1
|
Laoué J, Havaux M, Ksas B, Orts JP, Reiter IM, Fernandez C, Ormeno E. A decade of rain exclusion in a Mediterranean forest reveals trade-offs of leaf chemical defenses and drought legacy effects. Sci Rep 2024; 14:24119. [PMID: 39406765 PMCID: PMC11480208 DOI: 10.1038/s41598-024-71417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Increasing aridity in the Mediterranean region will result in longer and recurrent drought. These changes could strongly modify plant defenses, endangering tree survival. We investigate the response of chemical defenses from central and specialized metabolism in Quercus pubescens Willd. to future Mediterranean drought using a long-term drought experiment in natura where trees have been submitted to amplified drought (~ -30% annual precipitation) since April 2012. We focused on leaf metabolites including chlorophylls and carotenoids (central metabolism) and flavonols (specialized metabolism). Measurements were performed in summer from 2016 to 2022. Amplified drought led to higher concentrations of total photosynthetic pigments over the 2016-2022 period. However, it also led to lower AZ/VAZ and flavonol concentrations. Additionally, chemical defenses of Q. pubescens responded to previous precipitation where low precipitation 1 year and/or 2 years preceding sampling was associated to low concentrations of VAZ, flavonol and high neoxanthin concentrations. Our study indicates that the decline of flavonol concentration under long-term drought is counterbalanced by a higher production of several central metabolites. Such results are potentially due to an adjustment in tree metabolism, highlighting the importance of performing long-term experimental studies in natura for assessing drought legacy effects and thus forest adaptation to climate change.
Collapse
Affiliation(s)
- Justine Laoué
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France.
| | - Michel Havaux
- Aix-Marseille Université, CEA, CNRS UMR7265, Institut de Bioscience et de Biotechnologie d'Aix-Marseille, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix-Marseille Université, CEA, CNRS UMR7265, Institut de Bioscience et de Biotechnologie d'Aix-Marseille, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Jean-Philippe Orts
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France
| | | | - Catherine Fernandez
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France
| | - Elena Ormeno
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France.
| |
Collapse
|
2
|
Laoué J, Gea-Izquierdo G, Dupouyet S, Conde M, Fernandez C, Ormeño E. Leaf morpho-anatomical adjustments in a Quercus pubescens forest after 10 years of partial rain exclusion in the field. TREE PHYSIOLOGY 2024; 44:tpae047. [PMID: 38676920 DOI: 10.1093/treephys/tpae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
In the Mediterranean region, a reduction of annual precipitation and a longer and drier summer season are expected with climate change by the end of the century, eventually endangering forest survival. To cope with such rapid changes, trees may modulate their morpho-anatomical and physiological traits. In the present study, we focused on the variation in leaf gas exchange and different leaf morpho-anatomical functional traits of Quercus pubescens Willd. in summer using a long-term drought experiment in natura consisting of a dynamic rainfall exclusion system where trees have been submitted to amplified drought (AD) (~-30% of annual precipitation) since April 2012 and compared them with trees under natural drought (ND) in a Mediterranean forest. During the study, we analyzed net CO2 assimilation (An), stomatal conductance (gs), transpiration (E), water-use efficiency (WUE), stomatal size and density, density of glandular trichomes and non-glandular trichomes, thickness of the different leaf tissues, specific leaf area and leaf surface. Under AD, tree functioning was slightly impacted, since only An exhibited a 49% drop, while gs, E and WUE remained stable. The decrease in An under AD was regulated by concomitant lower stomatal density and reduced leaf thickness. Trees under AD also featured leaves with a higher non-glandular trichome density and a lower glandular trichome density compared with ND, which simultaneously limits transpiration and production costs. This study points out that Q. pubescens exhibits adjustments of leaf morpho-anatomical traits which can help trees to acclimate to AD scenarios as those expected in the future in the Mediterranean region.
Collapse
Affiliation(s)
- Justine Laoué
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| | | | - Sylvie Dupouyet
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| | - María Conde
- CIFOR-INIA, CSIC, Centro de Investigación Forestal Moncloa - Aravaca 28040 Madrid, Spain
| | - Catherine Fernandez
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| | - Elena Ormeño
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| |
Collapse
|
3
|
Laoué J, Havaux M, Ksas B, Tuccio B, Lecareux C, Fernandez C, Ormeño E. Long-term rain exclusion in a Mediterranean forest: response of physiological and physico-chemical traits of Quercus pubescens across seasons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1293-1308. [PMID: 37596909 DOI: 10.1111/tpj.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
With climate change, an aggravation in summer drought is expected in the Mediterranean region. To assess the impact of such a future scenario, we compared the response of Quercus pubescens, a drought-resistant deciduous oak species, to long-term amplified drought (AD) (partial rain exclusion in natura for 10 years) and natural drought (ND). We studied leaf physiological and physico-chemical trait responses to ND and AD over the seasonal cycle, with a focus on chemical traits including major groups of central (photosynthetic pigments and plastoquinones) and specialized (tocochromanols, phenolic compounds, and cuticular waxes) metabolites. Seasonality was the main driver of all leaf traits, including cuticular triterpenoids, which were highly concentrated in summer, suggesting their importance to cope with drought and thermal stress periods. Under AD, trees not only reduced CO2 assimilation (-42%) in summer and leaf concentrations of some phenolic compounds and photosynthetic pigments (carotenoids from the xanthophyll cycle) but also enhanced the levels of other photosynthetic pigments (chlorophylls, lutein, and neoxanthin) and plastochromanol-8, an antioxidant located in chloroplasts. Overall, the metabolomic adjustments across seasons and drought conditions reinforce the idea that Q. pubescens is highly resistant to drought although significant losses of antioxidant defenses and photoprotection were identified under AD.
Collapse
Affiliation(s)
- Justine Laoué
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | - Michel Havaux
- Aix Marseille Univ., CEA, CNRS UMR 7265 BIAM, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix Marseille Univ., CEA, CNRS UMR 7265 BIAM, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | | | - Caroline Lecareux
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | | | - Elena Ormeño
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
4
|
Mariotti B, Martini S, Raddi S, Ugolini F, Oliet JA, Jacobs DF, Maltoni A. Cultivation Using Coir Substrate and P or K Enriched Fertilizer Provides Higher Resistance to Drought in Ecologically Diverse Quercus Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:525. [PMID: 36771610 PMCID: PMC9920752 DOI: 10.3390/plants12030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Nursery cultivation practices can be modified to increase resistance to water stress in forest seedlings following field establishment, which may be increasingly important under climate change. We evaluated the morphological (survival, growth) and physiological (chlorophyll fluorescence, leaf water potential) responses to water stress for three ecologically diverse Quercus species (Q. robur, Q. pubescens, and Q. ilex) with varying traits resulting from the combination of growing media (peat, coir) and fertilization (standard, P-enriched, K-enriched). For all species under water stress, seedlings grown in coir had generally higher growth than those grown in peat. Seedlings fertilized with P performed better, particularly for survival; conversely, K fertilization resulted in inconsistent findings. Such results could be explained by a combination of factors. P fertilization resulted in higher P accumulation in seedlings, while no K accumulation was observed in K fertilized seedlings. As expected, the more drought-sensitive species, Q. robur, showed the worst response, while Q. pubescens had a drought resistance equal or better to Q. ilex despite being classified as intermediate in drought resistance in Mediterranean environments.
Collapse
Affiliation(s)
- Barbara Mariotti
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Sofia Martini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Sabrina Raddi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Francesca Ugolini
- Istituto per la Bioeconomia, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Juan A. Oliet
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Douglass F. Jacobs
- Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, West Lafayette, IN 47907, USA
| | - Alberto Maltoni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali—DAGRI, Università di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| |
Collapse
|
5
|
Amplified Drought and Seasonal Cycle Modulate Quercus pubescens Leaf Metabolome. Metabolites 2022; 12:metabo12040307. [PMID: 35448494 PMCID: PMC9026387 DOI: 10.3390/metabo12040307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The intensification of summer drought expected with climate change can induce metabolism modifications in plants to face such constraints. In this experiment, we used both a targeted approach focused on flavonoids, as well as an untargeted approach, to study a broader fraction of the leaf metabolome of Quercus pubescens exposed to amplified drought. A forest site equipped with a rainfall exclusion device allowed reduction of natural rainfall by ~30% over the tree canopy. Leaves of natural drought (ND) and amplified drought (AD) plots were collected over three seasonal cycles (spring, summer, and autumn) in 2013 (the second year of rain exclusion), 2014, and 2015. As expected, Q. pubescens metabolome followed a seasonal course. In the summer of 2015, the leaf metabolome presented a shifted and early autumnal pattern because of harsher conditions during this year. Despite low metabolic modification at the global scale, our results demonstrated that 75% of Quercus metabolites were upregulated in springs when trees were exposed to AD, whereas 60 to 73% of metabolites (93% in summer 2015), such as kaempferols and quercetins, were downregulated in summers/autumns. Juglanin, a kaempferol pentoside, as well as rhododendrin derivatives, were upregulated throughout the year, suggesting an antioxidant ability of these metabolites. Those changes in terms of phenology and leaf chemistry could, in the end, affect the ecosystem functioning.
