1
|
Jaitak A, Kumari K, Kounder S, Monga V. Carbonic anhydrases: Moiety appended derivatives, medicinal and pharmacological implications. Bioorg Med Chem 2024; 114:117933. [PMID: 39378610 DOI: 10.1016/j.bmc.2024.117933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
In the realm of enzymology, Carbonic anhydrase (CA) emerges as a pivotal protagonist orchestrating the rapid conversion of carbon dioxide and water into bicarbonate ions and hydrogen ions, respectively. Carbonic anhydrase inhibitors (CAIs) are the class of drugs that target various isoforms of the enzyme, and these inhibitors play a crucial role in the treatment and management of multiple diseases such as cancer, glaucoma, high altitude sickness, rheumatoid arthritis, obesity, epilepsy, and sleep apnea. Several structural classes of CAIs developed till date possess unique architects of the pharmacophoric requirements around the central core moiety for the selective targeting of various isoforms of the CA. Recent advancements in drug design and development, along with technologies that aid in structure determination, have led to the development of several isoform-selective inhibitors of CA enzymes. However, their clinical development was hampered by the lack of desired therapeutic efficacy, isoform selectivity and safety profile. This review covers the most recent approaches used by different researchers concerned with the development of isoform-selective carbonic anhydrase inhibitors belonging to distinct structural classes like sulphonamides, carbazoles, selenols, coumarin, organotelluride, topiramate, thiophene, triazole, uracil-modified benzylic amines, and thiourea etc. In addition, their structure-activity relationships, biological evaluation, and in silico studies inlcuding the forthcoming avenues of advancements have been discussed. This review serves as a valuable resource for developing potent and efficacious CAIs with remarkable therapeutic implications; offering insights into their potency, specificity, and potential clinical applications.
Collapse
Affiliation(s)
- Aashish Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Khushi Kumari
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Sanjay Kounder
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
2
|
Mishra KA, Sethi KK. Unveiling tomorrow: Carbonic anhydrase activators and inhibitors pioneering new frontiers in Alzheimer's disease. Arch Pharm (Weinheim) 2024:e2400748. [PMID: 39506506 DOI: 10.1002/ardp.202400748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and a principal basis of dementia in the elderly population globally. Recently, human carbonic anhydrases (hCAs, EC 4.2.1.1) were demonstrated as possible new targets for treating AD. hCAs are vital for maintaining pH balance and performing other physiological processes as they catalyze the reversible hydration of carbon dioxide to bicarbonate and a proton. Current research indicates that hCA plays a role in brain functions critical for transmitting neural signals. Activation of carbonic anhydrase (CA) has emerged as a promising avenue in addressing memory loss and cognitive issues. Conversely, the exploration of CA inhibition represents a novel frontier in this field. By enhancing glial fitness and cerebrovascular health and blocking amyloid-β (Aβ)-induced mitochondrial dysfunction pathways, cytochrome C (CytC) release, caspase 9 activation, and H2O2 generation in neurons, CA inhibitors improve cognition and lessen the pathology caused by Aβ. Recent research has pushed hCAs into the spotlight as critical players in AD pathogenesis and precise therapeutic targets. The captivating dilemma of choosing between hCA inhibitors and activators looms large, as inhibitors reduce Aβ aggregation and improve cerebral blood flow, while activators enhance cerebrovascular functions and restore pH balance. The current review sheds light on the clinical evidence for hCAs and the roles of inhibitors and activators in AD. Additionally, this review offers a fascinating outlook on the data that may aid medicinal chemists in designing and developing new leads that are more effective and selective for upcoming in vitro and in vivo studies, allowing for the discovery and introduction of novel drug candidates for the treatment of AD to the market and into the clinical pipeline.
