1
|
Thela L, Decloedt E, Zetterberg H, Gisslén M, Lesosky M, Gleich M, Koutsilieri E, Scheller C, Hye A, Joska J. Blood and cerebrospinal fluid biomarker changes in patients with HIV-associated neurocognitive impairment treated with lithium: analysis from a randomised placebo-controlled trial. J Neurovirol 2023; 29:156-166. [PMID: 36790601 DOI: 10.1007/s13365-023-01116-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/15/2022] [Accepted: 01/21/2023] [Indexed: 02/16/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) persist in the era of antiretroviral therapy (ART). Thus, ART does not completely halt or reverse the pathological processes behind HAND. Adjuvant mitigating treatments are, therefore, prudent. Lithium treatment is known to promote neuronal brain-derived neurotrophic factors (BDNF). Lithium is also an inhibitor of glycogen synthase kinase-3 beta (GSK-3-β). We analyzed biomarkers obtained from participants in a randomized placebo-controlled trial of lithium in ART-treated individuals with moderate or severe HAND. We assayed markers at baseline and 24 weeks across several pathways hypothesized to be affected by HIV, inflammation, or degeneration. Investigated biomarkers included dopamine, BDNF, neurofilament light chain, and CD8 + lymphocyte activation (CD38 + HLADR +). Alzheimer's Disease (AD) biomarkers included soluble amyloid precursor protein alpha and beta (sAPPα/β), Aβ38, 40, 42, and ten other biomarkers validated as predictors of mild cognitive impairment and progression in previous studies. These include apolipoprotein C3, pre-albumin, α1-acid glycoprotein, α1-antitrypsin, PEDF, CC4, ICAM-1, RANTES, clusterin, and cystatin c. We recruited 61 participants (placebo = 31; lithium = 30). The age baseline mean was 40 (± 8.35) years and the median CD4 + T-cell count was 498 (IQR: 389-651) cells/μL. Biomarker concentrations between groups did not differ at baseline. However, both groups' blood dopamine levels decreased significantly after 24 weeks (adj. p < 002). No other marker was significantly different between groups, and we concluded that lithium did not confer neuroprotection following 24 weeks of treatment. However, the study was limited in duration and sample size.
Collapse
Affiliation(s)
- Lindokuhle Thela
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, E Floor, Neuroscience Centre, Anzio Road, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa.
| | - Eric Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Stellenbosch University, Cape Town, South Africa
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Magnus Gisslén
- Department of Infectious Disease, Institute of Biomedicine, the Sahlngreska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Disease, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Maia Lesosky
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Melanie Gleich
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Eleni Koutsilieri
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carsten Scheller
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, and NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - John Joska
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, E Floor, Neuroscience Centre, Anzio Road, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
2
|
Yu BJ, Oz RS, Sethi S. Ketogenic diet as a metabolic therapy for bipolar disorder: Clinical developments. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2022.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
3
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Hong N, Park JS, Kim HJ. Synapto-protective effect of lithium on HIV-1 Tat-induced synapse loss in rat hippocampal cultures. Anim Cells Syst (Seoul) 2021; 26:1-9. [PMID: 35308128 PMCID: PMC8928815 DOI: 10.1080/19768354.2021.2018044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus type I (HIV-1) infection of the CNS produces synapse loss which correlates with cognitive decline in patients with HIV-associated neurocognitive disorders (HAND). Lithium is mood stabilizer of unknown mechanism used to treat bipolar disorder and is known to exhibit neuroprotective properties. Here, we studied the effects of lithium on HIV-1 Tat-induced synapses between rat hippocampal neurons. The number of synapses was quantified to detect clusters of the scaffold protein postsynaptic density 95 (PSD95) which is clustered at glutamatergic synapses on cultured rat hippocampal neurons in vitro. Lithium protected synapses from HIV-1 Tat-induced synapse loss and subsequent neuronal death. This synaptic protection was prevented by both the activation of NMDA receptor leading to intracellular signaling and the regulatory pathway of lithium including inositol depletion and glycogen synthase kinase-3β (GSK-3β). These results suggest that mood stabilizers might be effective drugs to treat neurodegenerative disorders including HAND.
Collapse
Affiliation(s)
- Namgue Hong
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Medical Laser, Graduate School, Dankook University, Cheonan, Republic of Korea
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Joshi CR, Stacy S, Sumien N, Ghorpade A, Borgmann K. Astrocyte HIV-1 Tat Differentially Modulates Behavior and Brain MMP/TIMP Balance During Short and Prolonged Induction in Transgenic Mice. Front Neurol 2020; 11:593188. [PMID: 33384653 PMCID: PMC7769877 DOI: 10.3389/fneur.2020.593188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Despite effective antiretroviral therapy (ART), mild forms of HIV-associated neurocognitive disorders (HAND) continue to afflict approximately half of all people living with HIV (PLWH). As PLWH age, HIV-associated inflammation perturbs the balance between brain matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs), likely contributing to neuropathogenesis. The MMP/TIMP balance is associated with cognition, learning, and memory, with TIMPs eliciting neuroprotective effects. Dysregulation of the MMP/TIMP balance was evident in the brains of PLWH where levels of TIMP-1, the inducible family member, were significantly lower than non-infected controls, and MMPs were elevated. Here, we evaluated the MMP/TIMP levels in the doxycycline (DOX)-induced glial fibrillary acidic protein promoter-driven HIV-1 transactivator of transcription (Tat) transgenic mouse model. The HIV-1 protein Tat is constitutively expressed by most infected cells, even during ART suppression of viral replication. Many studies have demonstrated indirect and direct mechanisms of short-term Tat-associated neurodegeneration, including gliosis, blood-brain barrier disruption, elevated inflammatory mediators and neurotoxicity. However, the effects of acute vs. prolonged exposure on Tat-induced dysregulation remain to be seen. This is especially relevant for TIMP-1 as expression was previously shown to be differentially regulated in human astrocytes during acute vs. chronic inflammation. In this context, acute Tat expression was induced with DOX intraperitoneal injections over 3 weeks, while DOX-containing diet was used to achieve long-term Tat expression over 6 months. First, a series of behavior tests evaluating arousal, ambulation, anxiety, and cognition was performed to examine impairments analogous to those observed in HAND. Next, gene expression of components of the MMP/TIMP axis and known HAND-relevant inflammatory mediators were assessed. Altered anxiety-like, motor and/or cognitive behaviors were observed in Tat-induced (iTat) mice. Gene expression of MMPs and TIMPs was altered depending on the duration of Tat expression, which was independent of the HIV-associated neuroinflammation typically implicated in MMP/TIMP regulation. Collectively, we infer that HIV-1 Tat-mediated dysregulation of MMP/TIMP axis and behavioral changes are dependent on duration of exposure. Further, prolonged Tat expression demonstrates a phenotype comparable to asymptomatic to mild HAND manifestation in patients.
Collapse
Affiliation(s)
- Chaitanya R Joshi
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Satomi Stacy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
6
|
Jha NK, Sharma A, Jha SK, Ojha S, Chellappan DK, Gupta G, Kesari KK, Bhardwaj S, Shukla SD, Tambuwala MM, Ruokolainen J, Dua K, Singh SK. Alzheimer's disease-like perturbations in HIV-mediated neuronal dysfunctions: understanding mechanisms and developing therapeutic strategies. Open Biol 2020; 10:200286. [PMID: 33352062 PMCID: PMC7776571 DOI: 10.1098/rsob.200286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Excessive exposure to toxic substances or chemicals in the environment and various pathogens, including viruses and bacteria, is associated with the onset of numerous brain abnormalities. Among them, pathogens, specifically viruses, elicit persistent inflammation that plays a major role in Alzheimer's disease (AD) as well as dementia. AD is the most common brain disorder that affects thought, speech, memory and ability to execute daily routines. It is also manifested by progressive synaptic impairment and neurodegeneration, which eventually leads to dementia following the accumulation of Aβ and hyperphosphorylated Tau. Numerous factors contribute to the pathogenesis of AD, including neuroinflammation associated with pathogens, and specifically viruses. The human immunodeficiency virus (HIV) is often linked with HIV-associated neurocognitive disorders (HAND) following permeation through the blood-brain barrier (BBB) and induction of persistent neuroinflammation. Further, HIV infections also exhibited the ability to modulate numerous AD-associated factors such as BBB regulators, members of stress-related pathways as well as the amyloid and Tau pathways that lead to the formation of amyloid plaques or neurofibrillary tangles accumulation. Studies regarding the role of HIV in HAND and AD are still in infancy, and potential link or mechanism between both is not yet established. Thus, in the present article, we attempt to discuss various molecular mechanisms that contribute to the basic understanding of the role of HIV-associated neuroinflammation in AD and HAND. Further, using numerous growth factors and drugs, we also present possible therapeutic strategies to curb the neuroinflammatory changes and its associated sequels.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research (SBSR), Sharda University, Greater Noida, UP 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Shanu Bhardwaj
- Department of Biotechnology, HIMT, Greater Noida, CCS University, UP, India
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Sandeep Kumar Singh
- Department of Biomedical Research, Centre of Biomedical Research, SGPGI Campus, Lucknow 226014, UP, India
- Biological Science, Indian Scientific Education and Technology Foundation, Lucknow 226002, UP, India
| |
Collapse
|
7
|
Moidunny S, Benneyworth MA, Titus DJ, Beurel E, Kolli U, Meints J, Jalodia R, Ramakrishnan S, Atkins CM, Roy S. Glycogen synthase kinase-3 inhibition rescues sex-dependent contextual fear memory deficit in human immunodeficiency virus-1 transgenic mice. Br J Pharmacol 2020; 177:5658-5676. [PMID: 33080056 DOI: 10.1111/bph.15288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE A significant number of HIV-1 patients on antiretroviral therapy develop HIV-associated neurocognitive disorders (HAND). Evidence indicate that biological sex may regulate HAND pathogenesis, but the mechanisms remain unknown. We investigated synaptic mechanisms associated with sex differences in HAND, using the HIV-1-transgenic 26 (Tg26) mouse model. EXPERIMENTAL APPROACH Contextual- and cue-dependent memories of male and female Tg26 mice and littermate wild type mice were assessed in a fear conditioning paradigm. Hippocampal electrophysiology, immunohistochemistry, western blot, qRT-PCR and ELISA techniques were used to investigate cellular, synaptic and molecular impairments. KEY RESULTS Cue-dependent memory was unaltered in male and female Tg26 mice, when compared to wild type mice. Male, but not female, Tg26 mice showed deficits in contextual fear memory. Consistently, only male Tg26 mice showed depressed hippocampal basal synaptic transmission and impaired LTP induction in area CA1. These deficits in male Tg26 mice were independent of hippocampal neuronal loss and microglial activation but were associated with increased HIV-1 long terminal repeat mRNA expression, reduced hippocampal synapsin-1 protein, reduced BDNF mRNA and protein, reduced AMPA glutamate receptor (GluA1) phosphorylation levels and increased glycogen synthase kinase 3 (GSK3) activity. Importantly, selective GSK3 inhibition using 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione increased levels of synapsin-1, BDNF and phosphorylated-GluA1 proteins, restored hippocampal basal synaptic transmission and LTP, and improved contextual fear memory in male Tg26 mice. CONCLUSION AND IMPLICATIONS Sex-dependent impairments in contextual fear memory and synaptic plasticity in Tg26 mice are associated with increased GSK3 activity. This implicates GSK3 inhibition as a potential therapeutic strategy to improve cognition in HIV-1 patients.