Collapse
|
6
|
Herrera JC, Savi T, Mattocks J, De Berardinis F, Scheffknecht S, Hietz P, Rosner S, Forneck A. Container volume affects drought experiments in grapevines: Insights on xylem anatomy and time of dehydration. PHYSIOLOGIA PLANTARUM 2021; 173:2181-2190. [PMID: 34549436 PMCID: PMC9293413 DOI: 10.1111/ppl.13567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 05/15/2023]
Abstract
Plant stress experiments are commonly performed with plants grown in containers to better control environmental conditions. Nevertheless, the container can constrain plant growth and development, and this confounding effect is generally ignored, particularly in studies on woody species. Here, we evaluate the effect of the container volume in drought experiments using grapevine as a model plant. Grapevines grown in small (7 L, S) or large (20 L, L) containers were subjected to drought stress and rewatering treatments. We monitored plant stomatal conductance (gs ), midday stem water potential (Ψs ), and photosynthetic rate (AN ) throughout the experiment. The effect of the container volume on the stem and petiole xylem anatomy, as well as on the total leaf area (LA), was assessed before drought imposition. The results showed that LA did not differ between plants in L or S containers, but S vines exhibited a higher theoretical hydraulic conductance at the petiole level. Under drought L and S similarly reduced gs and AN , but plants in S containers reached lower Ψs than those in L. Nevertheless, upon rewatering droughted plants in S containers exhibited a faster stomata re-opening than those in L, probably as a consequence of the differences in the stress degree experienced and the biochemical adjustment at the leaf level. Therefore, a suitable experimental design should consider the container volume used in relation to the desired traits to be studied for unbiased results.
Collapse
Affiliation(s)
- Jose Carlos Herrera
- Institute of Viticulture and PomologyUniversity of Natural Resources and Life Science ViennaTullnAustria
| | - Tadeja Savi
- Institute of Viticulture and PomologyUniversity of Natural Resources and Life Science ViennaTullnAustria
- Institute of BotanyUniversity of Natural Resources and Life Science ViennaViennaAustria
| | - Joseph Mattocks
- Institute of Viticulture and PomologyUniversity of Natural Resources and Life Science ViennaTullnAustria
| | - Federica De Berardinis
- Institute of Viticulture and PomologyUniversity of Natural Resources and Life Science ViennaTullnAustria
| | - Susanne Scheffknecht
- Institute of BotanyUniversity of Natural Resources and Life Science ViennaViennaAustria
| | - Peter Hietz
- Institute of BotanyUniversity of Natural Resources and Life Science ViennaViennaAustria
| | - Sabine Rosner
- Institute of BotanyUniversity of Natural Resources and Life Science ViennaViennaAustria
| | - Astrid Forneck
- Institute of Viticulture and PomologyUniversity of Natural Resources and Life Science ViennaTullnAustria
| |
Collapse
|
7
|
Osone Y, Hashimoto S, Kenzo T. Verification of our empirical understanding of the physiology and ecology of two contrasting plantation species using a trait database. PLoS One 2021; 16:e0254599. [PMID: 34843472 PMCID: PMC8629320 DOI: 10.1371/journal.pone.0254599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
The effects of climate change on forest ecosystems take on increasing importance more than ever. Information on plant traits is a powerful predictor of ecosystem dynamics and functioning. We reviewed the major ecological traits, such as foliar gas exchange and nutrients, xylem morphology and drought tolerance, of Cryptomeria japonica and Chamaecyparis obtusa, which are major timber species in East Asia, especially in Japan, by using a recently developed functional trait database for both species (SugiHinokiDB). Empirically, C. obtusa has been planted under drier conditions, whereas C. japonica, which grows faster but thought to be less drought tolerant, has been planted under wetter conditions. Our analysis generally support the empirical knowledge: The maximum photosynthetic rate, stomatal conductance, foliar nutrient content and soil-to-foliage hydraulic conductance were higher in C. japonica than in C. obtusa. In contrast, the foliar turgor loss point and xylem pressure corresponding to 50% conductivity, which indicate drought tolerance, were lower in C. obtusa and are consistent with the drier habitat of C. obtusa. Ontogenetic shifts were also observed; as the age and height of the trees increased, foliar nutrient concentrations, foliar minimum midday water potential and specific leaf area decreased in C. japonica, suggesting that nutrient and water limitation occurs with the growth. In C. obtusa, the ontogenetic shits of these foliar traits were less pronounced. Among the Cupressaceae worldwide, the drought tolerance of C. obtusa, as well as C. japonica, was not as high. This may be related to the fact that the Japanese archipelago has historically not been subjected to strong dryness. The maximum photosynthetic rate showed intermediate values within the family, indicating that C. japonica and C. obtusa exhibit relatively high growth rates in the Cupressaceae family, and this is thought to be the reason why they have been selected as economically suitable timber species in Japanese forestry. This study clearly demonstrated that the plant trait database provides us a promising opportunity to verify out empirical knowledge of plantation management and helps us to understand effect of climate change on plantation forests by using trait-based modelling.
Collapse
Affiliation(s)
- Yoko Osone
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Shoji Hashimoto
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Tanaka Kenzo
- Forestry and Forest Products Research Institute, Tsukuba, Japan
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
8
|
Levionnois S, Ziegler C, Jansen S, Calvet E, Coste S, Stahl C, Salmon C, Delzon S, Guichard C, Heuret P. Vulnerability and hydraulic segmentations at the stem-leaf transition: coordination across Neotropical trees. THE NEW PHYTOLOGIST 2020; 228:512-524. [PMID: 32496575 DOI: 10.1111/nph.16723] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 05/23/2023]
Abstract
Hydraulic segmentation at the stem-leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf-stem transition at the whole-plant level, including both xylem and outer xylem tissue.
Collapse
Affiliation(s)
- Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
- AMAP , Univ Montpellier , CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
- UMR SILVA, INRAE , Université de Lorraine, Nancy, 54000, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, D-89081, Germany
| | - Emma Calvet
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Camille Salmon
- AMAP , Univ Montpellier , CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Sylvain Delzon
- Univ. Bordeaux , INRAE, BIOGECO, Pessac, F-33615, France
| | - Charlotte Guichard
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Patrick Heuret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
- AMAP , Univ Montpellier , CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| |
Collapse
|
9
|
Divergent Hydraulic Strategies Explain the Interspecific Associations of Co-Occurring Trees in Forest–Steppe Ecotone. FORESTS 2020. [DOI: 10.3390/f11090942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research Highlights: Answering how tree hydraulic strategies explain the interspecific associations of co-occurring trees in forest–steppe ecotone is an approach to link plant physiology to forest dynamics, and is helpful to predict forest composition and function changes with climate change. Background and Objectives: The forest–steppe ecotone—the driest edges of forest distribution—is continuously threatened by climate change. To predict the forest dynamics here, it is crucial to document the interspecific associations among existing trees and their potential physiological drivers. Materials and Methods: Forest–steppe ecotone is composed of forest and grassland patches in a mosaic pattern. We executed two years of complete quadrat surveys in a permanent forest plot in the ecotone in northern China, calculated the interspecific association among five main tree species and analyzed their hydraulic strategies, which are presented by combining leaf-specific hydraulic conductivity (Kl) and important thresholds on the stem-vulnerability curves. Results: No intensive competition was suggested among the co-occurring species, which can be explained by their divergent hydraulic strategies. The negative associations among Populus davidiana Dode and Betula platyphylla Suk., and P. davidiana and Betula dahurica Pall. can be explained as the result of their similar hydraulic strategies. Tilia mongolica Maxim. got a strong population development with its effective and safe hydraulic strategy. Generally, hydraulic-strategy differences can explain about 40% variations in interspecific association of species pairs. Oppositely, species sensitivity to early stages of drought is convergent in the forest. Conclusions: The divergent hydraulic strategies can partly explain the interspecific associations among tree species in forest–steppe ecotone and may be an important key for semiarid forests to keep stable. The convergent sensitivity to early stages of drought and the suckering regeneration strategy are also important for trees to survival. Our work revealing the physiological mechanism of forest compositions is a timely supplement to forest–steppe ecotone vegetation prediction.