Collapse
Affiliation(s)
- Km Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| |
Collapse
|
3
|
Fiorentino F, Nocentini A, Rotili D, Supuran CT, Mai A. Antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants potently activate pharmacologically relevant human carbonic anhydrase isoforms II and VII. J Enzyme Inhib Med Chem 2023; 38:2188147. [PMID: 36912265 PMCID: PMC10013323 DOI: 10.1080/14756366.2023.2188147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Carbonic anhydrases (CAs) are important regulators of pH homeostasis and participate in many physiological and pathological processes. CA activators (CAAs) are becoming increasingly important in the biomedical field since enhancing CA activity may have beneficial effects at neurological level. Here, we investigate selected antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants (TCAs) as potential activators of human CAs I, II, IV, and VII. Our findings indicate that these compounds are more effective at activating hCA II and VII compared to hCA I and IV. Overall, hCA VII was the most efficiently activated isoform, particularly by phenothiazines and TCAs. This is especially relevant since hCA VII is the most abundant isoform in the central nervous system (CNS) and is implicated in neuronal signalling and bicarbonate balance regulation. This study offers additional insights into the pharmacological profiles of clinically employed drugs and sets the ground for the development of novel optimised CAAs.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Polo Scientifico, University of Florence, Firenze, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Polo Scientifico, University of Florence, Firenze, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat Metab 2023; 5:546-562. [PMID: 37100996 PMCID: PMC10427836 DOI: 10.1038/s42255-023-00783-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/10/2023] [Indexed: 04/28/2023]
Abstract
Mitochondria have cell-type specific phenotypes, perform dozens of interconnected functions and undergo dynamic and often reversible physiological recalibrations. Given their multifunctional and malleable nature, the frequently used terms 'mitochondrial function' and 'mitochondrial dysfunction' are misleading misnomers that fail to capture the complexity of mitochondrial biology. To increase the conceptual and experimental specificity in mitochondrial science, we propose a terminology system that distinguishes between (1) cell-dependent properties, (2) molecular features, (3) activities, (4) functions and (5) behaviours. A hierarchical terminology system that accurately captures the multifaceted nature of mitochondria will achieve three important outcomes. It will convey a more holistic picture of mitochondria as we teach the next generations of mitochondrial biologists, maximize progress in the rapidly expanding field of mitochondrial science, and also facilitate synergy with other disciplines. Improving specificity in the language around mitochondrial science is a step towards refining our understanding of the mechanisms by which this unique family of organelles contributes to cellular and organismal health.
Collapse
Affiliation(s)
- Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
5
|
Aspatwar A, Supuran CT, Waheed A, Sly WS, Parkkila S. Mitochondrial carbonic anhydrase VA and VB: properties and roles in health and disease. J Physiol 2023; 601:257-274. [PMID: 36464834 PMCID: PMC10107955 DOI: 10.1113/jp283579] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Carbonic anhydrase V (CA V), a mitochondrial enzyme, was first isolated from guinea-pig liver and subsequently identified in mice and humans. Later, studies revealed that the mouse genome contains two mitochondrial CA sequences, named Car5A and Car5B. The CA VA enzyme is most highly expressed in the liver, whereas CA VB shows a broad tissue distribution. Car5A knockout mice demonstrated a predominant role for CA VA in ammonia detoxification, whereas the roles of CA VB in ureagenesis and gluconeogenesis were evident only in the absence of CA VA. Previous studies have suggested that CA VA is mainly involved in the provision of HCO3 - for biosynthetic processes. In children, mutations in the CA5A gene led to reduced CA activity, and the enzyme was sensitive to increased temperature. The metabolic profiles of these children showed a reduced supply of HCO3 - to the enzymes that take part in intermediary metabolism: carbamoylphosphate synthetase, pyruvate carboxylase, propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. Although the role of CA VB is still poorly understood, a recent study reported that it plays an essential role in human Sertoli cells, which sustain spermatogenesis. Metabolic disease associated with CA VA appears to be more common than other inborn errors of metabolism and responds well to treatment with N-carbamyl-l-glutamate. Therefore, early identification of hyperammonaemia will allow specific treatment with N-carbamyl-l-glutamate and prevent neurological sequelae. Carbonic anhydrase VA deficiency should therefore be considered a treatable condition in the differential diagnosis of hyperammonaemia in neonates and young children.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and Tampere University Hospital, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
