical resistance measurements of TM4 cells also indicated BTB disruption. Additionally, as a result of the exposure, matrix metalloproteinase-9 expression was enhanced through activation of p38 MAPK, which promoted the degradation of occludin. On the whole, the results indicated HFPO homologues and PFOA induced BTB disruption through upregulation of p-p38/p38 MAPK/MMP-9 pathway, which promoted the degradation of TJ protein occludin and caused the disruption of TJ.
Collapse
Affiliation(s)
- Bi-Xia Peng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310063, China.
| | - Ya Ni
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310063, China
| | - Yuyang Lei
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Hunt RC, Katneni U, Yalamanoglu A, Indig FE, Ibla JC, Kimchi-Sarfaty C. Contribution of ADAMTS13-independent VWF regulation in sickle cell disease. J Thromb Haemost 2022; 20:2098-2108. [PMID: 35753044 PMCID: PMC10460119 DOI: 10.1111/jth.15804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Von Willebrand factor (VWF) is elevated in sickle cell disease (SCD) and contributes to vaso-occlusion through its thrombogenic properties. VWF is regulated by ADAMTS13, a plasma protease that cleaves VWF into less bioactive multimers. Independent investigations have shown VWF to be elevated in SCD, whereas measurements of ADAMTS13 have been variable. OBJECTIVES We assessed ADAMTS13 activity using multiple activity assays and measured levels of alternative VWF-cleaving proteases in SCD. METHODS/ PATIENTS Plasma samples were collected from adult patients with SCD (n = 20) at a single institution when presenting for routine red cell exchange transfusion therapy. ADAMTS13 activity was measured by FRETS-VWF73, Technozym ADAMTS-13 Activity ELISA kit and a full-length VWF digestion reaction. Alternative VWF-cleaving proteases were identified by ELISA. A cell culture model was used to study the impact of SCD stimuli on endothelial ADAMTS13 and alternative VWF-cleaving proteases. RESULTS ADAMTS13 activity was found to be moderately deficient across the SCD cohort as assessed by activity assays using a VWF A2 domain peptide substrate. However, SCD plasma showed preserved ability to digest full-length VWF, suggesting assay-discrepant results. Neutrophil and endothelial-derived proteases were found to be elevated in SCD plasma. Matrix metalloproteinase 9 specifically showed preferential cleavage of full-length VWF. Upregulation of alternative VWF-cleaving proteases occurred in endothelial cells exposed to SCD stimuli such as heme and hypoxia. CONCLUSIONS This is the first demonstration of accessory plasma enzymes contributing to the regulation of VWF in a specific disease state and may have implications for assessing the VWF/ADAMTS13 axis in other settings.
Collapse
Affiliation(s)
- Ryan C. Hunt
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Upendra Katneni
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ayla Yalamanoglu
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Fred E. Indig
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Juan C. Ibla
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chava Kimchi-Sarfaty
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Santos-Lima B, Pietronigro EC, Terrabuio E, Zenaro E, Constantin G. The role of neutrophils in the dysfunction of central nervous system barriers. Front Aging Neurosci 2022; 14:965169. [PMID: 36034148 PMCID: PMC9404376 DOI: 10.3389/fnagi.2022.965169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Leukocyte migration into the central nervous system (CNS) represents a central process in the development of neurological diseases with a detrimental inflammatory component. Infiltrating neutrophils have been detected inside the brain of patients with several neuroinflammatory disorders, including stroke, multiple sclerosis and Alzheimer’s disease. During inflammatory responses, these highly reactive innate immune cells can rapidly extravasate and release a plethora of pro-inflammatory and cytotoxic factors, potentially inducing significant collateral tissue damage. Indeed, several studies have shown that neutrophils promote blood-brain barrier damage and increased vascular permeability during neuroinflammatory diseases. Recent studies have shown that neutrophils migrate into the meninges and choroid plexus, suggesting these cells can also damage the blood-cerebrospinal fluid barrier (BCSFB). In this review, we discuss the emerging role of neutrophils in the dysfunction of brain barriers across different neuroinflammatory conditions and describe the molecular basis and cellular interplays involved in neutrophil-mediated injury of the CNS borders.
Collapse
|
7
|
Mu Y, Yin TL, Zhang Y, Yang J, Wu YT. Diet-induced obesity impairs spermatogenesis: the critical role of NLRP3 in Sertoli cells. Inflamm Regen 2022; 42:24. [PMID: 35915511 PMCID: PMC9344614 DOI: 10.1186/s41232-022-00203-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Background Accumulating evidence indicates a key role of Sertoli cell (SC) malfunction in spermatogenesis impairment induced by obesity. Nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) is expressed in SCs, but the role of NLRP3 in the pathological process of obesity-induced male infertility remains unclear. Methods NLRP3-deficient mice were fed a high-fat diet for 24 weeks to establish obesity-related spermatogenesis impairment. In another set of experiments, a lentiviral vector containing a microRNA (miR)-451 inhibitor was injected into AMP-activated protein kinase α (AMPKα)-deficient mouse seminiferous tubules. Human testis samples were obtained by testicular puncture from men with obstructive azoospermia whose samples exhibited histologically normal spermatogenesis. Isolated human SCs were treated with palmitic acid (PA) to mimic obesity model in vitro. Results Increased NLRP3 expression was observed in the testes of obese rodents. NLRP3 was also upregulated in PA-treated human SCs. NLRP3 deficiency attenuated obesity-related male infertility. SC-derived NLRP3 promoted interleukin-1β (IL-1β) secretion to impair testosterone synthesis and sperm performance and increased matrix metalloproteinase-8 (MMP-8) expression to degrade occludin via activation of nuclear factor-kappa B (NF-κB). Increased miR-451 caused by obesity, decreased AMPKα expression and sequentially increased NADPH oxidase activity were responsible for the activation of NLRP3. miR-451 inhibition protected against obesity-related male infertility, and these protective effects were abolished by AMPKα deficiency in mice. Conclusions NLRP3 promoted obesity-related spermatogenesis impairment. Increased miR-451 expression, impaired AMPKα pathway and the subsequent ROS production were responsible for NLRP3 activation. Our study provides new insight into the mechanisms underlying obesity-associated male infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00203-z.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan-Ting Wu
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
8
|
Strohmeier K, Hofmann M, Jacak J, Narzt MS, Wahlmueller M, Mairhofer M, Schaedl B, Holnthoner W, Barsch M, Sandhofer M, Wolbank S, Priglinger E. Multi-Level Analysis of Adipose Tissue Reveals the Relevance of Perivascular Subpopulations and an Increased Endothelial Permeability in Early-Stage Lipedema. Biomedicines 2022; 10:biomedicines10051163. [PMID: 35625899 PMCID: PMC9138324 DOI: 10.3390/biomedicines10051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro. Although there were no significant differences in histological stainings, we found altered gene expression of factors relevant for local estrogen metabolism (aromatase), preadipocyte commitment (ZNF423) and immune cell infiltration (CD11c) in lipedema on the tissue level, as well as in distinct cellular subpopulations. Machine learning analysis of immunofluorescence images of CD31 and ZO-1 revealed a morphological difference in the cellular junctions of EC cultures derived from healthy and lipedema individuals. Furthermore, the secretome of lipedema-derived SVF cells was sufficient to significantly increase leakiness of healthy human primary EC, which was also reflected by decreased mRNA expression of VE-cadherin. Here, we showed for the first time that the secretome of SVF cells creates an environment that triggers endothelial barrier dysfunction in early-stage lipedema. Moreover, since alterations in gene expression were detected on the cellular and/or tissue level, the choice of sample material is of high importance in elucidating this complex disease.
Collapse
Affiliation(s)
- Karin Strohmeier
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Martina Hofmann
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- School of Medical Engineering and Applied Social Science, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Jaroslaw Jacak
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- School of Medical Engineering and Applied Social Science, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Marie-Sophie Narzt
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Marlene Wahlmueller
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Mario Mairhofer
- Department of Hematology and Internal Oncology, Johannes Kepler University, 4020 Linz, Austria;
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Martin Barsch
- Austrian Center for Lipedema, Skin Aesthetic Vein Laser Practice, 4020 Linz, Austria; (M.B.); (M.S.)
| | - Matthias Sandhofer
- Austrian Center for Lipedema, Skin Aesthetic Vein Laser Practice, 4020 Linz, Austria; (M.B.); (M.S.)
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- Correspondence:
| |
Collapse
|
9
|
Dosunmu-Ogunbi A, Yuan S, Shiwarski DJ, Tashman JW, Reynolds M, Feinberg A, Novelli EM, Shiva S, Straub AC. Endothelial superoxide dismutase 2 is decreased in sickle cell disease and regulates fibronectin processing. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac005. [PMID: 35274104 PMCID: PMC8900267 DOI: 10.1093/function/zqac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
Sickle cell disease (SCD) is a genetic red blood cell disorder characterized by increased reactive oxygen species (ROS) and a concordant reduction in antioxidant capacity in the endothelium. Superoxide dismutase 2 (SOD2) is a mitochondrial-localized enzyme that catalyzes the dismutation of superoxide to hydrogen peroxide. Decreased peripheral blood expression of SOD2 is correlated with increased hemolysis and cardiomyopathy in SCD. Here, we report for the first time that endothelial cells exhibit reduced SOD2 protein expression in the pulmonary endothelium of SCD patients. To investigate the impact of decreased SOD2 expression in the endothelium, SOD2 was knocked down in human pulmonary microvascular endothelial cells (hPMVECs). We found that SOD2 deficiency in hPMVECs results in endothelial cell dysfunction, including reduced cellular adhesion, diminished migration, integrin protein dysregulation, and disruption of permeability. Furthermore, we uncover that SOD2 mediates changes in endothelial cell function via processing of fibronectin through its inability to facilitate dimerization. These results demonstrate that endothelial cells are deficient in SOD2 expression in SCD patients and suggest a novel pathway for SOD2 in regulating fibronectin processing.