Collapse
|
10
|
Abstract
Stable hydraulic conductivity in forest trees maintains healthy tree crowns and contributes to productivity in forest ecosystems. Drought conditions break down this relationship, but the mechanisms are poorly known and may depend on drought severity. To increase the understanding of changes in hydraulic conductivity during drought, we determined hydraulic parameters in Populus euphratica Oliv. (P. euphratica) in naturally arid conditions and in a simulated severe drought using a high-pressure flow meter. The results showed that leaf-specific hydraulic conductance (LSC) of leaf blades was less variable in mild drought, and increased significantly in severe drought. Plants attempted to maintain stability in leaf blade LSC under moderate water stress. In extreme drought, LSC was enhanced by increasing hydraulic conductance in plant parts with less hydraulic limitation, decreasing it in other parts, and decreasing leaf area; this mechanism protected the integrity of water transport in portions of tree crowns, and induced scorched branches and partial mortality in other parts of crowns. We conclude that limitation in water supply and elastic regulation of hydraulic characteristics may drive the mortality of tree branches as a result of severe drought. Evaluation of adaptive water transport capacity in riparian plants in arid areas provides a scientific basis for riparian forest restoration.
Collapse
|
11
|
Gričar J, Zavadlav S, Jyske T, Lavrič M, Laakso T, Hafner P, Eler K, Vodnik D. Effect of soil water availability on intra-annual xylem and phloem formation and non-structural carbohydrate pools in stem of Quercus pubescens. TREE PHYSIOLOGY 2019; 39:222-233. [PMID: 30239939 DOI: 10.1093/treephys/tpy101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Non-structural carbohydrates (NSCs, i.e., starch and soluble sugars) are frequently quantified in the context of tree response to stressful events (e.g., drought), because they serve as a carbon reservoir for growth and respiration, as well as providing a critical osmotic function to maintain turgor and vascular transport under different environmental conditions. We investigated the impact of soil water availability on intra-annual leaf phenology, radial growth dynamics and variation in NSC amounts in the stem of pubescent oak (Quercus pubescens Willd.). from a sub-Mediterranean region. For this purpose, trees growing at two nearby plots differing in bedrock and, consequently, soil characteristics (F-eutric cambisol on eocene flysch bedrock and L-rendzic leptosol on paleogenic limestone bedrock) were sampled. Non-structural carbohydrates were analysed in outer xylem and living phloem (separately for non-collapsed and collapsed parts). Results showed that xylem and phloem increments were 41.6% and 21.2%, respectively, wider in trees from F plot due to a higher rate of cell production. In contrast, the amount of NSCs and of soluble sugars significantly differed among the tissue parts and sampling dates but not between the two plots. Starch amounts were the highest in xylem, which could be explained by the abundance of xylem parenchyma cells. Two clear seasonal peaks of the starch amount were detected in all tissues, the first in September-November, in the period of leaf colouring and falling, and the second in March-April, i.e., at the onset of cambial cell production followed by bud development. The amounts of free sugars were highest in inner phloem + cambium, at the sites of active growth. Soil water availability substantially influenced secondary growth in the stem of Q. pubescens, whereas NSC amounts seemed to be less affected. The results show how the intricate relationships between soil properties, such as water availability, and tree performance should be considered when studying the impact of stressful events on the growth and functioning of trees.
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Saša Zavadlav
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Tuula Jyske
- Natural Resources Institute Finland, Production Systems Unit, Biomass Properties and Characterization, Tietotie 2, Espoo, Finland
| | - Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Tapio Laakso
- Natural Resources Institute Finland, Production Systems Unit, Biomass Properties and Characterization, Tietotie 2, Espoo, Finland
| | - Polona Hafner
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Klemen Eler
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| |
Collapse
|
12
|
Hao X, Tang H, Wang B, Yue C, Wang L, Zeng J, Yang Y, Wang X. Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant. TREE PHYSIOLOGY 2018; 38:1041-1052. [PMID: 29401304 DOI: 10.1093/treephys/tpy001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/15/2018] [Indexed: 05/03/2023]
Abstract
Green tea has attracted an increasing number of consumers worldwide due to its multiple health benefits. With the increase in global warming, more frequent cold spells in the spring often cause more serious damage to green tea production because of the young leaves used. We recorded the changes in climatic conditions during a typical cold spell and the damage symptoms caused by the cold spell in different tea cultivars and breeding lines. By simulating the low temperature of a cold spell under controlled conditions, comparative transcriptome and metabolic analyses were performed with sprouting shoots. Many pathways and genes were regulated differentially by the cold spell conditions. Taking into account the metabolic analysis, the results suggested that the mitogen-activated protein kinase (MAPK)-dependent ethylene and calcium signalling pathways were two major early cold-responsive mechanisms involved in sprouting shoots and were followed by the induction of the Inducer of CBF Expressions (ICE)-C-repeat binding factors (CBF)-cold-responsive (COR) signalling pathway to augment cold tolerance. During the cold shock, growth, photosynthesis and secondary metabolism-mainly involving flavonoid biosynthesis-were remarkably affected. Notably, the increased starch metabolism, which might be dependent on the high expression of β-amylase3 (BAM3) induced by CBF, played crucial roles in protecting young shoots against freezing cold. A schematic diagram of cold spell response mechanisms specifically involved in the sprouting shoots of the tea plant is ultimately proposed. Some essential transcriptional and metabolic changes were further confirmed in the plant materials under natural cold spell conditions. Our results provide a global view of the reprograming of transcription and metabolism in sprouting tea shoots during a cold spell and meaningful information for future practices.
Collapse
Affiliation(s)
- Xinyuan Hao
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Hu Tang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Bo Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chuan Yue
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Lu Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jianming Zeng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
13
|
Saunier A, Ormeño E, Havaux M, Wortham H, Ksas B, Temime-Roussel B, Blande JD, Lecareux C, Mévy JP, Bousquet-Mélou A, Gauquelin T, Fernandez C. Resistance of native oak to recurrent drought conditions simulating predicted climatic changes in the Mediterranean region. PLANT, CELL & ENVIRONMENT 2018; 41:2299-2312. [PMID: 29749622 DOI: 10.1111/pce.13331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/26/2018] [Indexed: 05/27/2023]
Abstract
The capacity of a Quercus pubescens forest to resist recurrent drought was assessed on an in situ experimental platform through the measurement of a large set of traits (ecophysiological and metabolic) studied under natural drought (ND) and amplified drought (AD) induced by partial rain exclusion. This study was performed during the third and fourth years of AD, which correspond to conditions of moderate AD in 2014 and harsher AD in 2015, respectively. Although water potential (Ψ) and net photosynthesis (Pn) were noticeably reduced under AD in 2015 compared to ND, trees showed similar growth and no oxidative stress. The absence of oxidative damage could be due to a strong accumulation of α-tocopherol, suggesting that this compound is a major component of the Q. pubescens antioxidant system. Other antioxidants were rather stable under AD in 2014, but slight changes started to be observed in 2015 (carotenoids and isoprene) due to harsher conditions. Our results indicate that Q. pubescens could be able to cope with AD, for at least 4 years, likely due to its antioxidant system. However, growth decrease was observed during the fifth year (2016) of AD, suggesting that this resistance could be threatened over longer periods of recurrent drought.
