1
|
Nonphosphorylatable Src Ser75 Mutation Increases Ethanol Preference and Consumption in Mice. eNeuro 2019; 6:eN-NWR-0418-18. [PMID: 30963106 PMCID: PMC6451160 DOI: 10.1523/eneuro.0418-18.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/21/2022] Open
Abstract
Src is highly expressed in CNS neurons and contributes not only to developmental proliferation and differentiation but also to high-order brain functions, such as those contributing to alcohol consumption. Src knock-out mice exhibit no CNS abnormalities, presumably due to compensation by other Src family kinases (SFKs), but have a shortened lifespan and osteopetrosis-associated defects, impeding investigations of the role of Src on behavior in adult mice. However, the Unique domain of Src differs from those in other SFKs and is phosphorylated by cyclin-dependent kinase 1 (Cdk1) and Cdk5 at Ser75, which influences its postmitotic function in neurons. Therefore, ethanol consumption in mice harboring nonphosphorylatable (Ser75Ala) or phosphomimetic (Ser75Asp) Src mutants was investigated. Mice harboring the Ser75Ala Src mutant, but not the Ser75Asp mutant, had a higher preference for and consumption of solutions containing 5% and 10% ethanol than wild-type mice. However, plasma ethanol concentrations and sensitivities to the sedative effects of ethanol were not different among the groups. In mice harboring the Ser75Ala Src mutant, the activity of Rho-associated kinase (ROCK) in the striatum was significantly lower and Akt Ser473 phosphorylation was significantly higher than in wild-type mice. These results suggest that Src regulates voluntary ethanol drinking in a manner that depends on Ser75 phosphorylation.
Collapse
|
2
|
den Hartog CR, Gilstrap M, Eaton B, Lench DH, Mulholland PJ, Homanics GE, Woodward JJ. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors. Front Neurosci 2017; 11:84. [PMID: 28270746 PMCID: PMC5318453 DOI: 10.3389/fnins.2017.00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/06/2017] [Indexed: 11/13/2022] Open
Abstract
Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2-3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated ethanol injections and this was associated with differences in NMDAR subunit expression across brain regions thought to be involved in drug sensitization. Overall, while the results of the study suggest that NMDARs with reduced sensitivity to ethanol favor the development of locomotor sensitization, they also show that intrinsic ethanol sensitivity is not the sole determinant underlying changes in NMDAR expression following repeated exposures to ethanol.
Collapse
Affiliation(s)
- Carolina R den Hartog
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Meghin Gilstrap
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Bethany Eaton
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Daniel H Lench
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh Pittsburgh, PA, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
3
|
Different sites of alcohol action in the NMDA receptor GluN2A and GluN2B subunits. Neuropharmacology 2015; 97:240-50. [PMID: 26051400 DOI: 10.1016/j.neuropharm.2015.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/07/2015] [Accepted: 05/18/2015] [Indexed: 01/31/2023]
Abstract
The NMDA receptor is a major target of alcohol action in the CNS, and recent behavioral and cellular studies have pointed to the importance of the GluN2B subunit in alcohol action. We and others have previously characterized four amino acid positions in the third and fourth membrane-associated (M) domains of the NMDA receptor GluN2A subunit that influence both ion channel gating and alcohol sensitivity. In this study, we found that substitution mutations at two of the four corresponding positions in the GluN2B subunit, F637 and G826, influence ethanol sensitivity and ion channel gating. Because position 826 contains a glycine residue in the native protein, we focused our attention on GluN2B(F637). Substitution mutations at GluN2B(F637) significantly altered ethanol IC50 values, glutamate EC50 values for peak (Ip) and steady-state (Iss) current, and steady-state to peak current ratios (Iss:Ip). Changes in apparent glutamate affinity were not due to agonist trapping in desensitized states, as glutamate Iss EC50 values were not correlated with Iss:Ip values. Ethanol sensitivity was correlated with values of both Ip and Iss glutamate EC50, but not with Iss:Ip. Values of ethanol IC50, glutamate EC50, and Iss:Ip for mutants at GluN2B(F637) were highly correlated with the corresponding values for mutants at GluN2A(F636), consistent with similar functional roles of this position in both subunits. These results demonstrate that GluN2B(Phe637) regulates ethanol action and ion channel function of NMDA receptors. However, despite highly conserved M domain sequences, ethanol's actions on GluN2A and GluN2B subunits differ.
Collapse
|
4
|
Hughes BA, Smothers CT, Woodward JJ. Dephosphorylation of GluN2B C-terminal tyrosine residues does not contribute to acute ethanol inhibition of recombinant NMDA receptors. Alcohol 2013; 47:181-6. [PMID: 23357553 DOI: 10.1016/j.alcohol.2012.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/19/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
Abstract
N-methyl-d-aspartate (NMDA) receptors are ion channels activated by the neurotransmitter glutamate and are highly expressed by neurons. These receptors are critical for excitatory synaptic signaling and inhibition of NMDA receptors leads to impaired cognition and learning. Ethanol inhibits NMDA currents at concentrations associated with intoxication and this action may underlie some of the behavioral effects of ethanol. Although numerous sites and mechanisms of action have been tested, the manner in which ethanol inhibits NMDA receptors remains unclear. Recent findings in the literature suggest that ethanol, via facilitation of tyrosine phosphatase activity, may dephosphorylate key tyrosine residues in the C-terminus of GluN2B subunits resulting in diminished channel function. To directly test this hypothesis, we engineered GluN2B mutants that contained phenylalanine in place of tyrosine at three different sites and transiently expressed them with the GluN1 subunit in human embryonic kidney (HEK) cells. Whole-cell patch clamp electrophysiology was used to record glutamate-activated currents in the absence and presence of ethanol (10-600 mM). All mutants were functional and did not differ from one another with respect to current amplitude, steady-state to peak ratio, or magnesium block. Analysis of ethanol dose-response curves showed no significant difference in IC50 values between wild-type receptors and Y1252F, Y1336F, Y1472F or triple Y-F mutants. These findings suggest that dephosphorylation of C-terminal tyrosine residues does not account for ethanol inhibition of GluN2B receptors.
Collapse
|
5
|
Wills TA, Winder DG. Ethanol effects on N-methyl-D-aspartate receptors in the bed nucleus of the stria terminalis. Cold Spring Harb Perspect Med 2013; 3:a012161. [PMID: 23426579 DOI: 10.1101/cshperspect.a012161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The extended amygdala is a series of interconnected, embryologically similar series of nuclei in the brain that are thought to play key roles in aspects of alcohol dependence, specifically in stress-induced increases in alcohol-seeking behaviors. Plasticity of excitatory transmission in these and other brain regions is currently an intense area of scrutiny as a mechanism underlying aspects of addiction. N-methyl-D-aspartate (NMDA) receptors (NMDARs) play a critical role in plasticity at excitatory synapses and have been identified as major molecular targets of ethanol. Thus, this article will explore alcohol and NMDAR interactions first at a general level and then focusing within the extended amygdala, in particular on the bed nucleus of the stria terminalis (BNST).
Collapse
Affiliation(s)
- Tiffany A Wills
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | |
Collapse
|
6
|
Inhibition of N-methyl-D-aspartate-activated current by bis(7)-tacrine in HEK-293 cells expressing NR1/NR2A or NR1/NR2B receptors. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2012; 32:793-797. [PMID: 23271275 DOI: 10.1007/s11596-012-1036-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Indexed: 10/27/2022]
Abstract
In normal rat forebrain, the NR1/NR2A and NR1/NR2B dimmers are the main constitutional forms of NMDA receptors. The present study was carried out to determine the functional properties of the heteromeric NMDA receptor subunits and their inhibition by bis(7)-tacrine (B7T). Rat NR1, NR2A and NR2B cDNAs were transfected into human embryonic kidney 293 cells (HEK-293). The inhibition of NMDA-activated currents by B7T was detected in HEK-293 cell expressing NR1/NR2A or NR1/NR2B receptors by using whole-cell patch-clamp techniques. The results showed that in HEK-293 cells expressing NR1/NR2A receptor, 1 μmol/L B7T inhibited 30 μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 46% and 40%, respectively (P>0.05; n=5), suggesting that the inhibition of B7T on NR1/NR2A receptor doesn't depend on NMDA concentration, which is consistent with a non-competitive mechanism of inhibition. But for the NR1/NR2B receptor, 1 μmol/L B7T inhibited 30 μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 61% and 13%, respectively (P<0.05; n=6), showing that B7T appears to be competitive with NMDA. In addition, simultaneous application of 1 μmol/L B7T and 1000 μmol/L NMDA produced a moderate inhibition of peak NMDA-activated current, followed by a gradual decline of the current to a steady state. However, the gradual onset of inhibition produced by B7T applied simultaneously with NMDA was eliminated when B7T was given 5 s before NMDA. These results suggested that B7T inhibition of NMDA current mediated by NR1/NR2B receptor was slow onset, and it did not depend on the presence of the agonist. With holding potentials ranging from -50 to +50 mV, the B7T inhibition rate of NMDA currents didn't change significantly, and neither did the reversal potential. We are led to conclude that the NR1/NR2B recombinant receptor can serve as a very useful model for studying the molecular mechanism of NMDA receptor inhibition by B7T.