6
|
Inhibitors of Mitochondrial Human Carbonic Anhydrases VA and VB as a Therapeutic Strategy against Paclitaxel-Induced Neuropathic Pain in Mice. Int J Mol Sci 2022; 23:ijms23116229. [PMID: 35682907 PMCID: PMC9181376 DOI: 10.3390/ijms23116229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathy development is a major dose-limiting side effect of anticancer treatments that significantly reduces patient's quality of life. The inadequate pharmacological approaches for neuropathic pain management warrant the identification of novel therapeutic targets. Mitochondrial dysfunctions that lead to reactive oxygen species (ROS) increase, cytosolic Ca2+ imbalance, and lactate acidosis are implicated in neuropathic pain pathogenesis. It has been observed that in these deregulations, a pivotal role is played by the mitochondrial carbonic anhydrases (CA) VA and VB isoforms. Hence, preclinical studies should be conducted to assess the efficacy of two novel selenides bearing benzenesulfonamide moieties, named 5b and 5d, and able to inhibit CA VA and VB against paclitaxel-induced neurotoxicity in mice. Acute treatment with 5b and 5d (30-100 mg/kg, per os - p.o.) determined a dose-dependent and long-lasting anti-hyperalgesic effect in the Cold plate test. Further, repeated daily treatment for 15 days with 100 mg/kg of both compounds (starting the first day of paclitaxel injection) significantly prevented neuropathic pain development without the onset of tolerance to the anti-hyperalgesic effect. In both experiments, acetazolamide (AAZ, 100 mg/kg, p.o.) used as the reference drug was partially active. Moreover, ex vivo analysis demonstrated the efficacy of 5b and 5d repeated treatments in reducing the maladaptive plasticity that occurs to glia cells in the lumbar portion of the spinal cord and in improving mitochondrial functions in the brain and spinal cord that were strongly impaired by paclitaxel-repeated treatment. In this regard, 5b and 5d ameliorated the metabolic activity, as observed by the increase in citrate synthase activity, and preserved an optimal mitochondrial membrane potential (ΔΨ) value, which appeared depolarized in brains from paclitaxel-treated animals. In conclusion, 5b and 5d have therapeutic and protective effects against paclitaxel-induced neuropathy without tolerance development. Moreover, 5b and 5d reduced glial cell activation and mitochondrial dysfunction in the central nervous system, being a promising candidate for the management of neuropathic pain and neurotoxicity evoked by chemotherapeutic drugs.
Collapse
|
7
|
Aspatwar A, Tolvanen MEE, Barker H, Syrjänen L, Valanne S, Purmonen S, Waheed A, Sly WS, Parkkila S. Carbonic Anhydrases in Metazoan Model Organisms: Molecules, Mechanisms, and Physiology. Physiol Rev 2022; 102:1327-1383. [PMID: 35166161 DOI: 10.1152/physrev.00018.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs but also contribute to a plethora of previously undescribed functions.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Leo Syrjänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Susanna Valanne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Purmonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
8
|
Sisley EK, Hale OJ, Styles IB, Cooper HJ. Native Ambient Mass Spectrometry Imaging of Ligand-Bound and Metal-Bound Proteins in Rat Brain. J Am Chem Soc 2022; 144:2120-2128. [DOI: 10.1021/jacs.1c10032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emma K. Sisley
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Oliver J. Hale
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Iain B. Styles
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, U.K
- The Alan Turing Institute, London, NW1 2DB, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, U.K
- University of Nottingham, Midlands, NG7 2RD, U.K
| | - Helen J. Cooper
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| |
Collapse
|
9
|
Lemon N, Canepa E, Ilies MA, Fossati S. Carbonic Anhydrases as Potential Targets Against Neurovascular Unit Dysfunction in Alzheimer’s Disease and Stroke. Front Aging Neurosci 2021; 13:772278. [PMID: 34867298 PMCID: PMC8635164 DOI: 10.3389/fnagi.2021.772278] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