Collapse
Affiliation(s)
- Amélie Saunier
- Aix-Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
| | - Elena Ormeño
- Aix-Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | - Michel Havaux
- CEA Cadarache, CNRS UMR 7265 BVME, Aix-Marseille University, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lès-Durance, France
| | - Henri Wortham
- Aix-Marseille University, CNRS, LCE, Laboratoire de Chimie de l'Environnement, Marseille, France
| | - Brigitte Ksas
- CEA Cadarache, CNRS UMR 7265 BVME, Aix-Marseille University, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lès-Durance, France
| | - Brice Temime-Roussel
- Aix-Marseille University, CNRS, LCE, Laboratoire de Chimie de l'Environnement, Marseille, France
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
| | - Caroline Lecareux
- Aix-Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | - Jean-Philippe Mévy
- Aix-Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | - Anne Bousquet-Mélou
- Aix-Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | - Thierry Gauquelin
- Aix-Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | - Catherine Fernandez
- Aix-Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
14
|
Martín-Gómez P, Aguilera M, Pemán J, Gil-Pelegrín E, Ferrio JP. Contrasting ecophysiological strategies related to drought: the case of a mixed stand of Scots pine (Pinus sylvestris) and a submediterranean oak (Quercus subpyrenaica). TREE PHYSIOLOGY 2017; 37:1478-1492. [PMID: 29040771 DOI: 10.1093/treephys/tpx101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Submediterranean forests are considered an ecotone between Mediterranean and Eurosiberian ecosystems, and are very sensitive to global change. A decline of Scots pine (Pinus sylvestris L.) and a related expansion of oak species (Quercus spp.) have been reported in the Spanish Pre-Pyrenees. Although this has been associated with increasing drought stress, the underlying mechanisms are not fully understood, and suitable monitoring protocols are lacking. The aim of this study is to bring insight into the physiological mechanisms anticipating selective decline of the pines, with particular focus on carbon and water relations. For this purpose, we performed a sampling campaign covering two growing seasons in a mixed stand of P. sylvestris and Quercus subpyrenaica E.H del Villar. We sampled seasonally twig xylem and soil for water isotope composition (δ18O and δ2H), leaves for carbon isotope composition (δ13C) and stems to quantify non-structural carbohydrates (NSC) concentration, and measured water potential and leaf gas exchange. The first summer drought was severe for both species, reaching low predawn water potential (-2.2 MPa), very low stomatal conductance (12 ± 1.0 mmol m-2 s-1) and near-zero or even negative net photosynthesis, particularly in P. sylvestris (-0.6 ± 0.34 μmol m-2 s-1 in oaks, -1.3 ± 0.16 μmol m-2 s-1 in pines). Hence, the tighter stomatal control and more isohydric strategy of P. sylvestris resulted in larger limitations on carbon assimilation, and this was also reflected in carbon storage, showing twofold larger total NSC concentration in oaks than in pines (7.8 ± 2.4% and 4.0 ± 1.3%, respectively). We observed a faster recovery of predawn water potential after summer drought in Q. subpyrenaica than in P. sylvestris (-0.8 MPa and -1.1 MPa, respectively). As supported by the isotopic data, this was probably associated with a deeper and more reliable water supply in Q. subpyrenaica. In line with these short-term observations, we found a more pronounced negative effect of steadily increasing drought stress on long-term growth in pines compared with oaks. All these observations confer evidence of early warning of P. sylvestris decline and indicate the adaptive advantage of Q. subpyrenaica in the area.
Collapse
Affiliation(s)
- Paula Martín-Gómez
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Mònica Aguilera
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Jesús Pemán
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, CITA de Aragón, Av. Montañana, 930, 50059 Zaragoza, Spain
| | - Juan Pedro Ferrio
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
15
|
Saunier A, Ormeño E, Wortham H, Temime-Roussel B, Lecareux C, Boissard C, Fernandez C. Chronic Drought Decreases Anabolic and Catabolic BVOC Emissions of Quercus pubescens in a Mediterranean Forest. FRONTIERS IN PLANT SCIENCE 2017; 8:71. [PMID: 28228762 PMCID: PMC5296328 DOI: 10.3389/fpls.2017.00071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/12/2017] [Indexed: 05/19/2023]
Abstract
Biogenic volatile organic compounds (BVOC) emitted by plants can originate from both anabolism (metabolite production through anabolic processes) and catabolism (metabolite degradation by oxidative reactions). Drought can favor leaf oxidation by increasing the oxidative pressure in plant cells. Thus, under the precipitation decline predicted for the Mediterranean region, it can be expected both strong oxidation of anabolic BVOC within leaves and, as a result, enhanced catabolic BVOC emissions. Using an experimental rain exclusion device in a natural forest, we compared the seasonal course of the emissions of the main anabolic BVOC released by Q. pubescens (isoprene and methanol) and their catabolic products (MACR+MVK+ISOPOOH and formaldehyde, respectively) after 3 years of precipitation restriction (-30% of rain). Thus, we assume that this repetitive amplified drought promoted a chronic drought. BVOC emissions were monitored, on-line, with a PTR-ToF-MS. Amplified drought decreased all BVOC emissions rates in spring and summer by around 40-50 %, especially through stomatal closure, with no effect in autumn. Moreover, ratios between catabolic and anabolic BVOC remained unchanged with amplified drought, suggesting a relative stable oxidative pressure in Q. pubescens under the water stress applied. Moreover, these results suggest a quite good resilience of this species under the most severe climate change scenario in the Mediterranean region.
Collapse
Affiliation(s)
- Amélie Saunier
- Aix Marseille Univ., Univ. Avignon, CNRS, IRD, IMBEMarseille, France
| | - Elena Ormeño
- Aix Marseille Univ., Univ. Avignon, CNRS, IRD, IMBEMarseille, France
| | - Henri Wortham
- Aix Marseille Univ., CNRS, LCE, Laboratoire de Chimie de l'EnvironnementMarseille, France
| | - Brice Temime-Roussel
- Aix Marseille Univ., CNRS, LCE, Laboratoire de Chimie de l'EnvironnementMarseille, France
| | - Caroline Lecareux
- Aix Marseille Univ., Univ. Avignon, CNRS, IRD, IMBEMarseille, France
| | - Christophe Boissard
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Unisersité Paris-SaclayGif sur Yvette, France
| | | |
Collapse
|
16
|
Savi T, Casolo V, Luglio J, Bertuzzi S, Trifilo' P, Lo Gullo MA, Nardini A. Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:198-207. [PMID: 27174138 DOI: 10.1016/j.plaphy.2016.04.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 05/23/2023]
Abstract
Recent reports on tree mortality associated with anomalous drought and heat have raised interest into processes underlying tree resistance/resilience to water stress. Hydraulic failure and carbon starvation have been proposed as main causes of tree decline, with recent theories treating water and carbon metabolism as interconnected processes. We subjected young plants of two native (Quercus pubescens [Qp] and Prunus mahaleb [Pm]) and two invasive (Robinia pseudoacacia [Rp] and Ailanthus altissima [Aa]) woody angiosperms to a prolonged drought leading to stomatal closure and xylem embolism, to induce carbon starvation and hydraulic failure. At the end of the treatment, plants were measured for embolism rates and NSC content, and re-irrigated to monitor recovery of xylem hydraulics. Data highlight different hydraulic strategies in native vs invasive species under water stress, and provide physiological explanations for species-specific impacts of recent severe droughts. Drought-sensitive species (Qp and Rp) suffered high embolism rates and were unable to completely refill xylem conduits upon restoration of water availability. Species that better survived recent droughts were able to limit embolism build-up (Pm) or efficiently restored hydraulic functionality after irrigation (Aa). Species-specific capacity to reverse xylem embolism correlated to stem-level concentration of soluble carbohydrates, but not to starch content.
Collapse
Affiliation(s)
- Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Valentino Casolo
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, Viale delle Scienze 91, 33100 Udine, Italy
| | - Jessica Luglio
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Stefano Bertuzzi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Patrizia Trifilo'
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria A Lo Gullo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| |
Collapse
|
17
|
Cotrozzi L, Remorini D, Pellegrini E, Landi M, Massai R, Nali C, Guidi L, Lorenzini G. Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. PHYSIOLOGIA PLANTARUM 2016; 157:69-84. [PMID: 26541269 DOI: 10.1111/ppl.12402] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/28/2015] [Accepted: 09/24/2015] [Indexed: 05/27/2023]
Abstract
Despite the huge biodiversity characterizing the Mediterranean environment, environmental constraints, such as high sunlight and high temperatures alongside with dry periods, make plant survival hard. In addition, high irradiance leads to increasing ozone (O3 ) concentrations in ambient air. In this era of global warming, it is necessary to understand the mechanisms that allow native species to tolerate these environmental constraints and how such mechanisms interact. Three Mediterranean oak species (Quercus ilex, Quercus pubescens and Quercus cerris) with different features (drought tolerant, evergreen or deciduous species) were selected to assess their biometrical, physiological and biochemical responses under drought and/or O3 stress (80-100 nl l(-1) of O3 for 5 h day(-1) for 77 consecutive days). Leaf visible injury appeared only under drought stress (alone or combined with O3 ) in all three species. Drought × O3 induced strong reductions in leaf dry weight in Q. pubescens and Q. cerris (-70 and -75%, respectively). Alterations in physiological (i.e. decrease in maximum carboxylation rate) and biochemical parameters (i.e. increase in proline content and build-up of malondialdehyde by-products) occurred in all the three species, although drought represented the major determinant. Quercus ilex and Q. pubescens, which co-occur in dry environments, were more tolerant to drought and drought × O3 . Quercus ilex was the species in which oxidative stress occurred only when drought was applied with O3 . High plasticity at a biochemical level (i.e. proline content) and evergreen habitus are likely on the basis of the higher tolerance of Q. ilex.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Rossano Massai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| |
Collapse
|
18
|
Trifilò P, Nardini A, Lo Gullo MA, Barbera PM, Savi T, Raimondo F. Diurnal changes in embolism rate in nine dry forest trees: relationships with species-specific xylem vulnerability, hydraulic strategy and wood traits. TREE PHYSIOLOGY 2015; 35:694-705. [PMID: 26116926 DOI: 10.1093/treephys/tpv049] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/09/2015] [Indexed: 05/02/2023]
Abstract
Recent studies have reported correlations between stem sapwood capacitance (C(wood)) and xylem vulnerability to embolism, but it is unclear how C(wood) relates to the eventual ability of plants to reverse embolism. We investigated possible functional links between embolism reversal efficiency, C(wood), wood density (WD), vulnerability to xylem embolism and hydraulic safety margins in nine woody species native to dry sclerophyllous forests with different degrees of iso versus anisohydry. Substantial inter-specific differences in terms of seasonal/diurnal changes of xylem and leaf water potential, maximum diurnal values of transpiration rate and xylem vulnerability to embolism formation were recorded. Significant diurnal changes in percentage loss of hydraulic conductivity (PLC) were recorded for five species. Significant correlations were recorded between diurnal PLC changes and P50 and P88 values (i.e., xylem pressure inducing 50 and 88% PLC, respectively) as well as between diurnal PLC changes and safety margins referenced to P50 and P88. WD was linearly correlated with minimum diurnal leaf water potential, diurnal PLC changes and wood capacitance across all species. In contrast, significant relationships between P50, safety margin values referenced to P50 and WD were recorded only for the isohydric species. Functional links between diurnal changes in PLC, hydraulic strategies and WD and C(wood) are discussed.