Collapse
Affiliation(s)
- Shamsudheen Moidunny
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - David J Titus
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Udhghatri Kolli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joyce Meints
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Richa Jalodia
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Griffith CM, Macklin LN, Cai Y, Sharp AA, Yan XX, Reagan LP, Strader AD, Rose GM, Patrylo PR. Impaired Glucose Tolerance and Reduced Plasma Insulin Precede Decreased AKT Phosphorylation and GLUT3 Translocation in the Hippocampus of Old 3xTg-AD Mice. J Alzheimers Dis 2020; 68:809-837. [PMID: 30775979 DOI: 10.3233/jad-180707] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several studies have demonstrated that mouse models of Alzheimer's disease (AD) can exhibit impaired peripheral glucose tolerance. Further, in the APP/PS1 mouse model, this is observed prior to the appearance of AD-related neuropathology (e.g., amyloid-β plaques; Aβ) or cognitive impairment. In the current study, we examined whether impaired glucose tolerance also preceded AD-like changes in the triple transgenic model of AD (3xTg-AD). Glucose tolerance testing (GTT), insulin ELISAs, and insulin tolerance testing (ITT) were performed at ages prior to (1-3 months and 6-8 months old) and post-pathology (16-18 months old). Additionally, we examined for altered insulin signaling in the hippocampus. Western blots were used to evaluate the two-primary insulin signaling pathways: PI3K/AKT and MAPK/ERK. Since the PI3K/AKT pathway affects several downstream targets associated with metabolism (e.g., GSK3, glucose transporters), western blots were used to examine possible alterations in the expression, translocation, or activation of these targets. We found that 3xTg-AD mice display impaired glucose tolerance as early as 1 month of age, concomitant with a decrease in plasma insulin levels well prior to the detection of plaques (∼14 months old), aggregates of hyperphosphorylated tau (∼18 months old), and cognitive decline (≥18 months old). These alterations in peripheral metabolism were seen at all time points examined. In comparison, PI3K/AKT, but not MAPK/ERK, signaling was altered in the hippocampus only in 18-20-month-old 3xTg-AD mice, a time point at which there was a reduction in GLUT3 translocation to the plasma membrane. Taken together, our results provide further evidence that disruptions in energy metabolism may represent a foundational step in the development of AD.
Collapse
Affiliation(s)
- Chelsea M Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Lauren N Macklin
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Andrew A Sharp
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, Columbia, SC, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - April D Strader
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Gregory M Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Peter R Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
9
|
Marineau A, Khan KA, Servant MJ. Roles of GSK-3 and β-Catenin in Antiviral Innate Immune Sensing of Nucleic Acids. Cells 2020; 9:cells9040897. [PMID: 32272583 PMCID: PMC7226782 DOI: 10.3390/cells9040897] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid activation of the type I interferon (IFN) antiviral innate immune response relies on ubiquitously expressed RNA and DNA sensors. Once engaged, these nucleotide-sensing receptors use distinct signaling modules for the rapid and robust activation of mitogen-activated protein kinases (MAPKs), the IκB kinase (IKK) complex, and the IKK-related kinases IKKε and TANK-binding kinase 1 (TBK1), leading to the subsequent activation of the activator protein 1 (AP1), nuclear factor-kappa B (NF-κB), and IFN regulatory factor 3 (IRF3) transcription factors, respectively. They, in turn, induce immunomodulatory genes, allowing for a rapid antiviral cellular response. Unlike the MAPKs, the IKK complex and the IKK-related kinases, ubiquitously expressed glycogen synthase kinase 3 (GSK-3) α and β isoforms are active in unstimulated resting cells and are involved in the constitutive turnover of β-catenin, a transcriptional coactivator involved in cell proliferation, differentiation, and lineage commitment. Interestingly, studies have demonstrated the regulatory roles of both GSK-3 and β-catenin in type I IFN antiviral innate immune response, particularly affecting the activation of IRF3. In this review, we summarize current knowledge on the mechanisms by which GSK-3 and β-catenin control the antiviral innate immune response to RNA and DNA virus infections.
Collapse
Affiliation(s)
- Alexandre Marineau
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
| | - Kashif Aziz Khan
- Department of Biology, York University, Toronto, ON M3J1P3, Canada;
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
- Réseau Québécois de Recherche sur les Médicaments (RQRM), Montréal, QC H3T1C5, Canada
- Correspondence: ; Tel.: +1-514-343-7966
| |
Collapse
|
10
|
Hamel-Côté G, Lapointe F, Gendron D, Rola-Pleszczynski M, Stankova J. Regulation of platelet-activating factor-induced interleukin-8 expression by protein tyrosine phosphatase 1B. Cell Commun Signal 2019; 17:21. [PMID: 30832675 PMCID: PMC6399872 DOI: 10.1186/s12964-019-0334-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Platelet-activating factor (PAF) is a potent lipid mediator whose involvement in the onset and progression of atherosclerosis is mediated by, among others, the modulation of cytokine expression patterns. The presence of multiple potential protein-tyrosine phosphatase (PTP) 1B substrates in PAF receptor signaling pathways brought us to investigate its involvement in PAF-induced cytokine expression in monocyte-derived dendritic cells (Mo-DCs) and to study the pathways involved in this modulation. Methods We used in-vitro-matured human dendritic cells and the HEK-293 cell line in our studies. PTP1B inhibition was though siRNAs and a selective inhibitor. Cytokine expression was studied with RT-PCR, luciferase assays and ELISA. Phosphorylation status of kinases and transcription factors was studied with western blotting. Results Here, we report that PTP1B was involved in the modulation of cytokine expression in PAF-stimulated Mo-DCs. A study of the down-regulation of PAF-induced IL-8 expression, by PTP1B, showed modulation of PAF-induced transactivation of the IL-8 promoter which was dependent on the presence of the C/EBPß -binding site. Results also suggested that PTP1B decreased PAF-induced IL-8 production by a glycogen synthase kinase (GSK)-3-dependent pathway via activation of the Src family kinases (SFK). These kinases activated an unidentified pathway at early stimulation times and the PI3K/Akt signaling pathway in a later phase. This change in GSK-3 activity decreased the C/EBPß phosphorylation levels of the threonine 235, a residue whose phosphorylation is known to increase C/EBPß transactivation potential, and consequently modified IL-8 expression. Conclusion The negative regulation of GSK-3 activity by PTP1B and the consequent decrease in phosphorylation of the C/EBPß transactivation domain could be an important negative feedback loop by which cells control their cytokine production after PAF stimulation. Electronic supplementary material The online version of this article (10.1186/s12964-019-0334-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geneviève Hamel-Côté
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Fanny Lapointe
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Daniel Gendron
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Center, 2000 College Street, Sherbrooke, QC, Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada.
| |
Collapse
|
11
|
Abstract
Infection with Human Immunodeficiency Virus (HIV)-1 continues to cause HIV-associated neurocognitive disorders despite combined antiretroviral therapy. Interferons (IFNs) are important for any antiviral immune response, but the lasting production of IFNα causes exhaustive activation leading eventually to progression to AIDS. Expression of IFNα in the HIV-exposed central nervous system has been linked to cognitive impairment and inflammatory neuropathology. In contrast, IFNβ exerts anti-inflammatory effects, appears to control, at least temporarily, lentiviral infection in the brain and provides neuroprotection. The dichotomy of type I IFN effects on HIV-1 infection and the associated brain injury will be discussed in this review, because the underlying mechanisms require further investigation to allow harnessing these innate immune factors for therapeutic purposes.