The Neurovascular Unit (NVU) is an important multicellular structure of the central nervous system (CNS), which participates in the regulation of cerebral blood flow (CBF), delivery of oxygen and nutrients, immunological surveillance, clearance, barrier functions, and CNS homeostasis. Stroke and Alzheimer Disease (AD) are two pathologies with extensive NVU dysfunction. The cell types of the NVU change in both structure and function following an ischemic insult and during the development of AD pathology. Stroke and AD share common risk factors such as cardiovascular disease, and also share similarities at a molecular level. In both diseases, disruption of metabolic support, mitochondrial dysfunction, increase in oxidative stress, release of inflammatory signaling molecules, and blood brain barrier disruption result in NVU dysfunction, leading to cell death and neurodegeneration. Improved therapeutic strategies for both AD and stroke are needed. Carbonic anhydrases (CAs) are well-known targets for other diseases and are being recently investigated for their function in the development of cerebrovascular pathology. CAs catalyze the hydration of CO2 to produce bicarbonate and a proton. This reaction is important for pH homeostasis, overturn of cerebrospinal fluid, regulation of CBF, and other physiological functions. Humans express 15 CA isoforms with different distribution patterns. Recent studies provide evidence that CA inhibition is protective to NVU cells in vitro and in vivo, in models of stroke and AD pathology. CA inhibitors are FDA-approved for treatment of glaucoma, high-altitude sickness, and other indications. Most FDA-approved CA inhibitors are pan-CA inhibitors; however, specific CA isoforms are likely to modulate the NVU function. This review will summarize the literature regarding the use of pan-CA and specific CA inhibitors along with genetic manipulation of specific CA isoforms in stroke and AD models, to bring light into the functions of CAs in the NVU. Although pan-CA inhibitors are protective and safe, we hypothesize that targeting specific CA isoforms will increase the efficacy of CA inhibition and reduce side effects. More studies to further determine specific CA isoforms functions and changes in disease states are essential to the development of novel therapies for cerebrovascular pathology, occurring in both stroke and AD.
Collapse
Affiliation(s)
- Nicole Lemon
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Elisa Canepa
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Marc A. Ilies
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Silvia Fossati,
| |
Collapse
|
10
|
Carbonic Anhydrase Inhibitors and Epilepsy: State of the Art and Future Perspectives. Molecules 2021; 26:molecules26216380. [PMID: 34770789 PMCID: PMC8588504 DOI: 10.3390/molecules26216380] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Carbonic anhydrases (CAs) are a group of ubiquitously expressed metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3. Thus, they are involved in those physiological and pathological processes in which cellular pH buffering plays a relevant role. The inhibition of CAs has pharmacologic applications for several diseases. In addition to the well-known employment of CA inhibitors (CAIs) as diuretics and antiglaucoma drugs, it has recently been demonstrated that CAIs could be considered as valid therapeutic agents against obesity, cancer, kidney dysfunction, migraine, Alzheimer's disease and epilepsy. Epilepsy is a chronic brain disorder that dramatically affects people of all ages. It is characterized by spontaneous recurrent seizures that are related to a rapid change in ionic composition, including an increase in intracellular potassium concentration and pH shifts. It has been reported that CAs II, VII and XIV are implicated in epilepsy. In this context, selective CAIs towards the mentioned isoforms (CAs II, VII and XIV) have been proposed and actually exploited as anticonvulsants agents in the treatment of epilepsy. Here, we describe the research achievements published on CAIs, focusing on those clinically used as anticonvulsants. In particular, we examine the new CAIs currently under development that might represent novel therapeutic options for the treatment of epilepsy.
Collapse
|
11
|
Barresi E, Ravichandran R, Germelli L, Angeli A, Baglini E, Salerno S, Marini AM, Costa B, Da Pozzo E, Martini C, Da Settimo F, Supuran C, Cosconati S, Taliani S. Carbonic anhydrase activation profile of indole-based derivatives. J Enzyme Inhib Med Chem 2021; 36:1783-1797. [PMID: 34340630 PMCID: PMC8344252 DOI: 10.1080/14756366.2021.1959573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbonic Anhydrase Activators (CAAs) could represent a novel approach for the treatment of Alzheimer’s disease, ageing, and other conditions that require remedial achievement of spatial learning and memory therapy. Within a research project aimed at developing novel CAAs selective for certain isoforms, three series of indole-based derivatives were investigated. Enzyme activation assay on human CA I, II, VA, and VII isoforms revealed several effective micromolar activators, with promising selectivity profiles towards the brain-associated cytosolic isoform hCA VII. Molecular modelling studies suggested a theoretical model of the complex between hCA VII and the new activators and provide a possible explanation for their modulating as well as selectivity properties. Preliminary biological evaluations demonstrated that one of the most potent CAA 7 is not cytotoxic and is able to increase the release of the brain-derived neurotrophic factor (BDNF) from human microglial cells, highlighting its possible application in the treatment of CNS-related disorders.