Collapse
Affiliation(s)
- Patrizia Trifilò
- Dipartimento di Scienze Biologiche e Ambientali, Università di Messina, Salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Maria A Lo Gullo
- Dipartimento di Scienze Biologiche e Ambientali, Università di Messina, Salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Piera M Barbera
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Fabio Raimondo
- Dipartimento di Scienze Biologiche e Ambientali, Università di Messina, Salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
19
|
Hydraulic properties and fine root mass of Larix sibirica along forest edge-interior gradients. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2015. [DOI: 10.1016/j.actao.2014.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Genard-Zielinski AC, Ormeño E, Boissard C, Fernandez C. Isoprene emissions from downy oak under water limitation during an entire growing season: what cost for growth? PLoS One 2014; 9:e112418. [PMID: 25383554 PMCID: PMC4226567 DOI: 10.1371/journal.pone.0112418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/15/2014] [Indexed: 12/02/2022] Open
Abstract
Increases in the production of terpene- and phenolic-like compounds in plant species under abiotic stress conditions have been interpreted in physiological studies as a supplementary defense system due to their capacity to limit cell oxidation. From an ecological perspective however, these increases are only expected to confer competitive advantages if they do not imply a significant cost for the plant, that is, growth reduction. We investigated shifts of isoprene emissions, and to a lesser extent phenolic compound concentration, of Quercus pubescens Willd. from early leaf development to leaf senescence under optimal watering (control: C), mild and severe water stress (MS, SS). The impact of water stress was concomitantly assessed on plant physiological (chlorophyll fluorescence, stomatal conductance, net photosynthesis, water potential) functional (relative leaf water content, leaf mass per area ratio) and growth (aerial and root biomass) traits. Growth changes allowed to estimate the eventual costs related to the production of isoprene and phenolics. The total phenolic content was not modified under water stress whereas isoprene emissions were promoted under MS over the entire growing cycle despite the decline of Pn by 35%. Under SS, isoprene emissions remained similar to C all over the study despite the decline of Pn by 47% and were thereby clearly uncoupled to Pn leading to an overestimation of the isoprene emission factor by 44%. Under SS, maintenance of isoprene emissions and phenolic compound concentration resulted in very significant costs for the plants as growth rates were very significantly reduced. Under MS, increases of isoprene emission and maintenance of phenolic compound concentration resulted in moderate growth reduction. Hence, it is likely that investment in isoprene emissions confers Q. pubescens an important competitive advantage during moderate but not severe periods of water scarcity. Consequences of this response for air quality in North Mediterranean areas are also discussed.
Collapse
Affiliation(s)
- Anne-Cyrielle Genard-Zielinski
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, France
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), Unité Mixte CEA-CNRS-UVSQ (Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université de Versailles Saint-Quentin-en-Yvelines), Gif-sur-Yvette, France
| | - Elena Ormeño
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, France
| | - Christophe Boissard
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), Unité Mixte CEA-CNRS-UVSQ (Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université de Versailles Saint-Quentin-en-Yvelines), Gif-sur-Yvette, France
| | - Catherine Fernandez
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, France
| |
Collapse
|
21
|
Vranckx G, Jacquemyn H, Mergeay J, Cox K, Janssens P, Gielen BAS, Muys B, Honnay O. The effect of drought stress on heterozygosity-fitness correlations in pedunculate oak (Quercus robur). ANNALS OF BOTANY 2014; 113:1057-69. [PMID: 24638819 PMCID: PMC3997642 DOI: 10.1093/aob/mcu025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 02/07/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS The interaction between forest fragmentation and predicted climate change may pose a serious threat to tree populations. In small and spatially isolated forest fragments, increased homozygosity may directly affect individual tree fitness through the expression of deleterious alleles. Climate change-induced drought stress may exacerbate these detrimental genetic consequences of forest fragmentation, as the fitness response to low levels of individual heterozygosity is generally thought to be stronger under environmental stress than under optimal conditions. METHODS To test this hypothesis, a greenhouse experiment was performed in which various transpiration and growth traits of 6-month-old seedlings of Quercus robur differing in multilocus heterozygosity (MLH) were recorded for 3 months under a well-watered and a drought stress treatment. Heterozygosity-fitness correlations (HFC) were examined by correlating the recorded traits of individual seedlings to their MLH and by studying their response to drought stress. KEY RESULTS Weak, but significant, effects of MLH on several fitness traits were obtained, which were stronger for transpiration variables than for the recorded growth traits. High atmospheric stress (measured as vapour pressure deficit) influenced the strength of the HFCs of the transpiration variables, whereas only a limited effect of the irrigation treatment on the HFCs was observed. CONCLUSIONS Under ongoing climate change, increased atmospheric stress in the future may strengthen the negative fitness responses of trees to low MLH. This indicates the necessity to maximize individual multilocus heterozygosity in forest tree breeding programmes.