Collapse
Affiliation(s)
- Victoria E Thaney
- 1 Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California
| | - Marcus Kaul
- 1 Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California.,2 Division of Biomedical Sciences, School of Medicine, University of California , Riverside, Riverside, California
| |
Collapse
|
12
|
Neuroprotective effect of breviscapine on traumatic brain injury in rats associated with the inhibition of GSK3β signaling pathway. Brain Res 2017; 1660:1-9. [DOI: 10.1016/j.brainres.2017.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 02/07/2023]
|
13
|
Bhargavan B, Kanmogne GD. Differential Mechanisms of Inflammation and Endothelial Dysfunction by HIV-1 Subtype-B and Recombinant CRF02_AG Tat Proteins on Human Brain Microvascular Endothelial Cells: Implications for Viral Neuropathogenesis. Mol Neurobiol 2017; 55:1352-1363. [PMID: 28127697 DOI: 10.1007/s12035-017-0382-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022]
Abstract
The recombinant HIV-1 CRF02_AG is prevalent in West-Central Africa but its effects on the blood-brain barrier (BBB) and HIV-associated neurocognitive disorders (HAND) are not known. We analyzed the effects of Tat from HIV-1 subtype-B (Tat.B) and CRF02_AG (Tat.AG) on primary human brain microvascular endothelial cells (HBMEC), the major BBB component. Exposure of HBMEC to Tat.B increased IL-6 expression and transcription by 9- (P < 0.001) and 113-fold (P < 0.001), respectively, whereas Tat.AG increased IL-6 expression and transcription by 2.7-3.8-fold and 35.7-fold (P < 0.001), respectively. Tat.B induced IL-6 through the interleukin-1 receptor-associated kinase (IRAK)-1/4/mitogen-activated protein kinase kinase(MKK)/C-jun N-terminal kinase(JNK) pathways, in an activator protein-1(AP1)- and nuclear factor-kappaB (NFκB)-independent manner, whereas Tat.AG effects occurred via MKK/JNK/AP1/NFκB pathways. Tat-induced effects were associated with activation of c-jun (serine-63) and SAPK/JNK (Thr183/Tyr185). We demonstrated increased expression of transcription factors associated with these pathways (Jun, RELB, CEBPA), with higher levels in Tat.B-treated cells compared to Tat.AG. Functional studies showed that Tat.B and Tat.AG decreased the expression of tight junction proteins claudin-5 and ZO-1 and decreased the trans-endothelial electric resistance (TEER); Tat.B induced greater reduction in TEER, claudin-5, and ZO-1, compared to Tat.AG. Overall, our data showed increased inflammation and BBB dysfunction with Tat.B, compared to Tat.AG. This suggests these two HIV-1 subtypes differentially affect the BBB and central nervous system; our data provides novel insights into the molecular basis of these differential Tat-mediated effects.
Collapse
Affiliation(s)
- Biju Bhargavan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA.
| |
Collapse
|
14
|
Hu XT. HIV-1 Tat-Mediated Calcium Dysregulation and Neuronal Dysfunction in Vulnerable Brain Regions. Curr Drug Targets 2016; 17:4-14. [PMID: 26028040 DOI: 10.2174/1389450116666150531162212] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023]
Abstract
Despite the success of combined antiretroviral therapy, more than half of HIV-1-infected patients in the USA show HIV-associated neurological and neuropsychiatric deficits. This is accompanied by anatomical and functional alterations in vulnerable brain regions of the mesocorticolimbic and nigrostriatal systems that regulate cognition, mood and motivation-driven behaviors, and could occur at early stages of infection. Neurons are not infected by HIV, but HIV-1 proteins (including but not limited to the HIV-1 trans-activator of transcription, Tat) induce Ca(2+) dysregulation, indicated by abnormal and excessive Ca(2+) influx and increased intracellular Ca(2+) release that consequentially elevate cytosolic free Ca(2+) levels ([Ca(2+)]in). Such alterations in intracellular Ca(2+) homeostasis significantly disturb normal functioning of neurons, and induce dysregulation, injury, and death of neurons or non-neuronal cells, and associated tissue loss in HIV-vulnerable brain regions. This review discusses certain unique mechanisms, particularly the over-activation and/or upregulation of the ligand-gated ionotropic glutamatergic NMDA receptor (NMDAR), the voltage-gated L-type Ca(2+) channel (L-channel) and the transient receptor potential canonical (TRPC) channel (a non-selective cation channel that is also permeable for Ca(2+)), which may underlie the deleterious effects of Tat on intracellular Ca(2+) homeostasis and neuronal hyper-excitation that could ultimately result in excitotoxicity. This review also seeks to provide summarized information for future studies focusing on comprehensive elucidation of molecular mechanisms underlying the pathophysiological effects of Tat (as well as some other HIV-1 proteins and immunoinflammatory molecules) on neuronal function, particularly in HIV-vulnerable brain regions.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Pharmacology, Rush University Medical Center, Cohn Research Building, Rm. 414, 1735 W. Harrison Street, Chicago, IL 60612, USA.
| |
Collapse
|
15
|
Liu H, Xu E, Liu J, Xiong H. Oligodendrocyte Injury and Pathogenesis of HIV-1-Associated Neurocognitive Disorders. Brain Sci 2016; 6:brainsci6030023. [PMID: 27455335 PMCID: PMC5039452 DOI: 10.3390/brainsci6030023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Oligodendrocytes wrap neuronal axons to form myelin, an insulating sheath which is essential for nervous impulse conduction along axons. Axonal myelination is highly regulated by neuronal and astrocytic signals and the maintenance of myelin sheaths is a very complex process. Oligodendrocyte damage can cause axonal demyelination and neuronal injury, leading to neurological disorders. Demyelination in the cerebrum may produce cognitive impairment in a variety of neurological disorders, including human immunodeficiency virus type one (HIV-1)-associated neurocognitive disorders (HAND). Although the combined antiretroviral therapy has markedly reduced the incidence of HIV-1-associated dementia, a severe form of HAND, milder forms of HAND remain prevalent even when the peripheral viral load is well controlled. HAND manifests as a subcortical dementia with damage in the brain white matter (e.g., corpus callosum), which consists of myelinated axonal fibers. How HIV-1 brain infection causes myelin injury and resultant white matter damage is an interesting area of current HIV research. In this review, we tentatively address recent progress on oligodendrocyte dysregulation and HAND pathogenesis.
Collapse
Affiliation(s)
- Han Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Enquan Xu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Jianuo Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
16
|
Tivarus ME, Pester B, Schmidt C, Lehmann T, Zhu T, Zhong J, Leistritz L, Schifitto G. Are Structural Changes Induced by Lithium in the HIV Brain Accompanied by Changes in Functional Connectivity? PLoS One 2015; 10:e0139118. [PMID: 26436895 PMCID: PMC4593570 DOI: 10.1371/journal.pone.0139118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/09/2015] [Indexed: 01/12/2023] Open
Abstract
Lithium therapy has been shown to affect imaging measures of brain function and microstructure in human immunodeficiency virus (HIV)-infected subjects with cognitive impairment. The aim of this proof-of-concept study was to explore whether changes in brain microstructure also entail changes in functional connectivity. Functional MRI data of seven cognitively impaired HIV infected individuals enrolled in an open-label lithium study were included in the connectivity analysis. Seven regions of interest (ROI) were defined based on previously observed lithium induced microstructural changes measured by Diffusion Tensor Imaging. Generalized partial directed coherence (gPDC), based on time-variant multivariate autoregressive models, was used to quantify the degree of connectivity between the selected ROIs. Statistical analyses using a linear mixed model showed significant differences in the average node strength between pre and post lithium therapy conditions. Specifically, we found that lithium treatment in this population induced changes suggestive of increased strength in functional connectivity. Therefore, by exploiting the information about the strength of functional interactions provided by gPDC we can quantify the connectivity changes observed in relation to a given intervention. Furthermore, in conditions where the intervention is associated with clinical changes, we suggest that this methodology could enable an interpretation of such changes in the context of disease or treatment induced modulations in functional networks.
Collapse
Affiliation(s)
- Madalina E. Tivarus
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Britta Pester
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Christoph Schmidt
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Tong Zhu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jianhui Zhong
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lutz Leistritz
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- * E-mail:
| | - Giovanni Schifitto
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Neurology, University of Rochester Medical Center, Rochester New York, United States of America
| |
Collapse
|
17
|
Khan KA, Dô F, Marineau A, Doyon P, Clément JF, Woodgett JR, Doble BW, Servant MJ. Fine-Tuning of the RIG-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway. Mol Cell Biol 2015; 35:3029-43. [PMID: 26100021 PMCID: PMC4525315 DOI: 10.1128/mcb.00344-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/27/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
Induction of an antiviral innate immune response relies on pattern recognition receptors, including retinoic acid-inducible gene 1-like receptors (RLR), to detect invading pathogens, resulting in the activation of multiple latent transcription factors, including interferon regulatory factor 3 (IRF3). Upon sensing of viral RNA and DNA, IRF3 is phosphorylated and recruits coactivators to induce type I interferons (IFNs) and selected sets of IRF3-regulated IFN-stimulated genes (ISGs) such as those for ISG54 (Ifit2), ISG56 (Ifit1), and viperin (Rsad2). Here, we used wild-type, glycogen synthase kinase 3α knockout (GSK-3α(-/-)), GSK-3β(-/-), and GSK-3α/β double-knockout (DKO) embryonic stem (ES) cells, as well as GSK-3β(-/-) mouse embryonic fibroblast cells in which GSK-3α was knocked down to demonstrate that both isoforms of GSK-3, GSK-3α and GSK-3β, are required for this antiviral immune response. Moreover, the use of two selective small-molecule GSK-3 inhibitors (CHIR99021 and BIO-acetoxime) or ES cells reconstituted with the catalytically inactive versions of GSK-3 isoforms showed that GSK-3 activity is required for optimal induction of antiviral innate immunity. Mechanistically, GSK-3 isoform activation following Sendai virus infection results in phosphorylation of β-catenin at S33/S37/T41, promoting IRF3 DNA binding and activation of IRF3-regulated ISGs. This study identifies the role of a GSK-3/β-catenin axis in antiviral innate immunity.
