1
|
Pribbenow C, Owald D. Skewing information flow through pre- and postsynaptic plasticity in the mushroom bodies of Drosophila. Learn Mem 2024; 31:a053919. [PMID: 38876487 PMCID: PMC11199954 DOI: 10.1101/lm.053919.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 06/16/2024]
Abstract
Animal brains need to store information to construct a representation of their environment. Knowledge of what happened in the past allows both vertebrates and invertebrates to predict future outcomes by recalling previous experience. Although invertebrate and vertebrate brains share common principles at the molecular, cellular, and circuit-architectural levels, there are also obvious differences as exemplified by the use of acetylcholine versus glutamate as the considered main excitatory neurotransmitters in the respective central nervous systems. Nonetheless, across central nervous systems, synaptic plasticity is thought to be a main substrate for memory storage. Therefore, how brain circuits and synaptic contacts change following learning is of fundamental interest for understanding brain computations tied to behavior in any animal. Recent progress has been made in understanding such plastic changes following olfactory associative learning in the mushroom bodies (MBs) of Drosophila A current framework of memory-guided behavioral selection is based on the MB skew model, in which antagonistic synaptic pathways are selectively changed in strength. Here, we review insights into plasticity at dedicated Drosophila MB output pathways and update what is known about the plasticity of both pre- and postsynaptic compartments of Drosophila MB neurons.
Collapse
Affiliation(s)
- Carlotta Pribbenow
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - David Owald
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
2
|
Chen J, Zhou X, Jiang Z, Jiang D. Design, Synthesis, and Biological Evaluation of Pyrido [1,2-α] Pyrimidinone Mesoionic Derivatives Bearing Propenylbenzene as the Vector Control Insecticide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:999-1006. [PMID: 38175165 DOI: 10.1021/acs.jafc.3c04767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A series of novel pyrido [1,2-α] pyrimidinone mesoionic derivatives bearing a propenylbenzene group at the 1-position were synthesized on the basis of the structure of mesoionic insecticides triflumezopyrim and dicloromezotiaz via a rationally conceived pharmacophore model and evaluated for their insecticidal activities against three insect vectors. The bioassay results showed that some compounds exerted remarkable insecticidal activities against M. domestica, Ae. albopictus, and B. germanica. Particularly, compound 26l displayed outstanding insecticidal activity against Ae. Albopictus, with an LC50 value of 0.45 μg/mL, far superior to that of imidacloprid (LC50 = 1.82 μg/mL) and equivalent to that of triflumezopyrim (0.35 μg/mL). Meanwhile, compound 34l presented a broad insecticidal spectrum, with LC50 values of 1.51 μg/g sugar, 0.52 μg/mL and 0.14 μg/adult, which were about 2.88, 3.50, and 1.50 times better than that of imidacloprid (LC50 = 4.35 μg/g sugar, 1.82 μg/mL and 0.21 μg/adult against M. domestica, Ae. albopictus, and B. germanica, respectively) and equivalent to that of triflumezopyrim against M. domestica (1.13 μg/g sugar) and Ae. albopictus (0.35 μg/mL) but lower than the potency against B. germanica (0.06 μg/g sugar). The molecular docking study by energy minimizations revealed that introducing propenylbenzene at the 1-position of compounds 26l and 34l could embed into the binding pocket of nicotinic acetylcholine receptors and form pi-alkyl interaction with LEU306. These results demonstrated that compounds 26l and 34l could be promising candidates for vector control insecticides, which deserved further investigation.
Collapse
Affiliation(s)
- Jirong Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xiangrong Zhou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhiyan Jiang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Dingxin Jiang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Rosenthal JS, Yuan Q. Constructing and Tuning Excitatory Cholinergic Synapses: The Multifaceted Functions of Nicotinic Acetylcholine Receptors in Drosophila Neural Development and Physiology. Front Cell Neurosci 2021; 15:720560. [PMID: 34650404 PMCID: PMC8505678 DOI: 10.3389/fncel.2021.720560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAchRs) are widely distributed within the nervous system across most animal species. Besides their well-established roles in mammalian neuromuscular junctions, studies using invertebrate models have also proven fruitful in revealing the function of nAchRs in the central nervous system. During the earlier years, both in vitro and animal studies had helped clarify the basic molecular features of the members of the Drosophila nAchR gene family and illustrated their utility as targets for insecticides. Later, increasingly sophisticated techniques have illuminated how nAchRs mediate excitatory neurotransmission in the Drosophila brain and play an integral part in neural development and synaptic plasticity, as well as cognitive processes such as learning and memory. This review is intended to provide an updated survey of Drosophila nAchR subunits, focusing on their molecular diversity and unique contributions to physiology and plasticity of the fly neural circuitry. We will also highlight promising new avenues for nAchR research that will likely contribute to better understanding of central cholinergic neurotransmission in both Drosophila and other organisms.