Collapse
|
7
|
Ren H, Zhao Y, Dwyer DS, Peoples RW. Interactions among positions in the third and fourth membrane-associated domains at the intersubunit interface of the N-methyl-D-aspartate receptor forming sites of alcohol action. J Biol Chem 2012; 287:27302-12. [PMID: 22715100 DOI: 10.1074/jbc.m111.338921] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-methyl-D-aspartate (NMDA) glutamate receptor is a major target of ethanol in the brain. Previous studies have identified positions in the third and fourth membrane-associated (M) domains of the NMDA receptor GluN1 and GluN2A subunits that influence alcohol sensitivity. The predicted structure of the NMDA receptor, based on that of the related GluA2 subunit, indicates a close apposition of the alcohol-sensitive positions in M3 and M4 between the two subunit types. We tested the hypothesis that these positions interact to regulate receptor kinetics and ethanol sensitivity by using dual substitution mutants. In single-substitution mutants, we found that a position in both subunits adjacent to one previously identified, GluN1(Gly-638) and GluN2A(Phe-636), can strongly regulate ethanol sensitivity. Significant interactions affecting ethanol inhibition and receptor deactivation were observed at four pairs of positions in GluN1/GluN2A: Gly-638/Met-823, Phe-639/Leu-824, Met-818/Phe-636, and Leu-819/Phe-637; the latter pair also interacted with respect to desensitization. Two interactions involved a position in M4 of both subunits, GluN1(Met-818) and GluN2A(Leu-824), that does not by itself alter ethanol sensitivity, whereas a previously identified ethanol-sensitive position, GluN2A(Ala-825), did not unequivocally interact with any other position tested. These results also indicate a shift by one position of the predicted alignment of the GluN1 M4 domain. These findings have allowed for the refinement of the NMDA receptor M domain structure, demonstrate that this region can influence apparent agonist affinity, and support the existence of four sites of alcohol action on the NMDA receptor, each consisting of five amino acids at the M3-M4 domain intersubunit interfaces.
Collapse
Affiliation(s)
- Hong Ren
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | | | | | |
Collapse
|
8
|
Keng NT, Lin HH, Lin HR, Hsieh WK, Lai CC. Dual regulation by ethanol of the inhibitory effects of ketamine on spinal NMDA-induced pressor responses in rats. J Biomed Sci 2012; 19:11. [PMID: 22300389 PMCID: PMC3296648 DOI: 10.1186/1423-0127-19-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/02/2012] [Indexed: 12/12/2022] Open
Abstract
Background Acute exposure of ethanol (alcohol) inhibits NMDA receptor function. Our previous study showed that acute ethanol inhibited the pressor responses induced by NMDA applied intrathecally; however, prolonged ethanol exposure may increase the levels of phosphorylated NMDA receptor subunits leading to changes in ethanol inhibitory potency on NMDA-induced responses. The present study was carried out to examine whether acute ethanol exposure influences the effects of ketamine, a noncompetitive NMDA receptor antagonist, on spinal NMDA-induced pressor responses. Methods The blood pressure responses induced by intrathecal injection of NMDA were recorded in urethane-anesthetized rats weighing 250-275 g. The levels of several phosphorylated residues on NMDA receptor GluN1 subunits were determined by western blot analysis. Results Intravenous injection of ethanol or ketamine inhibited spinal NMDA-induced pressor responses in a dose-dependent and reversible manner. Ketamine inhibition of NMDA-induced responses was synergistically potentiated by ethanol when ethanol was applied just before ketamine. However, ketamine inhibition was significantly reduced when applied at 10 min after ethanol administration. Western blot analysis showed that intravenous ethanol increased the levels of phosphoserine 897 on GluN1 subunits (pGluN1-serine 897), selectively phosphorylated by protein kinase A (PKA), in the lateral horn regions of spinal cord at 10 min after administration. Intrathecal administration of cAMPS-Sp, a PKA activator, at doses elevating the levels of pGluN1-serine 897, significantly blocked ketamine inhibition of spinal NMDA-induced responses. Conclusions The results suggest that ethanol may differentially regulate ketamine inhibition of spinal NMDA receptor function depending on ethanol exposure time and the resulting changes in the levels of pGluN1-serine 897.
Collapse
Affiliation(s)
- Nien-Tzu Keng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Ohnishi H, Murata Y, Okazawa H, Matozaki T. Src family kinases: modulators of neurotransmitter receptor function and behavior. Trends Neurosci 2011; 34:629-37. [PMID: 22051158 DOI: 10.1016/j.tins.2011.09.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/11/2011] [Accepted: 09/29/2011] [Indexed: 01/01/2023]
Abstract
Src family kinases (SFKs) are non-receptor-type protein tyrosine kinases that were originally identified as the products of proto-oncogenes and were subsequently implicated in the regulation of cell proliferation and differentiation in the developing mammalian brain. Recent studies using transgenic mouse models have demonstrated that SFKs that are highly expressed in the adult brain regulate neuronal plasticity and behavior through tyrosine phosphorylation of key substrates such as neurotransmitter receptors. Here, we provide an overview of these recent studies, as well as discussing how modulation of the endocytosis of neurotransmitter receptors by SFKs contributes, in part, to this regulation. Deregulation of SFK-dependent tyrosine phosphorylation of such substrates might underlie certain brain disorders.
Collapse
Affiliation(s)
- Hiroshi Ohnishi
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan.
| | | | | | | |
Collapse
|
10
|
Xu M, Smothers CT, Woodward JJ. Effects of ethanol on phosphorylation site mutants of recombinant N-methyl-D-aspartate receptors. Alcohol 2011; 45:373-80. [PMID: 21163614 DOI: 10.1016/j.alcohol.2010.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels activated by the neurotransmitter glutamate. These channels are highly expressed by brain neurons and are critically involved in excitatory synaptic transmission. Results from previous studies show that both native and recombinant NMDA receptors are inhibited by ethanol at concentrations associated with signs of behavioral impairment and intoxication. Given the important role that NMDA receptors play in synaptic transmission and brain function, it is important to understand the factors that regulate the ethanol inhibition of these receptors. One dynamic mechanism for regulating ethanol action may be via phosphorylation of NMDA subunits by serine-threonine and tyrosine kinases. Both NR1 and NR2 subunits contain multiple sites of phosphorylation; and in the NR1 subunit, most of these are contained within the C1 domain, a carboxy-terminal cassette that is subject to alternative splicing. Although results from our previous studies suggest that single phosphorylation sites do not greatly affect ethanol sensitivity of NMDA receptors, it is likely that in vivo, these subunits are phosphorylated at multiple sites by different kinases. In the present study, we constructed a series of NMDA receptor mutants at serine (S) or threonine (T) residues proposed to be sites of phosphorylation by protein kinase A and various isoforms of protein kinase C. Ethanol (100mM) inhibited currents from wild-type NR1/2A and NR1/2B receptors expressed in human embryonic kidney 293 cells by approximately 25 and 30%, respectively. This inhibition was not different in single-site mutants expressing alanine (A) or aspartate/glutamate (D/E) at positions T879, S896, or T900. The mutant NR1(S890D) showed greater ethanol inhibition than NR1(890A) containing receptors, although this was only observed when it was combined with the NR2A subunit. Ethanol inhibition was not altered by aspartate substitution at four serines (positions 889, 890, 896, and 897) or when T879D was added to the four serine-substituted mutant. Ethanol inhibition was increased when T900E was added to the five serine-/threonine-substituted mutants, but again this was selective for NR2A containing receptors. Together with previously published data, these findings suggest that modification of putative phosphorylation sites could contribute to the overall acute ethanol sensitivity of recombinant NMDA receptors. Supported by R37AA009986.