Collapse
Affiliation(s)
- Kashif Aziz Khan
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Florence Dô
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | | | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | | | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Bradley W Doble
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marc J Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
18
|
Wrasidlo W, Crews LA, Tsigelny IF, Stocking E, Kouznetsova VL, Price D, Paulino A, Gonzales T, Overk CR, Patrick C, Rockenstein E, Masliah E. Neuroprotective effects of the anti-cancer drug sunitinib in models of HIV neurotoxicity suggests potential for the treatment of neurodegenerative disorders. Br J Pharmacol 2015; 171:5757-73. [PMID: 25117211 DOI: 10.1111/bph.12875] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/30/2014] [Accepted: 08/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Anti-retrovirals have improved and extended the life expectancy of patients with HIV. However, as this population ages, the prevalence of cognitive changes is increasing. Aberrant activation of kinases, such as receptor tyrosine kinases (RTKs) and cyclin-dependent kinase 5 (CDK5), play a role in the mechanisms of HIV neurotoxicity. Inhibitors of CDK5, such as roscovitine, have neuroprotective effects; however, CNS penetration is low. Interestingly, tyrosine kinase inhibitors (TKIs) display some CDK inhibitory activity and ability to cross the blood-brain barrier. EXPERIMENTAL APPROACH We screened a small group of known TKIs for a candidate with additional CDK5 inhibitory activity and tested the efficacy of the candidate in in vitro and in vivo models of HIV-gp120 neurotoxicity. KEY RESULTS Among 12 different compounds, sunitinib inhibited CDK5 with an IC50 of 4.2 μM. In silico analysis revealed that, similarly to roscovitine, sunitinib fitted 6 of 10 features of the CDK5 pharmacophore. In a cell-based model, sunitinib reduced CDK5 phosphorylation (pCDK5), calpain-dependent p35/p25 conversion and protected neuronal cells from the toxic effects of gp120. In glial fibrillary acidic protein-gp120 transgenic (tg) mice, sunitinib reduced levels of pCDK5, p35/p25 and phosphorylated tau protein, along with amelioration of the neurodegenerative pathology. CONCLUSIONS AND IMPLICATIONS Compounds such as sunitinib with dual kinase inhibitory activity could ameliorate the cognitive impairment associated with chronic HIV infection of the CNS. Moreover, repositioning existing low MW compounds holds promise for the treatment of patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Wolf Wrasidlo
- Department of Neurosciences, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Masvekar RR, El-Hage N, Hauser KF, Knapp PE. GSK3β-activation is a point of convergence for HIV-1 and opiate-mediated interactive neurotoxicity. Mol Cell Neurosci 2015; 65:11-20. [PMID: 25616162 DOI: 10.1016/j.mcn.2015.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 01/03/2023] Open
Abstract
Infection of the CNS with HIV-1 occurs rapidly after primary peripheral infection. HIV-1 can induce a wide range of neurological deficits, collectively known as HIV-1-associated neurocognitive disorders. Our previous work has shown that the selected neurotoxic effects induced by individual viral proteins, Tat and gp120, and by HIV(+) supernatant are enhanced by co-exposure to morphine. This mimics co-morbid neurological effects observed in opiate-abusing HIV(+) patients. Although there is a correlation between opiate drug abuse and progression of HIV-1-associated neurocognitive disorders, the mechanisms underlying interactions between HIV-1 and opiates remain obscure. Previous studies have shown that HIV-1 induces neurotoxic effects through abnormal activation of GSK3β. Interestingly, expression of GSK3β has shown to be elevated in brains of young opiate abusers indicating that GSK3β is also linked to neuropathology seen with opiate-abusing patients. Thus, we hypothesize that GSK3β activation is a point of convergence for HIV- and opiate-mediated interactive neurotoxic effects. Neuronal cultures were treated with supernatant from HIV-1SF162-infected THP-1 cells, in the presence or absence of morphine and GSK3β inhibitors. Our results show that GSK3β inhibitors, including valproate and small molecule inhibitors, significantly reduce HIV-1-mediated neurotoxic outcomes, and also negate interactions with morphine that result in cell death, suggesting that GSK3β-activation is an important point of convergence and a potential therapeutic target for HIV- and opiate-mediated neurocognitive deficits.
Collapse
Affiliation(s)
- Ruturaj R Masvekar
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nazira El-Hage
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Pamela E Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
20
|
Fields JA, Dumaop W, Crews L, Adame A, Spencer B, Metcalf J, He J, Rockenstein E, Masliah E. Mechanisms of HIV-1 Tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV Res 2015; 13:43-54. [PMID: 25760044 PMCID: PMC4455959 DOI: 10.2174/1570162x13666150311164201] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/13/2014] [Accepted: 01/29/2015] [Indexed: 12/16/2022]
Abstract
The advent of more effective antiretroviral therapies has reduced the frequency of HIV dementia, however the prevalence of milder HIV associated neurocognitive disorders [HAND] is actually rising. Neurodegenerative mechanisms in HAND might include toxicity by secreted HIV-1 proteins such as Tat, gp120 and Nef that could activate neuro-inflammatory pathways, block autophagy, promote excitotoxicity, oxidative stress, mitochondrial dysfunction and dysregulation of signaling pathways. Recent studies have shown that Tat could interfere with several signal transduction mechanisms involved in cytoskeletal regulation, cell survival and cell cycle re-entry. Among them, Tat has been shown to hyper-activate cyclin-dependent kinase [CDK] 5, a member of the Ser/Thr CDKs involved in cell migration, angiogenesis, neurogenesis and synaptic plasticity. CDK5 is activated by binding to its regulatory subunit, p35 or p39. For this manuscript we review evidence showing that Tat, via calcium dysregulation, promotes calpain-1 cleavage of p35 to p25, which in turn hyper-activates CDK5 resulting in abnormal phosphorylation of downstream targets such as Tau, collapsin response mediator protein-2 [CRMP2], doublecortin [DCX] and MEF2. We also present new data showing that Tat interferes with the trafficking of CDK5 between the nucleus and cytoplasm. This results in prolonged presence of CDK5 in the cytoplasm leading to accumulation of aberrantly phosphorylated cytoplasmic targets [e.g.: Tau, CRMP2, DCX] that impair neuronal function and eventually lead to cell death. Novel therapeutic approaches with compounds that block Tat mediated hyper-activation of CDK5 might be of value in the management of HAND.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eliezer Masliah
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Dr., MTF 348, La Jolla, CA 92093-0624, USA.
| |
Collapse
|
21
|
Brown LAM, Scarola J, Smith AJ, Sanberg PR, Tan J, Giunta B. The role of tau protein in HIV-associated neurocognitive disorders. Mol Neurodegener 2014; 9:40. [PMID: 25304757 PMCID: PMC4210623 DOI: 10.1186/1750-1326-9-40] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/15/2014] [Indexed: 11/14/2022] Open
Abstract
Given the increased life expectancy of human immunodeficiency virus (HIV) infected individuals treated with combination antiretroviral therapy (cART) and the ongoing inflammation observed in the brains of these patients, it is likely that premature neurodegeneration as measured by phospho-tau (p-tau) or increased total tau (t-tau) protein may become an increasing problem. This review examines the seven human studies that have occurred over the past 14 years measuring p-tau and/or t-tau in cerebrospinal fluid (CSF) or via post-mortem brain immunohistochemistry. Although not all studies are in agreement as to the changes in p-and t-tau in HIV infected patients, HIV persists in the brain despite cART. Thus is it is suggested that those maintained on long-term cART may develop tau pathology beyond the extent seen in the studies reviewed herein and overtime may then reach the threshold for clinical manifestation.
Collapse
Affiliation(s)
| | | | | | | | | | - Brian Giunta
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613, USA.
| |
Collapse
|
22
|
Masvekar RR, El-Hage N, Hauser KF, Knapp PE. Morphine enhances HIV-1SF162-mediated neuron death and delays recovery of injured neurites. PLoS One 2014; 9:e100196. [PMID: 24949623 PMCID: PMC4064991 DOI: 10.1371/journal.pone.0100196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/22/2014] [Indexed: 11/19/2022] Open
Abstract
HIV-1 enters the CNS soon after initial systemic infection; within the CNS parenchyma infected and/or activated perivascular macrophages, microglia and astrocytes release viral and cellular toxins that drive secondary toxicity in neurons and other cell types. Our previous work has largely modeled HIV-neuropathology using the individual viral proteins Tat or gp120, with murine striatal neurons as targets. To model disease processes more closely, the current study uses supernatant from HIV-1-infected cells. Supernatant from HIV-1SF162-infected differentiated-U937 cells (HIV+sup) was collected and p24 level was measured by ELISA to assess the infection. Injection drug abuse is a significant risk factor for HIV-infection, and opiate drug abusers show increased HIV-neuropathology, even with anti-retroviral treatments. We therefore assessed HIV+sup effects on neuronal survival and neurite growth/pruning with or without concurrent exposure to morphine, an opiate that preferentially acts through µ-opioid receptors. Effects of HIV+sup ± morphine were assessed on neuronal populations, and also by time-lapse imaging of individual cells. HIV+sup caused dose-dependent toxicity over a range of p24 levels (10–500 pg/ml). Significant interactions occurred with morphine at lower p24 levels (10 and 25 pg/ml), and GSK3β was implicated as a point of convergence. In the presence of glia, selective neurotoxic measures were significantly enhanced and interactions with morphine were also augmented, perhaps related to a decreased level of BDNF. Importantly, the arrest of neurite growth that occurred with exposure to HIV+sup was reversible unless neurons were continuously exposed to morphine. Thus, while reducing HIV-infection levels may be protective, ongoing exposure to opiates may limit recovery. Opiate interactions observed in this HIV-infective environment were similar, though not entirely concordant, with Tat/gp120 interactions reported previously, suggesting unique interactions with virions or other viral or cellular proteins released by infected and/or activated cells.
Collapse
Affiliation(s)
- Ruturaj R. Masvekar
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nazira El-Hage
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
23
|
Woollard SM, Bhargavan B, Yu F, Kanmogne GD. Differential effects of Tat proteins derived from HIV-1 subtypes B and recombinant CRF02_AG on human brain microvascular endothelial cells: implications for blood-brain barrier dysfunction. J Cereb Blood Flow Metab 2014; 34:1047-59. [PMID: 24667918 PMCID: PMC4050250 DOI: 10.1038/jcbfm.2014.54] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/17/2014] [Accepted: 03/05/2014] [Indexed: 01/20/2023]
Abstract
HIV-1 genetic differences influence viral replication and progression to AIDS. HIV-1 circulating recombinant form (CRF)02_AG is the predominant viral subtype infecting humans in West and Central Africa, but its effects on HIV neuropathogenesis are not known. In the present study, we investigated the effects of Tat proteins from HIV-1 subtype B (Tat.B) and HIV-1 CRF02_AG (Tat.AG) on primary human brain microvascular endothelial cells (HBMEC), the major component of the blood-brain barrier (BBB). Using Affymetrix GeneChip Human Gene 1.0.ST arrays, we showed that Tat.AG had minimal effects while Tat.B induced transcriptional upregulation of 90 genes in HBMEC, including proinflammatory chemokines, complement components C3, C7, and complement factor B, matrix metalloproteinases (MMP)-3, MMP-10, and MMP-12. These results were confirmed by real-time PCR. Compared with Tat.AG, Tat.B significantly increased MMP-3, MMP-10, and MMP-12 activities in HBMEC, and the MMPs tissue inhibitor of metalloproteinase-2 blocked Tat-induced increase in MMPs activity. Western blot analyses also showed that Tat increased the expression of C3 and its cleaved fragment C3b in HBMEC. These data suggest that genetic differences between HIV-1 subtypes B and CRF02_AG influence the effects of Tat proteins from these two clades on HBMEC, including molecular and cellular functions, and canonical pathways, which would affect BBB dysfunction and viral neuropathogenesis.