Collapse
Affiliation(s)
- Justin S Rosenthal
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Salgado VL. Selective actions of insecticides on desensitizing and non-desensitizing nicotinic acetylcholine receptors in cockroach (Periplaneta americana) neurons. PEST MANAGEMENT SCIENCE 2021; 77:3663-3672. [PMID: 33821538 DOI: 10.1002/ps.6396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Insect desensitizing nicotinic acetylcholine (nAChD) receptors are desensitized by low concentrations of agonists, including neonicotinoid insecticides, but are essentially insensitive to spinosyns, while non-desensitizing nicotinic acetylcholine (nAChN) receptors are selectively activated by spinosyns and relatively insensitive to neonicotinoids. RESULTS The single-electrode voltage-clamp technique was used to measure the actions of newer nicotinic insecticides dinotefuran, sulfoxaflor, triflumezopyrim, spinetoram and GS-ω/k-hexatoxin-Hv1a on cockroach neuronal nAChD and nAChN currents. Like imidacloprid and clothianidin, newer orthosteric nicotinic agonist insecticides dinotefuran and sulfoxaflor act by desensitizing nAChD receptors. The mesoionic insecticide triflumezopyrim selectively inhibited nAChD current with an half maximal inhibitory concentration (IC50 ) of 1.2 nmol L-1 , with no activation. Unlike other Group 4 insecticides, it did not activate nAChN current, but inhibited it with an IC50 of 3.8 μmol L-1 , indicating that the compound is a true antagonist. Spinosad and the spinosyn-derived insecticide spinetoram potently and selectively activated nAChN receptors. GS-ω/k-hexatoxin-Hv1a had no effect on nAChN currents and it had a complex action on nAChD currents, inhibiting at sub-nanomolar concentrations and causing some activation and enhancement of ACh-evoked currents at 30 nmol L-1 and above. Some cells express GS-ω/k-hexatoxin-Hv1a-resistant nAChD receptors. CONCLUSIONS Nicotinic acetylcholine receptor competitive modulators (IRAC Group 4) and nicotinic acetylcholine receptor allosteric modulators, site II (hexatoxins, IRAC Group 32) are selective for nAChD receptors, while nicotinic acetylcholine receptor allosteric modulators, site I (spinosyns, IRAC Group 5) are selective for nAChN receptors. It is proposed that IRAC Groups 5 and 32 be re-named non-desensitizing nicotinic acetylcholine receptor allosteric modulators and desensitizing nicotinic acetylcholine receptor allosteric modulators, respectively. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vincent L Salgado
- BASF Corp, Research Triangle Park, NC, USA
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| |
Collapse
|
5
|
Croset V, Treiber CD, Waddell S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife 2018; 7:34550. [PMID: 29671739 PMCID: PMC5927767 DOI: 10.7554/elife.34550] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
To understand the brain, molecular details need to be overlaid onto neural wiring diagrams so that synaptic mode, neuromodulation and critical signaling operations can be considered. Single-cell transcriptomics provide a unique opportunity to collect this information. Here we present an initial analysis of thousands of individual cells from Drosophila midbrain, that were acquired using Drop-Seq. A number of approaches permitted the assignment of transcriptional profiles to several major brain regions and cell-types. Expression of biosynthetic enzymes and reuptake mechanisms allows all the neurons to be typed according to the neurotransmitter or neuromodulator that they produce and presumably release. Some neuropeptides are preferentially co-expressed in neurons using a particular fast-acting transmitter, or monoamine. Neuromodulatory and neurotransmitter receptor subunit expression illustrates the potential of these molecules in generating complexity in neural circuit function. This cell atlas dataset provides an important resource to link molecular operations to brain regions and complex neural processes.
Collapse
Affiliation(s)
- Vincent Croset
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, United Kingdom
| | - Christoph D Treiber
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, United Kingdom
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Somers J, Luong HNB, Batterham P, Perry T. Deletion of the nicotinic acetylcholine receptor subunit gene Dα1 confers insecticide resistance, but at what cost? Fly (Austin) 2017; 12:46-54. [PMID: 29095106 DOI: 10.1080/19336934.2017.1396399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.
Collapse
Affiliation(s)
- Jason Somers
- a School of BioSciences and Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Melbourne , VIC , Australia.,b UCL Ear Institute , University College London , 332 Gray's Inn Road, London , WC1 × 8EE , United Kingdom
| | - Hang Ngoc Bao Luong
- a School of BioSciences and Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Melbourne , VIC , Australia
| | - Philip Batterham
- a School of BioSciences and Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Melbourne , VIC , Australia
| | - Trent Perry
- a School of BioSciences and Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Melbourne , VIC , Australia
| |
Collapse
|
7
|
The functional interaction between nicotinic acetylcholine receptors and Ly-6/neurotoxin proteins in Locusta migratoria. Neurochem Int 2017; 108:381-387. [DOI: 10.1016/j.neuint.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 11/23/2022]
|
8
|
Bao H, Shao X, Zhang Y, Cheng J, Wang Y, Xu X, Fang J, Liu Z, Li Z. IPPA08 allosterically enhances the action of imidacloprid on nicotinic acetylcholine receptors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:36-41. [PMID: 27793626 DOI: 10.1016/j.ibmb.2016.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Our previous study showed that IPPA08, a cis-configuration neonicotinoid compound with unique oxabridged substructure, acted as a specific synergist to neonicotinoid insecticides targeting nicotinic acetylcholine receptors (nAChRs). Heteropentamer nAChRs have diverse characteristics and can form canonical and noncanonical subunit interfaces. While canonical interfaces have been exploited as targets of many drugs, noncanonical interfaces have received less attention. In this study, the mechanism of IPPA08 synergism was evaluated on hybrid nAChRs consisting of three α1 subunits from the brown planthopper and two rat β1 subunits (Nlα1/rβ2) expressed in Xenopus oocytes. IPPA08 alone evoked inward currents, but only at very high concentrations, greater than 1 mM. However, at concentrations below 200 μM, IPPA08 slowed the decay of inward currents evoked by imidacloprid, but not by acetylcholine, and also increased the sensitivity of Nlα1/rβ2 to imidacloprid. Both modulations by IPPA08 were concentration-dependent in the same concentration range of 10-150 μM. Experimentally induced mutations in canonical (α+/β-) and noncanonical (β+/α-) interfaces of Nlα1/rβ2 receptors were also examined to evaluate the presence of possible binding sites for IPPA08 on the receptors. Our results showed that mutations in the canonical interfaces affected only the potency of IPPA08 as an agonist, while mutations in the noncanonical interfaces affected only the synergistic action of IPPA08. Based on these results, we propose that at low concentrations IPPA08 can act as a positive allosteric modulator of noncanonical interfaces, and likely slow the decay of currents through stabilizing the open-channel state caused by the action of imidacloprid on canonical interfaces.