Collapse
|
11
|
Hicklin TR, Wu PH, Radcliffe RA, Freund RK, Goebel-Goody SM, Correa PR, Proctor WR, Lombroso PJ, Browning MD. Alcohol inhibition of the NMDA receptor function, long-term potentiation, and fear learning requires striatal-enriched protein tyrosine phosphatase. Proc Natl Acad Sci U S A 2011; 108:6650-5. [PMID: 21464302 PMCID: PMC3081035 DOI: 10.1073/pnas.1017856108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alcohol's deleterious effects on memory are well known. Acute alcohol-induced memory loss is thought to occur via inhibition of NMDA receptor (NMDAR)-dependent long-term potentiation in the hippocampus. We reported previously that ethanol inhibition of NMDAR function and long-term potentiation is correlated with a reduction in the phosphorylation of Tyr(1472) on the NR2B subunit and ethanol's inhibition of the NMDAR field excitatory postsynaptic potential was attenuated by a broad spectrum tyrosine phosphatase inhibitor. These data suggested that ethanol's inhibitory effect may involve protein tyrosine phosphatases. Here we demonstrate that the loss of striatal-enriched protein tyrosine phosphatase (STEP) renders NMDAR function, phosphorylation, and long-term potentiation, as well as fear conditioning, less sensitive to ethanol inhibition. Moreover, the ethanol inhibition was "rescued" when the active STEP protein was reintroduced into the cells. Taken together, our data suggest that STEP contributes to ethanol inhibition of NMDAR function via dephosphorylation of tyrosine sites on NR2B receptors and lend support to the hypothesis that STEP may be required for ethanol's amnesic effects.
Collapse
Affiliation(s)
| | - Peter H. Wu
- Department of Psychiatry
- Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, CO 80220; and
| | | | - Ronald K. Freund
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Susan M. Goebel-Goody
- Program in Neuroscience
- Child Study Center, Department of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Paulo R. Correa
- Child Study Center, Department of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT 06520
| | - William R. Proctor
- Department of Psychiatry
- Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, CO 80220; and
| | - Paul J. Lombroso
- Child Study Center, Department of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Michael D. Browning
- Program in Neuroscience
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
12
|
Abstract
There is no specialized alcohol addiction area in the brain; rather, alcohol acts on a wide range of excitatory and inhibitory nervous networks to modulate neurotransmitters actions by binding with and altering the function of specific proteins. With no hemato-encephalic barrier for alcohol, its actions are strongly related to the amount of intake. Heavy alcohol intake is associated with both structural and functional changes in the central nervous system with long-term neuronal adaptive changes contributing to the phenomena of tolerance and withdrawal. The effects of alcohol on the function of neuronal networks are heterogeneous. Because ethanol affects neural activity in some brain sites but is without effect in others, its actions are analyzed in terms of integrated connectivities in the functional circuitry of neuronal networks, which are of particular interest because of the cognitive interactions discussed in the manuscripts contributing to this review. Recent molecular data are reviewed as a support for the other contributions dealing with cognitive disturbances related to alcohol acute and addicted consumption.
Collapse
Affiliation(s)
- Claude Tomberg
- Brain Research Unit, Faculty of Medicine and CENOLI, Free University of Brussels, Belgium
| |
Collapse
|
13
|
Inhibition of rat recombinant GluN1/GluN2A and GluN1/GluN2B NMDA receptors by ethanol at concentrations based on the US/UK drink-drive limit. Eur J Pharmacol 2009; 614:14-21. [DOI: 10.1016/j.ejphar.2009.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 04/07/2009] [Accepted: 04/20/2009] [Indexed: 11/20/2022]
|
14
|
Xu M, Chandler LJ, Woodward JJ. Ethanol inhibition of recombinant NMDA receptors is not altered by coexpression of CaMKII-alpha or CaMKII-beta. Alcohol 2008; 42:425-32. [PMID: 18562151 DOI: 10.1016/j.alcohol.2008.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/25/2008] [Accepted: 04/24/2008] [Indexed: 11/15/2022]
Abstract
Previous studies have shown that the N-methyl-d-aspartate (NMDA) receptor is an important target for the actions of ethanol in the brain. N-methyl-d-aspartate receptors are glutamate-activated ion channels that are highly expressed in neurons. They are activated during periods of significant glutamatergic synaptic activity and are an important source of the signaling molecule calcium in the postsynaptic spine. Alterations in the function of NMDA receptors by drugs or disease are associated with deficits in motor, sensory and cognitive processes of the brain. Acutely, ethanol inhibits ion flow through NMDA receptors whereas sustained exposure to ethanol can induce compensatory changes in the density and localization of the receptor. Defining factors that govern the acute ethanol sensitivity of NMDA receptors is an important step in understanding how an individual responds to ethanol. In the present study, we investigated the effect of calcium-calmodulin dependent protein kinase II (CaMKII) on the ethanol sensitivity of recombinant NMDA receptors. Calcium-calmodulin dependent protein kinase II is a major constituent of the postsynaptic density and is critically involved in various forms of learning and memory. NMDA receptor subunits were transiently expressed in human embryonic kidney 293 cells along with CaMKII-alpha or CaMKII-beta tagged with the green fluorescent protein. Whole cell currents were elicited by brief exposures to glutamate and were measured using patch-clamp electrophysiology. Neither CaMKII-alpha or CaMKII-beta had any significant effect on the ethanol inhibition of NR1/2A or NR1/2B receptors. Ethanol inhibition was also unaltered by deletion of CaMKII binding domains in NR1 or NR2 subunits or by phospho-site mutants that mimic or occlude CaMKII phosphorylation. Chronic treatment of cortical neurons with ethanol had no significant effect on the expression of CaMKII-alpha or CaMKII-beta. The results of this study suggest that CaMKII is not involved in regulating the acute ethanol sensitivity of NMDA receptors.
Collapse
Affiliation(s)
- Minfu Xu
- Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
15
|
Nagy J. Alcohol related changes in regulation of NMDA receptor functions. Curr Neuropharmacol 2008; 6:39-54. [PMID: 19305787 PMCID: PMC2645546 DOI: 10.2174/157015908783769662] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/19/2007] [Accepted: 10/20/2007] [Indexed: 12/25/2022] Open
Abstract
Long-term alcohol exposure may lead to development of alcohol dependence in consequence of altered neurotransmitter functions. Accumulating evidence suggests that the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of ethanol's action. Several studies showed that ethanol potently inhibits NMDA receptors (NMDARs) and prolonged ethanol exposition leads to a compensatory "up-regulation" of NMDAR mediated functions. Therefore, alterations in NMDAR function are supposed to contribute to the development of ethanol tolerance, dependence as well as to the acute and late signs of ethanol withdrawal.A number of publications report alterations in the expression and phosphorylation states of NMDAR subunits, in their interaction with scaffolding proteins or other receptors in consequence of chronic ethanol treatment. Our knowledge on the regulatory processes, which modulate NMDAR functions including factors altering transcription, protein expression and post-translational modifications of NMDAR subunits, as well as those influencing their interactions with different regulatory proteins or other downstream signaling elements are incessantly increasing. The aim of this review is to summarize the complex chain of events supposedly playing a role in the up-regulation of NMDAR functions in consequence of chronic ethanol exposure.
