1
|
Faraci FM, Taugher RJ, Lynch C, Fan R, Gupta S, Wemmie JA. Acid-Sensing Ion Channels: Novel Mediators of Cerebral Vascular Responses. Circ Res 2019; 125:907-920. [PMID: 31451088 PMCID: PMC6813889 DOI: 10.1161/circresaha.119.315024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RATIONALE Precise regulation of cerebral blood flow is critical for normal brain function. Insufficient cerebral blood flow contributes to brain dysfunction and neurodegeneration. Carbon dioxide (CO2), via effects on local acidosis, is one of the most potent regulators of cerebral blood flow. Although a role for nitric oxide in intermediate signaling has been implicated, mechanisms that initiate CO2-induced vasodilation remain unclear. OBJECTIVE Acid-sensing ion channel-1A (ASIC1A) is a proton-gated cation channel that is activated by extracellular acidosis. Based on work that implicated ASIC1A in the amygdala and bed nucleus of the stria terminalis in CO2-evoked and acid-evoked behaviors, we hypothesized that ASIC1A might also mediate microvascular responses to CO2. METHODS AND RESULTS To test this hypothesis, we genetically and pharmacologically manipulated ASIC1A and assessed effects on CO2-induced dilation of cerebral arterioles in vivo. Effects of inhalation of 5% or 10% CO2 on arteriolar diameter were greatly attenuated in mice with global deficiency in ASIC1A (Asic1a-/-) or by local treatment with the ASIC inhibitor, psalmotoxin. Vasodilator effects of acetylcholine, which acts via endothelial nitric oxide synthase were unaffected, suggesting a nonvascular source of nitric oxide may be key for CO2 responses. Thus, we tested whether neurons may be the cell type through which ASIC1A influences microvessels. Using mice in which Asic1a was specifically disrupted in neurons, we found effects of CO2 on arteriolar diameter were also attenuated. CONCLUSIONS Together, these data are consistent with a model wherein activation of ASIC1A, particularly in neurons, is critical for CO2-induced nitric oxide production and vasodilation. With these findings, ASIC1A emerges as major regulator of microvascular tone.
Collapse
Affiliation(s)
- Frank M. Faraci
- Department of Internal Medicine, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
- Department of Pharmacology, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| | - Rebecca J. Taugher
- Department of Psychiatry, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| | - Cynthia Lynch
- Department of Internal Medicine, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| | - Rong Fan
- Department of Psychiatry, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| | - Subhash Gupta
- Department of Psychiatry, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| | - John A. Wemmie
- Department of Psychiatry, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| |
Collapse
|
2
|
Ren J, Shang T, Sherry AD, Malloy CR. Unveiling a hidden 31 P signal coresonating with extracellular inorganic phosphate by outer-volume-suppression and localized 31 P MRS in the human brain at 7T. Magn Reson Med 2018; 80:1289-1297. [PMID: 29427295 PMCID: PMC6085175 DOI: 10.1002/mrm.27121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE The study was undertaken to demonstrate that there is more than 1 component in the extracellular Pi31 P signal ( Piex) acquired from human head using nonlocalized 31 P MRS. METHODS Outer-volume-suppression (OVS) saturation and 1D/2D 31 P CSI were utilized to reveal the presence of an additional component in the Piex signal. RESULTS 67% of the head extracellular Pi signal was attenuated upon OVS saturation of the peripheral meningeal tissues, likely reflecting elimination of the Pi signal in the meningeal fluids (the blood and CSF). Localized 1D/2D CSI data provided further support for this assignment. Upon correction for the meningeal contribution, the extracellular Pi concentration was 0.51 ± 0.07 mM, whereas the intracellular Pi was 0.85 ± 0.10 mM. The extracellular pH was measured as 7.32 ± 0.04 when using OVS, as compared to 7.39 ± 0.03 when measured without OVS (N = 7 subjects). CONCLUSION The extracellular Pi signal acquired from the human head using nonlocalized 31 P MRS contains a significant component likely contributed by peripheral blood and CSF in meninges that must be removed in order to use this signal as an endogenous probe for measuring extracellular pH and other properties in the brain.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ty Shang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- VA North Texas Health Care System, Dallas, TX 75216