Collapse
Affiliation(s)
- Atinuke Dosunmu-Ogunbi
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA, USA,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA, USA,Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, 15261, Pittsburgh, PA, USA
| | - Joshua W Tashman
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA, USA,Department of Biomedical Engineering, Carnegie Mellon University, 15261, Pittsburgh, PA, USA
| | - Michael Reynolds
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Adam Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, 15261, Pittsburgh, PA, USA,Department of Materials Science and Engineering, Carnegie Mellon University, 15261, Pittsburgh, PA, USA
| | - Enrico M Novelli
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA, USA,Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA, USA,Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | | |
Collapse
|
10
|
Cai P, Zheng Y, Sun Y, Zhang C, Zhang Q, Liu Q. New Blood-Brain Barrier Models Using Primary Parkinson's Disease Rat Brain Endothelial Cells and Astrocytes for the Development of Central Nervous System Drug Delivery Systems. ACS Chem Neurosci 2021; 12:3829-3837. [PMID: 34623131 DOI: 10.1021/acschemneuro.1c00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor system defects due to the loss of dopaminergic neurons. A significant contributor to the current limited therapeutic treatments for PD is the poor penetration of potential drugs through the blood-brain barrier (BBB). The BBB is a highly specialized neurovascular system that separates components of the circulating blood from neurons. There is a great need to develop in vitro BBB models that retain fundamental characteristics and reliably predict the permeability of drug candidates. BBB breakdown may initiate and/or contribute to neuronal dysfunction and loss in diseases such as PD. However, there is no in vitro BBB model that mimics the pathological state of PD. To construct in vitro BBB models for drug delivery systems in the developing central nervous system (CNS), we isolated high purity endothelial cells from both normal and PD rat brain microvessels. The primary rat endothelial cell cultures maintained the properties of their in vivo counterparts. We developed and characterized in vitro rat endothelial cell and C6 glial cell coculture BBB models. We further examined the morphological and functional integrity of the barriers. The in vitro coculture BBB models we established displayed the typical cytoarchitecture and cellular markers by immunofluorescence staining and electron microscopy, high transendothelial electrical resistance (>300 Ω cm2), and a low permeability value (<3 × 10-6 cm/s). Our new models can be used to study BBB dysfunctions in relation to the pathogenesis and progression of PD, as well as a screening tool to test candidate drugs for PD treatment.
Collapse
Affiliation(s)
- Pei Cai
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Yi Zheng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Yilin Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Cuiping Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Qi Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
- Key Laboratory of Central Nervous System Injury Research, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing 10050, China
| |
Collapse
|
11
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Challenging the Ex Vivo Lung Perfusion Procedure With Continuous Dialysis in a Pig Model. Transplantation 2021; 106:979-987. [PMID: 34468431 DOI: 10.1097/tp.0000000000003931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Normothermic ex vivo lung perfusion (EVLP) increases the pool of donor lungs by requalifying marginal lungs refused for transplantation through the recovery of macroscopic and functional properties. However the cell response and metabolism occurring during EVLP generate a nonphysiological accumulation of electrolytes, metabolites, cytokines and other cellular byproducts which may have deleterious effects both at the organ and cell levels, with impact on transplantation outcomes. METHODS We analyzed the physiological, metabolic and genome-wide response of lungs undergoing a 6-hour EVLP procedure in a pig model in 4 experimental conditions: without perfusate modification, with partial replacement of fluid, and with adult or pediatric dialysis filters. RESULTS Adult and pediatric dialysis stabilized the electrolytic and metabolic profiles while maintaining acid-base and gas exchanges. Pediatric dialysis increased the level of IL-10 and IL-6 in the perfusate. Despite leading to modification of the perfusate composition, the 4 EVLP conditions did not affect the gene expression profiles which were associated in all cases with increased cell survival, cell proliferation, inflammatory response and cell movement, and with inhibition of bleeding. CONCLUSIONS Management of EVLP perfusate by periodic replacement and continuous dialysis has no significant effect on the lung function nor on the gene expression profiles ex vivo. These results suggest that the accumulation of dialysable cell products does not significantly alter the lung cell response during EVLP, a finding that may have impact on EVLP management in the clinic.
Collapse
|
13
|
Insulin Sensitivity Is Retained in Mice with Endothelial Loss of Carcinoembryonic Antigen Cell Adhesion Molecule 1. Cells 2021; 10:cells10082093. [PMID: 34440862 PMCID: PMC8394790 DOI: 10.3390/cells10082093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
CEACAM1 regulates endothelial barrier integrity. Because insulin signaling in extrahepatic target tissues is regulated by insulin transport through the endothelium, we aimed at investigating the metabolic role of endothelial CEACAM1. To this end, we generated endothelial cell-specific Ceacam1 null mice (VECadCre+Cc1fl/fl) and carried out their metabolic phenotyping and mechanistic analysis by comparison to littermate controls. Hyperinsulinemic-euglycemic clamp analysis showed intact insulin sensitivity in VECadCre+Cc1fl/fl mice. This was associated with the absence of visceral obesity and lipolysis and normal levels of circulating non-esterified fatty acids, leptin, and adiponectin. Whereas the loss of endothelial Ceacam1 did not affect insulin-stimulated receptor phosphorylation, it reduced IRS-1/Akt/eNOS activation to lower nitric oxide production resulting from limited SHP2 sequestration. It also reduced Shc sequestration to activate NF-κB and increase the transcription of matrix metalloproteases, ultimately inducing plasma IL-6 and TNFα levels. Loss of endothelial Ceacam1 also induced the expression of the anti-inflammatory CEACAM1-4L variant in M2 macrophages in white adipose tissue. Together, this could cause endothelial barrier dysfunction and facilitate insulin transport, sustaining normal glucose homeostasis and retaining fat accumulation in adipocytes. The data assign a significant role for endothelial cell CEACAM1 in maintaining insulin sensitivity in peripheral extrahepatic target tissues.
Collapse
|
14
|
Hoevenaar M, Goossens D, Roorda J. Angiotensin-converting enzyme 2, the complement system, the kallikrein-kinin system, type-2 diabetes, interleukin-6, and their interactions regarding the complex COVID-19 pathophysiological crossroads. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320979097. [PMID: 33283602 PMCID: PMC7724427 DOI: 10.1177/1470320320979097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Because of the current COVID-19-pandemic, the world is currently being held hostage in various lockdowns. ACE2 facilitates SARS-CoV-2 cell-entry, and is at the very center of several pathophysiological pathways regarding the RAAS, CS, KKS, T2DM, and IL-6. Their interactions with severe COVID-19 complications (e.g. ARDS and thrombosis), and potential therapeutic targets for pharmacological intervention, will be reviewed.
Collapse
Affiliation(s)
| | | | - Janne Roorda
- Medical Doctor, General Practice
van Dijk, Oisterwijk, The Netherlands
| |
Collapse
|
15
|
Simon F, Guyot L, Garcia J, Vilchez G, Bardel C, Chenel M, Tod M, Payen L. Impact of interleukin‐6 on drug transporters and permeability in the hCMEC/D3 blood–brain barrier model. Fundam Clin Pharmacol 2020; 35:397-409. [DOI: 10.1111/fcp.12596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Florian Simon
- EA3738 Faculté de médecine de Lyon‐Sud Université de Lyon 1 165 chemin du Grand Revoyet, Faculté de médecine et maïeutique Oullins France69921France
- Laboratoire de Biochimie‐Toxicologie Centre Hospitalier Lyon‐Sud Hospices civils de Lyon 165 chemin du Grand Revoyet Pierre‐Bénite France69310France
- Institut de Recherches Internationales Servier Direction of Clinical PK and Pharmacometrics 50 rue Carnot Suresnes92150France
| | - Laetitia Guyot
- Laboratoire de Biochimie‐Toxicologie Centre Hospitalier Lyon‐Sud Hospices civils de Lyon 165 chemin du Grand Revoyet Pierre‐Bénite France69310France
| | - Jessica Garcia
- Laboratoire de Biochimie‐Toxicologie Centre Hospitalier Lyon‐Sud Hospices civils de Lyon 165 chemin du Grand Revoyet Pierre‐Bénite France69310France
| | - Gaelle Vilchez
- Hospices Civils de Lyon Department of Biostatistics 162 avenue Lacassagne Lyon69424France
| | - Claire Bardel
- Hospices Civils de Lyon Department of Biostatistics 162 avenue Lacassagne Lyon69424France
| | - Marylore Chenel
- Institut de Recherches Internationales Servier Direction of Clinical PK and Pharmacometrics 50 rue Carnot Suresnes92150France
| | - Michel Tod
- EA3738 Faculté de médecine de Lyon‐Sud Université de Lyon 1 165 chemin du Grand Revoyet, Faculté de médecine et maïeutique Oullins France69921France
| | - Léa Payen
- Laboratoire de Biochimie‐Toxicologie Centre Hospitalier Lyon‐Sud Hospices civils de Lyon 165 chemin du Grand Revoyet Pierre‐Bénite France69310France
| |
Collapse
|
16
|
Murati T, Miletić M, Pleadin J, Šimić B, Kmetič I. Cell membrane-related toxic responses and disruption of intercellular communication in PCB mechanisms of toxicity: A review. J Appl Toxicol 2020; 40:1592-1601. [PMID: 32648282 DOI: 10.1002/jat.4019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
An understanding of polychlorinated biphenyl (PCB) congener-specific effects on cell membrane and intercellular communication is important within the studies of PCB absorption, organ-related PCB accumulation and exertion of toxic responses. Toxic potential of PCBs is linked to various deleterious effects on human health, including neurotoxicity, immunotoxicity, reproductive toxicity and genotoxicity and, recently in 2016 International Agency for Research on Cancer (IARC) has upgraded the classification of PCBs to Group 1 "Carcinogenic to humans." Proposed mechanisms of aforementioned PCBs adverse effects at cellular membrane level are: (i) downregulation of gap junction intercellular communication and/or connexins; (ii) compromised membrane integrity; and (iii) altered tight junction barrier function. This study, based on an extensive literature survey, shows the progress in scientific research of each of these three levels with the aim of pointing out the earliest toxic events of PCBs, which can result in serious cell/tissue/organ damage.