Collapse
Affiliation(s)
- József Nagy
- Gedeon Richter Plc., Pharmacological and Drug Safety Research, Laboratory for Molecular Cell Biology, Budapest 10. P.O. Box 27, H-1475 Hungary.
| |
Collapse
|
16
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 368] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
17
|
Takata T, Hood AY, Yu SP. Voltage-dependent and Src-mediated regulation of NMDA receptor single channel outward currents in cortical neurons. Cell Biochem Biophys 2007; 47:257-70. [PMID: 17652774 DOI: 10.1007/s12013-007-0009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
A voltage-dependent but Ca2+-independent regulation of N-methyl-D-aspartate (NMDA) receptor outward activity was studied at the single channel level using outside-out patches of cultured mouse cortical neurons. Unlike the inward activity associated with Ca2+ and Na+ influx, the NMDA receptor outward K+ conductance was unaffected by changes in Ca2+ concentration. Following a depolarizing pre-pulse, the single channel open probability (NP o), amplitude, and open duration of the NMDA inward current decreased, whereas the same pre-depolarization increased those parameters of the NMDA outward current (pre-pulse facilitation). The outward NP o was increased by the pre-pulse facilitation, disregarding Ca2+ changes. The voltage-current relationships of the inward and outward currents were shifted by the pre-depolarization toward opposite directions. The Src family kinase inhibitor, PP1, and the Src kinase antibody, but not the anti-Fyn antibody, blocked the pre-pulse facilitation of the NMDA outward activity. On the other hand, a hyperpolarizing pre-pulse showed no effect on NMDA inward currents but inhibited outward currents (pre-pulse depression). Application of Src kinase, but not Fyn kinase, prevented the pre-pulse depression. We additionally showed that a depolarization pre-pulse potentiated miniature excitatory synaptic currents (mEPSCs). The effect was blocked by application of the NMDA receptor antagonist AP-5 during depolarization. These data suggest a voltage-sensitive regulation of NMDA receptor channels mediated by Src kinase. The selective changes in the NMDA receptor-mediated K+ efflux may represent a physiological and pathophysiological plasticity at the receptor level in response to dynamic changes in the membrane potential of central neurons.
Collapse
Affiliation(s)
- Toshihiro Takata
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street, Charleston, SC 29425, USA
| | | | | |
Collapse
|
18
|
Xu M, Woodward JJ. Ethanol inhibition of NMDA receptors under conditions of altered protein kinase A activity. J Neurochem 2006; 96:1760-7. [PMID: 16539691 DOI: 10.1111/j.1471-4159.2006.03703.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-activated ligand-gated ion channels that participate in diverse forms of synaptic plasticity as well as glutamate-dependent excitotoxicity. Inhibition of the NMDA receptor function may underlie some of the behavioral actions associated with acute exposure to ethanol. The sensitivity of NMDA receptors to ethanol is influenced by the subunit composition of the receptor and, by association, with certain cytoskeletal proteins. Previous studies have also suggested that phosphorylation may regulate the sensitivity of NMDA receptors to ethanol. In this study, the ethanol inhibition of recombinant NMDA receptor currents was determined under conditions designed to enhance or inhibit the activity of protein kinase A (PKA). Human embryonic kidney 293 (HEK293) cells were transfected with cDNAs encoding NMDA subunits and channel activity was monitored with whole-cell patch-clamp electrophysiology. Under control recording conditions, ethanol (100 mM) inhibited NR1/2A and NR1/2B receptor currents by approximately 25-30%. The degree of ethanol inhibition was not affected or was slightly enhanced under conditions designed to enhance PKA activity. This included treatment of cells with cAMP analogs, inclusion of phosphatase inhibitors or purified PKA in the pipette filling solution, co-expression of catalytically active PKA, expression of the NR1 PKA-site phosphorylation site mimic (S897D) or by co-expression of the PKA scaffolding protein yotiao or the dopamine D(1) receptor. Ethanol inhibition of NR1/2A and NR1/2B receptors was not altered when PKA effects were suppressed, either by co-expression of a PKI inhibitory peptide or the phosphorylation-deficient NR1 mutants (S897A, S896A, S896A/S897A). In addition, ethanol inhibition of NMDA-induced currents in cultured cortical or hippocampal neurons was not affected by modulators of PKA. These results suggest that PKA does not appear to play a major role in determining the acute ethanol sensitivity of NMDA receptors.
Collapse
Affiliation(s)
- Minfu Xu
- Department of Neuroscience and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
19
|
Kostic A, Sheetz MP. Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. Mol Biol Cell 2006; 17:2684-95. [PMID: 16597701 PMCID: PMC1474803 DOI: 10.1091/mbc.e05-12-1161] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell motility on extracellular matrices critically depends on matrix rigidity, which affects cell adhesion and formation of focal contacts. Receptor-like protein tyrosine phosphatase alpha (RPTPalpha) and the alphavbeta3 integrin form a rigidity-responsive complex at the leading edge. Here we show that the rigidity response through increased spreading and growth correlates with leading edge recruitment of Fyn, but not endogenous c-Src. Recruitment of Fyn requires the palmitoylation site near the N-terminus and addition of that site to c-Src enables it to support a rigidity response. In all cases, the rigidity response correlates with the recruitment of the Src family kinase to early adhesions. The stretch-activated substrate of Fyn and c-Src, p130Cas, is also required for a rigidity response and it is phosphorylated at the leading edge in a Fyn-dependent process. A possible mechanism for the fibronectin rigidity response involves force-dependent Fyn phosphorylation of p130Cas with rigidity-dependent displacement. With the greater displacement of Fyn from p130Cas on softer surfaces, there will be less phosphorylation. These studies emphasize the importance of force and nanometer-level movements in cell growth and function.
Collapse
Affiliation(s)
- Ana Kostic
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Michael P. Sheetz
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
20
|
Haddad JJ. N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention? Prog Neurobiol 2006; 77:252-82. [PMID: 16343729 DOI: 10.1016/j.pneurobio.2005.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/10/2004] [Accepted: 10/27/2005] [Indexed: 12/30/2022]
Abstract
Excitatory synaptic transmission in the central nervous system (CNS) is mediated by the release of glutamate from presynaptic terminals onto postsynaptic channels gated by N-methyl-D-aspartate (NMDA) and non-NMDA (AMPA and KA) receptors. Extracellular signals control diverse neuronal functions and are responsible for mediating activity-dependent changes in synaptic strength and neuronal survival. Influx of extracellular calcium ([Ca(2+)](e)) through the NMDA receptor (NMDAR) is required for neuronal activity to change the strength of many synapses. At the molecular level, the NMDAR interacts with signaling modules, which, like the mitogen-activated protein kinase (MAPK) superfamily, transduce excitatory signals across neurons. Recent burgeoning evidence points to the fact that MAPKs play a crucial role in regulating the neurochemistry of NMDARs, their physiologic and biochemical/biophysical properties, and their potential role in pathophysiology. It is the purpose of this review to discuss: (i) the MAPKs and their role in a plethora of cellular functions; (ii) the role of MAPKs in regulating the biochemistry and physiology of NMDA receptors; (iii) the kinetics of MAPK-NMDA interactions and their biologic and neurochemical properties; (iv) how cellular signaling pathways, related cofactors and intracellular conditions affect NMDA-MAPK interactions and (v) the role of NMDA-MAPK pathways in pathophysiology and the evolution of disease conditions. Given the versatility of the NMDA-MAPK interactions, the NMDA-MAPK axis will likely form a neurochemical target for therapeutic interventions.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Lebanon.
| |
Collapse
|
21
|
Maler JM, Esselmann H, Wiltfang J, Kunz N, Lewczuk P, Reulbach U, Bleich S, Rüther E, Kornhuber J. Memantine inhibits ethanol-induced NMDA receptor up-regulation in rat hippocampal neurons. Brain Res 2005; 1052:156-62. [PMID: 16009352 DOI: 10.1016/j.brainres.2005.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 05/26/2005] [Accepted: 06/05/2005] [Indexed: 10/25/2022]
Abstract
The present study examined the effect of memantine, an uncompetitive NMDA receptor antagonist, on ethanol-induced NMDA receptor up-regulation. Primary glutamatergic rat hippocampal neurons were exposed to ethanol and memantine for 5 days. The ethanol-sensitive NMDA receptor subunits NR1, NR2A and NR2B were quantified by Western immunoblot analysis. Exposure to ethanol (50 mM) caused an increase in the levels of NR1 (137 +/- 11% of untreated control, P = 0.009), NR2A (128 +/- 14%, P = 0.022) and NR2B (136 +/- 19%, P = 0.012). Coincubation with memantine (10 microM) completely blocked the ethanol-induced up-regulation of NR1 (102 +/- 4%), NR2A (95 +/- 7%) and NR2B (105 +/- 13%). No effect of memantine on NR subunit expression was observable, except for NR2A, where a decrease (79 +/- 6%, P = 0.034) was noted. Neither ethanol nor memantine alone or in combination were toxic in the concentrations tested. These results may provide a molecular explanation for beneficial effects of memantine on ethanol-induced glutamatergic hyperexcitability reflected in the ethanol withdrawal syndrome and on the development of ethanol dependence.