Collapse
Affiliation(s)
- Haibo Bao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, St. Zhongling 50, Nanjing 210014, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Yunchao Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, St. Zhongling 50, Nanjing 210014, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China.
| |
Collapse
|
9
|
Perry T, Somers J, Yang YT, Batterham P. Expression of insect α6-like nicotinic acetylcholine receptors in Drosophila melanogaster highlights a high level of conservation of the receptor:spinosyn interaction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:106-115. [PMID: 25747008 DOI: 10.1016/j.ibmb.2015.01.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Insecticide research has often relied on model species for elucidating the resistance mechanisms present in the targeted pests. The accuracy and applicability of extrapolations of these laboratory findings to field conditions varies but, for target site resistance, conserved mechanisms are generally the rule rather than the exception (Perry et al., 2011). The spinosyn class of insecticides appear to fit this paradigm and are a pest control option with many uses in both crop and animal protection. Resistance to spinosyns has been identified in both laboratory-selected and field-collected pest insects. Studies using the model insect, Drosophila melanogaster, have identified the nicotinic acetylcholine receptor subunit, Dα6 as an important target of the insecticide spinosad (Perry et al., 2007; Watson et al., 2010). Field-isolated resistant strains of several agricultural pest insects provide evidence that resistance cases are often associated with mutations in orthologues to Dα6 (Baxter et al., 2010; Puinean et al., 2013). The expression of these receptors is difficult in heterologous systems. In order to examine the biology of the Dα6 receptor subunit further, we used Drosophila as a model and developed an in vivo rescue system. This allowed us to express four different isoforms of Dα6 and show that each is able to rescue the response to spinosad. Regulatory sequences upstream of the Dα6 gene able to rescue the resistance phenotype were identified. Expression of other D. melanogaster subunits revealed that the rescue phenotype appears to be Dα6 specific. We also demonstrate that expression of pest insect orthologues of Dα6 from a variety of species are capable of rescuing the spinosad response phenotype, verifying the relevance of this receptor to resistance monitoring in the field. In the absence of a robust heterologous expression system, this study presents an in vivo model that will be useful in analysing many other aspects of these receptors and their biology.
Collapse
Affiliation(s)
- Trent Perry
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Jason Somers
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Ying Ting Yang
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Philip Batterham
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| |
Collapse
|
10
|
Dupuis J, Louis T, Gauthier M, Raymond V. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: from genes to behavioral functions. Neurosci Biobehav Rev 2012; 36:1553-64. [PMID: 22525891 DOI: 10.1016/j.neubiorev.2012.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/26/2012] [Accepted: 04/04/2012] [Indexed: 11/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system of insects where they supply fast synaptic excitatory transmission and represent a major target for several insecticides. The unbalance is striking between the abundant literature on nAChR sensitivity to insecticides and the rarity of information regarding their molecular properties and cognitive functions. The recent advent of genome sequencing disclosed that nAChR gene families of insects are rather small-sized compared to vertebrates. Behavioral experiments performed in the honeybee demonstrated that a subpopulation of nAChRs sensitive to the venom α-bungarotoxin and permeant to calcium is necessary for the formation of long-term memory. Concomitant data in Drosophila reported that repetitive exposure to nicotine results in a calcium-dependent plasticity of the nAChR-mediated response involving cAMP signaling cascades and indicated that ACh-induced Ca++ currents are modulated by monoamines involved in aversive and appetitive learning. As in vertebrates, in which glutamate and NMDA-type glutamate receptors are involved in experience-associated synaptic plasticity and memory formation, insects could display a comparable system based on ACh and α-Bgt-sensitive nAChRs.
Collapse
Affiliation(s)
- Julien Dupuis
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | | | | | | |
Collapse
|
11
|
Inactivity-induced increase in nAChRs upregulates Shal K(+) channels to stabilize synaptic potentials. Nat Neurosci 2011; 15:90-7. [PMID: 22081160 PMCID: PMC3888491 DOI: 10.1038/nn.2969] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/09/2011] [Indexed: 11/09/2022]
Abstract
Long-term synaptic changes, which are essential for learning and memory, are dependent on homeostatic mechanisms that stabilize neural activity. Homeostatic responses have also been implicated in pathological conditions, including nicotine addiction. Although multiple homeostatic pathways have been described, little is known about how compensatory responses are tuned to prevent them from overshooting their optimal range of activity. We found that prolonged inhibition of nicotinic acetylcholine receptors (nAChRs), the major excitatory receptors in the Drosophila CNS, resulted in a homeostatic increase in the Drosophila α7 (Dα7)-nAChR. This response then induced an increase in the transient A-type K(+) current carried by Shaker cognate L (Shal; also known as voltage-gated K(+) channel 4, Kv4) channels. Although increasing Dα7-nAChRs boosted miniature excitatory postsynaptic currents, the ensuing increase in Shal channels served to stabilize postsynaptic potentials. These data identify a previously unknown mechanism for fine tuning the homeostatic response.
Collapse
|
12
|
Dupuis JP, Gauthier M, Raymond-Delpech V. Expression patterns of nicotinic subunits α2, α7, α8, and β1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. J Neurophysiol 2011; 106:1604-13. [DOI: 10.1152/jn.00126.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acetylcholine (ACh) is the main excitatory neurotransmitter of the insect brain, where nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission. In the honeybee Apis mellifera, nAChRs are expressed in diverse structures including the primary olfactory centers of the brain, the antennal lobes (ALs) and the mushroom bodies (MBs), where they participate in olfactory information processing. To understand the nature and properties of the nAChRs involved in these processes, we performed a pharmacological and molecular characterization of nAChRs on cultured Kenyon cells of the MBs, using whole cell patch-clamp recordings combined with single-cell RT-PCR. In all cells, applications of ACh as well as nicotinic agonists such as nicotine and imidacloprid induced inward currents with fast desensitization. These currents were fully blocked by saturating doses of the antagonists α-bungarotoxin (α-BGT), dihydroxy-β-erythroidine (DHE), and methyllycaconitine (MLA) (MLA ≥ α-BGT ≥ DHE). Molecular analysis of ACh-responding cells revealed that of the 11 nicotinic receptor subunits encoded within the honeybee genome, α2, α8, and β1 subunits were expressed in adult Kenyon cells. Comparison with the expression pattern of adult AL cells revealed the supplementary presence of subunit α7, which could be responsible for the kinetic and pharmacological differences observed when comparing ACh-induced currents from AL and Kenyon cells. Together, our data demonstrate the existence of functional nAChRs on adult MB Kenyon cells that differ from nAChRs on AL cells in both their molecular composition and pharmacological properties, suggesting that changing receptor subsets could mediate different processing functions depending on the brain structure within the olfactory pathway.