Collapse
Affiliation(s)
- Shawna M Woollard
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Biju Bhargavan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
24
|
Fields J, Dumaop W, Langford TD, Rockenstein E, Masliah E. Role of neurotrophic factor alterations in the neurodegenerative process in HIV associated neurocognitive disorders. J Neuroimmune Pharmacol 2014; 9:102-16. [PMID: 24510686 PMCID: PMC3973421 DOI: 10.1007/s11481-013-9520-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/26/2013] [Indexed: 12/30/2022]
Abstract
Migration of HIV infected cells into the CNS is associated with a spectrum of neurological disorders, ranging from milder forms of HIV-associated neurocognitive disorders (HAND) to HIV-associated dementia (HAD). These neuro-psychiatric syndromes are related to the neurodegenerative pathology triggered by the release of HIV proteins and cytokine/chemokines from monocytes/macrophages into the CNS -a condition known as HIV encephalitis (HIVE). As a result of more effective combined anti-retroviral therapy patients with HIV are living longer and thus the frequency of HAND has increased considerably, resulting in an overlap between the neurodegenerative pathology associated with HIV and that related to aging. In fact, HIV infection is believed to hasten the aging process. The mechanisms through which HIV and aging lead to neurodegeneration include: abnormal calcium flux, excitotoxicity, signaling abnormalities, oxidative stress and autophagy defects. Moreover, recent studies have shown that defects in the processing and transport of neurotrophic factors such as fibroblast growth factors (FGFs), neural growth factor (NGF) and brain-derived growth factor (BDNF) might also play a role. Recent evidence implicates alterations in neurotrophins in the pathogenesis of neurodegeneration associated with HAND in the context of aging. Here, we report FGF overexpression curtails gp120-induced neurotoxicity in a double transgenic mouse model. Furthermore, our data show disparities in brain neurotrophic factor levels may be exacerbated in HIV patients over 50 years of age. In this review, we discuss the most recent findings on neurotrophins and HAND in the context of developing new therapies to combat HIV infection in the aging population.
Collapse
Affiliation(s)
- Jerel Fields
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
The implementation of new antiretroviral therapies targeting transcription of early viral proteins in postintegrated HIV-1 can aid in overcoming current therapy limitations. Using high-throughput screening assays, we have previously described a novel Tat-dependent HIV-1 transcriptional inhibitor named 6-bromoindirubin-3'-oxime (6BIO). The screening of 6BIO derivatives yielded unique compounds that show potent inhibition of HIV-1 transcription. We have identified a second-generation derivative called 18BIOder as an inhibitor of HIV-1 Tat-dependent transcription in TZM-bl cells and a potent inhibitor of GSK-3β kinase in vitro. Structurally, 18BIOder is half the molecular weight and structure of its parental compound, 6BIO. More importantly, we also have found a different GSK-3β complex present only in HIV-1-infected cells. 18BIOder preferentially inhibits this novel kinase complex from infected cells at nanomolar concentrations. Finally, we observed that neuronal cultures treated with Tat protein are protected from Tat-mediated cytotoxicity when treated with 18BIOder. Overall, our data suggest that HIV-1 Tat-dependent transcription is sensitive to small-molecule inhibition of GSK-3β.
Collapse
|
26
|
Ma K, Yang LM, Chen HZ, Lu Y. Activation of muscarinic receptors inhibits glutamate-induced GSK-3β overactivation in PC12 cells. Acta Pharmacol Sin 2013; 34:886-92. [PMID: 23685950 DOI: 10.1038/aps.2013.42] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 03/20/2013] [Indexed: 01/05/2023] Open
Abstract
AIM To investigate the actions of the muscarinic agonist carbachol on glutamate-induced neurotoxicity in PC12 cells, and the underlying mechanisms. METHODS PC12 cells were treated with different concentrations of glutamate for 24 or 48 h. The cell viability was measured using MTT assay, and the expression and activation of GSK-3β were detected with Western blot. β-Catenin translocation was detected using immunofluorescence. Luciferase reporter assay and real-time PCR were used to analyze the transcriptional activity of β-catenin. RESULTS Glutamate (1, 3, and 10 mmol/L) induced PC12 cell death in a dose-dependent manner. Moreover, treatment of the cells with glutamate (1 mmol/L) caused significant overactivation of GSK-3β and prevented β-catenin translocation to the nucleus. Pretreatment with carbachol (0.01 μmol/L) blocked glutamate-induced cell death and GSK-3β overactivation, and markedly enhanced β-catenin transcriptional activity. CONCLUSION Activation of muscarinic receptors exerts neuroprotection in PC12 cells by attenuating glutamate-induced GSK-3β overactivation, suggesting potential benefits of muscarinic agonists for Alzheimer's disease.
Collapse
|
27
|
Reddy PH. Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer's disease: implications for synaptic dysfunction and neuronal damage. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1913-21. [PMID: 23816568 DOI: 10.1016/j.bbadis.2013.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/17/2013] [Accepted: 06/21/2013] [Indexed: 01/10/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine protein kinase that is involved in the multiple signaling processes of a cell. Increasing evidence suggests that GSK3β plays a key role in multiple cellular processes in the progression of diabetes, obesity, Alzheimer's disease (AD), Parkinson's disease (PD), inflammatory diseases, schizophrenia, bipolar and several mood disorders, and mitochondrial diseases. Recent research has found that increased GSK3β activity is linked to the pathogenesis of AD through amyloid beta (Aβ), phosphorylated tau and mitochondrial dysfunction. Recent research has also revealed that GSK3β is elevated in AD-affected tissues and is critically involved in dissociating the voltage-dependent anion channel 1 (VDAC1) protein from hexokinases, and causing disrupted glucose metabolism, mitochondrial dysfunction and activating apoptotic cell death. The purpose of this article is to review recent research that is elucidating the role of GSK3β in AD pathogenesis. We discuss the involvement of GSK3β in the phosphorylation of VDAC1 and dissociation of VADC1 with hexokinases in AD neurons.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
28
|
Hsu MJ, Hung SL. Antiherpetic potential of 6-bromoindirubin-3'-acetoxime (BIO-acetoxime) in human oral epithelial cells. Arch Virol 2013; 158:1287-96. [PMID: 23392633 DOI: 10.1007/s00705-013-1629-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/23/2012] [Indexed: 12/21/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) functions in the regulation of glycogen metabolism, in the cell cycle, and in immune responses and is targeted by some viruses to favor the viral life cycle. Inhibition of GSK-3 by 6-bromoindirubin-3'-acetoxime (BIO-acetoxime), a synthetic derivative of a compound from the Mediterranean mollusk Hexaplex trunculus, protects cells from varicella infection. In this study, we examined the effects of BIO-acetoxime against herpes simplex virus-1 (HSV-1) infection in human oral epithelial cells, which represent a natural target cell type. The results revealed that BIO-acetoxime relieves HSV-1-induced cytopathic effects and apoptosis. We also found that BIO-acetoxime reduced viral yields and the expression of different classes of viral proteins. Furthermore, addition of BIO-acetoxime before, simultaneously with or after HSV-1 infection significantly reduced viral yields. Collectively, BIO-acetoxime may suppress viral gene expression and protect oral epithelial cells from HSV-1 infection. These results suggest the possible involvement of GSK-3 in HSV-1 infection.
Collapse
Affiliation(s)
- Mei-Ju Hsu
- Institute of Oral Biology, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Pei-Tou, Taipei 11221, Taiwan
| | | |
Collapse
|
29
|
Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription through its intact core and cysteine-rich domains inhibits Wnt/β-catenin signaling in astrocytes: relevance to HIV neuropathogenesis. J Neurosci 2013; 32:16306-13. [PMID: 23152614 DOI: 10.1523/jneurosci.3145-12.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Wnt/β-catenin is a neuroprotective pathway regulating cell fate commitment in the CNS and many vital functions of neurons and glia. Its dysregulation is linked to a number of neurodegenerative diseases. Wnt/β-catenin is also a repressor of HIV transcription in multiple cell types, including astrocytes, which are dysregulated in HIV-associated neurocognitive disorder. Given that HIV proteins can overcome host restriction factors and that perturbations of Wnt/β-catenin signaling can compromise astrocyte function, we evaluated the impact of HIV transactivator of transcription (Tat) on Wnt/β-catenin signaling in astrocytes. HIV clade B Tat, in primary progenitor-derived astrocytes and U87MG cells, inhibited Wnt/β-catenin signaling as demonstrated by its inhibition of active β-catenin, TOPflash reporter activity, and Axin-2 (a downstream target of Wnt/β-catenin signaling). Point mutations in either the core region (K41A) or the cysteine-rich region (C30G) of Tat abrogated its ability to inhibit β-catenin signaling. Clade C Tat, which lacks the dicysteine motif, did not alter β-catenin signaling, confirming that the dicysteine motif is critical for Tat inhibition of β-catenin signaling. Tat coprecipitated with TCF-4 (a transcription factor that partners with β-catenin), suggesting a physical interaction between these two proteins. Furthermore, knockdown of β-catenin or TCF-4 enhanced docking of Tat at the TAR region of the HIV long terminal repeat. These findings highlight a bidirectional interference between Tat and Wnt/β-catenin that negatively impacts their cognate target genes. The consequences of this interaction include alleviation of Wnt/β-catenin-mediated suppression of HIV and possible astrocyte dysregulation contributing to HIV neuropathogenesis.