Collapse
Affiliation(s)
- Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Boehm SL, Peden L, Jennings AW, Kojima N, Harris RA, Blednov YA. Over-expression of the fyn-kinase gene reduces hypnotic sensitivity to ethanol in mice. Neurosci Lett 2004; 372:6-11. [PMID: 15531078 DOI: 10.1016/j.neulet.2004.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 08/13/2004] [Accepted: 08/13/2004] [Indexed: 11/22/2022]
Abstract
Our previous work indicated a role for fyn-kinase in mediating several ethanol- and GABA(A) agonist-mediated behaviors. In the present work we investigate behavioral sensitivity to ethanol and several GABA(A) compounds in mice that over-express fyn-kinase in forebrain to further characterize the role of this non-receptor tyrosine kinase in the mediation of ethanol sensitivity. Transgenic mice over-expressing fyn-kinase were tested for sensitivity to ethanol-induced loss of righting reflex and ethanol preference drinking using a two-bottle choice drinking paradigm. Loss of righting reflex induced by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; GABA(A) agonist) and etomidate (GABA(A) positive allosteric modulator) were also assessed. Fyn over-expressing mice exhibited shorter durations of ethanol-induced loss of righting reflex in the absence of differences in the rate of blood ethanol clearance, and exhibited reduced ethanol preference drinking. The genotypes did not differ in initial sensitivity to ethanol-induced loss of righting reflex suggesting development of greater acute tolerance to this ethanol action. Fyn over-expressing and wild-type mice also did not differ in sensitivity to loss of righting reflex induced by THIP and etomidate. The present results suggest regional specificity for fyn-kinase in the modulation of ethanol and GABAergic behavioral sensitivity. Fyn-kinase over-expression in forebrain structures modulates ethanol's hypnotic actions, as well as ethanol preference and consumption. Moreover, fyn over-expression in forebrain does not alter hypnotic sensitivity to THIP or etomidate, supporting data from fyn null mutant mice suggesting that cerebellar structures mediate the hypnotic actions of these GABAergic compounds.
Collapse
Affiliation(s)
- Stephen L Boehm
- Waggoner Center for Alcohol and Addiction Research, University of Texas, 2500 Speedway, MBB 1.124, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Woodward JJ. Fyn kinase does not reduce ethanol inhibition of zinc-insensitive NR2A-containing N-methyl-D-aspartate receptors. Alcohol 2004; 34:101-5. [PMID: 15902902 DOI: 10.1016/j.alcohol.2004.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are ion channels activated by the neurotransmitter glutamate and are important mediators of neuronal signal transduction. Ethanol inhibits ion flux through NMDA receptors at concentrations that are associated with behavioral signs of intoxication. The overall sensitivity of NMDA receptors to ethanol is influenced by factors, including subunit composition and interactions with cytoskeletal elements. Results of studies also support the suggestion that the ethanol inhibition on NR1/2A receptors is reduced by Fyn kinase-mediated tyrosine phosphorylation. However, tyrosine kinases also reduce the high-affinity zinc sensitivity of NR1/2A receptors, supporting the suggestion that kinase-dependent effects on ethanol inhibition may be secondary to relief of zinc inhibition. In the current study, the effect of Fyn kinase on the ethanol inhibition of NR1/2A receptors was determined under conditions in which zinc sensitivity is eliminated. Human embryonic kidney 293 (HEK 293) cells were transiently transfected with wild-type or mutant NMDA subunits, and glutamate-activated currents were measured by using patch-clamp electrophysiology. Inclusion of the tyrosine phosphatase inhibitor potassium bisperoxo(1,10-phenanthroline)oxovanadate (V) [bpV(phen)] in the recording pipette eliminated the potentiation of NR1/2A currents by heavy metal chelators. Under these conditions, Fyn kinase did not reduce ethanol inhibition of wild-type receptors. Fyn kinase also had no effect on the magnitude of ethanol inhibition of zinc-insensitive NR1/2A(H128S) receptors. Together, results of the current study indicate that Fyn kinase does not directly affect the ethanol sensitivity of NR1/2A receptors.
Collapse
Affiliation(s)
- John J Woodward
- Department of Physiology and Neuroscience and Center for Drug and Alcohol Programs, 173 Ashley Avenue, Suite 403, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
24
|
Morrow AL, Ferrani-Kile K, Davis MI, Shumilla JA, Kumar S, Maldve R, Pandey SC. Ethanol effects on cell signaling mechanisms. Alcohol Clin Exp Res 2004; 28:217-27. [PMID: 15112929 DOI: 10.1097/01.alc.0000113439.97498.ac] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry, Center For Alcohol Studies, University of Chapel Hill at North Carolina, Chapel Hill, North Carolina 27599-7178, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Watanabe T, Ohnuma T, Shibata N, Ohtsuka M, Ueki A, Nagao M, Arai H. No genetic association between Fyn kinase gene polymorphisms (−93A/G, IVS10+37T/C and Ex12+894T/G) and Japanese sporadic Alzheimer's disease. Neurosci Lett 2004; 360:109-11. [PMID: 15082191 DOI: 10.1016/j.neulet.2004.02.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 02/12/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
Several groups have reported that abnormal phosphorylation of tau by Fyn, a protein-tyrosine kinase, may play a role in the neuropathogenesis of Alzheimer's disease (AD). In the present study, three common Japanese polymorphisms of the Fyn gene (-93A/G in the 5'-flanking region, IVS10+37T/C in intron 10 and Ex12+894T/G in the 3'-untranslated region) were studied in 127 healthy controls and 182 sporadic AD cases using a polymerase chain reaction restriction fragment length polymorphism method. A comparison of the allelic and genotypic frequencies of these polymorphisms between controls and sporadic AD cases failed to show any significant difference. These results suggest that the Fyn polymorphisms (-93A/G, IVS10+37T/C and Ex12+894T/G) investigated here have no genetic association with sporadic AD.
Collapse
Affiliation(s)
- Tomoko Watanabe
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 343-0032, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Nixon K, Hughes PD, Amsel A, Leslie SW. NMDA receptor subunit expression after combined prenatal and postnatal exposure to ethanol. Alcohol Clin Exp Res 2004; 28:105-12. [PMID: 14745308 DOI: 10.1097/01.alc.0000106311.88523.7b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The N-methyl-D-aspartate receptor (NMDAR), a subtype of glutamate receptor, is essential for normal neurodevelopment. The brain growth spurt, which is both prenatal and postnatal in the rat, is a time when the brain is especially sensitive to the effects of a teratogen, such as alcohol. Changes in NMDAR function after early perinatal exposure to ethanol (EtOH) may be related to alterations in the expression of secondary subunits. Thus, we investigated the expression of the NR1, NR2A, and NR2B subunits after combined prenatal and postnatal exposure to EtOH. METHODS A binge model was used to administer EtOH (5 g/kg) or isocaloric vehicle to pregnant female rats followed by EtOH (6.2 g/kg) or isocaloric control diet from postnatal days 4 through 9 via an artificial rearing method. Proteins from crude membrane homogenates isolated from cortex and hippocampus at postnatal day 10, 14, or 21 were separated in a standard Western blot procedure. RESULTS The expression of the NR2A subunit of EtOH-exposed pups showed a significant increase at postnatal day 10 in hippocampus compared with diet controls. No significant changes were seen for any other subunit in either region. CONCLUSIONS The up-regulation of NR2A during EtOH withdrawal is consistent with compensatory changes to prolonged inhibition of the NMDAR. These results indicate that postnatal exposure to ethanol produces distinct effects on the NMDAR, which may underlie deficits associated with alcohol-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Kimberly Nixon
- Department of Psychology, Waggoner Center for Alcohol and Addiciton Research, University of Texas, Austin, Texas, USA.