Collapse
Affiliation(s)
- Julien Pierre Dupuis
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| | - Monique Gauthier
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| | - Valérie Raymond-Delpech
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| |
Collapse
|
13
|
Dederer H, Werr M, Ilg T. Differential sensitivity of Ctenocephalides felis and Drosophila melanogaster nicotinic acetylcholine receptor α1 and α2 subunits in recombinant hybrid receptors to nicotinoids and neonicotinoid insecticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:51-61. [PMID: 20933086 DOI: 10.1016/j.ibmb.2010.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/22/2010] [Accepted: 09/29/2010] [Indexed: 05/30/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are the binding sites for nicotinoid drugs, such as nicotine and epibatidine, and are the molecular targets of the selectively insecticidal neonicotinoids. In this study we report the full length cDNA cloning of the three Ctenocephalides (C.) felis (cat flea) nAChR α subunits Cfα1, Cfα2, and Cfα3. When expressed in Xenopus oocytes as hybrid receptors with the Gallus gallus (chicken) β2 (Ggβ2) subunit, these cat flea α subunits formed acetylcholine-responsive ion channels. Acetylcholine-evoked currents of Cfα2/Ggβ2 were resistant to α-bungarotoxin, while those of Cfα1/Ggβ2 were sensitive to this snake toxin. The pharmacological profiles of Cfα1/Ggβ2, Cfα2/Ggβ2 and the chicken neuronal receptor Ggα4/Ggβ2 for acetylcholine, two nicotinoids and 6 insecticidal neonicotinoids were determined and compared. Particularly remarkable was the finding that Cfα1/Ggβ2 was far more sensitive to acetylcholine, nicotine and neonicotinoid agonists than either Cfα2/Ggβ2 or Ggα4/Ggβ2: for the anti flea neonicotinoid market compound imidacloprid the respective EC₅₀s were 0.02 μM, 1.31 μM and 10 μM. These results were confirmed for another insect species, Drosophila melanogaster, where the pharmacological profile of the Dmα1 and Dmα2 subunits as hybrid receptors with Ggβ2 in Xenopus oocyte expressions resulted in a similar sensitivity pattern as those identified for the C. felis orthologs. Our results show that at least in a Ggβ2 hybrid receptor setting, insect α1 subunits confer higher sensitivity to neonicotinoids than α2 subunits, which may contribute in vivo to the insect-selective action of this pesticide class.
Collapse
Affiliation(s)
- Helene Dederer
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | | | | |
Collapse
|
14
|
Yang B, Yao X, Gu S, Zhang Y, Liu Z, Zhang Y. Selectivity of lynx proteins on insect nicotinic acetylcholine receptors in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2010; 19:283-289. [PMID: 20002807 DOI: 10.1111/j.1365-2583.2009.00981.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are major excitatory neurotransmitter receptors in both vertebrates and invertebrates. Two lynx proteins (Nl-lynx1 and Nl-lynx2) have been identified in the brown planthopper, Nilaparvata lugens, which act as modulators on insect nAChRs. In the present study, two lynx proteins were found to act on the triplet receptor Nlalpha1/Nlalpha2/beta2 expressed in Xenopus oocytes, increasing agonist-evoked macroscopic currents, but not changing agonist sensitivity and desensitization properties. Nl-lynx1 and Nl-lynx2 increased I(max) (maximum responses) of acetylcholine to 4.85-fold and 2.40-fold of that of Nlalpha1/Nlalpha2/beta2 alone, and they also increased I(max) of imidacloprid to 2.57-fold and 1.25-fold. Although, on another triplet nAChRs Nlalpha3/Nlalpha8/beta2, Nl-lynx2 increased I(max) of acetylcholine and imidacloprid to 3.63-fold and 2.16-fold, Nl-lynx1 had no effects on I(max) of either acetylcholine or imidacloprid. The results demonstrate the selectivity of lynx proteins for different insect nAChR subtypes. This selectivity was also identified in native N. Lugens. Co-immunoprecipitation was found between Nlalpha1/Nlalpha2-containing receptors and both Nl-lynx1 and Nl-lynx2, but was only found between Nlalpha3/Nlalpha8-containing receptors and Nl-lynx2. When the previously identified Nlalpha1(Y151S) and Nlalpha3(Y151S) mutations were included (Nlalpha1(Y151S)/Nlalpha2/beta2 and Nlalpha3(Y151S)/Nlalpha8/beta2), the increase in I(max) of imidacloprid, but not acetylcholine, caused by co-expression of Nl-lynx1 and Nl-lynx2 was more noticeable than that of their wildtype counterparts. Taken together, these data suggest that two modulators, Nl-lynx1 and Nl-lynx2, might serve as an influencing factor in target site insensitivity in N. lugens, such as Y151S mutation.
Collapse
Affiliation(s)
- B Yang
- Rice Technology Research and Development Center, China National Rice Research Institute, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
15
|
Rinkevich FD, Chen M, Shelton AM, Scott JG. Transcripts of the nicotinic acetylcholine receptor subunit gene Pxylα6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella. INVERTEBRATE NEUROSCIENCE 2010; 10:25-33. [PMID: 20499126 DOI: 10.1007/s10158-010-0102-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 04/27/2010] [Indexed: 01/18/2023]
Abstract
The cDNA sequence of the α6 nicotinic acetylcholine receptor subunit of diamondback moth (Plutella xylostella) was cloned and sequenced. Transcripts were similar between the spinosad-susceptible G88 and Wapio strains. All transcripts from the spinosad-resistant Pearl-Sel strain contained premature stop codons, and most transcripts have not been previously reported. None of these truncated transcripts were seen in the spinosad-susceptible strains. Proteins made from these transcripts would likely have no, or greatly altered, receptor function. An F(2) backcross and spinosad bioassay showed that all spinosad bioassay survivors produced truncated α6 transcripts. Thus, it appears that spinosad resistance in diamondback moth is due to a mutation(s) that results in no functional Pxylα6 being produced.