Collapse
|
30
|
Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 2013; 65:105-42. [PMID: 23300133 PMCID: PMC3565922 DOI: 10.1124/pr.111.005512] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs' primary targets--glycogen synthase kinase-3 for lithium and histone deacetylases for VPA--induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA's beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
31
|
The role of thiamine in HIV infection. Int J Infect Dis 2012; 17:e221-7. [PMID: 23274124 DOI: 10.1016/j.ijid.2012.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 12/15/2022] Open
Abstract
Patients infected with HIV have a high prevalence of thiamine deficiency. Genetic studies have provided the opportunity to determine which proteins link thiamine to HIV pathology, i.e., renin-angiotensin system, poly(ADP-ribosyl) polymerase 1, Sp1 promoter gene, transcription factor p53, apoptotic factor caspase 3, and glycogen synthetase kinase 3β. Thiamine also affects HIV through non-genomic factors, i.e., matrix metalloproteinase, vascular endothelial growth factor, heme oxygenase 1, the prostaglandins, cyclooxygenase 2, reactive oxygen species, and nitric oxide. In conclusion, thiamine may benefit HIV patients, but further investigation of the role of thiamine in HIV infection is needed.
Collapse
|
32
|
Al-Harthi L. Interplay between Wnt/β-catenin signaling and HIV: virologic and biologic consequences in the CNS. J Neuroimmune Pharmacol 2012; 7:731-9. [PMID: 23065461 DOI: 10.1007/s11481-012-9411-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
Considerable studies have evaluated the interaction between Wnt/β-catenin signaling and numerous cellular processes. Emerging findings now demonstrate that Wnt/β-catenin signaling interacts with the life cycle of the Human Immunodeficiency Virus type 1 (HIV-1). Wnt/β-catenin is a restrictive pathway to HIV replication in multiple target cells including peripheral blood mononuclear cells and astrocytes. The molecular interaction between Wnt/β-catenin signaling and HIV has been evaluated in astrocytes because they express robust level of this pathway. The cross talk that occurs between these two components has significant biologic consequences to HIV-mediated neuropathogenesis. This perspective highlights current knowledge regarding the interaction between Wnt/β-catenin signaling and HIV, the interplay between these two pathways as it impacts key features of NeuroAIDS, and provides an assessment of knowledge gaps in the field that could propel our understanding of this interaction to inform novel strategies to exploit Wnt signaling for therapeutic intervention in HIV/NeuroAIDS.
Collapse
Affiliation(s)
- Lena Al-Harthi
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
33
|
Ramadan E, Basselin M, Chang L, Chen M, Ma K, Rapoport SI. Chronic lithium feeding reduces upregulated brain arachidonic acid metabolism in HIV-1 transgenic rat. J Neuroimmune Pharmacol 2012; 7:701-13. [PMID: 22760927 PMCID: PMC3478068 DOI: 10.1007/s11481-012-9381-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/04/2012] [Indexed: 01/09/2023]
Abstract
HIV-1 transgenic (Tg) rats, a model for human HIV-1 associated neurocognitive disorder (HAND), show upregulated markers of brain arachidonic acid (AA) metabolism with neuroinflammation after 7 months of age. Since lithium decreases AA metabolism in a rat lipopolysaccharide model of neuroinflammation, and may be useful in HAND, we hypothesized that lithium would dampen upregulated brain AA metabolism in HIV-1 Tg rats. Regional brain AA incorporation coefficients k* and rates J ( in ), markers of AA signaling and metabolism, were measured in 81 brain regions using quantitative autoradiography, after intravenous [1-(14) C]AA infusion in unanesthetized 10-month-old HIV-1 Tg and age-matched wildtype rats that had been fed a control or LiCl diet for 6 weeks. k* and J ( in ) for AA were significantly higher in HIV-1 Tg than wildtype rats fed the control diet. Lithium feeding reduced plasma unesterified AA concentration in both groups and J ( in ) in wildtype rats, and blocked increments in k* (19 of 54 regions) and J ( in ) (77 of 81 regions) in HIV-1 Tg rats. These in vivo neuroimaging data indicate that lithium treatment dampened upregulated brain AA metabolism in HIV-1 Tg rats. Lithium may improve cognitive dysfunction and be neuroprotective in HIV-1 patients with HAND through a comparable effect.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mei Chen
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Kaizong Ma
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Abstract
Dementias are a varied group of disorders typically associated with memory loss, impaired judgment and/or language and by symptoms affecting other cognitive and social abilities to a degree that interferes with daily functioning. Alzheimer's disease (AD) is the most common cause of a progressive dementia, followed by dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), (VaD) and HIV-associated neurocognitive disorders (HAND). The pathogenesis of this group of disorders has been linked to the abnormal accumulation of proteins in the brains of affected individuals, which in turn has been related to deficits in protein clearance. Autophagy is a key cellular protein clearance pathway with proteolytic cleavage and degradation via the ubiquitin-proteasome pathway representing another important clearance mechanism. Alterations in the levels of autophagy and the proteins associated with the autophagocytic pathway have been reported in various types of dementias. This review will examine recent literature across these disorders and highlight a common theme of altered autophagy across the spectrum of the dementias.
Collapse
|
35
|
Hauser KF, Fitting S, Dever SM, Podhaizer EM, Knapp PE. Opiate drug use and the pathophysiology of neuroAIDS. Curr HIV Res 2012; 10:435-52. [PMID: 22591368 PMCID: PMC3431547 DOI: 10.2174/157016212802138779] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/12/2012] [Accepted: 01/14/2012] [Indexed: 11/22/2022]
Abstract
Opiate abuse and HIV-1 have been described as interrelated epidemics, and even in the advent of combined anti-retroviral therapy, the additional abuse of opiates appears to result in greater neurologic and cognitive deficits. The central nervous system (CNS) is particularly vulnerable to interactive opiate-HIV-1 effects, in part because of the unique responses of microglia and astroglia. Although neurons are principally responsible for behavior and cognition, HIV-1 infection and replication in the brain is largely limited to microglia, while astroglia and perhaps glial progenitors can be latently infected. Thus, neuronal dysfunction and injury result from cellular and viral toxins originating from HIV-1 infected/exposed glia. Importantly, subsets of glial cells including oligodendrocytes, as well as neurons, express µ-opioid receptors and therefore can be direct targets for heroin and morphine (the major metabolite of heroin in the CNS), which preferentially activate µ-opioid receptors. This review highlights findings that neuroAIDS is a glially driven disease, and that opiate abuse may act at multiple glial-cell types to further compromise neuron function and survival. The ongoing, reactive cross-talk between opiate drug and HIV-1 co-exposed microglia and astroglia appears to exacerbate critical proinflammatory and excitotoxic events leading to neuron dysfunction, injury, and potentially death. Opiates enhance synaptodendritic damage and a loss of synaptic connectivity, which is viewed as the substrate of cognitive deficits. We especially emphasize that opioid signaling and interactions with HIV-1 are contextual, differing among cell types, and even within subsets of the same cell type. For example, astroglia even within a single brain region are heterogeneous in their expression of µ-, δ-, and κ-opioid receptors, as well as CXCR4 and CCR5, and Toll-like receptors. Thus, defining the distinct targets engaged by opiates in each cell type, and among brain regions, is critical to an understanding of how opiate abuse exacerbates neuroAIDS.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, 1217 East Marshall Street, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA.
| | | | | | | | | |
Collapse
|
36
|
Meeker RB, Poulton W, Feng WH, Hudson L, Longo FM. Suppression of immunodeficiency virus-associated neural damage by the p75 neurotrophin receptor ligand, LM11A-31, in an in vitro feline model. J Neuroimmune Pharmacol 2012; 7:388-400. [PMID: 22161560 PMCID: PMC3746485 DOI: 10.1007/s11481-011-9325-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/03/2011] [Indexed: 10/14/2022]
Abstract
Feline immunodeficiency virus (FIV) infection like human immunodeficiency virus (HIV), produces systemic and central nervous system disease in its natural host, the domestic cat, that parallels the pathogenesis seen in HIV-infected humans. The ability to culture feline nervous system tissue affords the unique opportunity to directly examine interactions of infectious virus with CNS cells for the development of models and treatments that can then be translated to a natural infectious model. To explore the therapeutic potential of a new p75 neurotrophin receptor ligand, LM11A-31, we evaluated neuronal survival, neuronal damage and calcium homeostasis in cultured feline neurons following inoculation with FIV. FIV resulted in the gradual appearance of dendritic beading, pruning of processes and shrinkage of neuronal perikarya in the neurons. Astrocytes developed a more activated appearance and there was an enhanced accumulation of microglia, particularly at longer times post-inoculation. Addition of 10 nM LM11A-31, to the cultures greatly reduced or eliminated the neuronal pathology as well as the FIV effects on astrocytes and microglia. LM11A-31 also, prevented the development of delayed calcium deregulation in feline neurons exposed to conditioned medium from FIV treated macrophages. The suppression of calcium accumulation prevented the development of foci of calcium accumulation and beading in the dendrites. FIV replication was unaffected by LM11A-31. The strong neuroprotection afforded by LM11A-31 in an infectious in vitro model indicates that LM11A-31 may have excellent potential for the treatment of HIV-associated neurodegeneration.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology, University of North Carolina, CB #7025, 115 Mason Farm Road, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
37
|
Fitting S, Scoggins KL, Xu R, Dever SM, Knapp PE, Dewey WL, Hauser KF. Morphine efficacy is altered in conditional HIV-1 Tat transgenic mice. Eur J Pharmacol 2012; 689:96-103. [PMID: 22659585 DOI: 10.1016/j.ejphar.2012.05.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/03/2012] [Accepted: 05/16/2012] [Indexed: 12/24/2022]
Abstract
Opiate abuse reportedly can exaggerate complications of human immunodeficiency virus type-1 (HIV-1) infection in the central nervous system (CNS), while opiate drugs are often indicated in the treatment of HIV-1-related neuropathic pain. Despite this quandary, few studies have assessed the relationship between the duration or extent of HIV-1 infection and the intrinsic neurobehavioral responsiveness to opioids. To address this problem, doxycycline (DOX)-inducible HIV-Tat(1-86) transgenic mice were used as a model for HIV-1-associated neurocognitive disorders, which permitted the regulation of Tat exposure and duration. The effects of continuous Tat induction on the activity of morphine were examined at weekly intervals using standard behavioral assays for nociception and motor function. In the spinal cord, Tat mRNA levels did not increase until the second and third weeks following induction, which corresponded to a significant loss of morphine antinociception as assessed in the tail-flick test. Alternatively, in the striatum, sustained increases in Tat mRNA expression during the second week of induction coincided with significant decreases in rotarod performance and interactions with morphine. Importantly, the behavioral effects of morphine differed depending on the timing and location of Tat expression, with increases in Tat transcript levels in the spinal cord and striatum corresponding to significant alterations in morphine-dependent nociception and rotarod performance, respectively. Assuming Tat levels contribute to the clinical manifestations of HIV-1, the results suggest that regional differences in viral load and opioid phenotype might influence the nature and degree that opiate responsiveness is altered in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Pharmacolog, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Reversal of diabetes through gene therapy of diabetic rats by hepatic insulin expression via lentiviral transduction. Mol Ther 2012; 20:918-26. [PMID: 22354377 DOI: 10.1038/mt.2012.8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Due to shortage of donor tissue a cure for type 1 diabetes by pancreas organ or islet transplantation is an option only for very few patients. Gene therapy is an alternative approach to cure the disease. Insulin generation in non-endocrine cells through genetic engineering is a promising therapeutic concept to achieve insulin independence in patients with diabetes. In the present study furin-cleavable human insulin was expressed in the liver of autoimmune-diabetic IDDM rats (LEW.1AR1/Ztm-iddm) and streptozotocin-diabetic rats after portal vein injection of INS-lentivirus. Within 5-7 days after the virus injection of 7 × 10(9) INS-lentiviral particles the blood glucose concentrations were normalized in the treated animals. This glucose lowering effect remained stable for the 1 year observation period. Human C-peptide as a marker for hepatic release of human insulin was in the range of 50-100 pmol/ml serum. Immunofluorescence staining of liver tissue was positive for insulin showing no signs of transdifferentiation into pancreatic β-cells. This study shows that the diabetic state can be efficiently reversed by insulin release from non-endocrine cells through a somatic gene therapy approach.