| | | | | | | |
Collapse
|
27
|
Lin HH, Hsieh WK, Shiu JY, Chiu TH, Lai CC. Inhibition by ethanol of NMDA-induced responses and acute tolerance to the inhibition in rat sympathetic preganglionic neurons in vitro and in vivo. Br J Pharmacol 2003; 140:955-63. [PMID: 14517180 PMCID: PMC1574102 DOI: 10.1038/sj.bjp.0705512] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
N-methyl-d-aspartate (NMDA) receptors have been demonstrated to be a pivotal target for ethanol action. The present study examined the actions of acute ethanol exposure on NMDA-induced responses and the acute tolerance to ethanol actions in rat sympathetic preganglionic neurons (SPNs) in vitro and in vivo. NMDA (50 microM) applied every 5 min induced reproducible membrane depolarizations of SPNs in neonatal spinal cord slice preparations. Ethanol (50 - 100 mM) applied by superfusion for 15 min caused a sustained decrease in NMDA-induced depolarizations in a dose-dependent and reversible manner. When the superfusion time of ethanol (100 mm) was increased to 50 min, NMDA-induced depolarizations were attenuated initially but a gradual recovery was seen in approximately 40% of SPNs tested. Repeated injections of NMDA (2 nM) intrathecally at 30 min interval caused reproducible increases in mean arterial pressure (MAP) in urethane-anesthetized rats. Intravenous injections of ethanol (0.16 or 0.32 g, 1 ml) inhibited NMDA-induced pressor effects in a blood concentration-dependent manner. The inhibition by ethanol of NMDA-induced pressor effects was reduced over time during continuous infusion of ethanol or on the second injection 3.5 h after prior injection of a higher dose of ethanol. Ethanol, at concentrations significantly inhibited NMDA-induced responses, had no significant effects on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced responses. The study demonstrated the selective inhibition by ethanol of NMDA-induced responses and the development of acute tolerance to the inhibitory effects in SPNs both in vitro and in vivo. These effects may play important roles in the ethanol regulation of cardiovascular function.
Collapse
Affiliation(s)
- Hsun Hsun Lin
- Department of Nursing, Tzu Chi College of Technology, Hualien 970, Taiwan
| | - Wei-Kung Hsieh
- Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan
| | - Jing-Yi Shiu
- Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan
| | - Ted H Chiu
- Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan
- Department of Pharmacology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 970, Taiwan
| | - Chih-Chia Lai
- Department of Pharmacology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 970, Taiwan
- Author for correspondence:
| |
Collapse
|
28
|
Chandler LJ. Ethanol and brain plasticity: receptors and molecular networks of the postsynaptic density as targets of ethanol. Pharmacol Ther 2003; 99:311-26. [PMID: 12951163 DOI: 10.1016/s0163-7258(03)00096-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain plasticity refers to the ability of the brain to undergo structural and functional changes. It is a necessary process that allows us to adapt and learn from our environment and is fundamental to our survival. However, under certain conditions, these neuroadaptive responses can have adverse consequences. In particular, increasing evidence indicates that plastic processes are coopted by drugs of abuse, leading to addiction and associated drug-seeking behaviors. An extensive and diverse group of studies ranging from the molecular to the behavioral level has also strongly implicated glutamatergic neurotransmission as a critical mediator of experience-dependent synaptic plasticity. Thus, it is vital to understand how drugs of abuse interact and potentially alter glutamatergic neurotransmission and associated signal transduction processes. This review will focus on the cellular and molecular neuroscience of alcoholism, with emphasis on events at the glutamatergic postsynaptic density (PSD) and dendritic spine dynamics that appear to underlie much of the structural and functional plasticity of the CNS.
Collapse
Affiliation(s)
- L Judson Chandler
- Department of Physiology, Medical University of South Carolina, 67 President Street, Charleston, SC 29425-2508, USA.
| |
Collapse
|
29
|
Ferrani-Kile K, Randall PK, Leslie SW. Acute ethanol affects phosphorylation state of the NMDA receptor complex: implication of tyrosine phosphatases and protein kinase A. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 115:78-86. [PMID: 12824058 DOI: 10.1016/s0169-328x(03)00186-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorylation has been shown to regulate N-methyl-D-aspartic acid receptor (NMDAR) function. The inhibitory effect of ethanol on NMDAR function could be due, at least in part, to a change in NMDAR phosphorylation states. In order to investigate the effect of ethanol on phosphorylation of NR1 and NR2 subunits, NMDAR complexes were immunoprecipitated from cortical slices pre-exposed to ethanol. Acute ethanol, 100 and 200 mM, significantly decreased the tyrosine phosphorylation of NR2 subunits (Tyr-NR2). Treatment with a tyrosine phosphatase inhibitor reduced the inhibition of Tyr-NR2 phosphorylation caused by 100 mM ethanol. This suggests an involvement of tyrosine phosphatases in ethanol-induced inhibition of Tyr-NR2 phosphorylation. Slices pre-exposed to 100 and 200 mM ethanol exhibited a significant increase in the phosphorylation of NR1 by PKA at serine 897 (Ser897-NR1), which was blocked by a PKA inhibitor. Moreover, at 200 mM, ethanol produced a significant increase in PKA activity. Together, these results indicate that ethanol may increase Ser897-NR1 phosphorylation by activating PKA. However, ethanol did not affect phosphorylation of NR1 subunits by PKC at serine 896. We conclude that ethanol has the ability to modulate phosphorylation of both NR2 and NR1 subunits and these effects appear to implicate tyrosine phosphatases and PKA, respectively.
Collapse
Affiliation(s)
- K Ferrani-Kile
- Division of Pharmacology and Toxicology, College of Pharmacy and the Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1 University Station, A1915, Austin, TX 78712, USA.
| | | | | |
Collapse
|
30
|
Krystal JH, Petrakis IL, Mason G, Trevisan L, D'Souza DC. N-methyl-D-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability. Pharmacol Ther 2003; 99:79-94. [PMID: 12804700 DOI: 10.1016/s0163-7258(03)00054-8] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review takes a translational neuroscience perspective on the role of glutamate systems in human ethanol abuse and dependence. Ethanol is a simple molecule with profound effects on many chemical systems in the brain. Glutamate is the primary excitatory neurotransmitter in the brain. Glutamatergic systems are targets for the actions of ethanol via its antagonism of the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor and other mechanisms. The modulation of glutamatergic function by ethanol contributes to both euphoric and dysphoric consequences of ethanol intoxication. Adaptations within glutamatergic systems appear to contribute to ethanol tolerance and dependence and to both acute and protracted features of ethanol withdrawal. Perhaps because of the important glutamatergic mediation of the behavioral effects of ethanol, glutamatergic systems appear to contribute to the vulnerability to alcoholism, and novel glutamatergic agents may play a role in the treatment of ethanol abuse and dependence.
Collapse
Affiliation(s)
- John H Krystal
- NIAAA Center for the Translational Neuroscience of Alcoholism, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | | | |
Collapse
|
31
|
Alvestad RM, Grosshans DR, Coultrap SJ, Nakazawa T, Yamamoto T, Browning MD. Tyrosine dephosphorylation and ethanol inhibition of N-Methyl-D-aspartate receptor function. J Biol Chem 2003; 278:11020-5. [PMID: 12536146 DOI: 10.1074/jbc.m210167200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitory effect of ethanol on N-methyl-d-aspartate receptors (NMDARs) is well documented in several brain regions. However, the molecular mechanisms by which ethanol affects NMDARs are not well understood. In contrast to the inhibitory effect of ethanol, phosphorylation of the NMDAR potentiates channel currents (Lu, W. Y., Xiong, Z. G., Lei, S., Orser, B. A., Dudek, E., Browning, M. D., and MacDonald, J. F. (1999) Nat. Neurosci. 2, 331-338). We have previously shown that protein kinase C activators induce tyrosine phosphorylation and potentiation of the NMDAR (Grosshans, D. R., Clayton, D. R., Coultrap, S. J., and Browning, M. D. (2002) Nat. Neurosci. 5, 27-33). We therefore hypothesized that the ethanol inhibition of NMDARs might be due to changes in tyrosine phosphorylation of NMDAR subunits. In support of this hypothesis, we found that tyrosine phosphorylation of both NR2A and NR2B subunits was significantly reduced following in situ exposure of hippocampal slices to 100 mm ethanol. Specifically, phosphorylation of tyrosine 1472 on NR2B was reduced 23.5%. These data suggest a possible mechanism by which ethanol may inhibit the NMDAR via activation of a tyrosine phosphatase. Electrophysiological studies demonstrated that ethanol inhibited NMDAR field excitatory postsynaptic potential slope and amplitude to a similar degree as previously reported by our laboratory and others (Schummers, J., Bentz, S., and Browning, M. D. (1997) Alcohol Clin. Exp. Res. 21, 404-408). Inclusion of bpV(phen), a potent phosphotyrosine phosphatase inhibitor, in the recording chamber prior to and during ethanol exposure significantly reduced the inhibitory effect of ethanol on NMDAR field excitatory postsynaptic potentials. Taken together, these data suggest that phosphatase-mediated dephosphorylation of NMDAR subunits may play an important role in mediating the inhibitory effects of ethanol on the N-methyl-D-aspartate receptor.