Collapse
Affiliation(s)
- Frank D Rinkevich
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853-0901, USA
| | | | | | | |
Collapse
|
16
|
Li J, Shao Y, Ding Z, Bao H, Liu Z, Han Z, Millar NS. Native subunit composition of two insect nicotinic receptor subtypes with differing affinities for the insecticide imidacloprid. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:17-22. [PMID: 20005950 DOI: 10.1016/j.ibmb.2009.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/04/2009] [Accepted: 12/05/2009] [Indexed: 05/28/2023]
Abstract
Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively to control a variety of insect pest species. The brown planthopper (Nilaparvata lugens), an insect pest of rice crops throughout Asia, is an important target species for control with neonicotinoid insecticides such as imidacloprid. Studies with nAChRs purified from N. lugens have identified two [(3)H]imidacloprid binding sites with different affinities (K(d) = 3.5 +/- 0.6 pM and 1.5 +/- 0.2 nM). Co-immunoprecipitation studies with native preparations of N. lugens nAChRs, using subunit-selective antisera, have demonstrated the co-assembly of Nlalpha1, Nlalpha2 and Nlbeta1 subunits into one receptor complex and of Nlalpha3, Nlalpha8 and Nlbeta1 into another. Immunodepletion of Nlalpha1 or Nlalpha2 subunits resulted in the selective loss of the lower affinity imidacloprid binding site, whereas immunodepletion of Nlalpha3 or Nlalpha8 caused the selective loss of the high-affinity site. Immunodepletion of Nlbeta1 resulted in a complete absence of specific imidacloprid binding. In contrast, immunodepletion with antibodies selective for other N. lugens nAChR subunits (Nlalpha4, Nlalpha6, Nlalpha7 and Nlbeta2) had no significant effect on imidacloprid binding. Taken together, these data suggest that nAChRs containing Nlalpha1, Nlalpha2 and Nlbeta1 constitute the lower affinity binding site, whereas nAChRs containing Nlalpha3, Nlalpha8 and Nlbeta1 constitute the higher affinity binding site for imidacloprid in N. lugens.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Tongwei Road 6, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Characterisation of Insect Nicotinic Acetylcholine Receptors by Heterologous Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 683:65-73. [DOI: 10.1007/978-1-4419-6445-8_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
|
19
|
Yixi Z, Liu Z, Han Z, Song F, Yao X, Shao Y, Li J, Millar NS. Functional co-expression of two insect nicotinic receptor subunits (Nlα3 and Nlα8) reveals the effects of a resistance-associated mutation (Nlα3Y151S) on neonicotinoid insecticides. J Neurochem 2009; 110:1855-62. [DOI: 10.1111/j.1471-4159.2009.06280.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Rinkevich FD, Scott JG. Transcriptional diversity and allelic variation in nicotinic acetylcholine receptor subunits of the red flour beetle, Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2009; 18:233-242. [PMID: 19320762 DOI: 10.1111/j.1365-2583.2009.00873.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sequence analysis of 168 cDNA clones encoding 12 nicotinic acetylcholine receptor subunits, Tcasalpha1-Tcasalpha11 and Tcasbeta1, from the red flour beetle, Tribolium castaneum, revealed extensive post-transcriptional modification and multiple alleles. The greatest diversity was found for Tcasa6, where 18 unique transcripts, as a result of alternative and optional exon usage, were seen. A novel alternative exon 8d was found in one Tcasalpha6 transcript. Tcasalpha5 transcripts did not contain previously reported exons 8-10. Six subunits had transcripts that contained unspliced introns, which introduced premature stop codons. Intron 3' splice site variants were seen at six intron boundaries across five subunits. A-to-I RNA editing was seen only in Tcasalpha6. Alleles were found for all subunit genes, except Tcasalpha1 and Tcasalpha10. Transcriptional and allelic diversity are discussed with respect to receptor function and potential interactions with insecticides.
Collapse
Affiliation(s)
- F D Rinkevich
- Department of Entomology, Cornell University, Ithaca, NY 14853-0901, USA
| | | |
Collapse
|
21
|
Liu Z, Han Z, Zhang Y, Song F, Yao X, Liu S, Gu J, Millar NS. Heteromeric co-assembly of two insect nicotinic acetylcholine receptor α subunits: influence on sensitivity to neonicotinoid insecticides. J Neurochem 2009; 108:498-506. [DOI: 10.1111/j.1471-4159.2008.05790.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Perry T, Heckel DG, McKenzie JA, Batterham P. Mutations in Dalpha1 or Dbeta2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:520-528. [PMID: 18405830 DOI: 10.1016/j.ibmb.2007.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 05/26/2023]
Abstract
Resistance to insecticides by modification of their molecular targets is a serious problem in chemical control of many arthropod pests. Neonicotinoids target the nicotinic acetylcholine receptor (nAChR) of arthropods. The spectrum of possible resistance-conferring mutations of this receptor is poorly understood. Prediction of resistance is complicated by the existence of multiple genes encoding the different subunits of this essential component of neurotransmission. We focused on the cluster of three Drosophila melanogaster nAChR subunit genes at cytological region 96A. EMS mutagenesis and selection for resistance to nitenpyram was performed on hybrids carrying a deficiency for this chromosomal region. Two complementation groups were defined for the four strains isolated. Molecular characterisation of the mutations found lesions in two nAChR subunit genes, Dalpha1 (encoding an alpha-type subunit) and Dbeta2 (beta-type). Mutations conferring resistance in beta-type receptors have not previously been reported, but we found several lesions in the Dbeta2 sequence, including locations distant from the predicted neonicotinoid-binding site. This study illustrates that mutations in a single-receptor subunit can confer nitenpyram resistance. Moreover, some of the mutations may protect the insect against nitenpyram by interfering with subunit assembly or channel activation, rather than affecting binding affinities of neonicotinoids to the channel.
Collapse
Affiliation(s)
- Trent Perry
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
23
|
Leisgen C, Kuester M, Methfessel C. The roboocyte: automated electrophysiology based on Xenopus oocytes. Methods Mol Biol 2007; 403:87-109. [PMID: 18827989 DOI: 10.1007/978-1-59745-529-9_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Automated electrophysiological assays are of great importance for modern drug discovery, and various approaches have been developed into practical devices. Here, we describe the automation of two-electrode voltage-clamp (TEVC) recording from Xenopus oocytes using the Roboocyte automated workstation, jointly developed by Multi Channel Systems and Bayer Technology Services. We briefly discuss the technology, including its advantages and limitations relative to patch clamp and other TEVC systems. We provide a step-by-step description of typical operating procedures and show that the Roboocyte represents a practical and highly effective way to perform automated electrophysiology in an industrial setting.