| |
Collapse
|
3
|
Hladky SB, Barrand MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 2016; 13:19. [PMID: 27799072 PMCID: PMC5508927 DOI: 10.1186/s12987-016-0040-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
The two major interfaces separating brain and blood have different primary roles. The choroid plexuses secrete cerebrospinal fluid into the ventricles, accounting for most net fluid entry to the brain. Aquaporin, AQP1, allows water transfer across the apical surface of the choroid epithelium; another protein, perhaps GLUT1, is important on the basolateral surface. Fluid secretion is driven by apical Na+-pumps. K+ secretion occurs via net paracellular influx through relatively leaky tight junctions partially offset by transcellular efflux. The blood-brain barrier lining brain microvasculature, allows passage of O2, CO2, and glucose as required for brain cell metabolism. Because of high resistance tight junctions between microvascular endothelial cells transport of most polar solutes is greatly restricted. Because solute permeability is low, hydrostatic pressure differences cannot account for net fluid movement; however, water permeability is sufficient for fluid secretion with water following net solute transport. The endothelial cells have ion transporters that, if appropriately arranged, could support fluid secretion. Evidence favours a rate smaller than, but not much smaller than, that of the choroid plexuses. At the blood-brain barrier Na+ tracer influx into the brain substantially exceeds any possible net flux. The tracer flux may occur primarily by a paracellular route. The blood-brain barrier is the most important interface for maintaining interstitial fluid (ISF) K+ concentration within tight limits. This is most likely because Na+-pumps vary the rate at which K+ is transported out of ISF in response to small changes in K+ concentration. There is also evidence for functional regulation of K+ transporters with chronic changes in plasma concentration. The blood-brain barrier is also important in regulating HCO3- and pH in ISF: the principles of this regulation are reviewed. Whether the rate of blood-brain barrier HCO3- transport is slow or fast is discussed critically: a slow transport rate comparable to those of other ions is favoured. In metabolic acidosis and alkalosis variations in HCO3- concentration and pH are much smaller in ISF than in plasma whereas in respiratory acidosis variations in pHISF and pHplasma are similar. The key similarities and differences of the two interfaces are summarized.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| |
Collapse
|
4
|
Tiret B, Brouillet E, Valette J. Evidence for a "metabolically inactive" inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7 T. J Cereb Blood Flow Metab 2016; 36:1513-8. [PMID: 27354096 PMCID: PMC5012527 DOI: 10.1177/0271678x16657095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023]
Abstract
With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis.
Collapse
Affiliation(s)
- Brice Tiret
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| |
Collapse
|
5
|
Protti A, Properzi P, Magnoni S, Santini A, Langer T, Guenzani S, Ferrero S, Bassani G, Stocchetti N, Gattinoni L. Skeletal muscle lactate overproduction during metformin intoxication: An animal study with reverse microdialysis. Toxicol Lett 2016; 255:43-6. [PMID: 27178268 DOI: 10.1016/j.toxlet.2016.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
Lactic acidosis during metformin intoxication is classically mainly attributed to diminished lactate clearance through liver gluconeogenesis. Here we studied 6 healthy, sedated and mechanically ventilated pigs to clarify whether high dose of metformin also increases skeletal muscle lactate production. Each animal had two microdialysis catheters inserted in gluteus muscles, one per side. One catheter was infused with saline (control) while the other one was infused with metformin diluted in saline (1M), both at a rate of 0.3μl/min. Dialysate lactate concentration and lactate-to-pyruvate ratio, a marker of the balance between anaerobic glycolysis and aerobic (mitochondrial) metabolism, were measured every 3h, for 12h. Continuous infusion of metformin caused a progressive rise in dialysate lactate level (p=0.007) and lactate-to-pyruvate ratio (p<0.001) compared to that of saline, as for mitochondrial "poisoning". These findings suggest that skeletal muscle lactate overproduction contributes to the development of metformin-induced lactic acidosis.