Collapse
Affiliation(s)
- Rachel M Alvestad
- Department of Pharmacology and Program in Neuroscience, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
32
|
Loftis JM, Janowsky A. The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther 2003; 97:55-85. [PMID: 12493535 DOI: 10.1016/s0163-7258(02)00302-9] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is an example of a heteromeric ligand-gated ion channel that interacts with multiple intracellular proteins by way of different subunits. NMDA receptors are composed of seven known subunits (NR1, NR2A-D, NR3A-B). The present review focuses on the NR2B subunit of the receptor. Over the last several years, an increasing number of reports have demonstrated the importance of the NR2B subunit in a variety of synaptic signaling events and protein-protein interactions. The NR2B subunit has been implicated in modulating functions such as learning, memory processing, pain perception, and feeding behaviors, as well as being involved in a number of human disorders. The following review provides a summary of recent findings regarding the structural features, localization, functional properties, and regulation of the NR2B subunit. The review concludes with a section discussing the role of NR2B in human diseases.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research Service, Department of Veterans Affairs Medical Center, Mental Health (P3MHDC), 3710 SW U.S. Veterans Hospital Road, Portland, OR 97201, USA.
| | | |
Collapse
|
33
|
Affiliation(s)
- Paula L Hoffman
- Department of Pharmacology C-236, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA
| |
Collapse
|
34
|
Wilkemeyer MF, Menkari CE, Charness ME. Novel antagonists of alcohol inhibition of l1-mediated cell adhesion: multiple mechanisms of action. Mol Pharmacol 2002; 62:1053-60. [PMID: 12391267 DOI: 10.1124/mol.62.5.1053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
1-Octanol antagonizes ethanol inhibition of L1-mediated cell adhesion and prevents ethanol teratogenesis in mouse whole embryo culture. Herein, we identify a new series of alcohol antagonists and study their mechanism of action. Cell aggregation assays were carried out in ethanol-sensitive, human L1-transfected NIH/3T3 cells in the absence and presence of 100 mM ethanol or 2 mM 1-butanol and candidate antagonists. Antagonist potency for 1-alcohols increased progressively over 5 log orders from 1-pentanol (C5) to 1-dodecanol (C12). Antagonist potency declined from 1-dodecanol (C12) to 1-tridecanol (C13), and 1-tetradecanol (C14) and 1-pentadecanol (C15) were inactive. The presence and position of a double bond in the 1-butanol molecule determined whether a compound was a full agonist (1-butanol), a mixed agonist-antagonist (2-buten-1-ol), or an antagonist (3-buten-1-ol). Increasing the concentration of agonist (1-butanol or ethanol) overcame the antagonism of 3-buten-1-ol, benzyl alcohol, cyclopentanol, and 3-pentanol, but not that of 4-methyl-1-pentanol, 2-methyl-2-pentanol, 1-pentanol, 2-pentanol, 1-octanol, and 2,6-di-isopropylphenol (propofol), suggesting that the mechanisms of antagonism may differ between these groups of compounds. These findings suggest that selective straight, branched, and cyclic alcohols may act at multiple, discrete sites to antagonize the actions of ethanol and 1-butanol on L1-mediated cell-cell adhesion.
Collapse
|
35
|
Gordey M, Mekmanee L, Mody I. Altered effects of ethanol in NR2A(DeltaC/DeltaC) mice expressing C-terminally truncated NR2A subunit of NMDA receptor. Neuroscience 2002; 105:987-97. [PMID: 11530236 DOI: 10.1016/s0306-4522(01)00234-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorylation of C-termini of receptor subunits is thought to play a significant role in modulation of N-methyl-D-aspartic acid (NMDA) receptor function. To investigate whether the C-terminus of the NR2A subunit is involved in determining the sensitivity of NMDA receptors to ethanol we compared the effects of ethanol in vitro on NMDA-mediated field excitatory postsynaptic potentials (fEPSPs) in the CA1 and dentate gyrus (DG) of adult male NR2A(DeltaC/DeltaC) mice lacking the C-terminus of NR2A subunit and in their parental strain C57Bl/6. We also tested the in vivo effects of a hypnotic dose of ethanol in C57Bl/6 and NR2A(DeltaC/DeltaC) mice and their F2 offspring. Ifenprodil (10 microM) was used to distinguish between the NR2A and NR2B components of NMDA fEPSPs. Ethanol (100 mM) in the presence of ifenprodil inhibited the CA1 NR2A-mediated component of NMDA fEPSPs two times more in NR2A(DeltaC/DeltaC) than in C57Bl/6. Ethanol inhibition of the CA1 NR2B-mediated component was five to seven times lower in NR2A(DeltaC/DeltaC) than in C57Bl/6. In the DG ethanol had similar effects in the two strains. In vivo administration of ethanol (4 g/kg) induced sedation of similar duration in both strains of mice. A second administration of ethanol 7 days after the initial injection revealed an increased ethanol sensitivity of NR2A(DeltaC/DeltaC) and F2(DeltaC/DeltaC) mice including a shortened time to loss of righting reflex and an increased sleep time. The sensitization of NR2A(DeltaC/DeltaC) mice to alcohol was not accompanied by an altered ethanol sensitivity of NMDA fEPSPs recorded in vitro. Our data are consistent with the inhibitory action of ethanol on NMDA receptors being mediated by a site other than the intracellular C-terminus of the NR2A subunit. The altered sensitivities to ethanol of both NR2A- and NR2B-mediated responses in the CA1 of NR2A(DeltaC/DeltaC) imply that NR2A- and NR2B subunit-containing NMDA receptors may be linked by a common target of ethanol.
Collapse
Affiliation(s)
- M Gordey
- Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
36
|
Ronald KM, Mirshahi T, Woodward JJ. Ethanol inhibition of N-methyl-D-aspartate receptors is reduced by site-directed mutagenesis of a transmembrane domain phenylalanine residue. J Biol Chem 2001; 276:44729-35. [PMID: 11572853 DOI: 10.1074/jbc.m102800200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptors (NRs) are ionotropic receptors activated by glutamate and the co-agonist glycine. Ethanol inhibits NMDA receptor function, although its site of action is undefined. We hypothesized that ethanol acts at specific amino acids contained within the transmembrane (TM) domains of the receptor. In this study, NR1 and NR2A subunits were altered by mutagenesis and tested for sensitivity to ethanol. Three NR1 mutants (W636A, F817A, and L819A) and one NR2A mutant (F637A) failed to generate functional receptors. Pre-TM1 (I546A, L551A, F554A, and F558A), TM1 (W563A), and TM2 (W611A) NR1 mutations did not affect ethanol sensitivity of heteromeric receptors. In contrast, altering a TM3 phenylalanine to alanine (F639A) reduced the ethanol inhibition of NMDA receptors expressed in oocytes and human embryonic kidney 293 cells. Mutation of the nearby methionine (M641) to alanine did not affect ethanol sensitivity, whereas changing Phe(639) to tryptophan slightly enhanced ethanol inhibition. NR1(F639A) did not alter the agonist potency of glutamate but did produce a leftward shift in the glycine concentration response for receptors containing NR2A and NR2B subunits. NR1(F639A) also reduced the potency of the competitive glycine antagonist 5,7-dichlorokynurenic acid and increased the efficacy of the glycine partial agonist 3-amino-1-hydroxy-2-pyrrolidinone ((+)-HA-966). These results suggest that ethanol may interact with amino acids contained in the TM3 domain of NMDA subunits that are involved in transducing agonist binding to channel opening.