Collapse
Affiliation(s)
- Teuta Murati
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Marina Miletić
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Jelka Pleadin
- Laboratory for Analytical Chemistry, Department of Veterinary Public Health, Croatian Veterinary Institute, Zagreb, Croatia
| | - Branimir Šimić
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Ivana Kmetič
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
17
|
Ma T, Zhou Y, Xia Y, Meng X, Jin H, Wang B, Chen Y, Qiu J, Wu J, Ding J, Han X, Li D. Maternal Exposure to Di- n-butyl Phthalate Promotes the Formation of Testicular Tight Junctions through Downregulation of NF-κB/COX-2/PGE 2/MMP-2 in Mouse Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8245-8258. [PMID: 32525310 DOI: 10.1021/acs.est.0c01701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previous studies demonstrated that maternal exposure to di-n-butyl phthalate (DBP) resulted in developmental disorder of the male reproductive organ; however, the underlying mechanism has not been thoroughly elucidated to date. The present study was aimed to investigate the effects of maternal exposure to DBP on the formation of the Sertoli cell (SC)-based tight junctions (TJs) in the testes of male offspring mice and the underlying molecular mechanism. By observing the pathological structure and ultrastructure, permeability analysis of the testis of 22 day male offspring in vivo, and transepithelial electrical resistance measurement of inter-SCs in vitro, we found that the formation of TJs between SCs in offspring mice was accelerated, which was paralleled by the accumulation of TJ protein occludin at 50 mg/kg/day DBP exposure in utero and 0.1 mM monobutyl phthalate (MBP, the active metabolite of DBP) in vitro. Our in vitro results demonstrated that 0.1 mM MBP downregulated the expression of matrix metalloproteinase-2 (MMP-2) by inhibiting the activation of nuclear factor-κB (NF-κB)/cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) cascades via attenuated binding of NF-κB to both the MMP-2 promoter and COX-2 promoter. Taken together, the data confirmed that maternal exposure to a relatively low dose of DBP promoted the formation of testicular TJs through downregulation of NF-κB/COX-2/PGE2/MMP-2, which might promote the development of the testis during puberty. Our findings may provide new perspectives for prenatal DBP exposure, which is a potential environmental contributor, leading to earlier puberty in male offspring mice.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Bo Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yusheng Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiayin Qiu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
18
|
Matrix Metalloproteinases Expressed in Response to Bacterial Vaginosis Disrupt the Endocervical Epithelium, Increasing Transmigration of HIV. Infect Immun 2020; 88:IAI.00041-20. [PMID: 32094253 DOI: 10.1128/iai.00041-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial vaginosis (BV), a disorder of the female reproductive tract (FRT) in which a healthy Lactobacillus-dominant microflora is replaced by BV-associated bacteria (BVAB), can significantly increase the incidence of human immunodeficiency virus (HIV) acquisition. Discerning the effect of BV on the mucosal epithelium of the FRT may yield novel preventatives and therapeutics for HIV infection. Here, we investigated barrier dysfunction of the endocervix by host-derived factors, secreted in response to BV, as a potential cause of HIV infection. Using a polarized endocervical cell culture system, we determined that conditioned media (CM) from endocervical cells cocultured with BVAB (endocervical+BVAB CM), as well as cervicovaginal fluid (CVF) from women with BV, disrupted epithelial polarization. We assessed host matrix metalloproteinases (MMPs) as the BV-associated secreted factors which disrupt the endocervical epithelium. MMPs were overexpressed in endocervical+BVAB CM and CVF from women with BV and were capable of disrupting endocervical epithelial polarization. When we cocultured polarized endocervical cells with HIV-1-infected lymphocyte-derived cells, we discovered endocervical+BVAB CM and MMPs significantly increased the transmigration of virus through the epithelium, and treatment with an MMP inhibitor decreased these effects. When we examined the effect of CVF on HIV-1 transmigration through endocervical epithelium, we demonstrated that CVF samples with greater concentrations of BV-associated MMPs increased viral transmigration. Our results suggest MMPs increase HIV-1 infection by disrupting the endocervical epithelium, permitting transmigration of virus through the epithelium to infect underlying target cells.
Collapse
|
19
|
Bersini S, Arrojo E Drigo R, Huang L, Shokhirev MN, Hetzer MW. Transcriptional and Functional Changes of the Human Microvasculature during Physiological Aging and Alzheimer Disease. ACTA ACUST UNITED AC 2020; 4:e2000044. [PMID: 32402127 DOI: 10.1002/adbi.202000044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022]
Abstract
Aging of the circulatory system correlates with the pathogenesis of a large spectrum of diseases. However, it is largely unknown which factors drive the age-dependent or pathological decline of the vasculature and how vascular defects relate to tissue aging. The goal of the study is to design a multianalytical approach to identify how the cellular microenvironment (i.e., fibroblasts) and serum from healthy donors of different ages or Alzheimer disease (AD) patients can modulate the functionality of organ-specific vascular endothelial cells (VECs). Long-living human microvascular networks embedding VECs and fibroblasts from skin biopsies are generated. RNA-seq, secretome analyses, and microfluidic assays demonstrate that fibroblasts from young donors restore the functionality of aged endothelial cells, an effect also achieved by serum from young donors. New biomarkers of vascular aging are validated in human biopsies and it is shown that young serum induces angiopoietin-like-4, which can restore compromised vascular barriers. This strategy is then employed to characterize transcriptional/functional changes induced on the blood-brain barrier by AD serum, demonstrating the importance of PTP4A3 in the regulation of permeability. Features of vascular degeneration during aging and AD are recapitulated, and a tool to identify novel biomarkers that can be exploited to develop future therapeutics modulating vascular function is established.
Collapse
Affiliation(s)
- Simone Bersini
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Paul F. Glenn Center for Biology of Aging Research at The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rafael Arrojo E Drigo
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics Core (IGC), The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Maxim N Shokhirev
- The Razavi Newman Integrative Genomics and Bioinformatics Core (IGC), The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
20
|
Liu Y, Deng W, Yang L, Fu X, Wang Z, van Rijn P, Zhou Q, Yu T. Biointerface topography mediates the interplay between endothelial cells and monocytes. RSC Adv 2020; 10:13848-13854. [PMID: 35492981 PMCID: PMC9051607 DOI: 10.1039/d0ra00704h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/28/2020] [Indexed: 11/21/2022] Open
Abstract
Endothelial cell (EC) monolayers located in the inner lining of blood vessels serve as a semipermeable barrier between circulating blood and surrounding tissues. The structure and function of the EC monolayer affect the recruitment and adhesion of monocytes, which plays a pivotal role in the development of inflammation and atherosclerosis. Here we investigate the effect of material wrinkled topographies on the responses of human umbilical vein endothelial cells (HUVECs) and adhesion of monocytes to HUVECs. It is found that HUVEC responses are non-linearly mediated by surface topographies with different dimensions. Specifically, more cell elongation and better cell orientation on the wrinkled surface with a 3.5 μm amplitude and 10 μm wavelength (W10) are observed compared to other surfaces. The proliferation rate of HUVECs on the W10 surface is higher than that on other surfaces due to more 5-ethynyl-2′-deoxyuridine (EdU) detected on the W10 surface. Also, greater expression of inflammatory cytokines from HUVECs and adhesion of monocytes to HUVECs on the W10 surface is shown than other surfaces due to greater expression of p-AKT and ICAM, respectively. This study offers a new in vitro system to understand the interplay between HUVEC monolayers and monocytes mediated by aligned topographies, which may be useful for vascular repair and disease modeling for drug testing. This study offers a new in vitro system to understand the interplay between HUVEC monolayer and monocytes mediated by aligned topographies, which may be useful for vascular repair and disease modeling for drug testing.![]()
Collapse
Affiliation(s)
- Yan Liu
- Institute for Translational Medicine
- School of Basic Medicine
- Qingdao University
- Qingdao
- China
| | - Wenshuai Deng
- Department of Neurosurgery
- The Affiliated Hospital of Qingdao University
- Qingdao 266003
- China
| | - Liangliang Yang
- University of Groningen
- W. J. Kolff Institute for Biomedical Engineering and Materials Science
- Department of Biomedical Engineering
- University Medical Center Groningen
- Groningen
| | - Xiuxiu Fu
- Department of Echocardiography
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Zhibin Wang
- Department of Echocardiography
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Patrick van Rijn
- University of Groningen
- W. J. Kolff Institute for Biomedical Engineering and Materials Science
- Department of Biomedical Engineering
- University Medical Center Groningen
- Groningen
| | - Qihui Zhou
- Institute for Translational Medicine
- School of Basic Medicine
- Qingdao University
- Qingdao
- China
| | - Tao Yu
- Institute for Translational Medicine
- School of Basic Medicine
- Qingdao University
- Qingdao
- China
| |
Collapse
|
21
|
Hatano H, Goda T, Matsumoto A, Miyahara Y. Induced Proton Dynamics on Semiconductor Surfaces for Sensing Tight Junction Formation Enhanced by an Extracellular Matrix and Drug. ACS Sens 2019; 4:3195-3202. [PMID: 31763825 DOI: 10.1021/acssensors.9b01635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the fields of tissue engineering and drug discovery, confirming the formation and maturation of epithelial cell tight junctions (TJs), which are necessary for blocking pathogenic invasion and absorption of nutrients and ions, at a high spatiotemporal resolution is essential. We previously developed a system of monitoring pH perturbation induced by weak acid exposure to cells cultured on an ion-sensitive field-effect transistor that enables a sensitive and specific detection of biomembrane injuries and TJ breakdowns caused by external stimuli such as nanomaterials and cytotoxins. In this study, we monitor time-lapse changes in the paracellular diffusion of growing epithelial cell monolayers using the pH perturbation assay as well as conventional permeability and trans-epithelial electrical resistance assays. The effects of the extracellular matrix and a TJ potentiator (KN-93) on epithelial TJ formation are evaluated. TJ formations were promoted on the substrate coated with Matrigel more than on the one coated with poly(l-lysine). KN-93 accelerated TJ formations in a dose-dependent manner. The pH perturbation assay denoted a longer incubation time for the completion of TJ formation compared with the conventional assays under the same conditions. Importantly, the pH perturbation assay is able to rigorously evaluate TJ formation, as the assay uses protons as the smallest indicator for detecting paracellular gaps, and the pH perturbation is specific to TJ alterations. These features for in vitro TJ evaluation using proton dynamics are advantageous for applications in tissue engineering and drug development.