Collapse
|
24
|
Brown LA, Ihara M, Buckingham SD, Matsuda K, Sattelle DB. Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. J Neurochem 2006; 99:608-15. [PMID: 16899070 DOI: 10.1111/j.1471-4159.2006.04084.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are present in high density in insect nervous tissue and are targeted by neonicotinoid insecticides. Improved understanding of the actions of these insecticides will assist in the development of new compounds. Here, we have used whole-cell patch-clamp recording of cholinergic neurons cultured from the central nervous system of 3rd instar Drosophila larvae to examine the actions of acetylcholine (ACh) and nicotine, as well as the neonicotinoids imidacloprid, clothianidin and P-CH-clothianidin on native nAChRs of these neurons. Dose-response data yield an EC(50) value for ACh of 19 microm. Both nicotine and imidacloprid act as low efficacy agonists at native nAChRs, evoking maximal current amplitudes 10-14% of those observed for ACh. Conversely, clothianidin and P-CH-clothianidin evoke maximal current amplitudes up to 56% greater than those evoked by 100 microm ACh in the same neurons. This is the first demonstration of 'super' agonist actions of an insecticide on native insect nAChRs. Cell-attached recordings indicate that super agonism results from more frequent openings at the largest (63.5 pS) conductance state observed.
Collapse
Affiliation(s)
- Laurence A Brown
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, UK
| | | | | | | | | |
Collapse
|
25
|
Liu Z, Williamson MS, Lansdell SJ, Denholm I, Han Z, Millar NS. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci U S A 2005; 102:8420-5. [PMID: 15937112 PMCID: PMC1150837 DOI: 10.1073/pnas.0502901102] [Citation(s) in RCA: 272] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Indexed: 11/18/2022] Open
Abstract
Neonicotinoids, such as imidacloprid, are nicotinic acetylcholine receptor (nAChR) agonists with potent insecticidal activity. Since its introduction in the early 1990s, imidacloprid has become one of the most extensively used insecticides for both crop protection and animal health applications. As with other classes of insecticides, resistance to neonicotinoids is a significant threat and has been identified in several pest species, including the brown planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. In this study, radioligand binding experiments have been conducted with whole-body membranes prepared from imidacloprid-susceptible and imidacloprid-resistant strains of N. lugens. The results reveal a much higher level of [3H]imidacloprid-specific binding to the susceptible strain than to the resistant strain (16.7 +/- 1.0 and 0.34 +/- 0.21 fmol/mg of protein, respectively). With the aim of understanding the molecular basis of imidacloprid resistance, five nAChR subunits (Nlalpha1-Nlalpha4 and Nlbeta1) have been cloned from N. lugens.A comparison of nAChR subunit genes from imidacloprid-sensitive and imidacloprid-resistant populations has identified a single point mutation at a conserved position (Y151S) in two nAChR subunits, Nlalpha1 and Nlalpha3. A strong correlation between the frequency of the Y151S point mutation and the level of resistance to imidacloprid has been demonstrated by allele-specific PCR. By expression of hybrid nAChRs containing N. lugens alpha and rat beta2 subunits, evidence was obtained that demonstrates that mutation Y151S is responsible for a substantial reduction in specific [3H]imidacloprid binding. This study provides direct evidence for the occurrence of target-site resistance to a neonicotinoid insecticide.
Collapse
Affiliation(s)
- Zewen Liu
- Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The neonicotinoids, the newest major class of insecticides, have outstanding potency and systemic action for crop protection against piercing-sucking pests, and they are highly effective for flea control on cats and dogs. Their common names are acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam. They generally have low toxicity to mammals (acute and chronic), birds, and fish. Biotransformations involve some activation reactions but largely detoxification mechanisms. In contrast to nicotine, epibatidine, and other ammonium or iminium nicotinoids, which are mostly protonated at physiological pH, the neonicotinoids are not protonated and have an electronegative nitro or cyano pharmacophore. Agonist recognition by the nicotinic receptor involves cation-pi interaction for nicotinoids in mammals and possibly a cationic subsite for interaction with the nitro or cyano substituent of neonicotinoids in insects. The low affinity of neonicotinoids for vertebrate relative to insect nicotinic receptors is a major factor in their favorable toxicological profile.
Collapse
Affiliation(s)
- Motohiro Tomizawa
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, USA.
| | | |
Collapse
|
27
|
Wu P, Ma D, Pierzchala M, Wu J, Yang LC, Mai X, Chang X, Schmidt-Glenewinkel T. The Drosophila acetylcholine receptor subunit D alpha5 is part of an alpha-bungarotoxin binding acetylcholine receptor. J Biol Chem 2005; 280:20987-94. [PMID: 15781463 PMCID: PMC3188450 DOI: 10.1074/jbc.m409639200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The central nervous system of Drosophila melanogaster contains an alpha-bungarotoxin-binding protein with the properties expected of a nicotinic acetylcholine receptor. This protein was purified 5800-fold from membranes prepared from Drosophila heads. The protein was solubilized with 1% Triton X-100 and 0.5 M sodium chloride and then purified using an alpha-cobratoxin column followed by a lentil lectin affinity column. The purified protein had a specific activity of 3.9 micromol of 125I-alpha-bungarotoxin binding sites/g of protein. The subunit composition of the purified receptor was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. This subunit profile was identical with that revealed by in situ labeling of the membrane-bound protein using the photolyzable methyl-4-azidobenzoimidate derivative of 125I-alpha-bungarotoxin. The purified receptor reveals two different protein bands with molecular masses of 42 and 57 kDa. From sedimentation analysis of the purified protein complex in H2O and D2O and gel filtration, a mass of 270 kDa was calculated. The receptor has a s(20,w) of 9.4 and a Stoke's radius of 7.4 nm. The frictional coefficient was calculated to be 1.7 indicating a highly asymmetric protein complex compatible with a transmembrane protein forming an ion channel. The sequence of a peptide obtained after tryptic digestion of the 42-kDa protein allowed the specific identification of the Drosophila D alpha5 subunit by sequence comparison. A peptide-specific antibody raised against the D alpha5 subunit provides further evidence that this subunit is a component of an alpha-bungarotoxin binding nicotinic acetylcholine receptor from the central nervous system of Drosophila.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Schmidt-Glenewinkel
- To whom correspondence should be addressed: Dept. of Biological Sciences, Hunter College of CUNY, 695 Park Ave., New York, NY 10021. Tel.: 212-772-5027; Fax: 212-772-5286;
| |
Collapse
|
28
|
Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC. Edit, cut and paste in the nicotinic acetylcholine receptor gene family ofDrosophila melanogaster. Bioessays 2005; 27:366-76. [PMID: 15770687 DOI: 10.1002/bies.20207] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are important for fast synaptic cholinergic transmission. They are targets of drugs/chemicals for human and animal health as well as for pest control. With the advent of genome sequencing, entire nAChR gene families have now been described for vertebrates and invertebrates. Mostly, these are extensive with a large number of distinct subunits, making possible many nAChR subtypes differing in transmitter affinity, channel conductance, ion selectivity, desensitization, modulation and pharmacology. The smallest nAChR gene family to date is that of the fruit fly, Drosophila melanogaster, with only 10 members. This apparently compact family belies its true diversity as 4 of the 10 subunits show alternative splicing. Also, using Drosophila, A-to-I pre-mRNA editing has been demonstrated for the first time in nAChRs. Such is the extent of this variation, that one subunit alone (Dalpha6) can potentially generate far more isoforms than seen in entire gene families from other species. We present here three-dimensional models constructed for insect nAChRs, which show that many variations introduced by alternative splicing and RNA editing may influence receptor function.