Collapse
Affiliation(s)
- Alessandro Protti
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | - Paolo Properzi
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Sandra Magnoni
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Santini
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Thomas Langer
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Guenzani
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi, Milan, Italy
| | - Stefano Ferrero
- U.O.C. Anatomia Patologica, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy; Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi, Milan, Italy
| | - Giulia Bassani
- Centro di Ricerche Chirurgiche Precliniche, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi, Milan, Italy
| | - Nino Stocchetti
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy; Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi, Milan, Italy
| | - Luciano Gattinoni
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy; Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi, Milan, Italy
| |
Collapse
|
6
|
Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. J Cereb Blood Flow Metab 2013; 33:1270-8. [PMID: 23673434 PMCID: PMC3734779 DOI: 10.1038/jcbfm.2013.79] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 01/09/2023]
Abstract
2-Deoxy-D-glucose (2DG) is a known surrogate molecule that is useful for inferring glucose uptake and metabolism. Although (13)C-labeled 2DG can be detected by nuclear magnetic resonance (NMR), its low sensitivity for detection prohibits imaging to be performed. Using chemical exchange saturation transfer (CEST) as a signal-amplification mechanism, 2DG and the phosphorylated 2DG-6-phosphate (2DG6P) can be indirectly detected in (1)H magnetic resonance imaging (MRI). We showed that the CEST signal changed with 2DG concentration, and was reduced by suppressing cerebral metabolism with increased general anesthetic. The signal changes were not affected by cerebral or plasma pH, and were not correlated with altered cerebral blood flow as demonstrated by hypercapnia; neither were they related to the extracellular glucose amounts as compared with injection of D- and L-glucose. In vivo (31)P NMR revealed similar changes in 2DG6P concentration, suggesting that the CEST signal reflected the rate of glucose assimilation. This method provides a new way to use widely available MRI techniques to image deoxyglucose/glucose uptake and metabolism in vivo without the need for isotopic labeling of the molecules.
Collapse
|
7
|
Sun PZ, Wang E, Cheung JS. Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI--correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH. Neuroimage 2011; 60:1-6. [PMID: 22178815 DOI: 10.1016/j.neuroimage.2011.11.091] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/26/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022] Open
Abstract
Amide proton transfer (APT) MRI is sensitive to ischemic tissue acidosis and has been increasingly used as a research tool to investigate disrupted tissue metabolism during acute stroke. However, magnetization transfer asymmetry (MTR(asym)) analysis is often used for calculating APT contrast, which only provides pH-weighted images. In addition to pH-dependent APT contrast, in vivo MTR(asym) is subject to a baseline shift (ΔMTR'(asym)) attributable to the slightly asymmetric magnetization transfer (MT) effect. Additionally, APT contrast approximately scales with T(1) relaxation time. Tissue relaxation time may also affect the experimentally obtainable APT contrast via saturation efficiency and RF spillover effects. In this study, we acquired perfusion, diffusion, relaxation and pH-weighted APT MRI data, and spectroscopy (MRS) in an animal model of acute ischemic stroke. We modeled in vivo MTR(asym) as a superposition of pH-dependent APT contrast and a baseline shift ΔMTR'(asym) (i.e., MTR(asym)=APTR(pH)+ΔMTR'(asym)), and quantified tissue pH. We found pH of the contralateral normal tissue to be 7.03±0.05 and the ipsilateral ischemic tissue pH was 6.44±0.24, which correlated with tissue perfusion and diffusion rates. In summary, our study established an endogenous and quantitative pH imaging technique for improved characterization of ischemic tissue acidification and metabolism disruption.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
8
|