Collapse
Affiliation(s)
- Hiroaki Hatano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
- Nano Innovation Institute, Inner Mongolia University for Nationalities, No. 22 Huoline Street, Tongliao, Inner Mongolia 028000, P. R. China
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
22
|
Patel MM, Behar AR, Silasi R, Regmi G, Sansam CL, Keshari RS, Lupu F, Lupu C. Role of ADTRP (Androgen-Dependent Tissue Factor Pathway Inhibitor Regulating Protein) in Vascular Development and Function. J Am Heart Assoc 2019; 7:e010690. [PMID: 30571485 PMCID: PMC6404433 DOI: 10.1161/jaha.118.010690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The physiological function of ADTRP (androgen‐dependent tissue factor pathway inhibitor regulating protein) is unknown. We previously identified ADTRP as coregulating with and supporting the anticoagulant activity of tissue factor pathway inhibitor in endothelial cells in vitro. Here, we studied the role of ADTRP in vivo, specifically related to vascular development, stability, and function. Methods and Results Genetic inhibition of Adtrp produced vascular malformations in the low‐pressure vasculature of zebrafish embryos and newborn mice: dilation/tortuosity, perivascular inflammation, extravascular proteolysis, increased permeability, and microhemorrhages, which produced partially penetrant lethality. Vascular leakiness correlated with decreased endothelial cell junction components VE‐cadherin and claudin‐5. Changes in hemostasis in young adults comprised modest decrease of tissue factor pathway inhibitor antigen and activity and increased tail bleeding time and volume. Cell‐based reporter assays revealed that ADTRP negatively regulates canonical Wnt signaling, affecting membrane events downstream of low‐density lipoprotein receptor‐related protein 6 (LRP6) and upstream of glycogen synthase kinase 3 beta. ADTRP deficiency increased aberrant/ectopic Wnt/β‐catenin signaling in vivo in newborn mice and zebrafish embryos, and upregulated matrix metallopeptidase (MMP)‐9 in endothelial cells and mast cells (MCs). Vascular lesions in newborn Adtrp−/− pups displayed accumulation of MCs, decreased extracellular matrix content, and deficient perivascular cell coverage. Wnt‐pathway inhibition reversed the increased mmp9 in zebrafish embryos, demonstrating that mmp9 expression induced by Adtrp deficiency was downstream of canonical Wnt signaling. Conclusions Our studies demonstrate that ADTRP plays a major role in vascular development and function, most likely through expression in endothelial cells and/or perivascular cells of Wnt‐regulated genes that control vascular stability and integrity.
Collapse
Affiliation(s)
- Maulin M Patel
- 1 Cardiovascular Biology Research Program Oklahoma Medical Research Foundation Oklahoma City OK.,3 Department of Cell Biology University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Amanda R Behar
- 1 Cardiovascular Biology Research Program Oklahoma Medical Research Foundation Oklahoma City OK
| | - Robert Silasi
- 1 Cardiovascular Biology Research Program Oklahoma Medical Research Foundation Oklahoma City OK
| | - Girija Regmi
- 1 Cardiovascular Biology Research Program Oklahoma Medical Research Foundation Oklahoma City OK
| | - Christopher L Sansam
- 2 Cell Cycle & Cancer Biology Research Program Oklahoma Medical Research Foundation Oklahoma City OK
| | - Ravi S Keshari
- 1 Cardiovascular Biology Research Program Oklahoma Medical Research Foundation Oklahoma City OK
| | - Florea Lupu
- 1 Cardiovascular Biology Research Program Oklahoma Medical Research Foundation Oklahoma City OK.,3 Department of Cell Biology University of Oklahoma Health Sciences Center Oklahoma City OK.,4 Department of Pathology University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Cristina Lupu
- 1 Cardiovascular Biology Research Program Oklahoma Medical Research Foundation Oklahoma City OK
| |
Collapse
|
23
|
Qin W, Li J, Zhu R, Gao S, Fan J, Xia M, Zhao RC, Zhang J. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway. Aging (Albany NY) 2019; 11:11391-11415. [PMID: 31811815 PMCID: PMC6932927 DOI: 10.18632/aging.102537] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/19/2019] [Indexed: 05/13/2023]
Abstract
The pathophysiological mechanism of white matter hyperintensities of cerebral small vessel disease (CSVD) includes an impaired blood-brain barrier (BBB) with increased permeability. Neuroinflammation likely contributes to the disruption of the BBB in CSVD. Therefore, understanding the molecular mechanism of how neuroinflammation causes BBB damage is essential to preventing BBB disruption in CSVD. Matrix metalloproteinase 9 (MMP-9) contributes to BBB damage in neuroinflammatory diseases. In this study, we observed that interleukin-1β (IL-1β)-induced MMP-9 secretion in pericytes increased BBB permeability to sodium fluorescein (Na-F) by damaging the disruption of VE-cadherin, occludin, claudin-5, and zonula occludin-1 (ZO-1). Melatonin reduced BBB permeability to Na-F and inhibited the disruption of the adherens and tight junction proteins. Melatonin also downregulated MMP-9 and upregulated tissue inhibitor of metalloproteinases 1 (TIMP-1) gene expression, which decreased the MMP-9/TIMP-1 ratio. In addition, nuclear translocation of NF-κB/p65 induced by IL-1β in pericytes upregulated MMP-9 expression, which was inhibited by the NF-κB inhibitor PDTC. However, the NOTCH3 inhibitor DAPT significantly inhibited NF-κB/p65 translocation to the nucleus, while melatonin in combination with DAPT significantly prevented NF-κB/p65 translocation than DAPT alone. Our results suggest that melatonin reduced MMP-9-induced permeability of the BBB. Melatonin reduced MMP-9 expression and activity, which was induced by IL-1β through the regulation of the NOTCH3/NF-κB signaling pathway in pericytes, suggesting that pericytes regulate BBB integrity and function.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Rongjia Zhu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Suhua Gao
- Department of Scientific Research and Discipline Construction, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Junfen Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Mingrong Xia
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Jiewen Zhang
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
The potential of hypericin and hyperforin for antiadhesion therapy to prevent metastasis of parental and oxaliplatin-resistant human adenocarcinoma cells (HT-29). Anticancer Drugs 2019; 29:983-994. [PMID: 30063472 DOI: 10.1097/cad.0000000000000676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer cells disseminate to other parts of the body during metastasis through the process of intravasation. The hypericin and hyperforin effect has been described to understand the signal mechanisms that stimulate or stunt cancer cell sprouting to metastasis on colon adenocarcinoma cells HT-29 and its resistant form HT-29-OxR. We focused on the key points of adhesion proteins (cadherin, integrin, selectin and syndecan) and also proteins participating in or contributing to the process of cancer cell migration and adhesion through genes expression and proteins levels. Treatment effects were identified as a consequence of decreased cell adhesion, changes of expression in the adhesive proteins as well as basal membrane degradation associated with changes in the expression of matrix proteinases and in their activity. Finally, the cells affected by hypericin or hyperforin were evaluated by monitoring the cancer cell adhesion properties and proliferation processes. Supplementary Fig. (Supplemental digital content 1, http://links.lww.com/ACD/A267).
Collapse
|
25
|
Khaiboullina S, Uppal T, Kletenkov K, St Jeor SC, Garanina E, Rizvanov A, Verma SC. Transcriptome Profiling Reveals Pro-Inflammatory Cytokines and Matrix Metalloproteinase Activation in Zika Virus Infected Human Umbilical Vein Endothelial Cells. Front Pharmacol 2019; 10:642. [PMID: 31249527 PMCID: PMC6582368 DOI: 10.3389/fphar.2019.00642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
The deformities in the newborns infected with Zika virus (ZIKV) present a new potential public health threat to the worldwide community. Although ZIKV infection is mainly asymptomatic in healthy adults, infection during pregnancy can cause microcephaly and other severe brain defects and potentially death of the fetus. The detailed mechanism of ZIKV-associated damage is still largely unknown; however, it is apparent that the virus crosses the placental barrier to reach the fetus. Endothelial cells are the key structural component of the placental barrier. Endothelium integrity as semi-permeable barrier is essential to control the molecules and leukocytes trafficking across the placenta. Damaged endothelium or disruption of adherens junctions could compromise endothelial barrier integrity causing leakage and inflammation. Endothelial cells are often targeted by viruses, including the members of the Flaviviridae family such as dengue virus (DENV) and West Nile virus (WNV); however, little is known about the effects of ZIKV infection of endothelial cell functions. Our transcriptomic data have demonstrated that the large number of cytokines is affected in ZIKV-infected endothelial cells, where significant changes in 13 and 11 cytokines were identified in cells infected with PRVABC59 and IBH30656 ZIKV strains, respectively. Importantly, these cytokines include chemokines attracting mononuclear leukocytes (monocytes and lymphocytes) as well as neutrophils. Additionally, changes in matrix metalloproteinase (MMPs) were detected in ZIKV-infected cells. Furthermore, we for the first time showed that ZIKV infection of human umbilical vein endothelial cells (HUVECs) increases endothelial permeability. We reason that increased endothelial permeability was due to apoptosis of endothelial cells caused by caspase-8 activation in ZIKV-infected cells.
Collapse
Affiliation(s)
- Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| | - Konstatin Kletenkov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Stephen Charles St Jeor
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States.,Genequest LLC, Reno, NV, United States
| | - Ekaterina Garanina
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
26
|
Gao S, Wake H, Gao Y, Wang D, Mori S, Liu K, Teshigawara K, Takahashi H, Nishibori M. Histidine-rich glycoprotein ameliorates endothelial barrier dysfunction through regulation of NF-κB and MAPK signal pathway. Br J Pharmacol 2019; 176:2808-2824. [PMID: 31093964 PMCID: PMC6609555 DOI: 10.1111/bph.14711] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022] Open
Abstract
Background and Purpose Microvascular barrier breakdown is a hallmark of sepsis that is associated with sepsis‐induced multiorgan failure. Histidine‐rich glycoprotein (HRG) is a 75‐kDa plasma protein that was demonstrated to improve the survival of septic mice through regulation of cell shape, spontaneous ROS production in neutrophils, and adhesion of neutrophils to vascular endothelial cells. We investigated HRG's role in the LPS/TNF‐α‐induced barrier dysfunction of endothelial cells in vitro and in vivo and the possible mechanism, to clarify the definitive roles of HRG in sepsis. Experimental Approach EA.hy 926 endothelial cells were pretreated with HRG or human serum albumin before stimulation with LPS/TNF‐α. A variety of biochemical assays were applied to explore the underlying molecular mechanisms on how HRG protected the barrier function of vascular endothelium. Key Results Immunostaining results showed that HRG maintains the endothelial monolayer integrity by inhibiting cytoskeleton reorganization, losses of VE‐cadherin and β‐catenin, focal adhesion kinase degradation, and cell detachment induced by LPS/TNF‐α. HRG also inhibited the cytokine secretion from endothelial cells induced by LPS/TNF‐α, which was associated with reduced NF‐κB activation. Moreover, HRG effectively prevented the LPS/TNF‐α‐induced increase in capillary permeability in vitro and in vivo. Finally, Western blot results demonstrated that HRG prevented the phosphorylation of MAPK family and RhoA activation, which are involved mainly in the regulation of cytoskeleton reorganization and barrier permeability. Conclusions and Implications Taken together, our results demonstrate that HRG has protective effects on vascular barrier function in vitro and in vivo, which may be due to the inhibition of MAPK family and Rho activation.