Collapse
Affiliation(s)
- D B Sattelle
- MRC Functional Genetics Unit, Department of Human Anatomy & Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Vermehren A, Trimmer BA. Expression and function of two nicotinic subunits in insect neurons. ACTA ACUST UNITED AC 2005; 62:289-98. [PMID: 15514999 DOI: 10.1002/neu.20088] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) in insects are neuron-specific oligomeric proteins essential for the central transmission of sensory information. Little is known about their subunit composition because it is difficult to express functional insect nAChRs in heterologous systems. As an alternative approach we have examined the native expression of two subunits in neurons of the nicotinic-resistant, tobacco-feeding insect Manduca sexta. Both the alpha-subunit MARA1 and the beta-subunit MARB can be detected by in situ hybridization in the majority of cultured neurons with an overlapping, but not identical, distribution. Changes in intracellular Ca(2+) evoked by nicotinic stimulation are more strongly correlated to the expression of MARA1 than MARB and are independent of cell size. Unlike the previously reported critical role of MARA1 in mediating nicotinic Ca(2+) responses, down-regulation of MARB by RNA interference (RNAi) did not reduce the number of responding neurons or the size of evoked responses, suggesting that additional subunits remain to be identified in Manduca.
Collapse
Affiliation(s)
- A Vermehren
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
30
|
Yang H, Kunes S. Nonvesicular release of acetylcholine is required for axon targeting in the Drosophila visual system. Proc Natl Acad Sci U S A 2004; 101:15213-8. [PMID: 15469930 PMCID: PMC524039 DOI: 10.1073/pnas.0308141101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Indexed: 01/08/2023] Open
Abstract
We report evidence for a developmental role of acetylcholine in axon pathfinding in the Drosophila visual system. Acetylcholine was detected on photoreceptor axons during their navigation to target sites in the brain, a time well before the formation of functional synapses. The pattern of photoreceptor axon projections was severely disrupted when acetylcholine synthesis or metabolism was altered or eliminated, or when transgenic alpha-bungarotoxin, a nicotinic acetylcholine receptor antagonist, was expressed in the developing eye or brain. The requirement for acetylcholine signaling exists before photoreceptor neurons form synaptic connections and does not require the function of vesicular acetylcholine transporter protein. That this early effect of acetylcholine is mediated through nonvesicular release is further supported by the observation that transgenic expression of tetanus toxin, a blocker of neurotransmitter release via synaptic vesicles, did not cause similar photoreceptor axon projection defects. These observations support the notion that a form of acetylcholine secretion mediates the behavior of growth cones during axon pathfinding.
Collapse
Affiliation(s)
- Hong Yang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
31
|
Tomizawa M, Casida JE. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. ANNUAL REVIEW OF ENTOMOLOGY 2003; 48:339-64. [PMID: 12208819 DOI: 10.1146/annurev.ento.48.091801.112731] [Citation(s) in RCA: 558] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Neonicotinoids, the most important new class of synthetic insecticides of the past three decades, are used to control sucking insects both on plants and on companion animals. Imidacloprid (the principal example), nitenpyram, acetamiprid, thiacloprid, thiamethoxam, and others act as agonists at the insect nicotinic acetylcholine receptor (nAChR). The botanical insecticide nicotine acts at the same target without the neonicotinoid level of effectiveness or safety. Fundamental differences between the nAChRs of insects and mammals confer remarkable selectivity for the neonicotinoids. Whereas ionized nicotine binds at an anionic subsite in the mammalian nAChR, the negatively tipped ("magic" nitro or cyano) neonicotinoids interact with a proposed unique subsite consisting of cationic amino acid residue(s) in the insect nAChR. Knowledge reviewed here of the functional architecture and molecular aspects of the insect and mammalian nAChRs and their neonicotinoid-binding site lays the foundation for continued development and use of this new class of safe and effective insecticides.
Collapse
Affiliation(s)
- Motohiro Tomizawa
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, USA.
| | | |
Collapse
|
32
|
Grauso M, Reenan RA, Culetto E, Sattelle DB. Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 2002; 160:1519-33. [PMID: 11973307 PMCID: PMC1462077 DOI: 10.1093/genetics/160.4.1519] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome analysis of the fruit fly Drosophila melanogaster reveals three new ligand-gated ion channel subunits with the characteristic YXCC motif found only in alpha-type nicotinic acetylcholine receptor subunits. The subunits are designated Dalpha5, Dalpha6, and Dalpha7. Cloning of the Dalpha5 embryonic cDNAs reveals an atypically large N terminus, part of which is without identifiable sequence motifs and is specified by two polymorphic alleles. Embryonic clones from Dalpha6 contain multiple variant transcripts arising from alternative splicing as well as A-to-I pre-mRNA editing. Alternative splicing in Dalpha6 involves exons encoding nAChR functional domains. The Dalpha6 transcript is a target of the Drosophila adenosine deaminase acting on RNA (dADAR). This is the first case for any organism where a nAChR gene is the target of mRNA editing. Seven adenosines could be modified in the extracellular ligand-binding region of Dalpha6, four of which are also edited in the Dalpha6 ortholog in the tobacco budworm Heliothis virescens. The conservation of an editing site between the insect orders Diptera and Lepidoptera makes nAChR editing the most evolutionarily conserved invertebrate RNA editing site so far described. These findings add to our understanding of nAChR subunit diversity, which is increased and regulated by mechanisms acting at the genomic and mRNA levels.