Sun PZ, Cheung JS, Wang E, Lo EH. Association between pH-weighted endogenous amide proton chemical exchange saturation transfer MRI and tissue lactic acidosis during acute ischemic stroke. J Cereb Blood Flow Metab 2011; 31:1743-50. [PMID: 21386856 PMCID: PMC3170940 DOI: 10.1038/jcbfm.2011.23] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ischemic tissue becomes acidic after initiation of anaerobic respiration, which may result in impaired tissue metabolism and, ultimately, in severe tissue damage. Although changes in the major cerebral metabolites can be studied using magnetic resonance (MR) spectroscopy (MRS)-based techniques, their spatiotemporal resolution is often not sufficient for routine examination of fast-evolving and heterogeneous acute stroke lesions. Recently, pH-weighted MR imaging (MRI) has been proposed as a means to assess tissue acidosis by probing the pH-dependent chemical exchange of amide protons from endogenous proteins and peptides. In this study, we characterized acute ischemic tissue damage using localized proton MRS and multiparametric imaging techniques that included perfusion, diffusion, pH, and relaxation MRI. Our study showed that pH-weighted MRI can detect ischemic lesions and strongly correlates with tissue lactate content measured by (1)H MRS, indicating lactic acidosis. Our results also confirmed the correlation between apparent diffusion coefficient and lactate; however, no significant relationship was found for perfusion, T(1), and T(2). In summary, our study showed that optimized endogenous pH-weighted MRI, by sensitizing to local tissue pH, remains a promising tool for providing a surrogate imaging marker of lactic acidosis and altered tissue metabolism, and augments conventional techniques for stroke diagnosis.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
9
|
Zhao X, Wen Z, Huang F, Lu S, Wang X, Hu S, Zu D, Zhou J. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 2011; 66:1033-41. [PMID: 21394783 DOI: 10.1002/mrm.22891] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/29/2011] [Accepted: 01/31/2011] [Indexed: 11/10/2022]
Abstract
Amide proton transfer (APT) imaging is capable of detecting mobile cellular proteins and peptides in tumor and monitoring pH effects in stroke, through the saturation transfer between irradiated amide protons and water protons. In this work, four healthy subjects, eight brain tumor patients (four with high-grade glioma, one with lung cancer metastasis, and three with meningioma), and four stroke patients (average 4.3 ± 2.5 days after the onset of the stroke) were scanned at 3 T, using different radiofrequency saturation powers. The APT effect was quantified using the magnetization transfer ratio (MTR) asymmetry at 3.5 ppm with respect to the water resonance. At a saturation power of 2 μT, the measured APT-MRI signal of the normal brain tissue was almost zero, due to the contamination of the negative conventional magnetization transfer ratio asymmetry. This irradiation power caused an optimal hyperintense APT-MRI signal in the tumor and an optimal hypointense signal in the stroke, compared to the normal brain tissue. The results suggest that the saturation power of 2 μT is ideal for APT imaging of these two pathologies at 3 T with the existing clinical hardware.
Collapse
|
10
|
Takmakov P, Zachek MK, Keithley RB, Bucher ES, McCarty GS, Wightman RM. Characterization of local pH changes in brain using fast-scan cyclic voltammetry with carbon microelectrodes. Anal Chem 2010; 82:9892-900. [PMID: 21047096 DOI: 10.1021/ac102399n] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transient local pH changes in the brain are important markers of neural activity that can be used to follow metabolic processes that underlie the biological basis of behavior, learning and memory. There are few methods that can measure pH fluctuations with sufficient time resolution in freely moving animals. Previously, fast-scan cyclic voltammetry at carbon-fiber microelectrodes was used for the measurement of such pH transients. However, the origin of the potential dependent current in the cyclic voltammograms for pH changes recorded in vivo was unclear. The current work explored the nature of these peaks and established the origin for some of them. A peak relating to the capacitive nature of the pH CV was identified. Adsorption of electrochemically inert species, such as aromatic amines and calcium could suppress this peak, and is the origin for inconsistencies regarding in vivo and in vitro data. Also, we identified an extra peak in the in vivo pH CV relating to the presence of 3,4-dihydroxyacetic acid (DOPAC) in the brain extracellular fluid. To evaluate the in vivo performance of the carbon-fiber sensor, carbon dioxide inhalation by an anesthetized rat was used to induce brain acidosis induced by hypercapnia. Hypercapnia is demonstrated to be a useful tool to induce robust in vivo pH changes, allowing confirmation of the pH signal observed with FSCV.