Collapse
Affiliation(s)
- Shangze Gao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuan Gao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
27
|
Fernández-Hernando C, Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr Opin Hematol 2019; 25:227-236. [PMID: 29547400 DOI: 10.1097/moh.0000000000000424] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Since the first discovery of microRNAs (miRNAs) in 1993, the involvement of miRNAs in different aspects of vascular disease has emerged as an important research field. In this review, we summarize the fundamental roles of miRNAs in controlling endothelial cell functions and their implication with several aspects of vascular dysfunction. RECENT FINDINGS MiRNAs have been found to be critical modulators of endothelial homeostasis. The dysregulation of miRNAs has been linked to endothelial dysfunction and the development and progression of vascular disease which and open new opportunities of using miRNAs as potential therapeutic targets for vascular disease. SUMMARY Further determination of miRNA regulatory circuits and defining miRNAs-specific target genes remains key to future miRNA-based therapeutic applications toward vascular disease prevention. Many new and unanticipated roles of miRNAs in the control of endothelial functions will assist clinicians and researchers in developing potential therapeutic applications.
Collapse
Affiliation(s)
- Carlos Fernández-Hernando
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
28
|
Bennett C, Mohammed F, Álvarez-Ciara A, Nguyen MA, Dietrich WD, Rajguru SM, Streit WJ, Prasad A. Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the effect of deferoxamine as an iron chelator on acute foreign body response. Biomaterials 2019; 188:144-159. [PMID: 30343257 PMCID: PMC6300159 DOI: 10.1016/j.biomaterials.2018.09.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Abstract
The use of intracortical microelectrode arrays has gained significant attention in being able to help restore function in paralysis patients and study the brain in various neurological disorders. Electrode implantation in the cortex causes vasculature or blood-brain barrier (BBB) disruption and thus elicits a foreign body response (FBR) that results in chronic inflammation and may lead to poor electrode performance. In this study, a comprehensive insight into the acute molecular mechanisms occurring at the Utah electrode array-tissue interface is provided to understand the oxidative stress, neuroinflammation, and neurovascular unit (astrocytes, pericytes, and endothelial cells) disruption that occurs following microelectrode implantation. Quantitative real time polymerase chain reaction (qRT-PCR) was used to quantify the gene expression at acute time-points of 48-hr, 72-hr, and 7-days for factors mediating oxidative stress, inflammation, and BBB disruption in rats implanted with a non-functional 4 × 4 Utah array in the somatosensory cortex. During vascular disruption, free iron released into the brain parenchyma can exacerbate the FBR, leading to oxidative stress and thus further contributing to BBB degradation. To reduce the free iron released into the brain tissue, the effects of an iron chelator, deferoxamine mesylate (DFX), was also evaluated.
Collapse
Affiliation(s)
- Cassie Bennett
- Department of Biomedical Engineering, University of Miami, FL, USA
| | - Farrah Mohammed
- Department of Biomedical Engineering, University of Miami, FL, USA
| | | | | | | | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, FL, USA
| | | | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, FL, USA.
| |
Collapse
|
29
|
Xu FF, Zhang ZB, Wang YY, Wang TH. Brain-Derived Glia Maturation Factor β Participates in Lung Injury Induced by Acute Cerebral Ischemia by Increasing ROS in Endothelial Cells. Neurosci Bull 2018; 34:1077-1090. [PMID: 30191459 PMCID: PMC6246848 DOI: 10.1007/s12264-018-0283-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/03/2018] [Indexed: 02/05/2023] Open
Abstract
Brain damage can cause lung injury. To explore the mechanism underlying the lung injury induced by acute cerebral ischemia (ACI), we established a middle cerebral artery occlusion (MCAO) model in male Sprague-Dawley rats. We focused on glia maturation factor β (GMFB) based on quantitative analysis of the global rat serum proteome. Polymerase chain reaction, western blotting, and immunofluorescence revealed that GMFB was over-expressed in astrocytes in the brains of rats subjected to MCAO. We cultured rat primary astrocytes and confirmed that GMFB was also up-regulated in primary astrocytes after oxygen-glucose deprivation (OGD). We subjected the primary astrocytes to Gmfb RNA interference before OGD and collected the conditioned medium (CM) after OGD. We then used the CM to culture pulmonary microvascular endothelial cells (PMVECs) acquired in advance and assessed their status. The viability of the PMVECs improved significantly when Gmfb was blocked. Moreover, ELISA assays revealed an elevation in GMFB concentration in the medium after OGD. Cell cultures containing recombinant GMFB showed increased levels of reactive oxygen species and a deterioration in the state of the cells. In conclusion, GMFB is up-regulated in astrocytes after ACI, and brain-derived GMFB damages PMVECs by increasing reactive oxygen species. GMFB might thus be an initiator of the lung injury induced by ACI.
Collapse
Affiliation(s)
- Fei-Fei Xu
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zi-Bin Zhang
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang-Yang Wang
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Wang L, Mehta S, Ahmed Y, Wallace S, Pape MC, Gill SE. Differential Mechanisms of Septic Human Pulmonary Microvascular Endothelial Cell Barrier Dysfunction Depending on the Presence of Neutrophils. Front Immunol 2018; 9:1743. [PMID: 30116240 PMCID: PMC6082932 DOI: 10.3389/fimmu.2018.01743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 07/16/2018] [Indexed: 01/06/2023] Open
Abstract
Sepsis is characterized by injury of pulmonary microvascular endothelial cells (PMVEC) leading to barrier dysfunction. Multiple mechanisms promote septic PMVEC barrier dysfunction, including interaction with circulating leukocytes and PMVEC apoptotic death. Our previous work demonstrated a strong correlation between septic neutrophil (PMN)-dependent PMVEC apoptosis and pulmonary microvascular albumin leak in septic mice in vivo; however, this remains uncertain in human PMVEC. Thus, we hypothesize that human PMVEC apoptosis is required for loss of PMVEC barrier function under septic conditions in vitro. To assess this hypothesis, human PMVECs cultured alone or in coculture with PMN were stimulated with PBS or cytomix (equimolar interferon γ, tumor necrosis factor α, and interleukin 1β) in the absence or presence of a pan-caspase inhibitor, Q-VD, or specific caspase inhibitors. PMVEC barrier function was assessed by transendothelial electrical resistance (TEER), as well as fluoroisothiocyanate-labeled dextran and Evans blue-labeled albumin flux across PMVEC monolayers. PMVEC apoptosis was identified by (1) loss of cell membrane polarity (Annexin V), (2) caspase activation (FLICA), and (3) DNA fragmentation [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)]. Septic stimulation of human PMVECs cultured alone resulted in loss of barrier function (decreased TEER and increased macromolecular flux) associated with increased apoptosis (increased Annexin V, FLICA, and TUNEL staining). In addition, treatment of septic PMVEC cultured alone with Q-VD decreased PMVEC apoptosis and prevented septic PMVEC barrier dysfunction. In septic PMN-PMVEC cocultures, there was greater trans-PMVEC macromolecular flux (both dextran and albumin) vs. PMVEC cultured alone. PMN presence also augmented septic PMVEC caspase activation (FLICA staining) vs. PMVEC cultured alone but did not affect septic PMVEC apoptosis. Importantly, pan-caspase inhibition (Q-VD treatment) completely attenuated septic PMN-dependent PMVEC barrier dysfunction. Moreover, inhibition of caspase 3, 8, or 9 in PMN-PMVEC cocultures also reduced septic PMVEC barrier dysfunction whereas inhibition of caspase 1 had no effect. Our data demonstrate that human PMVEC barrier dysfunction under septic conditions in vitro (cytomix stimulation) is clearly caspase-dependent, but the mechanism differs depending on the presence of PMN. In isolated PMVEC, apoptosis contributes to septic barrier dysfunction, whereas PMN presence enhances caspase-dependent septic PMVEC barrier dysfunction independently of PMVEC apoptosis.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada
| | - Yousuf Ahmed
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Shelby Wallace
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - M Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
31
|
Khamisabadi A, Tahmasbpour E, Ghanei M, Shahriary A. Roles of matrix metalloproteinases (MMPs) in SM-induced pathologies. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1477163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ali Khamisabadi
- Faculty of Veterinary Medicine, Tabriz University, Tabriz, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Aryal B, Suárez Y. Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis. Vascul Pharmacol 2018; 114:64-75. [PMID: 29551552 DOI: 10.1016/j.vph.2018.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 12/16/2022]
Abstract
The endothelial lining can be viewed as the first line of defense against risk factors of vascular disease. Endothelial dysfunction is regarded as an initial event for atherogenesis since defects in vascular integrity and homeostasis are responsible for lipid infiltration and recruitment of monocytes into the vessel wall. Monocytes-turned-macrophages, which possess astounding inflammatory plasticity, perpetuate chronic inflammation and growth of atherosclerotic plaques and, are therefore central for the pathogenesis of atherosclerosis. Because endothelial cells and macrophages are key players during atherogenesis, it is crucial to understand the regulation of their functions in order to develop strategies to intervene disease progression. Interestingly, non-coding RNAs (ncRNAs), broad class of RNA molecules that do not code for proteins, are capable of reprogramming multiple cell functions and, thus, can be used as target agents. MicroRNAs are small ncRNAs whose roles in the regulation of vascular functions and development of atherosclerosis through post-transcriptional manipulation of gene expression have been widely explored. Recently, other ncRNAs including long noncoding RNAs (lncRNAs) have also emerged as potential regulators of these functions. However, given their poor-genetic conservation between species, much work will be needed to elucidate the specific role of lncRNAs in vascular biology. This review aims to provide a comprehensive perspective of ncRNA, mostly focusing in lncRNAs, mechanism of action and relevance in regulating lipid metabolism-independent endothelial and macrophages functions in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA..