Collapse
|
39
|
Chang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, He JJ, Sawaya BE. HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem 2011; 286:41125-34. [PMID: 21956116 PMCID: PMC3220514 DOI: 10.1074/jbc.m111.268466] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/13/2011] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, small noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators in the expression and function of eukaryotic genomes. It has been suggested that viral infections and neurological disease outcome may also be shaped by the influence of small RNAs. This has prompted us to suggest that HIV infection alters the endogenous miRNA expression patterns, thereby contributing to neuronal deregulation and AIDS dementia. Therefore, using primary cultures and neuronal cell lines, we examined the impact of a viral protein (HIV-1 Tat) on the expression of miRNAs due to its characteristic features such as release from the infected cells and taken up by noninfected cells. Using microRNA array assay, we demonstrated that Tat deregulates the levels of several miRNAs. Interestingly, miR-34a was among the most highly induced miRNAs in Tat-treated neurons. Tat also decreases the levels of miR-34a target genes such as CREB protein as shown by real time PCR. The effect of Tat was neutralized in the presence of anti-miR-34a. Using in situ hybridization assay, we found that the levels of miR-34a increase in Tat transgenic mice when compared with the parental mice. Therefore, we conclude that deregulation of neuronal functions by HIV-1 Tat protein is miRNA-dependent.
Collapse
Affiliation(s)
- J. Robert Chang
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Ruma Mukerjee
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Asen Bagashev
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Luis Del Valle
- the Department of Medicine, Section of Hematology/Oncology, and Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University School of Medicine, New Orleans, Louisiana 70112
| | - Tinatin Chabrashvili
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Brian J. Hawkins
- Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington 98109, and
| | - Johnny J. He
- the Center for AIDS Research, Department of Microbiology and Immunology, School of Medicine, University of Indiana, Indianapolis, Indiana 46202
| | - Bassel E. Sawaya
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
40
|
Henderson LJ, Al-Harthi L. Role of β-catenin/TCF-4 signaling in HIV replication and pathogenesis: insights to informing novel anti-HIV molecular therapeutics. J Neuroimmune Pharmacol 2011; 6:247-59. [PMID: 21384147 PMCID: PMC3836044 DOI: 10.1007/s11481-011-9266-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
A greater understanding of the interaction between HIV and host signaling pathways that restrict virus production may lead to new methods to purge virus from latent reservoirs and enhance survival/function of cells targeted by HIV. This review highlights the role of the Wnt/β-catenin pathway as a host factor that represses HIV replication in multiple targets, especially those relevant to HIV in the central nervous system.
Collapse
Affiliation(s)
- Lisa J. Henderson
- Department of Immunology/Microbiology and Center for AIDS Research, Rush University Medical Center, Chicago, IL 60607, USA
| | - Lena Al-Harthi
- Department of Immunology/Microbiology and Center for AIDS Research, Rush University Medical Center, Chicago, IL 60607, USA. Department of Immunology and Microbiology, Rush University Medical Center, 1735 W. Harrison Street, 614 Cohn, Chicago, IL 60612, USA
| |
Collapse
|
41
|
Cao S, Wu C, Yang Y, Sniderhan LF, Maggirwar SB, Dewhurst S, Lu Y. Lentiviral vector-mediated stable expression of sTNFR-Fc in human macrophage and neuronal cells as a potential therapy for neuroAIDS. J Neuroinflammation 2011; 8:48. [PMID: 21569583 PMCID: PMC3118348 DOI: 10.1186/1742-2094-8-48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/14/2011] [Indexed: 01/23/2023] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) infection frequently causes neurologic disease, which is the result of viral replication and activation of macrophages and microglia in the CNS, and subsequent secretion of high levels of neurotoxic products, including tumor necrosis factor-α (TNF-α). We therefore hypothesized that a soluble TNF-α antagonist might have potential utility as a neuroprotective effecter molecule, and conducted proof-of-concept studies to test this hypothesis. Methods To develop novel therapeutics for the treatment of neuroAIDS, we constructed and characterized a soluble TNF receptor (sTNFR)-Fc fusion protein with the goal of neutralizing TNF-α, and tested the stability of expression of this gene following delivery by a lentiviral vector. Results High-titer lentiviral vectors were prepared, allowing efficient transduction of macrophage/glial and neuronal cell lines, as well as primary rat cerebellar neurons. Efficient, stable secretion of sTNFR-Fc was demonstrated in supernatants from transduced cell lines over 20 passages, using both western blot and ELISA. Biological activity of the secreted sTNFR-Fc was confirmed by TNF-specific in vitro protein binding and functional blocking assays. Finally, the secreted protein was shown to protect neuronal cells from TNF-α, HIV-1 Tat-, and gp120-mediated neurotoxicity. Conclusions These results demonstrate that lentiviral vector mediated expression of sTNFR-Fc may have potential as a novel therapy for neuroAIDS.
Collapse
Affiliation(s)
- Shengbo Cao
- Department of Public Health Sciences, University of Hawai'i, Honolulu, Hawai'i 96822, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Li W, Henderson LJ, Major EO, Al-Harthi L. IFN-gamma mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the beta-catenin pathway (DKK1) in a STAT 3-dependent manner. THE JOURNAL OF IMMUNOLOGY 2011; 186:6771-8. [PMID: 21562161 DOI: 10.4049/jimmunol.1100099] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Typically, IFN-γ is an antiviral cytokine that inhibits the replication of many viruses, including HIV. However, in the CNS, IFN-γ induces HIV-productive replication in astrocytes. Although astrocytes in vitro are refractory to HIV replication, recent in vivo evidence demonstrated that astrocytes are infected by HIV, and their degree of infection is correlated with proximity to activated macrophages/microglia. The ability of IFN-γ to induce HIV replication in astrocytes suggests that the environmental milieu is critical in regulating the permissiveness of astrocytes to HIV infection. We evaluated the mechanism by which IFN-γ relieves restricted HIV replication in astrocytes. We demonstrate that although astrocytes have robust endogenous β-catenin signaling, a pathway that is a potent inhibitor of HIV replication, IFN-γ diminished β-catenin signaling in astrocytes by 40%, as evaluated by both active β-catenin protein expression and β-catenin-mediated T cell factor/lymphoid enhancer reporter (TOPflash) activity. Further, IFN-γ-mediated inhibition of β-catenin signaling was dependent on its ability to induce an antagonist of the β-catenin signaling pathway, Dickkopf-related protein 1, in a STAT 3-dependent manner. Inhibition of STAT3 and Dickkopf-related protein 1 abrogated the ability of IFN-γ to enhance HIV replication in astrocytes. These data demonstrated that IFN-γ induces HIV replication in astrocytes by antagonizing the β-catenin pathway. To our knowledge, this is the first report to point to an intricate cross-talk between IFN-γ signaling and β-catenin signaling that may have biologic and virologic effects on HIV outcome in the CNS, as well as on broader processes where the two pathways interface.
Collapse
Affiliation(s)
- Wei Li
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
43
|
Kehn-Hall K, Guendel I, Carpio L, Skaltsounis L, Meijer L, Al-Harthi L, Steiner JP, Nath A, Kutsch O, Kashanchi F. Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK3-beta inhibitors. Virology 2011; 415:56-68. [PMID: 21514616 DOI: 10.1016/j.virol.2011.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/10/2011] [Accepted: 03/27/2011] [Indexed: 10/18/2022]
Abstract
The HIV-1 protein Tat is a critical regulator of viral transcription and has also been implicated as a mediator of HIV-1 induced neurotoxicity. Here using a high throughput screening assay, we identified the GSK-3 inhibitor 6BIO, as a Tat-dependent HIV-1 transcriptional inhibitor. Its ability to inhibit HIV-1 transcription was confirmed in TZM-bl cells, with an IC(50) of 40nM. Through screening 6BIO derivatives, we identified 6BIOder, which has a lower IC(50) of 4nM in primary macrophages and 0.5nM in astrocytes infected with HIV-1. 6BIOder displayed an IC(50) value of 0.03nM through in vitro GSK-3β kinase inhibition assays. Finally, we demonstrated 6BIO and 6BIOder have neuroprotective effects on Tat induced cell death in rat mixed hippocampal cultures. Therefore 6BIO and its derivatives are unique compounds which, due to their complex mechanisms of action, are able to inhibit HIV-1 transcription as well as to protect against Tat induced neurotoxicity.