Collapse
Affiliation(s)
- Pavel Takmakov
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
11
|
Kirchner A, Velísková J, Velísek L. Differential effects of low glucose concentrations on seizures and epileptiform activityin vivoandin vitro. Eur J Neurosci 2006; 23:1512-22. [PMID: 16553614 DOI: 10.1111/j.1460-9568.2006.04665.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In vivo, severe hypoglycemia is frequently associated with seizures. The hippocampus is a structure prone to develop seizures and seizure-induced damage. Patients with repeated hypoglycemic episodes have frequent memory problems, suggesting impaired hippocampal function. Here we studied the effects of moderate hypoglycemia on primarily generalized flurothyl-induced seizures in vivo and, using EEG recordings, we determined involvement of the hippocampus in hypoglycemic seizures. Moderate systemic hypoglycemia had proconvulsant effects on flurothyl-induced clonic (forebrain) seizures. During hypoglycemic seizures, seizure discharges were recorded in the hippocampus. Thus, we continued the studies in combined entorhinal cortex-hippocampus slices in vitro. However, in vitro, decreases in extracellular glucose from baseline 10 mM to 2 or 1 mM did not induce any epileptiform discharges. In fact, low glucose (2 and 1 mM) attenuated preexisting low-Mg2+-induced epileptiform activity in the entorhinal cortex and hippocampal CA1 region. Osmolarity compensation in low-glucose solution using mannitol impaired slice recovery. Additionally, using paired-pulse stimuli we determined that there was no impairment of GABAA inhibition in the dentate gyrus during glucopenia. The data strongly indicate that, although forebrain susceptibility to seizures is increased during moderate in vivo hypoglycemia and the hippocampus is involved during hypoglycemic seizures, glucose depletion in vitro contributes to an arrest of epileptiform activity in the system of the entorhinal cortex-hippocampus network and there is no impairment of net GABAA inhibition during glucopenia.
Collapse
Affiliation(s)
- Anne Kirchner
- Johannes Müller Institut für Physiologie, Universitätsklinikum Charité, Humboldt Universität, Berlin, Germany
| | | | | |
Collapse
|
12
|
Guyenet PG, Mulkey DK, Stornetta RL, Bayliss DA. Regulation of ventral surface chemoreceptors by the central respiratory pattern generator. J Neurosci 2006; 25:8938-47. [PMID: 16192384 PMCID: PMC6725580 DOI: 10.1523/jneurosci.2415-05.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rat retrotrapezoid nucleus (RTN) contains neurons described as central chemoreceptors in the adult and respiratory rhythm-generating pacemakers in neonates [parafacial respiratory group (pfRG)]. Here we test the hypothesis that both RTN and pfRG neurons are intrinsically chemosensitive and tonically firing neurons whose respiratory rhythmicity is caused by a synaptic feedback from the central respiratory pattern generator (CPG). In halothane-anesthetized adults, RTN neurons were silent below 4.5% end-expiratory (e-exp) CO2. Their activity increased linearly (3.2 Hz/1% CO2) up to 6.5% (CPG threshold) and then more slowly to peak approximately 10 Hz at 10% CO2. Respiratory modulation of RTN neurons was absent below CPG threshold, gradually stronger beyond, and, like pfRG neurons, typically (42%) characterized by twin periods of reduced activity near phrenic inspiration. After CPG inactivation with kynurenate (KYN), RTN neurons discharged linearly as a function of e-exp CO2 (slope, +1.7 Hz/1% CO2) and arterial pH (threshold, 7.48; slope, 39 Hz/pH unit). In coronal brain slices (postnatal days 7-12), RTN chemosensitive neurons were silent at pH 7.55. Their activity increased linearly with acidification up to pH 7.2 (17 Hz/pH unit at 35 degrees C) and was always tonic. In conclusion, consistent with their postulated central chemoreceptor role, RTN/pfRG neurons encode pH linearly and discharge tonically when disconnected from the rest of the respiratory centers in vivo (KYN treatment) and in vitro. In vivo, RTN neurons receive respiratory synchronous inhibitory inputs that may serve as feedback and impart these neurons with their characteristic respiratory modulation.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
13
|