Collapse
Affiliation(s)
| | | | | | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Sesto Fiorentino, Italy
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Barbara Costa
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | - Claudiu Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Sesto Fiorentino, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, Caserta, Italy
| | | |
Collapse
|
12
|
Ozsoy HZ. Anticonvulsant Effects of Carbonic Anhydrase Inhibitors: The Enigmatic Link Between Carbonic Anhydrases and Electrical Activity of the Brain. Neurochem Res 2021; 46:2783-2799. [PMID: 34226984 DOI: 10.1007/s11064-021-03390-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Acetazolamide (ACZ), a sulfonamide carbonic anhydrase (CA) inhibitor, was first introduced into medical use as a diuretic in the1950s. Shortly after its introduction, its antiglaucoma and anticonvulsant properties came to light. Subsequently, studies of ACZ have explored a plethora of neurophysiological functions of CAs in the CNS. In addition, topiramate (TPM) and zonisamide (ZNS), which were developed as antiepileptic drugs (AEDs) in the1990s, were found to have the ability to inhibit CAs. How CA inhibition prevents seizures is elusive. CA expression and activity are extensively detected in neurons, the choroid plexus, oligodendrocytes and astrocytes. TPM and ZNS appear to produce multimodal actions in the CNS as well as CA inhibition unlike ACZ. Nonetheless, CA inhibitors share some common denominators. They do not only affect the fine equilibrium among CO2, H+ and HCO3- in the extraneuronal and intraneuronal milieu, but also modulate the activity of ligand gated ion channels at the neuronal level such as GABA-A signaling through inhibiting CA-replenished HCO3- efflux. In addition, there are studies reporting their ability to alter Ca2+ kinetics through modulation of ligand gated Ca2+ channels, voltage gated Ca2+ channels (VGCC) or Ca2+-induced Ca2+ release channels (CICRC). The present study will review the involvement of CAs in the formation of epileptogenesis, and likely mechanisms by which CA inhibitors suppress the electrical activity of the brain. The common properties of CA inhibitors provide some clues for a possible link among metabolism, CAs, Ca2+ and GABA signaling.
Collapse
|
13
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
14
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
15
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
16
|
The Expression of Carbonic Anhydrases II, IX and XII in Brain Tumors. Cancers (Basel) 2020; 12:cancers12071723. [PMID: 32610540 PMCID: PMC7408524 DOI: 10.3390/cancers12071723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that participate in the regulation of pH homeostasis in addition to many other important physiological functions. Importantly, CAs have been associated with neoplastic processes and cancer. Brain tumors represent a heterogeneous group of diseases with a frequently dismal prognosis, and new treatment options are urgently needed. In this review article, we summarize the previously published literature about CAs in brain tumors, especially on CA II and hypoxia-inducible CA IX and CA XII. We review here their role in tumorigenesis and potential value in predicting prognosis of brain tumors, including astrocytomas, oligodendrogliomas, ependymomas, medulloblastomas, meningiomas, and craniopharyngiomas. We also introduce both already completed and ongoing studies focusing on CA inhibition as a potential anti-cancer strategy.
Collapse
|
17
|
Tomar JS, Shen J. Characterization of Carbonic Anhydrase In Vivo Using Magnetic Resonance Spectroscopy. Int J Mol Sci 2020; 21:E2442. [PMID: 32244610 PMCID: PMC7178054 DOI: 10.3390/ijms21072442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 01/30/2023] Open
Abstract
Carbonic anhydrase is a ubiquitous metalloenzyme that catalyzes the reversible interconversion of CO2/HCO3-. Equilibrium of these species is maintained by the action of carbonic anhydrase. Recent advances in magnetic resonance spectroscopy have allowed, for the first time, in vivo characterization of carbonic anhydrase in the human brain. In this article, we review the theories and techniques of in vivo 13C magnetization (saturation) transfer magnetic resonance spectroscopy as they are applied to measuring the rate of exchange between CO2 and HCO3- catalyzed by carbonic anhydrase. Inhibitors of carbonic anhydrase have a wide range of therapeutic applications. Role of carbonic anhydrases and their inhibitors in many diseases are also reviewed to illustrate future applications of in vivo carbonic anhydrase assessment by magnetic resonance spectroscopy.