Collapse
Affiliation(s)
- Guy Vranckx
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Kasteelpark Arenberg 31, Box 2435, 3001 Leuven, Belgium
| | - Hans Jacquemyn
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Kasteelpark Arenberg 31, Box 2435, 3001 Leuven, Belgium
| | - Joachim Mergeay
- Research Institute for Nature and Forest (INBO), Flemish Government, Gaverstraat 4, 9500 Geraardsbergen, Belgium
| | - Karen Cox
- Research Institute for Nature and Forest (INBO), Flemish Government, Gaverstraat 4, 9500 Geraardsbergen, Belgium
| | - Pieter Janssens
- Soil Service of Belgium, Willem de Croylaan 48, 3001 Leuven, Belgium
| | - Bie An Sofie Gielen
- Division of Forest, Nature and Landscape, University of Leuven, Celestijnenlaan 200E, Box 2411, 3001 Leuven, Belgium
| | - Bart Muys
- Division of Forest, Nature and Landscape, University of Leuven, Celestijnenlaan 200E, Box 2411, 3001 Leuven, Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Kasteelpark Arenberg 31, Box 2435, 3001 Leuven, Belgium
| |
Collapse
|
22
|
|
23
|
Nardini A, Battistuzzo M, Savi T. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. THE NEW PHYTOLOGIST 2013; 200:322-329. [PMID: 23593942 DOI: 10.1111/nph.12288] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/22/2013] [Indexed: 05/08/2023]
Abstract
Plant water status and hydraulics were measured in six woody angiosperms growing in a karstic woodland, during an extreme summer drought. Our aim was to take advantage of an unusual climatic event to identify key traits related to species-specific drought damage. The damage suffered by different species was assessed in terms of percentage of individuals showing extensive crown desiccation. Stem water potential (Ψstem ) and percent loss of hydraulic conductivity (PLC) were measured in healthy and desiccated individuals. Vulnerability to cavitation was assessed in terms of stem water potential inducing 50% PLC (Ψ50 ). Stem density (ρstem ) was also measured. Species-specific percentage of desiccated individuals was correlated to Ψ50 and ρstem . Crown desiccation was more widespread in species with less negative Ψ50 and lower ρstem . Desiccated individuals had lower Ψstem and higher PLC than healthy ones, suggesting that hydraulic failure was an important mechanism driving shoot dieback. Drought-vulnerable species showed lower safety margins (Ψstem - Ψ50 ) than resistant ones. The Ψ50 , safety margins and ρstem values emerge as convenient traits to be used for tentative predictions of differential species-specific impact of extreme drought events on a local scale. The possibility that carbohydrate depletion was also involved in induction of desiccation symptoms is discussed.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Marta Battistuzzo
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| |
Collapse
|
24
|
Herzog C, Peter M, Pritsch K, Günthardt-Goerg MS, Egli S. Drought and air warming affects abundance and exoenzyme profiles of Cenococcum geophilum associated with Quercus robur, Q. petraea and Q. pubescens. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15 Suppl 1:230-237. [PMID: 22686410 DOI: 10.1111/j.1438-8677.2012.00614.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The present study aimed to elucidate the influence of drought and elevated temperature on relative abundance and functioning of the ectomycorrhizal fungus Cenococcum geophilum on three oak species differing in adaptation to a warm and dry climate. The experiment QUERCO comprised three Quercus species (Q. robur, Q. petraea, Q. pubescens) grown for 3 years under four treatments: elevated air temperature, drought, a combination of the two, and control. Fine root samples were analysed for relative abundance and potential extracellular enzyme activities of ectomycorrhizae of C. geophilum, a fungal species known to be drought resistant. The relative abundance of C. geophilum on the roots of the oak species was significantly increased by temperature, decreased by drought, but unchanged in the combined treatment compared to the control. Although the extent of treatment effects differed among oak species, no significant influence of tree species on relative abundance of C. geophilum was detected. Exoenzyme activities of C. geophilum on Q. robur and Q. petraea (but not Q. pubescens) significantly increased in the combined treatment, but for all oak species were reduced under drought and air warming alone compared to the control. There was a significant negative correlation between abundance of C. geophilum and its leucine aminopeptidase activity. As this enzyme is not frequent among ectomycorrhizal fungi, this emphasises the functional importance of C. geophilum in the ectomycorrhizal community. Our results indicate that increased temperature and drought will influence the relative abundance and enzyme activity of C. geophilum. However, both the Quercus species and C. geophilum tolerated warming and strong drought.
Collapse
Affiliation(s)
- C Herzog
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, Switzerland.
| | | | | | | | | |
Collapse
|
25
|
Aroca R, Porcel R, Ruiz-Lozano JM. Regulation of root water uptake under abiotic stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:43-57. [PMID: 21914658 DOI: 10.1093/jxb/err266] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A common effect of several abiotic stresses is to cause tissue dehydration. Such dehydration is caused by the imbalance between root water uptake and leaf transpiration. Under some specific stress conditions, regulation of root water uptake is more crucial to overcome stress injury than regulation of leaf transpiration. This review first describes present knowledge about how water is taken up by roots and then discusses how specific stress situations such as drought, salinity, low temperature, and flooding modify root water uptake. The rate of root water uptake of a given plant is the result of its root hydraulic characteristics, which are ultimately regulated by aquaporin activity and, to some extent, by suberin deposition. Present knowledge about the effects of different stresses on these features is also summarized. Finally, current findings regarding how molecular signals such as the plant hormones abscisic acid, ethylene, and salicylic acid, and how reactive oxygen species may modulate the final response of root water uptake under stress conditions are discussed.
Collapse
Affiliation(s)
- Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| | | | | |
Collapse
|
26
|
Nardini A, Salleo S, Jansen S. More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4701-18. [PMID: 21765173 DOI: 10.1093/jxb/err208] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Major restrictions to the hydraulic conductance of xylem (K(XYL)) in vascular plants have traditionally been attributed to anatomical constraints. More recently, changes in the cationic concentration of xylem sap have been suggested to be responsible for short-term changes in K(XYL) based on data for 35 dicot species, and very few gymnosperms and ferns, indicating that xylem water transport may no longer be considered as an entirely passive process. Recent studies have revealed that this so-called ionic effect: (i) varies from little or no increase to >30%, (ii) is species specific, (iii) changes on a seasonal basis, (iv) depends on the cationic concentration, (v) is enhanced in embolized stems, and (vi) is positively correlated with vessel grouping. Furthermore, the ionic effect has been suggested to play functional roles in planta with respect to: (i) phloem-mediated control of xylem hydraulic properties, (ii) compensation of cavitation-induced loss of hydraulic conductance, with the result of optimizing light and water utilization, and (iii) differential regulation of water delivery to branches exposed to different levels of light. Pits are likely to play a key role in the ionic effect, which has largely been explained as a consequence of the poly-electrolytic nature and hydrogel properties of the pectic matrix of interconduit pit membranes, despite little evidence that pit membrane pectins remain present after cell hydrolysis. More research is needed to address the ionic effect in more species, physico-chemical properties of pit membranes, and how the ionic effect may increase xylem hydraulic conductance 'on demand'.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, Italia.
| | | | | |
Collapse
|
27
|
Sellin A, Sack L, Õunapuu E, Karusion A. Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula). PLANT, CELL & ENVIRONMENT 2011; 34:1079-87. [PMID: 21414012 DOI: 10.1111/j.1365-3040.2011.02306.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Responses of leaf and shoot hydraulic conductance to light quality were examined on shoots of silver birch (Betula pendula), cut from lower ('shade position') and upper thirds of the crowns ('sun position') of trees growing in a natural temperate forest stand. Hydraulic conductances of leaf blades (K(lb) ), petioles (K(P) ) and branches (i.e. leafless stem; K(B) ) were determined using a high pressure flow meter in steady state mode. The shoots were exposed to photosynthetic photon flux density of 200-250 µmol m⁻² s⁻¹ using white, blue or red light. K(lb) depended significantly on both light quality and canopy position (P<0.001), K(B) on canopy position (P<0.001) and exposure time (P=0.014), and none of the three factors had effect on K(P) . The highest values of K(lb) were recorded under the blue light (3.63 and 3.13×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ for the sun and shade leaves, respectively), intermediate values under white light (3.37 and 2.46×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ , respectively) and lowest values under red light (2.83 and 2.02×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹, respectively). Light quality has an important impact on leaf hydraulic properties, independently of light intensity or of total light energy, and the specific light receptors involved in this response require identification. Given that natural canopy shade depletes blue and red light, K(lb) may be decreased both by reduced fluence and shifts in light spectra, indicating the need for studies of the natural heterogeneity of K(lb) within and under canopies, and its impacts on gas exchange.
Collapse
Affiliation(s)
- Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
28
|
Salvini D, Bruschi P, Fineschi S, Grossoni P, Kjaer ED, Vendramin GG. Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. within an Italian stand as revealed by microsatellite fingerprinting. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:758-765. [PMID: 19689784 DOI: 10.1111/j.1438-8677.2008.00158.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Interspecific gene flow is frequently reported in the genus Quercus. However, interfertile oak species often seem to remain distinct, even within areas of sympatry. This study employed molecular markers to verify, at a fine scale, the presence of interspecific gene flow in a natural population of Quercus petraea and Quercus pubescens. Within a delimited area of 6 ha, all adult trees belonging to the studied oak complex and seeds from a subsample of such trees were collected and analysed using molecular microsatellite markers. A low interspecific genetic differentiation and a high level of interspecific genetic admixture suggested past hybridisation. Paternity inference of seeds allowed the estimation of pollination frequencies from the three groups of pollen donors (Q. petraea, Q. pubescens, intermediate). We also assayed pollen viability and germinability of each species group. We observed natural hybridisation between Q. petraea and Q. pubescens, with a predominant component in the direction Q. petraea --> Q. pubescens: Q. pubescens displayed a higher level of heterospecific pollination by Q. petraea (25.8%) and intermediate morphotypes (14.7%), compared to Q. petraea acting as pollen receptor (with less than 5% heterospecific pollinations). Intermediate 'mother trees' were pollinated in similar proportions by Q. petraea (23.1%), Q. pubescens (37.8%) and intermediate morphotypes (39.1%). The asymmetrical introgression observed for the studied generation may be caused, among other factors, by the relative abundance of trees from each species group in the studied area.