Collapse
Affiliation(s)
- M Grauso
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | | | | | | |
Collapse
|
33
|
Vermehren A, Qazi S, Trimmer BA. The nicotinic alpha subunit MARA1 is necessary for cholinergic evoked calcium transients in Manduca neurons. Neurosci Lett 2001; 313:113-6. [PMID: 11682140 DOI: 10.1016/s0304-3940(01)02228-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The functional contribution of cloned subunits to insect nicotinic acetylcholine (ACh) receptors has been difficult to determine using heterologous expression. Instead, in this study we explore the subunit composition of naturally expressed functional receptors in an insect using RNA interference. The nicotinic alpha subunit, Manduca ACh Receptor Alpha 1 (MARA1) can be detected in neuronal cultures isolated from the ventral nerve cord of fifth instar larvae of Manduca sexta by in situ hybridization. It's presence correlates with large ACh induced, nicotinic Ca2+ responses. The expression of MARA1 is downregulated by treatment with dsRNA which significantly reduced both the number of responding cells and the amplitude of remaining Ca2+ responses. These results suggest that MARA1 is part of a nicotinic receptor functionally coupled to Ca2+ entry.
Collapse
Affiliation(s)
- A Vermehren
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | | | |
Collapse
|
34
|
Tomizawa M, Casida JE. Structure and diversity of insect nicotinic acetylcholine receptors. PEST MANAGEMENT SCIENCE 2001; 57:914-922. [PMID: 11695184 DOI: 10.1002/ps.349] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is an agonist-regulated ion-channel complex responsible for rapid neurotransmission. The vertebrate nAChR, assembled from five homologous subunits, penetrates the synaptic membrane. Different subunit combinations lead to receptor subtypes with distinctive pharmacological profiles. In comparison with mammalian nAChRs, the insect receptor is poorly understood relative to functional architecture and diversity. Several genes for Drosophila, Locusta and Myzus encoding insect nAChR subunits have been identified, although the functional assembly and presence of different subtypes of these receptors are not defined. The insect nAChR is the primary target site for the neonicotinoid insecticides, thereby providing an incentive to explore its functional architecture with neonicotinoid radioligands, photoaffinity probes and affinity chromatography matrices. This review considers the current understanding of the structure and diversity of insect nAChRs based mainly on recent studies in molecular biology and protein biochemistry.
Collapse
Affiliation(s)
- M Tomizawa
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, USA
| | | |
Collapse
|
35
|
Tomizawa M, Wen Z, Chin HL, Morimoto H, Kayser H, Casida JE. Photoaffinity labeling of insect nicotinic acetylcholine receptors with a novel [(3)H]azidoneonicotinoid. J Neurochem 2001; 78:1359-66. [PMID: 11579144 DOI: 10.1046/j.1471-4159.2001.00518.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel in the insect CNS and a target for major insecticides. Here we use photoaffinity labeling to approach the functional architecture of insect nAChRs. Two candidate 5-azido-6-chloropyridin-3-yl photoaffinity probes are evaluated for their receptor potencies: azidoneonicotinoid (AzNN) with an acyclic nitroguanidine moiety; azidodehydrothiacloprid. Compared to their non-azido parents, both probes are of decreased potencies at Drosophila (fruit fly) and Musca (housefly) receptors but AzNN retains full potency at the Myzus (aphid) receptor. [(3)H]AzNN was therefore radiosynthesized at high specific activity (84 Ci/mmol) as a novel photoaffinity probe. [(3)H]AzNN binds to a single high-affinity site in Myzus that is competitively inhibited by imidacloprid and nicotine and further characterized as to its pharmacological profile with various nicotinic ligands. [(3)H]AzNN photoaffinity labeling of Myzus and Homalodisca (leafhopper) detects a single radiolabeled peak in each case displaceable with imidacloprid and nicotine and with molecular masses corresponding to approximately 45 and approximately 56 kDa, respectively. The photoaffinity-labeled receptor in both Drosophila and Musca has imidacloprid- and nicotine-sensitive profiles and migrates at approximately 66 kDa. These photoaffinity-labeled polypeptides are considered to be the insecticide-binding subunits of native insect nAChRs.
Collapse
Affiliation(s)
- M Tomizawa
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, USA
| | | | | | | | | | | |
Collapse
|
36
|
Chamaon K, Schulz R, Smalla KH, Seidel B, Gundelfinger ED. Neuronal nicotinic acetylcholine receptors of Drosophila melanogaster: the alpha-subunit dalpha3 and the beta-type subunit ARD co-assemble within the same receptor complex. FEBS Lett 2000; 482:189-92. [PMID: 11024458 DOI: 10.1016/s0014-5793(00)02057-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dalpha3 is a functional alpha-subunit of Drosophila melanogaster nicotinic acetylcholine receptors (nAChRs). Here, we produced Dalpha3-specific antibodies to study which other nAChR subunits can co-assemble with Dalpha3 in receptor complexes of the Drosophila nervous system. Immunohistochemical studies revealed that Dalpha3 is co-distributed with the beta-subunit ARD in synaptic neuropil regions of the optic lobe. Both subunits can be co-purified by alpha-bungarotoxin affinity chromatography. Dalpha3 antibodies co-immunoprecipitate Dalpha3 and ARD proteins and, vice versa, anti-ARD antibodies co-precipitate ARD and Dalpha3. These data demonstrate that one type of fly nAChRs includes these two subunits as integral components.
Collapse
Affiliation(s)
- K Chamaon
- Leibniz Institute for Neurobiology, Department of Neurochemistry and Molecular Biology, Magdeburg, Germany
| | | | | | | | | |
Collapse
|