Collapse
Affiliation(s)
| | - Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Provensi G, Carta F, Nocentini A, Supuran CT, Casamenti F, Passani MB, Fossati S. A New Kid on the Block? Carbonic Anhydrases as Possible New Targets in Alzheimer's Disease. Int J Mol Sci 2019; 20:E4724. [PMID: 31554165 PMCID: PMC6801497 DOI: 10.3390/ijms20194724] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
The increase in the incidence of neurodegenerative diseases, in particular Alzheimer's Disease (AD), is a consequence of the world's population aging but unfortunately, existing treatments are only effective at delaying some of the symptoms and for a limited time. Despite huge efforts by both academic researchers and pharmaceutical companies, no disease-modifying drugs have been brought to the market in the last decades. Recently, several studies shed light on Carbonic Anhydrases (CAs, EC 4.2.1.1) as possible new targets for AD treatment. In the present review we summarized preclinical and clinical findings regarding the role of CAs and their inhibitors/activators on cognition, aging and neurodegeneration and we discuss future challenges and opportunities in the field.
Collapse
Affiliation(s)
- Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology of Toxicology, University of Florence, 50139 Florence, Italy.
| | - Fabrizio Carta
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Florence, Italy.
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Florence, Italy.
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Florence, Italy.
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology of Toxicology, University of Florence, 50139 Florence, Italy.
| | - M Beatrice Passani
- Department of Health Sciences (DSS), Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy.
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT), Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
19
|
Abstract
INTRODUCTION The physiologic importance of fast CO2/HCO3- interconversion in various tissues requires the presence of carbonic anhydrase (CA, EC 4.2.1.1). Fourteen CA isozymes are present in humans, all of them being used as biomarkers. AREAS COVERED A great number of patents and articles were focused on the use of CA isozymes as biomarkers for various diseases and syndromes in the recent years, in an ascending trend over the last decade. The review highlights the most important studies related with each isozyme and covers the most recent patent literature. EXPERT OPINION The CAs biomarker research area expanded significantly in recent years, shifting from the predominant use of CA IX and CA XII in cancer diagnostic, staging, and prognosis towards a wider use of CA isozymes as disease biomarkers. CA isozymes are currently used either alone, in tandem with other CA isozymes and/or in combination with other proteins for the detection, staging, and prognosis of a huge repertoire of human dysfunctions and diseases, ranging from mild transformation of the normal tissues to extreme shifts in tissue organization and function. The techniques used for their detection/quantitation and the state-of-the-art in each clinical application are presented through relevant clinical examples and corresponding statistical data.