Collapse
Affiliation(s)
- D Salvini
- Istituto per la Protezione delle Piante, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Firenze, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Atwell BJ, Henery ML, Ball MC. Does soil nitrogen influence growth, water transport and survival of snow gum (Eucalyptus pauciflora Sieber ex Sprengel.) under CO enrichment? PLANT, CELL & ENVIRONMENT 2009; 32:553-566. [PMID: 19210643 DOI: 10.1111/j.1365-3040.2009.01949.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Eucalyptus pauciflora Sieber ex Sprengel. (snow gum) was grown under ambient (370 microL L(-1)) and elevated (700 microL L(-1)) atmospheric [CO2] in open-top chambers (OTCs) in the field and temperature-controlled glasshouses. Nitrogen applications to the soil ranged from 0.1 to 2.75 g N per plant. Trees in the field at high N levels grew rapidly during summer, particularly in CO2-enriched atmosphere, but suffered high mortality during summer heatwaves. Generally, wider and more numerous secondary xylem vessels at the root-shoot junction in CO2-enriched trees conferred fourfold higher below-ground hydraulic conductance. Enhanced hydraulic capacity was typical of plants at elevated [CO2] (in which root and shoot growth was accelerated), but did not result from high N supply. However, because high rates of N application consistently made trees prone to dehydration during heatwaves, glasshouse studies were required to identify the effect of N nutrition on root development and hydraulics. While the effects of elevated [CO2] were again predominantly on hydraulic conductivity, N nutrition acted specifically by constraining deep root penetration into soil. Specifically, 15-40% shallower root systems supported marginally larger shoot canopies. Independent changes to hydraulics and root penetration have implications for survival of fertilized trees under elevated atmospheric [CO2], particularly during water stress.
Collapse
Affiliation(s)
- Brian J Atwell
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | |
Collapse
|
30
|
Sellin A, Ounapuu E, Kupper P. Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula). PHYSIOLOGIA PLANTARUM 2008; 134:412-20. [PMID: 18513374 DOI: 10.1111/j.1399-3054.2008.01142.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Variation in leaf hydraulic conductance (K(L)) and distribution of resistance in response to light intensity and duration were examined in shoots of silver birch (Betula pendula Roth). K(L) was determined on detached shoots using the evaporative flux method (transpiration was measured with a porometer and water potential drop with a pressure chamber). Although K(L) depended on light duration per se, its dynamics was largely determined by leaf temperature (T(L)). Both upper-crown leaves and branches developed in well-illuminated environment exhibited higher hydraulic efficiency compared with the lower crown, accounting for vertical trends of apparent soil-to-leaf hydraulic conductance in canopy of silver birch revealed in our previous studies. K(L) varied significantly with light intensity, the highest values for both shade and sun foliage were recorded at photosynthetic photon flux density of 330 micromol m(-2) s(-1). Light responses of K(L) were associated evidently with an irradiance-mediated effect on extravascular tissues involving regulation of cell membrane aquaporins. Effects of irradiance on K(L) resulted in changes of Psi(L), bringing about considerable alteration in partitioning of the resistance between leaves and branch (leafless shoot stem): the contribution of leaves to the shoot total resistance decreased from 94% at -1.0 MPa to 75% at -0.2 MPa. Treatment with HgCl2 decreased hydraulic conductance of both leaves and branches, implying that condition of bordered pit membranes or shoot living tissues may be involved in responses of xylem conductance to Hg2+.
Collapse
Affiliation(s)
- Arne Sellin
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, Lai 40, 51005 Tartu, Estonia.
| | | | | |
Collapse
|
31
|
Bauerle TL, Richards JH, Smart DR, Eissenstat DM. Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. PLANT, CELL & ENVIRONMENT 2008; 31:177-86. [PMID: 18028280 DOI: 10.1111/j.1365-3040.2007.01749.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Redistribution of water within plants could mitigate drought stress of roots in zones of low soil moisture. Plant internal redistribution of water from regions of high soil moisture to roots in dry soil occurs during periods of low evaporative demand. Using minirhizotrons, we observed similar lifespans of roots in wet and dry soil for the grapevine 'Merlot' (Vitis vinifera) on the rootstock 101-14 Millardet de Gramanet (Vitis riparia x Vitis rupestris) in a Napa County, California vineyard. We hypothesized that hydraulic redistribution would prevent an appreciable reduction in root water potential and would contribute to prolonged root survivorship in dry soil zones. In a greenhouse study that tested this hypothesis, grapevine root systems were divided using split pots and were grown for 6 months. With thermocouple psychrometers, we measured water potentials of roots of the same plant in both wet and dry soil under three treatments: control (C), 24 h light + supplemental water (LW) and 24 h light only (L). Similar to the field results, roots in the dry side of split pots had similar survivorship as roots in the wet side of the split pots (P = 0.136) in the C treatment. In contrast, reduced root survivorship was directly associated with plants in which hydraulic redistribution was experimentally reduced by 24 h light. Dry-side roots of plants in the LW treatment lived half as long as the roots in the wet soil despite being provided with supplemental water (P < 0.0004). Additionally, pre-dawn water potentials of roots in dry soil under 24 h of illumination (L and LW) exhibited values nearly twice as negative as those of C plants (P = 0.034). Estimates of root membrane integrity using electrolyte leakage were consistent with patterns of root survivorship. Plants in which nocturnal hydraulic redistribution was reduced exhibited more than twice the amount of electrolyte leakage in dry roots compared to those in wet soil of the same plant. Our study demonstrates that besides a number of ecological advantages to protecting tissues against desiccation, internal hydraulic redistribution of water is a mechanism consistent with extended root survivorship in dry soils.
Collapse
Affiliation(s)
- T L Bauerle
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
32
|
Knipfer T, Das D, Steudle E. During measurements of root hydraulics with pressure probes, the contribution of unstirred layers is minimized in the pressure relaxation mode: comparison with pressure clamp and high-pressure flowmeter. PLANT, CELL & ENVIRONMENT 2007; 30:845-60. [PMID: 17547656 DOI: 10.1111/j.1365-3040.2007.01670.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The effects of unstirred layers (USLs) at the endodermis of roots of young maize plants (Zea mays L.) were quantified, when measuring the water permeability of roots using a root pressure probe (RPP) in the pressure relaxation (PR) and pressure clamp (PC) modes. Different from PRs, PCs were performed by applying a constant pressure for certain periods of time. Experimental data were compared with results from simulations based on a convection versus diffusion (C/D) model, with the endodermis being the main barrier for solutes and water. Solute profiles in the stele were calculated as they occurred during rapid water flows across the root. The model quantitatively predicted the experimental finding of two distinct phases during PRs, in terms of a build-up of concentration profiles in the stele between endodermis and xylem vessels. It also predicted that, following a PC, half-times (T1/2) of PRs increased as the time used for clamping (and the build-up of USLs) increased. Following PCs of durations of 15, 30 and 60 s, T1/2 increased by factors of between 2.5 and 7.0, and water permeability of roots (root hydraulic conductivity, Lpr) was reduced by the same factors. When root pressure was immediately taken back to the original equilibrium root pressure following a PC, there was a transient uptake of water into the root stele (transient increase of root pressure), and the size of transients rose with time of clamping, as predicted by the model. The results indicated that the 'real' hydraulic conductivity of roots should be measured during initial water flows, such as during the rapid phase of PRs, when the effect of USLs was minimized. It was discussed that 'pressure-propagation effects' could not explain the finding of two phases during PRs. The results of USL effects threw some doubt on the use of PC and high-pressure flowmeter (HPFM) techniques with roots, where rigorous estimates of USLs were still missing despite the fact that large quantities of water were forced across the root.
Collapse
Affiliation(s)
- Thorsten Knipfer
- Department of Plant Ecology, Bayreuth University, D-95440 Bayreuth, Germany
| | | | | |
Collapse
|
33
|
Eilmann B, Weber P, Rigling A, Eckstein D. Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. DENDROCHRONOLOGIA 2006. [PMID: 0 DOI: 10.1016/j.dendro.2005.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
34
|
Edwards EJ, Diaz M. Ecological physiology of Pereskia guamacho, a cactus with leaves. PLANT, CELL & ENVIRONMENT 2006; 29:247-56. [PMID: 17080640 DOI: 10.1111/j.1365-3040.2005.01417.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The specialized physiology of leafless, stem-succulent cacti is relatively well understood. This is not true, however, for Pereskia (Cactaceae), the 17 species of leafy trees and shrubs that represent the earliest diverging lineages of the cacti. Here we report on the water relations and photosynthesis of Pereskia guamacho, a small tree of the semiarid scrubland of Venezuela's Caribbean coast. Sapwood-specific xylem conductivity (Ksp) is low when compared to other vessel-bearing trees of tropical dry systems, but leaf-specific xylem conductivity is relatively high due to the high Huber value afforded by P. guamacho's short shoot architecture. P. guamacho xylem is not particularly vulnerable to drought-induced cavitation, especially considering the high leaf water potentials maintained year round. This is confirmed by the lack of significant variation exhibited in Ksp between wet and dry seasons. In the rainy season, P. guamacho exhibited C3-like patterns of stomatal conductance, but during a prolonged drought we documented nocturnal stomatal opening with a concomitant accumulation of titratable acid in leaves. This suggests that P. guamacho can perform drought-induced crassulacean acid metabolism (CAM photosynthesis), although delta 13C values imply that most carbon is assimilated via the C3 pathway. P. guamacho leaves display very low stomatal densities, and maximum stomatal conductance is low whether stomata open during the day or night. We conclude that leaf performance is not limited by stem hydraulic capacity in this species, and that water use is conservative and tightly regulated at the leaf level.