Johnson PL, Hollis JH, Moratalla R, Lightman SL, Lowry CA. Acute hypercarbic gas exposure reveals functionally distinct subpopulations of serotonergic neurons in rats. J Psychopharmacol 2005; 19:327-41. [PMID: 15982987 DOI: 10.1177/0269881105053281] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although increasing evidence suggests that anatomically defined subpopulations of serotonergic neurons have unique stress-related functional properties, the topographical distribution of the serotonergic neurons involved in responses to stress-related stimuli have not been well-defined. Inspiration of air containing elevated concentrations of carbon dioxide (CO(2); hypercarbic gas exposure) at high concentrations activates both hypothalamic-pituitary-adrenal axis and sympathetic responses in rats and humans. In order to determine the effects of acute hypercarbic gas exposure on subpopulations of topographically organized serotonergic neurons, conscious adult male rats were placed in flow cages and exposed to either atmospheric air or increasing environmental CO2 concentrations (from baseline concentrations up to 20% CO2) for 5min. The presence of immunoreactivity for the protein product of the immediate-early gene c-fos was used as a measure, at the single cell level, of functional cellular responses within subpopulations of serotonergic, noradrenergic and adrenergic neurons. Rats exposed to hypercarbic gas had increased numbers of c-Fos/tryptophan hydroxylase immunoreactive (ir) and c-Fos/tyrosine hydroxylase-ir neurons in specific topographically organized subdivisions of brainstem nuclei, compared to control rats. Within serotonergic cell groups (B1-B9), the most striking effects occurred in a subpopulation of large, multipolar serotonergic neurons within the ventrolateral periaqueductal grey and ventrolateral part of the dorsal raphe nucleus, a region implicated in serotonin-dependent suppression of stress-induced sympathetic outflow and serotonin-dependent inhibition of 'fight or flight' behaviour. These findings have important implications for understanding the role of serotonergic systems in the modulation of stress-related physiology and behaviour and stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Philip L Johnson
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Astrocytes are multifunctional cells that interact with neurons and other astrocytes in signaling and metabolic functions, and their resistance to pathophysiological conditions can help restrict loss of tissue after an ischemic event provided adequate nutrients are supplied to support their requirements. Astrocytes have substantial oxidative capacity and mechanisms to upregulate glycolytic capability when respiration is impaired. An astrocytic enzyme that synthesizes a powerful activator of glycolysis is not present in neurons, endowing astrocytes with the ability to sustain ATP production under restrictive conditions. The monocarboxylic acid transporter (MCT) isoforms predominating in astrocytes are optimized to facilitate very large increases in lactate flux as lactate concentration increases within (1-3 mM) and above (>3 mM) the normal range. In sharp contrast, the major neuronal MCT serves as a barrier to increased transmembrane transport as lactate rises above 1 mM, restricting both entry and efflux. Lactate can serve as fuel during recovery from ischemia but direct evidence that lactate is oxidized by neurons (vs. astrocytes) to maintain synaptic function is lacking. Astrocytes have critical roles in regulation of ionic homeostasis and control of extracellular glutamate levels, and spreading depression associated with ischemia places high demands on energy supplies in astrocytes and contributes to metabolic exhaustion and demise. Disruption of Ca2+ homeostasis, generation of oxygen free radicals and nitric oxide, and mitochondrial depolarization contribute to astrocyte death during and after a metabolic insult. Novel pharmaceutical agents targeted to astrocytes and hyperoxic therapy that restores penumbral oxygen level during energy failure might improve postischemic outcome.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
15
|
Zhou J, Wilson DA, Sun PZ, Klaus JA, Van Zijl PCM. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med 2004; 51:945-52. [PMID: 15122676 DOI: 10.1002/mrm.20048] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA.