Collapse
Affiliation(s)
- Sabina Zamanova
- a Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA
| | - Ahmed M Shabana
- a Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA
| | - Utpal K Mondal
- a Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA
| | - Marc A Ilies
- a Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA.,b Temple Fox Chase Cancer Center , Philadelphia , PA , USA
| |
Collapse
|
20
|
Ozsoy HZ. Carbonic anhydrase enzymes: Likely targets for inhalational anesthetics. Med Hypotheses 2019; 123:118-124. [PMID: 30696581 DOI: 10.1016/j.mehy.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Inhalational anesthetics such as isoflurane, desflurane and halothane are the mainstay medications for surgical procedures; upon inhalation, they produce anesthesia described as reversible unconsciousness with the features of amnesia, sleep, immobility and analgesia. To date, how they produce anesthesia is unknown. This study proposes that carbonic anhydrase enzymes are likely targets mediating the actions of inhalational anesthetics. Carbonic anhydrase enzymes, commonly expressed in living organisms, utilize carbon dioxide (CO2) as a substrate and can generate H+ and HCO3- from CO2 with a great efficiency. There are remarkable lines of evidence for their likely roles in mediating anesthetic actions. Firstly, carbonic anhydrase enzymes are extensively expressed in the brain and spinal cord, and their importance in the brain activity, especially for the GABA and NMDA receptor signaling pathways, has been demonstrated in numerous studies. According to these studies, they provide HCO3- for GABA-A receptor activities and also buffer HCO3- excess resulting from NMDA receptor activation. Activation of GABA-A and inhibition of NMDA receptors are associated with the induction of anesthesia by the intravenous general anesthetics propofol and ketamine, respectively. Secondly, the carbonic anhydrase inhibitors topiramate and zonisamide are effectively used in the treatment of epilepsy for decades; their chronic use results in the requirement of increased levels of amobarbital in order to produce anesthesia in the epileptic patients during WADA test. In addition, given that CO2 is a substrate for these enzymes, their tertiary structure is likely has a hydrophobic pocket suitable for the anesthetic molecules to bind. Inhalational anesthetic molecules, which are lipophilic and inert in nature, have an ability to cross the membranes and inhibit carbonic anhydrases, which might not be accessible by topiramate and zonisamide. Unlike carbonic anhydrase inhibitors, they could bind to the hydrophobic pocket for CO2 molecules and produce a profound effect called anesthesia. Finally, there is a great deal of similarities between the physiological actions of inhalational anesthetics and carbonic anhydrase inhibitors; moreover well-known side effects of inhalational anesthetics could be associated with the inhibition of carbonic anhydrases. Therefore, this article presents a hypothesis that the anesthetic actions of inhalational anesthetics could be due to their inhibitory effects on the carbonic anhydrases. Investigating this hypothesis might lead to the development of new safer anesthetics, and more importantly it might reveal an endogenous anesthetic pathway, in which the carbonic anhydrase system is a component along with the GABA-A and NMDA receptor systems.
Collapse
Affiliation(s)
- H Z Ozsoy
- 2515 Gramercy Street, Houston, TX 77030, United States.
| |
Collapse
|
21
|
Chiu CD, Chiu YP, Lin CL, Ji HR, Shen CC, Lee HT, Chang C. Acetazolamide alleviates sequelae of hyperglycaemic intracerebral haemorrhage by suppressing astrocytic reactive oxygen species. Free Radic Res 2018; 52:1010-1019. [PMID: 30079794 DOI: 10.1080/10715762.2018.1508838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hyperglycaemia is associated with the poor outcome after intracerebral haemorrhage (ICH). Acetazolamide (AZA), a kind of carbonic anhydrogenase (CA) inhibitor, its effectiveness in ICH had been reported. However, the connections between AZA and ICH, especially in hyperglycaemia condition had never been defined. In this study, adult Sprague-Dawley rats were administered with vehicle or streptozotocin (STZ) to render them into normoglycaemic (NG) or hyperglycaemic (HG), respectively. Collagenase was then injected into the striatum. The NG or HG ICH rats treated with vehicle control or 5 mg/kg AZA (oral gavage) underwent haemorrhagic area assessments on the 1st, 4th, and 7th day after ICH. The coverage of pericytes was examined by immunohistochemistry. Reactive oxygen species (ROS) levels were assessed in mouse astrocyte cell line treated with vehicle or 20 μmol/L of AZA in culture media according to two different glucose concentrations. AZA reduced the haematoma size, improved neurobehavioral functions, suppressed astrocytic ROS production in vitro, and preserved cerebral pericytes coverage, which are even more remarkable in HG conditions. The present study indicates that AZA may alleviate some sequelae after ICH, especially in poorer prognostic HG rats through the suppression of astrocytic ROS production.