| |
Collapse
|
33
|
Chen Y, Wang J, Pan C, Li D, Han X. Microcystin-leucine-arginine causes blood-testis barrier disruption and degradation of occludin mediated by matrix metalloproteinase-8. Cell Mol Life Sci 2018; 75:1117-1132. [PMID: 29071384 PMCID: PMC11105681 DOI: 10.1007/s00018-017-2687-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/10/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) can cause male reproductive disorders. However, the underlying mechanisms are not yet fully understood. In this study, we aimed to investigate the effects of MC-LR on the integrity of blood-testis barrier (BTB) and the related molecular mechanisms. Both transepithelial electrical resistance measurement in vitro and electron microscope observation ex vivo revealed that MC-LR caused disruption of the tight junction between Sertoli cells, which was paralleled by the degradation of occludin. We observed increased expression of matrix metalloproteinase-8 (MMP-8) upon exposure to MC-LR, and confirmed that abrogation of MMP-8 activity by specific inhibitors as well as transfection with MMP-8 shRNA could abolish the degradation of occludin. Our data demonstrated that MC-LR up-regulated nuclear levels of c-Fos and c-Jun through activating ERK and JNK, and increased NF-κB levels by activating the phosphatidylinositol 3-kinase (PI3K)/AKT cascades. Enhanced binding of c-Fos and NF-κB to the promoter of MMP-8 promoted the transcription of MMP-8 gene. Furthermore, miR-184-3p was significantly downregulated in SC following exposure to MC-LR through targeting MMP-8 expression. Together, these results confirmed that MC-LR-induced MMP-8 expression was regulated at both transcriptional and post-transcriptional levels, which was involved in MC-LR-induced degradation of occludin and BTB destruction. This work may provide new perspectives in developing new diagnosis and treatment strategies for MC-induced male infertility.
Collapse
Affiliation(s)
- Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
34
|
Bennett C, Samikkannu M, Mohammed F, Dietrich WD, Rajguru SM, Prasad A. Blood brain barrier (BBB)-disruption in intracortical silicon microelectrode implants. Biomaterials 2018; 164:1-10. [PMID: 29477707 DOI: 10.1016/j.biomaterials.2018.02.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 12/16/2022]
Abstract
Chronically implanted microelectrodes in the neural tissue elicit inflammatory responses that are time varying and have been shown to depend on multiple factors. Among these factors, blood brain barrier (BBB)-disruption has been hypothesized as one of the dominant factors resulting in electrode failure. A series of events that includes BBB and cell-membrane disruption occurs during electrode implantation that triggers multiple biochemical cascades responsible for microglial and astroglial activation, hemorrhage, edema, and release of pro-inflammatory neurotoxic cytokines that causes neuronal degeneration and dysfunction. Typically, microwire arrays and silicon probes are inserted slowly into the neural tissue whereas the silicon Utah MEAs (UMEA) are inserted at a high speed using a pneumatic inserter. In this work, we report the sequelae of electrode-implant induced cortical injury at various acute time points in UMEAs implanted in the brain tissue by quantifying the expression profile for key genes mediating the inflammatory response and tight junction (TJ) and adherens junction (AJ) proteins that form the BBB and are critical to the functioning of the BBB. Our results indicated upregulation of most pro-inflammatory genes relative to naïve controls for all time points. Expression levels for the genes that form the TJ and AJ were downregulated suggestive of BBB-dysfunction. Moreover, there was no significant difference between stab and implant groups suggesting the effects of UMEA insertion-related trauma in the brain tissue. Our results provide an insight into the physiological events related to neuroinflammation and BBB-disruption occurring at acute time-points following insertion of UMEAs.
Collapse
Affiliation(s)
- Cassie Bennett
- Department of Biomedical Engineering, University of Miami, FL, USA
| | | | | | | | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, FL, USA; Department of Otolaryngology, University of Miami, FL, USA
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, FL, USA.
| |
Collapse
|
35
|
Ijima H, Kuroda S, Ono T, Kawakami K. Digoxin Transport by Renal Proximal Tubule Cells is Enhanced by Adhesive Synthetic RGD Peptide. Int J Artif Organs 2018; 30:25-33. [PMID: 17295190 DOI: 10.1177/039139880703000105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction The dialyzer apparatus has been widely used as an artificial kidney in medical treatment. However, side effects such as amyloidosis have occurred during long-term treatment. Therefore, we focused on developing a hybrid artificial kidney with a filtration and reabsorption apparatus, but it was found that cells spread extensively and it is difficult to maintain a uniform monolayer with a regular cell shape on a collagen-coated substrate. The purpose of this study was to improve cell adhesion, uniform stable monolayer formation and active transport function by immobilization of arginine-glycine-aspartic acid (RGD) on the culture substratum. Materials and Methods Polycarbonate semipermeable membranes were coated with collagen, fibronectin, laminin and synthetic polypeptide, including RGD (Pronectin F). Cell adhesion and digoxin transport were estimated using a renal proximal tubule cell line that overexpressed the P-glycoprotein gene. Results and Discussion Under initial and confluent conditions, immobilized cell density in Pronectin F-coated wells was higher than that under other conditions. Transepithelial electrical resistance and digoxin transport activity on Pronectin F-coated membranes were the highest of all conditions. This might have been caused by uniform cell morphology and high cell density.
Collapse
Affiliation(s)
- H Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Nishi-ku, Fukuoka, Japan.
| | | | | | | |
Collapse
|
36
|
Herrero R, Sanchez G, Lorente JA. New insights into the mechanisms of pulmonary edema in acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:32. [PMID: 29430449 DOI: 10.21037/atm.2017.12.18] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Appearance of alveolar protein-rich edema is an early event in the development of acute respiratory distress syndrome (ARDS). Alveolar edema in ARDS results from a significant increase in the permeability of the alveolar epithelial barrier, and represents one of the main factors that contribute to the hypoxemia in these patients. Damage of the alveolar epithelium is considered a major mechanism responsible for the increased pulmonary permeability, which results in edema fluid containing high concentrations of extravasated macromolecules in the alveoli. The breakdown of the alveolar-epithelial barrier is a consequence of multiple factors that include dysregulated inflammation, intense leukocyte infiltration, activation of pro-coagulant processes, cell death and mechanical stretch. The disruption of tight junction (TJ) complexes at the lateral contact of epithelial cells, the loss of contact between epithelial cells and extracellular matrix (ECM), and relevant changes in the communication between epithelial and immune cells, are deleterious alterations that mediate the disruption of the alveolar epithelial barrier and thereby the formation of lung edema in ARDS.
Collapse
Affiliation(s)
- Raquel Herrero
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain
| | - Gema Sanchez
- Department of Clinical Analysis, Hospital Universitario de Getafe, Madrid, Spain
| | - Jose Angel Lorente
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
37
|
Marycz K, Kornicka K, Grzesiak J, Tomaszewski KA, Szarek D, Kopacz P. The Impact of Oxidative Stress Factors on the Viability, Senescence, and Methylation Status of Olfactory Bulb-Derived Glial Cells Isolated from Human Cadaver Donors. Cells Tissues Organs 2017; 204:105-118. [PMID: 28700993 DOI: 10.1159/000472707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 11/19/2022] Open
Abstract
The olfactory bulb (OB) is a unique structure in the central nervous system that retains the ability to create new neuronal connections. Glial cells isolated from the OB have been recently considered as a novel and promising tool to establish an effective therapy for central nervous system injuries. Due to the hindered access to autologous tissue for cell isolation, an allogeneic source of tissues obtained postmortem has been proposed. In this study, we focused on the morphological and molecular characteristics of human OB-derived glial cells isolated postmortem, at different time points after a donor's death. We evaluated the proliferative activity of the isolated cells, and investigated the ultrastructure of the mitochondria, the accumulation of intracellular reactive oxygen species, and the activity of superoxide dismutase. The data obtained clearly indicate that the duration of ischemia is crucial for the viability/senescence rate of OB-derived glial cells. The OB can be isolated during autopsy and still stand as a source of viable glial cells, but ischemia duration is a major factor limiting its potential usefulness in therapies.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
38
|
Elevated Leukocyte Azurophilic Enzymes in Human Diabetic Ketoacidosis Plasma Degrade Cerebrovascular Endothelial Junctional Proteins. Crit Care Med 2017; 44:e846-53. [PMID: 27071071 DOI: 10.1097/ccm.0000000000001720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Diabetic ketoacidosis in children is associated with vasogenic cerebral edema, possibly due to the release of destructive polymorphonuclear neutrophil azurophilic enzymes. Our objectives were to measure plasma azurophilic enzyme levels in children with diabetic ketoacidosis, to correlate plasma azurophilic enzyme levels with diabetic ketoacidosis severity, and to determine whether azurophilic enzymes disrupt the blood-brain barrier in vitro. DESIGN Prospective clinical and laboratory study. SETTING The Children's Hospital, London Health Sciences Centre. SUBJECTS Pediatric type 1 diabetes patients; acute diabetic ketoacidosis or age-/sex-matched insulin-controlled. MEASUREMENTS AND MAIN RESULTS Acute diabetic ketoacidosis in children was associated with elevated polymorphonuclear neutrophils. Plasma azurophilic enzymes were elevated in diabetic ketoacidosis patients, including human leukocyte elastase (p < 0.001), proteinase-3 (p < 0.01), and myeloperoxidase (p < 0.001). A leukocyte origin of human leukocyte elastase and proteinase-3 in diabetic ketoacidosis was confirmed with buffy coat quantitative real-time polymerase chain reaction (p < 0.01). Of the three azurophilic enzymes elevated, only proteinase-3 levels correlated with diabetic ketoacidosis severity (p = 0.002). Recombinant proteinase-3 applied to human brain microvascular endothelial cells degraded both the tight junction protein occludin (p < 0.05) and the adherens junction protein VE-cadherin (p < 0.05). Permeability of human brain microvascular endothelial cell monolayers was increased by recombinant proteinase-3 application (p = 0.010). CONCLUSIONS Our results indicate that diabetic ketoacidosis is associated with systemic polymorphonuclear neutrophil activation and degranulation. Of all the polymorphonuclear neutrophil azurophilic enzymes examined, only proteinase-3 correlated with diabetic ketoacidosis severity and potently degraded the blood-brain barrier in vitro. Proteinase-3 might mediate vasogenic edema during diabetic ketoacidosis, and selective proteinase-3 antagonists may offer future vascular- and neuroprotection.