Collapse
Affiliation(s)
- K M Ronald
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | |
Collapse
|
37
|
Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, Wilson E. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 2001; 281:H1835-62. [PMID: 11668044 DOI: 10.1152/ajpheart.2001.281.5.h1835] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ion channels are regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. Evidence for the latter process, tyrosine phosphorylation, has increased substantially since this topic was last reviewed. In this review, we present a comprehensive summary and synthesis of the literature regarding the mechanism and function of ion channel regulation by protein tyrosine kinases and phosphatases. Coverage includes the majority of voltage-gated, ligand-gated, and second messenger-gated channels as well as several types of channels that have not yet been cloned, including store-operated Ca2+ channels, nonselective cation channels, and epithelial Na+ and Cl- channels. Additionally, we discuss the critical roles that channel-associated scaffolding proteins may play in localizing protein tyrosine kinases and phosphatases to the vicinity of ion channels.
Collapse
Affiliation(s)
- M J Davis
- Department of Medical Physiology, Cardiovascular Research Institute, Texas A&M University System Health Science Center, College Station, Texas 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Smothers CT, Clayton R, Blevins T, Woodward JJ. Ethanol sensitivity of recombinant human N-methyl-D-aspartate receptors. Neurochem Int 2001; 38:333-40. [PMID: 11137628 DOI: 10.1016/s0197-0186(00)00094-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, the ethanol sensitivity of human N-methyl-D-aspartate (NMDA) receptors stably expressed in L(tk-) cells, or transiently expressed in HEK 293 cells and Xenopus oocytes was determined. NMDA receptor function was measured using fura-2 calcium imaging for L(tk-) cells, whole cell voltage-clamp for HEK 293 cells, and two-electrode voltage clamp for oocytes. Ethanol inhibited NMDA receptor function in all three expression system, but was less potent for receptors expressed in L(tk-) cells. NMDA receptors composed of NR1a/2B subunits were inhibited to a greater extent by ethanol than NR1a/2A receptors when expressed in L(tk-) cells and HEK 293 cells, but not in oocytes. These results suggest that the method of receptor expression and assay system used may influence the degree of ethanol inhibition of recombinant NMDA receptors.
Collapse
Affiliation(s)
- C T Smothers
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Box 980524, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
The pharmacological effects of ethanol are complex and widespread without a well-defined target. Since glutamatergic and GABAergic innervation are both dense and diffuse and account for more than 80% of the neuronal circuitry in the human brain, alterations in glutamatergic and GABAergic function could affect the function of all neurotransmitter systems. Here, we review recent progress in glutamatergic and GABAergic systems with a special focus on their roles in alcohol dependence and alcohol withdrawal-induced seizures. In particular, NMDA-receptors appear to play a central role in alcohol dependence and alcohol-induced neurological disorders. Hence, NMDA receptor antagonists may have multiple functions in treating alcoholism and other addictions and they may become important therapeutics for numerous disorders including epilepsy, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's chorea, anxiety, neurotoxicity, ischemic stroke, and chronic pain. One of the new family of NMDA receptor antagonists, such as DETC-MESO, which regulate the redox site of NMDA receptors, may prove to be the drug of choice for treating alcoholism as well as many neurological diseases.
Collapse
Affiliation(s)
- K M Davis
- Department of Medical Chemistry, 1043 Haworth Hall, University of Kansas, Lawrence, KS 66045-2106, USA
| | | |
Collapse
|
40
|
Loftis JM, Janowsky A. Regulation of NMDA receptor subunits and nitric oxide synthase expression during cocaine withdrawal. J Neurochem 2000; 75:2040-50. [PMID: 11032893 DOI: 10.1046/j.1471-4159.2000.0752040.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study characterized the effects of withdrawal from cocaine on the expression of NMDA receptor subunits (NR1, NR2B) and neuronal nitric oxide synthase. FosB induction was measured to confirm that repeated cocaine exposure influenced protein expression, as previously reported. Administration of cocaine followed by 24 h, 72 h, or 14 days of withdrawal resulted in alterations of NR1 and NR2B subunits and neuronal nitric oxide synthase expression as measured by immunohistochemical labeling of rat brain sections. Optical density analyses revealed significant up-regulation of NR1 in the ventral tegmental area at 72 h and 14 days of withdrawal. Structure-specific and withdrawal time-dependent alterations in NR2B expression were also found. After 24 h of withdrawal, cocaine-induced decreases in NR2B expression were observed in the nucleus accumbens shell, whereas increases in NR2B expression were found in medial cortical areas. Two weeks of withdrawal from cocaine caused an approximately 50% increase in NR2B subunit expression in regions of the cortex, neostriatum, and nucleus accumbens. In contrast, cocaine-induced up-regulation of neuronal nitric oxide synthase was transient and evident in cortical areas only at 24 h after the last drug injection. The results suggest that region-specific changes in interactions among proteins associated with the NMDA receptor complex may underlie neuronal adaptations following repeated cocaine administration.
Collapse
Affiliation(s)
- J M Loftis
- Research Service, Department of Veterans Affairs Medical Center, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
41
|
Peoples RW, Stewart RR. Alcohols inhibit N-methyl-D-aspartate receptors via a site exposed to the extracellular environment. Neuropharmacology 2000; 39:1681-91. [PMID: 10884550 DOI: 10.1016/s0028-3908(00)00067-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Methyl-D-aspartate (NMDA) receptors are important CNS target sites of alcohols, but the site and mechanism of action of alcohols on NMDA receptors remains unclear. In CHO-K1 cells transfected with NR1/NR2B NMDA receptor subunits, ethanol inhibited NMDA-activated current with an IC(50) of 138 mM. Truncation of the intracellular C-terminal domain of the NR1 subunit (NR1T) did not alter ethanol sensitivity when combined with the NR2B subunit, but a similar truncation of the NR2B subunit (NR2BT) slightly enhanced ethanol sensitivity of receptors formed from coexpression with either NR1 or NR1T subunits. 1-Pentanol applied externally inhibited NMDA receptors with an IC(50) of 9.9 mM, but intracellular application of 1-pentanol (25 mM) did not alter NMDA receptor inhibition by externally applied ethanol or 1-pentanol. In addition, the amplitude of NMDA-activated current did not decrease during the time required for 1-pentanol (25 mM) to diffuse throughout the cytoplasm. Ethanol did not inhibit NMDA receptors when bath-applied in cell-attached patches or when applied to the cytoplasmic face of inside-out membrane patches. These results appear to be best explained by an action of alcohols on the NMDA receptor-channel protein, at a site located in a domain exposed to, or only accessible from, the extracellular environment.
Collapse
Affiliation(s)
- R W Peoples
- Unit on Cellular Neuropharmacology, Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 20892-8115, Bethesda, MD 20892-8115, USA.
| | | |
Collapse
|
42
|
Lands WE. Peptide signaling paths related to intoxication, memory and addiction. Addict Biol 2000; 5:245-60. [PMID: 20575839 DOI: 10.1111/j.1369-1600.2000.tb00189.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract Many peptides bind to G protein-coupled receptors and activate intracellular signaling paths for adaptive cellular responses. The components of these paths can be affected by signals from other neurotransmitters to produce overall integrated results not easily predicted from customary a priori considerations. This intracellular cross-talk among signaling paths provides a "filter" through which long-term tonic signals affect short-term phasic signals as they progress toward the nucleus and induce long-term adaptation of gene expression which provide enduring attributes of acquired memories and addictions. Peptides of the PACAP family provide intracellular signaling that involves kinases, scaffolding interactions, Ca2 + mobilization, and gene expression to facilitate development of tolerance to alcohol and development of associative memories. The peptide-induced enhancement of NMDA receptor responses to extracellular glutamate also may increase behavioral sensitization to the low doses of alcohol that occur at the onset of each bout of drinking. Because many gene products participate in each signaling path, each behavioral response to alcohol is a polygenic process of many steps with no single gene product sufficient to interpret fully the adaptive response to alcohol. Different susceptibility of individuals to alcohol addiction may be a cumulative result of small differences among the many signaling components. Understanding this network of signals may help interpret future "magic bullets" proposed to treat addiction.
Collapse
Affiliation(s)
- W E Lands
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MA, USA
| |
Collapse
|
43
|
Ishiguro H, Saito T, Shibuya H, Toru M, Arinami T. Mutation and association analysis of the Fyn kinase gene with alcoholism and schizophrenia. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1096-8628(20001204)96:6<716::aid-ajmg3>3.0.co;2-n] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
|