Collapse
Affiliation(s)
- Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.
| | | |
Collapse
|
35
|
Aasamaa K, Sõber A. Seasonal courses of maximum hydraulic conductance in shoots of six temperate deciduous tree species. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 32:1077-1087. [PMID: 32689203 DOI: 10.1071/fp05088] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 07/11/2005] [Indexed: 06/11/2023]
Abstract
The seasonal course of maximum hydraulic conductance of leaf laminae (K lamina) of shoots correlated strongly with the seasonal course of the maximum hydraulic conductance of leaf laminae of HgCl2-treated shoots (K lamina(HgCl2)), and with the seasonal course of the difference (dK lamina) between K lamina and K lamina(HgCl2). However, it did not correlate strongly with the seasonal course of the hydraulic conductance of stem and petioles of the shoot (K stpt) in six temperate deciduous tree species. The species ranked according to K lamina as follows: Populus tremula L. > Salix caprea L. > Padus avium Mill. > Quercus robur L. > Tilia cordata Mill. > Acer platanoides L. The species-specific maxima of K lamina correlated positively with the simultaneous values of K lamina(HgCl2), dK lamina and K stpt; the correlation was strongest with K lamina(HgCl2). It was concluded that the seasonal dynamics of maximum hydraulic conductance of leaf laminae was determined almost equally by the seasonal dynamics of the hydraulic conductance of foliar protoplasts and apoplast, but the inter-specific differences in K lamina were mainly caused by the different apoplastic hydraulic conductance in leaves of these species. The relative contribution of dK lamina (in K lamina) was highest in slow-growing species (~55% in A. platanoides) and the lowest in fast-growers (~30% in S. caprea).
Collapse
Affiliation(s)
- Krõõt Aasamaa
- Department of Silviculture, Estonian Agricultural University, Kreutzwaldi 5, Tartu 51014, Estonia
| | - Anu Sõber
- Institute of Botany and Ecology, University of Tartu, Lai 40, Tartu 51005, Estonia
| |
Collapse
|
36
|
Siemens JA, Zwiazek JJ. Changes in root water flow properties of solution culture-grown trembling aspen (Populus tremuloides) seedlings under different intensities of water-deficit stress. PHYSIOLOGIA PLANTARUM 2004; 121:44-49. [PMID: 15086816 DOI: 10.1111/j.0031-9317.2004.00291.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To study the effects of water-deficit stress on root water flow properties in trembling aspen (Populus tremuloides Michx.), seedlings were grown in solution culture and subjected to water-deficit stress by placing their roots in sealed high humidity chambers. After 17 h of stress treatment, seedlings showed mild stress (MS) symptoms with a decline in shoot water potentials. Within 20 h, shoot water potentials rapidly declined, and severe stress (SS) symptoms were present. Root hydraulic conductivity (L(pr)) increased more than two-fold and the relative concentration of apoplastic tracer dye trisodium 3-hydroxy-5, 8, 10-pyrenetrisulphonate (PTS(3)) in xylem exudate decreased by 73.6% in MS seedlings. Conversely, L(pr) decreased (55.3%) and PTS(3) increased (28.6%) in SS seedlings. Treatment of roots with 0.1 mM mercuric chloride decreased root volume flow density (J(v)) by about 29.0% in control and MS plants with no decrease measured in SS seedlings. Mercuric chloride also increased PTS(3) concentration in xylem exudate of control (59%) and MS (86%) seedlings with no change observed in SS plants. The results suggest that aquaporin-mediated transport is important in the regulation of root water flow under drought stress and that root water flow properties are strongly affected by the stress level. Regulation of root water flow may represent an important drought-stress resistance mechanism.
Collapse
Affiliation(s)
- J. Aurea Siemens
- Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Bldg., Edmonton, Alberta, Canada T6G 2E3
| | | |
Collapse
|
37
|
Meinzer FC. Co-ordination of vapour and liquid phase water transport properties in plants. PLANT, CELL & ENVIRONMENT 2002; 25:265-274. [PMID: 11841669 DOI: 10.1046/j.1365-3040.2002.00781.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The pathway for water movement from the soil through plants to the atmosphere can be represented by a series of liquid and vapour phase resistances. Stomatal regulation of vapour phase resistance balances transpiration with the efficiency of water supply to the leaves, avoiding leaf desiccation at one extreme, and unnecessary restriction of carbon dioxide uptake at the other. In addition to maintaining a long-term balance between vapour and liquid phase water transport resistances in plants, stomata are exquisitely sensitive to short-term, dynamic perturbations of liquid water transport. In balancing vapour and liquid phase water transport, stomata do not seem to distinguish among potential sources of variation in the apparent efficiency of delivery of water per guard cell complex. Therefore, an apparent soil-to-leaf hydraulic conductance based on relationships between liquid water fluxes and driving forces in situ seems to be the most versatile for interpretation of stomatal regulatory behaviour that achieves relative homeostasis of leaf water status in intact plants. Components of dynamic variation in apparent hydraulic conductance in intact plants include, exchange of water between the transpiration stream and internal storage compartments via capacitive discharge and recharge, cavitation and its reversal, temperature-induced changes in the viscosity of water, direct effects of xylem sap composition on xylem hydraulic properties, and endogenous and environmentally induced variation in the activity of membrane water channels in the hydraulic pathway. Stomatal responses to humidity must also be considered in interpreting co-ordination of vapour and liquid phase water transport because homeostasis of bulk leaf water status can only be achieved through regulation of the actual transpirational flux. Results of studies conducted with multiple species point to considerable convergence with regard to co-ordination of stomatal and hydraulic properties. Because stomata apparently sense and respond to integrated and dynamic soil-to-leaf water transport properties, studies involving intact plants under both natural and controlled conditions are likely to yield the most useful new insights concerning stomatal co-ordination of transpiration with soil and plant hydraulic properties.
Collapse
Affiliation(s)
- F. C. Meinzer
- USDA Forest Service, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331 USA
| |
Collapse
|
38
|
Meinzer FC, Clearwater MJ, Goldstein G. Water transport in trees: current perspectives, new insights and some controversies. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2001; 45:239-262. [PMID: 11323032 DOI: 10.1016/s0098-8472(01)00074-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review emphasizes recent developments and controversies related to the uptake, transport and loss of water by trees. Comparisons of the stable isotope composition of soil and xylem water have provided new and sometimes unexpected insights concerning spatial and temporal partitioning of soil water by roots. Passive, hydraulic redistribution of water from moister to drier portions of the soil profile via plant root systems may have a substantial impact on vertical profiles of soil water distribution, partitioning of water within and among species, and on ecosystem water balance. The recent development of a technique for direct measurement of pressure in individual xylem elements of intact, transpiring plants elicited a number of challenges to the century-old cohesion-tension theory. The ongoing debate over mechanisms of long-distance water transport has stimulated an intense interest in the phenomenon and mechanisms of embolism repair. Rather than embolism being essentially irreversible, it now appears that there is a dynamic balance between embolism formation and repair throughout the day and that daily release of water from the xylem via cavitation may serve to stabilize leaf water balance by minimizing the temporal imbalance between water supply and demand. Leaf physiology is closely linked to hydraulic architecture and hydraulic perturbations, but the precise nature of the signals to which stomata respond remains to be elucidated. When water transport in trees is studied at multiple scales from single leaves to the whole organism, considerable functional convergence in regulation of water use among phylogenetically diverse species is revealed.
Collapse
Affiliation(s)
- F C. Meinzer
- Forestry Sciences Laboratory, USDA Forest Service, 3200 SW Jefferson Way, 97331, Corvallis, OR, USA
| | | | | |
Collapse
|