Collapse
|
39
|
Masciantonio MG, Lee CKS, Arpino V, Mehta S, Gill SE. The Balance Between Metalloproteinases and TIMPs: Critical Regulator of Microvascular Endothelial Cell Function in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:101-131. [PMID: 28413026 DOI: 10.1016/bs.pmbts.2017.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells (EC), especially the microvascular EC (MVEC), have critical functions in health and disease. For example, healthy MVEC provide a barrier between the fluid and protein found within the blood, and the surrounding tissue. Following tissue injury or infection, the microvascular barrier is often disrupted due to activation and dysfunction of the MVEC. Multiple mechanisms promote MVEC activation and dysfunction, including stimulation by cytokines, mechanical interaction with activated leukocytes, and exposure to harmful leukocyte-derived molecules, which collectively result in a loss of MVEC barrier function. However, MVEC activation is also critical to facilitate recruitment of inflammatory cells, such as neutrophils (PMNs) and monocytes, into the injured or infected tissue. Metalloproteinases, including the matrix metalloproteinases (MMPs) and the closely related, a disintegrin and metalloproteinases (ADAMs), have been implicated in regulating both MVEC barrier function, through cleavage of adherens and tight junctions proteins between adjacent MVEC and through degradation of the extracellular matrix, as well as PMN-MVEC interaction, through shedding of cell surface PMN receptors. Moreover, the tissue inhibitors of metalloproteinases (TIMPs), which collectively inhibit most MMPs and ADAMs, are critical regulators of MVEC activation and dysfunction through their ability to inhibit metalloproteinases and thereby promote MVEC stability. However, TIMPs have been also found to modulate MVEC function through metalloproteinase-independent mechanisms, such as regulation of vascular endothelial growth factor signaling. This chapter is focused on examining the role of the metalloproteinases and TIMPs in regulation of MVEC function in both health and disease.
Collapse
Affiliation(s)
- Marcello G Masciantonio
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christopher K S Lee
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Valerie Arpino
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
40
|
Parviz M, Gaus K, Gooding JJ. Simultaneous impedance spectroscopy and fluorescence microscopy for the real-time monitoring of the response of cells to drugs. Chem Sci 2017; 8:1831-1840. [PMID: 28451304 PMCID: PMC5396555 DOI: 10.1039/c6sc05159f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022] Open
Abstract
A dual fluorescence microscopy and electrochemical strategy to investigate how cell-surface interactions influence the cellular responses to cues for the cell-based biosensing of drug efficacy is reported herein. The combined method can be used to not only monitor the importance of controlling the cellular adhesive environment on the cell response to drugs but it also provides biological information on the timescales of downstream outside-in signaling from soluble cues. As an example of the use of the combined method, we show how adhesive cues influence the signalling responses of cells to soluble cues. G-protein-coupled receptors were used as the target for the soluble cues. The changes in cell adhesion, cell morphology and Ca2+ flux induced by soluble histamine were simultaneously monitored as a function of the spacing of the adhesive ligand RGD on the interdigitated indium tin oxide electrodes. The simultaneous measurements revealed that the timescales of histamine-induced Ca2+ mobilization and the decrease in cell-cell adhesions are correlated. Furthermore, cells on the surfaces with an RGD spacing of 31 nm were shown to display a faster release of Ca2+ and change in cell adhesion upon histamine stimulation compared to cells on other surfaces.
Collapse
Affiliation(s)
- M Parviz
- School of Chemistry , ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of New South Wales , New South Wales 2052 , Australia .
- Australian Centre for NanoMedicine , University of New South Wales , New South Wales 2052 , Australia
| | - K Gaus
- Australian Centre for NanoMedicine , University of New South Wales , New South Wales 2052 , Australia
- EMBL Australia Node in Single Molecule Science , ARC Centre of Excellence in Advanced Molecular Imaging , University of New South Wales , New South Wales 2052 , Australia
| | - J J Gooding
- School of Chemistry , ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of New South Wales , New South Wales 2052 , Australia .
- Australian Centre for NanoMedicine , University of New South Wales , New South Wales 2052 , Australia
| |
Collapse
|
41
|
Abstract
There is currently no effective treatment for multiorgan failure following shock other than supportive care. A better understanding of the pathogenesis of these sequelae to shock is required. The intestine plays a central role in multiorgan failure. It was previously suggested that bacteria and their toxins are responsible for the organ failure seen in circulatory shock, but clinical trials in septic patients have not confirmed this hypothesis. Instead, we review here evidence that the digestive enzymes, synthesized in the pancreas and discharged into the small intestine as requirement for normal digestion, may play a role in multiorgan failure. These powerful enzymes are nonspecific, highly concentrated, and fully activated in the lumen of the intestine. During normal digestion they are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. However, if this barrier becomes permeable, e.g. in an ischemic state, the digestive enzymes escape into the wall of the intestine. They digest tissues in the mucosa and generate small molecular weight cytotoxic fragments such as unbound free fatty acids. Digestive enzymes may also escape into the systemic circulation and activate other degrading proteases. These proteases have the ability to clip the ectodomain of surface receptors and compromise their function, for example cleaving the insulin receptor causing insulin resistance. The combination of digestive enzymes and cytotoxic fragments leaking into the central circulation causes cell and organ dysfunction, and ultimately may lead to complete organ failure and death. We summarize current evidence suggesting that enteral blockade of digestive enzymes inside the lumen of the intestine may serve to reduce acute cell and organ damage and improve survival in experimental shock.
Collapse
|
42
|
Chen J, Ning R, Zacharek A, Cui C, Cui X, Yan T, Venkat P, Zhang Y, Chopp M. MiR-126 Contributes to Human Umbilical Cord Blood Cell-Induced Neurorestorative Effects After Stroke in Type-2 Diabetic Mice. Stem Cells 2016; 34:102-13. [PMID: 26299579 DOI: 10.1002/stem.2193] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus (DM) is a high risk factor for stroke and leads to more severe vascular and white-matter injury than stroke in non-DM. We tested the neurorestorative effects of delayed human umbilical cord blood cell (HUCBC) treatment of stroke in type-2 diabetes (T2DM). db/db-T2DM and db/+-non-DM mice were subjected to distal middle cerebral artery occlusion (dMCAo) and were treated 3 days after dMCAo with: (a) non-DM + Phosphate buffered saline (PBS); (b) T2DM + PBS; (c) T2DM + naïve-HUCBC; (d) T2DM + miR-126(-/-) HUCBC. Functional evaluation, vascular and white-matter changes, neuroinflammation, and miR-126 effects were measured in vivo and in vitro. T2DM mice exhibited significantly decreased serum and brain tissue miR-126 expression compared with non-DM mice. T2DM + HUCBC mice exhibited increased miR-126 expression, increased tight junction protein expression, axon/myelin, vascular density, and M2-macrophage polarization. However, decreased blood-brain barrier leakage, brain hemorrhage, and miR-126 targeted gene vascular cell adhesion molecule-1 and monocyte chemotactic protein 1 expression in the ischemic brain as well as improved functional outcome were present in HUCBC-treated T2DM mice compared with control T2DM mice. MiR-126(-/-) HUCBC-treatment abolished the benefits of naïve-HUCBC-treatment in T2DM stroke mice. In vitro, knock-in of miR-126 in primary cultured brain endothelial cells (BECs) or treatment of BECs with naïve-HUCBCs significantly increased capillary-like tube formation, and increased axonal outgrowth in primary cultured cortical neurons; whereas treatment of BECs or cortical neurons with miR-126(-/-) HUCBC attenuated HUCBC-treatment-induced capillary tube formation and axonal outgrowth. Our data suggest delayed HUCBC-treatment of stroke increases vascular/white-matter remodeling and anti-inflammatory effects; MiR-126 may contribute to HUCBC-induced neurorestorative effects in T2DM mice.
Collapse
Affiliation(s)
- Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, People's Republic of China
| | - Ruizhuo Ning
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Chengcheng Cui
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Tao Yan
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
43
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
44
|
Fan CF, Romero JR. "Cerebral Small Vessel Disease in subclinical and clinical stages, role of inflammation for risk prediction and potential treatment targets, and management strategies". INTERNAL MEDICINE REVIEW (WASHINGTON, D.C. : ONLINE) 2016; 2:265. [PMID: 35372740 PMCID: PMC8972798 DOI: 10.18103/imr.v2i11.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stroke and dementia are the most common neurological disorders worldwide. Cerebrovascular disease, particularly cerebral small vessel disease (CSVD) is implicated in both, and the two main types of CSVD (hypertensive vasculopathy and cerebral amyloid angiopathy) account for the majority of cerebrovascular contributions to stroke and dementia. Current knowledge of CSVD may influence treatment decisions and preventive efforts. Although the causes of CSVD are not entirely elucidated, ongoing research of the pathophysiology of CSVD, such as the role of inflammation, is helping identify potential treatment targets, evaluate prediction models and develop preventive strategies. Given the detectability of CSVD in preclinical stages using brain MRI, a long window of opportunity is presented to implement existent preventive measures. This review considers CSVD including its subclinical manifestations detected using brain MRI, clinical manifestations, use of markers of CSVD as predictors of clinical outcomes such as dementia and stroke, and presents potential management strategies when seeing patients with cerebral small vessel disease to reduce its disease burden and clinical consequences. Clinical trials have evaluated some aspects of CSVD treatment and are beginning to recognize CSVD as endpoint in subclinical stages. Future studies will clarify if this approach is able to delay onset of dementia and prevent stroke occurrence, meanwhile implementation of existent recommendations for the prevention and treatment of stroke and dementia may reduce disability and clinical outcomes related to CSVD.