| | | | | | | | | |
Collapse
|
16
|
Burton RF. Differences in pH between interstitial fluid and arterial blood in water-breathing and air-breathing vertebrates. Physiol Biochem Zool 2001; 74:607-15. [PMID: 11436145 DOI: 10.1086/322171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2001] [Indexed: 11/03/2022]
Abstract
Most cells are bathed by interstitial fluid, but extracellular pH measurements are mostly for arterial plasma. Whole-body mean pH differences between the two fluids have been estimated in terms of a simple model. This relates to the diffusive exchange of carbon dioxide and oxygen and utilizes literature data, for 22 vertebrate species, on arterial and mixed-venous tensions of both gases. Uncertainties arise because the carbon dioxide reaction in blood may sometimes be in disequilibrium and because carbon dioxide diffusion is facilitated to unknown degrees in the presence of buffers. Nevertheless, the model suggests that the pH difference should tend to vary inversely with arterial carbon dioxide tension. In some species, this may aid interstitial pH homeostasis, but a clearer implication is that the difference should be generally greater in water breathers than in air breathers. It has previously been found that arterial pH in water-breathing teleosts also tends to be higher than in air-breathing tetrapods (when allowance is made for temperature and plasma sodium concentration) and to a comparable extent. Thus, mean interstitial pH may be more nearly similar in the two groups than is arterial pH. Direct measurements of interstitial pH do not yet suffice to test the model.
Collapse
Affiliation(s)
- R F Burton
- Institute of Biomedical and Life Sciences, Thomson Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| |
Collapse
|
17
|
Kintner DB, Anderson MK, Fitzpatrick JH, Sailor KA, Gilboe DD. 31P-MRS-based determination of brain intracellular and interstitial pH: its application to in vivo H+ compartmentation and cellular regulation during hypoxic/ischemic conditions. Neurochem Res 2000; 25:1385-96. [PMID: 11059809 DOI: 10.1023/a:1007664700661] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the last decade, significant progress has been made in the characterization of pH regulation in nervous tissue in vitro. However, little work has been directed at understanding how pH regulatory mechanisms function in vivo. We are interested in how ischemic acidosis can effect pH regulation and modulate the extent of post-ischemic brain damage. We used 31P-MRS to determine normal in vivo pH(i) and pH(e) simultaneously in both the isolated canine brain and the intact rat brain. We observed that the 31P(i) peak in the 31P-MRS spectrum is heterogeneous and can be deconvoluted into a number of discrete constituent peaks. In a series of experiments, we identified these peaks as arising from either extracellular or intracellular sources. In particular, we identified the peak representing the neurons and astrocytes and showed that they maintain different basal pH (6.95 and 7.05, respectively) and behave differently during hypoxic/ischemic episodes.
Collapse
Affiliation(s)
- D B Kintner
- University of Wisconsin Medical School, Department of Neurological Surgery, Madison 53716-1572, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Both acidosis and oxidative stress contribute to ischemic brain injury. The present study examines interactions between acidosis and oxidative stress in murine cortical cultures. Acidosis (pH 6.2) was found to potentiate markedly neuronal death induced by H2O2 exposure. To determine if this effect was mediated by decreased antioxidant capacity at low pH, the activities of several antioxidant enzymes were measured. Acidosis was found to reduce the activities of glutathione peroxidase and glutathione S-transferase by 50-60% (p < 0.001) and the activity of glutathione reductase by 20% (p < 0.01) in lysates of the cortical cultures. Like acidosis, direct inhibition of glutathione peroxidase with mercaptosuccinate also potentiated H2O2 toxicity. Because acidosis may accelerate hydroxyl radical production by the Fenton reaction, the effect of iron chelators was also examined. Both desferrioxamine and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine, two structurally different iron chelators, significantly reduced H2O2-induced neuronal death under both pH 7.2 and pH 6.2 conditions. These results suggest that the increased cell death produced by severe acidosis during cerebral ischemia may result in part from exacerbation of oxidative injury. This exacerbation may result from both impaired antioxidant enzyme functions and increased intracellular free iron levels.
Collapse
Affiliation(s)
- W Ying
- Department of Neurology, Veterans Affairs Medical Center and University of California, San Francisco 94121, USA
| | | | | | | |
Collapse
|