Collapse
Affiliation(s)
- Kylene Kehn-Hall
- Department of Molecular and Microbiology, National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Patrick C, Crews L, Desplats P, Dumaop W, Rockenstein E, Achim CL, Everall IP, Masliah E. Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1646-61. [PMID: 21435449 PMCID: PMC3078446 DOI: 10.1016/j.ajpath.2010.12.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/10/2010] [Accepted: 12/16/2010] [Indexed: 12/20/2022]
Abstract
Recent treatments with highly active antiretroviral therapy (HAART) regimens have been shown to improve general clinical status in patients with human immunodeficiency virus (HIV) infection; however, the prevalence of cognitive alterations and neurodegeneration has remained the same or has increased. These deficits are more pronounced in the subset of HIV patients with the inflammatory condition known as HIV encephalitis (HIVE). Activation of signaling pathways such as GSK3β and CDK5 has been implicated in the mechanisms of HIV neurotoxicity; however, the downstream mediators of these effects are unclear. The present study investigated the involvement of CDK5 and tau phosphorylation in the mechanisms of neurodegeneration in HIVE. In the frontal cortex of patients with HIVE, increased levels of CDK5 and p35 expression were associated with abnormal tau phosphorylation. Similarly, transgenic mice engineered to express the HIV protein gp120 exhibited increased brain levels of CDK5 and p35, alterations in tau phosphorylation, and dendritic degeneration. In contrast, genetic knockdown of CDK5 or treatment with the CDK5 inhibitor roscovitine improved behavioral performance in the water maze test and reduced neurodegeneration, abnormal tau phosphorylation, and astrogliosis in gp120 transgenic mice. These findings indicate that abnormal CDK5 activation contributes to the neurodegenerative process in HIVE via abnormal tau phosphorylation; thus, reducing CDK5 might ameliorate the cognitive impairments associated with HIVE.
Collapse
Affiliation(s)
- Christina Patrick
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Leslie Crews
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Paula Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Wilmar Dumaop
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Cristian L. Achim
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Ian P. Everall
- Department of Psychiatry, University of California, San Diego, La Jolla, California
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| |
Collapse
|
45
|
Mitogen-activated protein kinase p38 in HIV infection and associated brain injury. J Neuroimmune Pharmacol 2011; 6:202-15. [PMID: 21286833 DOI: 10.1007/s11481-011-9260-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/23/2011] [Indexed: 02/05/2023]
Abstract
Infection with human immunodeficiency virus-1 (HIV-1) often leads to HIV-associated neurocognitive disorders (HAND) prior to the progression to acquired immunodeficiency syndrome (AIDS). At the cellular level, mitogen-activated protein kinases (MAPK) provide a family of signal transducers that regulate many processes in response to extracellular stimuli and environmental stress, such as viral infection. Recently, evidence has accumulated suggesting that p38 MAPK plays crucial roles in various pathological processes associated with HIV infection, ranging from macrophage activation to neurotoxicity and impairment of neurogenesis to lymphocyte apoptosis. Thus, p38 MAPK, which has generally been linked to stress-related signal transduction, may be an important mediator in the development of AIDS and HAND.
Collapse
|
46
|
Suh HS, Choi S, Khattar P, Choi N, Lee SC. Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. J Neuroimmune Pharmacol 2010; 5:521-32. [PMID: 20157787 PMCID: PMC3115474 DOI: 10.1007/s11481-010-9192-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/14/2010] [Indexed: 12/22/2022]
Abstract
Histone deacetylase inhibitors (HDACi) have been proposed as therapies for certain cancers and as an anti-reservoir therapy for HIV+ individuals with highly active anti-retroviral therapy, yet their roles in glial inflammatory and innate antiviral gene expression have not been defined. In this study, we examined the effects of two non-selective HDACi, trichostatin A and valproic acid, on antiviral and cytokine gene expression in primary human microglia and astrocytes stimulated with TLR3 or TLR4 ligand. HDACi potently suppressed the expression of innate antiviral molecules such as IFNβ, interferon-simulated genes, and proteins involved in TLR3/TLR4 signaling. HDACi also suppressed microglial and astrocytic cytokine and chemokine gene expression, but with different effects on different groups of cytokines. These results have important implications for the clinical use of HDACi.
Collapse
Affiliation(s)
- Hyeon-Sook Suh
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
47
|
Davidson DC, Hirschman MP, Spinelli SL, Morrell CN, Schifitto G, Phipps RP, Maggirwar SB. Antiplatelet activity of valproic acid contributes to decreased soluble CD40 ligand production in HIV type 1-infected individuals. THE JOURNAL OF IMMUNOLOGY 2010; 186:584-91. [PMID: 21115729 DOI: 10.4049/jimmunol.1001911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD40L is a type II membrane glycoprotein of the TNF family that is found on activated T cells, B cells, and platelets. We previously reported that the soluble form of this inflammatory mediator (sCD40L) is elevated in the plasma and cerebrospinal fluid of HIV-1-infected, cognitively impaired individuals. In this study, we demonstrate that the mood-stabilizing drug valproic acid (VPA) reduces sCD40L levels in plasma samples of HIV-1-infected patients (n = 23) and in washed human platelets, which are the main source of circulating sCD40L. VPA also inhibited HIV-1 transactivator of transcription-induced release of sCD40L and platelet factor 4 in C57BL/6 mice. The mechanism by which VPA was able to do so was investigated, and we demonstrate that VPA, a known glycogen synthase kinase 3β inhibitor, blocks platelet activating factor-induced activation of glycogen synthase kinase 3β in platelets in a manner that alters sCD40L release from platelets. These data reveal that VPA has antiplatelet activity, and they convey important implications for the potential of VPA as an adjunct therapy not only for cognitively impaired patients with HIV-1 infection, but also numerous inflammatory diseases for which such antiplatelet therapies are currently lacking.
Collapse
Affiliation(s)
- Donna C Davidson
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Human immunodeficiency virus-1 Tat activates calpain proteases via the ryanodine receptor to enhance surface dopamine transporter levels and increase transporter-specific uptake and Vmax. J Neurosci 2010; 30:14153-64. [PMID: 20962236 DOI: 10.1523/jneurosci.1042-10.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human immunodeficiency virus-associated neurological disease (HAND) still causes significant morbidity, despite success reducing viral loads with combination antiretroviral therapy. The dopamine (DA) system is particularly vulnerable in HAND. We hypothesize that early, "reversible" DAergic synaptic dysfunction occurs long before DAergic neuron loss. As such, aging human immunodeficiency virus (HIV)-infected individuals may be vulnerable to other age-related neurodegenerative diseases like Parkinson's disease (PD), underscoring the need to understand shared molecular targets in HAND and PD. Previously, we reported that the neurotoxic HIV-1 transactivating factor (Tat) acutely disrupts mitochondrial and endoplasmic reticulum calcium homeostasis via ryanodine receptor (RyR) activation. Here, we further report that Tat disrupts DA transporter (DAT) activity and function, resulting in increased plasma membrane (PM) DAT and increased DAT V(max), without changes in K(m) or total DAT protein. Tat also increases calpain protease activity at the PM, demonstrated by total internal reflection fluorescence microscopy of a cleavable fluorescent calpain substrate. Tat-increased PM DAT and calpain activity are blocked by the RyR antagonists ryanodine and dantrolene, the calpain inhibitor calpastatin, and by a specific inhibitor of GSK-3β. We conclude that Tat activates RyRs via a calcium- and calpain-mediated mechanism that upregulates DAT trafficking to the PM, and is independent of DAT protein synthesis, reinforcing the feasibility of RyR and GSK-3β inhibition as clinical therapeutic approaches for HAND. Finally, we provide key translational relevance for these findings by highlighting published human data of increased DAT levels in striata of HAND patients and by demonstrating similar findings in Tat-expressing transgenic mice.
Collapse
|
49
|
Chiu CT, Chuang DM. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 2010; 128:281-304. [PMID: 20705090 PMCID: PMC3167234 DOI: 10.1016/j.pharmthera.2010.07.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium's therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium's main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington's, Alzheimer's, and Parkinson's diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium's neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | | |
Collapse
|
50
|
Fitting S, Xu R, Bull C, Buch SK, El-Hage N, Nath A, Knapp PE, Hauser KF. Interactive comorbidity between opioid drug abuse and HIV-1 Tat: chronic exposure augments spine loss and sublethal dendritic pathology in striatal neurons. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1397-410. [PMID: 20651230 DOI: 10.2353/ajpath.2010.090945] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HIV-1 infection predisposes the central nervous system to damage by opportunistic infections and environmental insults. Such maladaptive plasticity may underlie the exaggerated comorbidity seen with HIV-1 infection and opioid abuse. Although morphine and HIV-1 Tat synergize at high concentrations to increase neuronal death in vitro, we questioned whether chronic low Tat exposure in vivo might contribute to the spectrum of neuropathology through sublethal neuronal injury. We used a doxycycline-driven, inducible, HIV-1 Tat transgenic mouse, in which striatal neuron death was previously shown to be absent, to examine effects of differential Tat expression, alone and combined with morphine. Low constitutive Tat expression caused neurodegeneration; higher levels induced by 7 days of doxycycline significantly reduced dendritic spine numbers. Moreover, Tat expression widely disrupted the endogenous opioid system, altering mu and kappa, but not delta, opioid receptor and proopiomelanocortin, proenkephalin, and prodynorphin transcript levels in cortex, hippocampus, and striatum. In addition to markedly reducing spine density by itself, morphine amplified the effect of higher levels of Tat on spines, and also potentiated Tat-mediated dendritic pathology, thus contributing to maladaptive neuroplasticity at multiple levels. The dendritic pathology and reductions in spine density suggest that sustained Tat +/- morphine exposure underlie key aspects of chronic neurodegenerative changes in neuroAIDS, which may contribute to the exacerbated neurological impairment in HIV patients who abuse opioids.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|