Collapse
Affiliation(s)
- C Frances Fan
- Department of Neurology (FF, JRR) at Boston University School of Medicine, and the NHLBI's Framingham Heart Study (JRR) Framingham, Massachusetts
| | - José R Romero
- Department of Neurology (FF, JRR) at Boston University School of Medicine, and the NHLBI's Framingham Heart Study (JRR) Framingham, Massachusetts
| |
Collapse
|
45
|
Lung remodeling associated with recovery from acute lung injury. Cell Tissue Res 2016; 367:495-509. [DOI: 10.1007/s00441-016-2521-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
|
46
|
Expression Profiling of Genes Related to Endothelial Cells Biology in Patients with Type 2 Diabetes and Patients with Prediabetes. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1845638. [PMID: 27781209 PMCID: PMC5066000 DOI: 10.1155/2016/1845638] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022]
Abstract
Endothelial dysfunction appears to be an early sign indicating vascular damage and predicts the progression of atherosclerosis and cardiovascular disorders. Extensive clinical and experimental evidence suggests that endothelial dysfunction occurs in Type 2 Diabetes Mellitus (T2DM) and prediabetes patients. This study was carried out with an aim to appraise the expression levels in the peripheral blood of 84 genes related to endothelial cells biology in patients with diagnosed T2DM or prediabetes, trying to identify new genes whose expression might be changed under these pathological conditions. The study covered a total of 45 participants. The participants were divided into three groups: group 1, patients with T2DM; group 2, patients with prediabetes; group 3, control group. The gene expression analysis was performed using the Endothelial Cell Biology RT2 Profiler PCR Array. In the case of T2DM, 59 genes were found to be upregulated, and four genes were observed to be downregulated. In prediabetes patients, increased expression was observed for 49 genes, with two downregulated genes observed. Our results indicate that diabetic and prediabetic conditions change the expression levels of genes related to endothelial cells biology and, consequently, may increase the risk for occurrence of endothelial dysfunction.
Collapse
|
47
|
Mandel ER, Uchida C, Nwadozi E, Makki A, Haas TL. Tissue Inhibitor of Metalloproteinase 1 Influences Vascular Adaptations to Chronic Alterations in Blood Flow. J Cell Physiol 2016; 232:831-841. [PMID: 27430487 DOI: 10.1002/jcp.25491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022]
Abstract
Remodeling of the skeletal muscle microvasculature involves the coordinated actions of matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitor of metalloproteinases (TIMPs). We hypothesized that the loss of TIMP1 would enhance both ischemia and flow-induced vascular remodeling by increasing MMP activity. TIMP1 deficient (Timp1-/- ) and wild-type (WT) C57BL/6 mice underwent unilateral femoral artery (FA) ligation or were treated with prazosin, an alpha-1 adrenergic receptor antagonist, in order to investigate vascular remodeling to altered flow. Under basal conditions, Timp1-/- mice had reduced microvascular content as compared to WT mice. Furthermore, vascular remodeling was impaired in Timp1-/- mice. Timp1-/- mice displayed reduced blood flow recovery in response to FA ligation and no arteriogenic response to prazosin treatment. Timp1-/- mice failed to undergo angiogenesis in response to ischemia or prazosin, despite maintaining the capacity to increase VEGF-A and eNOS mRNA. Vascular permeability was increased in muscles of Timp1-/- mice in response to both prazosin treatment and FA ligation, but this was not accompanied by greater MMP activity. This study highlights a previously undescribed integral role for TIMP1 in both vascular network maturation and adaptations to ischemia or alterations in flow. J. Cell. Physiol. 232: 831-841, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erin R Mandel
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Cassandra Uchida
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Emmanuel Nwadozi
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Armin Makki
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Tara L Haas
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Woo M, Patterson EK, Cepinskas G, Clarson C, Omatsu T, Fraser DD. Dynamic regulation of plasma matrix metalloproteinases in human diabetic ketoacidosis. Pediatr Res 2016; 79:295-300. [PMID: 26492282 DOI: 10.1038/pr.2015.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/31/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Diabetic ketoacidosis (DKA) in children is associated with cerebrovascular-related complications. We recently reported that DKA facilitates leukocyte adherence to the brain microvascular endothelium. Adhered leukocytes can release enzymes that instigate vascular dysfunction. Our aims were to measure plasma levels of leukocyte-derived matrix metalloproteinases (MMPs) from DKA patients and to correlate plasma MMP concentrations with DKA severity. METHODS Plasma was obtained from children with type 1 diabetes, either in DKA (n = 16) or insulin controlled (CON; n = 16). Antibody microarray and gelatin zymography were used to quantify plasma MMPs and their endogenous tissue inhibitors (TIMPs). MMP concentrations were correlated with DKA severity (blood pH). Quantitative PCR of leukocyte mRNA was used to help determine the origin of plasma MMPs. RESULTS DKA was associated with altered plasma levels of ↓MMP-2 (P < 0.001), ↑MMP-8 (P < 0.001), ↑MMP-9 (P < 0.05), and ↑TIMP-4 (P < 0.001), as compared with CON. Elevated MMP-8 and MMP-9 were both positively correlated with DKA severity (P < 0.05). DKA was associated with increased leukocyte mRNA for MMP-8, MMP-9, and TIMP-4 (P < 0.005). CONCLUSION MMPs are dynamically regulated during DKA. Plasma MMP-8 and MMP-9 concentrations correlate with DKA severity and are known to degrade brain microvascular endothelial cell tight junctions. Thus, leukocyte-derived MMPs might contribute to DKA-associated cerebrovascular complications.
Collapse
Affiliation(s)
- Martin Woo
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Centre for Critical Illness Research, London, Ontario, Canada
| | | | - Gediminas Cepinskas
- Centre for Critical Illness Research, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
| | - Cheril Clarson
- Children's Health Research Institute, London, Ontario, Canada
- Pediatrics, Western University, London, Ontario, Canada
| | - Tatsushi Omatsu
- Centre for Critical Illness Research, London, Ontario, Canada
- Pediatrics, Western University, London, Ontario, Canada
| | - Douglas D Fraser
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Centre for Critical Illness Research, London, Ontario, Canada
- Pediatrics, Western University, London, Ontario, Canada
- Clinical Neurological Sciences, Western University, London, Ontario, Canada
- Translational Research Centre, London, Ontario, Canada
| |
Collapse
|
49
|
Vranka JA, Kelley MJ, Acott TS, Keller KE. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 2015; 133:112-25. [PMID: 25819459 DOI: 10.1016/j.exer.2014.07.014] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 12/30/2022]
Abstract
The trabecular meshwork (TM) is located in the anterior segment of the eye and is responsible for regulating the outflow of aqueous humor. Increased resistance to aqueous outflow causes intraocular pressure to increase, which is the primary risk factor for glaucoma. TM cells reside on a series of fenestrated beams and sheets through which the aqueous humor flows to exit the anterior chamber via Schlemm's canal. The outer trabecular cells are phagocytic and are thought to function as a pre-filter. However, most of the outflow resistance is thought to be from the extracellular matrix (ECM) of the juxtacanalicular region, the deepest portion of the TM, and from the inner wall basement membrane of Schlemm's canal. It is becoming increasingly evident that the extracellular milieu is important in maintaining the integrity of the TM. In glaucoma, not only have ultrastructural changes been observed in the ECM of the TM, and a significant number of mutations in ECM genes been noted, but the stiffness of glaucomatous TM appears to be greater than that of normal tissue. Additionally, TGFβ2 has been found to be elevated in the aqueous humor of glaucoma patients and is assumed to be involved in ECM changes deep with the juxtacanalicular region of the TM. This review summarizes the current literature on trabecular ECM as well as the development and function of the TM. Animal models and organ culture models targeting specific ECM molecules to investigate the mechanisms of glaucoma are described. Finally, the growing number of mutations that have been identified in ECM genes and genes that modulate ECM in humans with glaucoma are documented.
Collapse
Affiliation(s)
- Janice A Vranka
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary J Kelley
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ted S Acott
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
50
|
Wiechmann AF, Ceresa BP, Howard EW. Diurnal variation of tight junction integrity associates inversely with matrix metalloproteinase expression in Xenopus laevis corneal epithelium: implications for circadian regulation of homeostatic surface cell desquamation. PLoS One 2014; 9:e113810. [PMID: 25412440 PMCID: PMC4239109 DOI: 10.1371/journal.pone.0113810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/31/2014] [Indexed: 01/08/2023] Open
Abstract
Background and Objectives The corneal epithelium provides a protective barrier against pathogen entrance and abrasive forces, largely due to the intercellular junctional complexes between neighboring cells. After a prescribed duration at the corneal surface, tight junctions between squamous surface cells must be disrupted to enable them to desquamate as a component of the tissue homeostatic renewal. We hypothesize that matrix metalloproteinase (MMPs) are secreted by corneal epithelial cells and cleave intercellular junctional proteins extracellularly at the epithelial surface. The purpose of this study was to examine the expression of specific MMPs and tight junction proteins during both the light and dark phases of the circadian cycle, and to assess their temporal and spatial relationships in the Xenopus laevis corneal epithelium. Methodology/Principal Findings Expression of MMP-2, tissue inhibitor of MMP-2 (TIMP-2), membrane type 1-MMP (MT1-MMP) and the tight junction proteins occludin and claudin-4 were examined by confocal double-label immunohistochemistry on corneas obtained from Xenopus frogs at different circadian times. Occludin and claudin-4 expression was generally uniformly intact on the surface corneal epithelial cell lateral membranes during the daytime, but was frequently disrupted in small clusters of cells at night. Concomitantly, MMP-2 expression was often elevated in a mosaic pattern at nighttime and associated with clusters of desquamating surface cells. The MMP-2 binding partners, TIMP-2 and MT1-MMP were also localized to surface corneal epithelial cells during both the light and dark phases, with TIMP-2 tending to be elevated during the daytime. Conclusions/Significance MMP-2 protein expression is elevated in a mosaic pattern in surface corneal epithelial cells during the nighttime in Xenopus laevis, and may play a role in homeostatic surface cell desquamation by disrupting intercellular junctional proteins. The sequence of MMP secretion and activation, tight junction protein cleavage, and subsequent surface cell desquamation and renewal may be orchestrated by nocturnal circadian signals.
Collapse
Affiliation(s)
- Allan F. Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Eric W. Howard
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|