Collapse
Affiliation(s)
- Cheng-Di Chiu
- a School of Medicine , China Medical University , Taichung , Taiwan.,b Graduate Institute of Biomedical Science , China Medical University , Taichung , Taiwan.,c Department of Neurosurgery , China Medical University Hospital , Taichung , Taiwan.,d Stroke Center , China Medical University Hospital , Taichung , Taiwan
| | - You-Pen Chiu
- a School of Medicine , China Medical University , Taichung , Taiwan.,d Stroke Center , China Medical University Hospital , Taichung , Taiwan
| | - Cheng-Li Lin
- a School of Medicine , China Medical University , Taichung , Taiwan
| | - Hui-Ru Ji
- b Graduate Institute of Biomedical Science , China Medical University , Taichung , Taiwan.,d Stroke Center , China Medical University Hospital , Taichung , Taiwan
| | - Chiung-Chyi Shen
- e Department of Minimally Invasive Skull Base Neurosurgery , Neurological Institute, Taichung Veterans General Hospital , Taichung , Taiwan
| | - Hsu-Tung Lee
- f Department of Neurosurgical Oncology , Neurological Institute, Taichung Veterans General Hospital , Taichung , Taiwan
| | - Chen Chang
- g Institute of Biomedical Sciences, Academic Sinica , Taipei , Taiwan
| |
Collapse
|
22
|
Solesio ME, Peixoto PM, Debure L, Madamba SM, de Leon MJ, Wisniewski T, Pavlov EV, Fossati S. Carbonic anhydrase inhibition selectively prevents amyloid β neurovascular mitochondrial toxicity. Aging Cell 2018; 17:e12787. [PMID: 29873184 PMCID: PMC6052473 DOI: 10.1111/acel.12787] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 11/27/2022] Open
Abstract
Mounting evidence suggests that mitochondrial dysfunction plays a causal role in the etiology and progression of Alzheimer's disease (AD). We recently showed that the carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) prevents amyloid β (Aβ)-mediated onset of apoptosis in the mouse brain. In this study, we used MTZ and, for the first time, the analog CAI acetazolamide (ATZ) in neuronal and cerebral vascular cells challenged with Aβ, to clarify their protective effects and mitochondrial molecular mechanism of action. The CAIs selectively inhibited mitochondrial dysfunction pathways induced by Aβ, without affecting metabolic function. ATZ was effective at concentrations 10 times lower than MTZ. Both MTZ and ATZ prevented mitochondrial membrane depolarization and H2 O2 generation, with no effects on intracellular pH or ATP production. Importantly, the drugs did not primarily affect calcium homeostasis. This work suggests a new role for carbonic anhydrases (CAs) in the Aβ-induced mitochondrial toxicity associated with AD and cerebral amyloid angiopathy (CAA), and paves the way to AD clinical trials for CAIs, FDA-approved drugs with a well-known profile of brain delivery.
Collapse
Affiliation(s)
- María E. Solesio
- Department of Basic SciencesNew York University College of DentistryNew YorkNew York
| | - Pablo M. Peixoto
- Department of Natural SciencesBaruch CollegeGraduate CenterThe City University of New YorkNew YorkNew York
| | - Ludovic Debure
- Department of PsychiatryNew York University School of MedicineNew YorkNew York
| | - Stephen M. Madamba
- Department of Natural SciencesBaruch CollegeGraduate CenterThe City University of New YorkNew YorkNew York
| | - Mony J. de Leon
- Department of PsychiatryNew York University School of MedicineNew YorkNew York
| | - Thomas Wisniewski
- Department of NeurologyCenter for Cognitive NeurologyNew York University School of MedicineNew YorkNew York
| | - Evgeny V. Pavlov
- Department of Basic SciencesNew York University College of DentistryNew YorkNew York
| | - Silvia Fossati
- Department of PsychiatryNew York University School of MedicineNew YorkNew York
- Department of NeurologyCenter for Cognitive NeurologyNew York University School of MedicineNew YorkNew York
| |
Collapse
|
23
|
Expression of Carbonic Anhydrase I in Motor Neurons and Alterations in ALS. Int J Mol Sci 2016; 17:ijms17111820. [PMID: 27809276 PMCID: PMC5133821 DOI: 10.3390/ijms17111820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/27/2022] Open
Abstract
Carbonic anhydrase I (CA1) is the cytosolic isoform of mammalian α-CA family members which are responsible for maintaining pH homeostasis in the physiology and pathology of organisms. A subset of CA isoforms are known to be expressed and function in the central nervous system (CNS). CA1 has not been extensively characterized in the CNS. In this study, we demonstrate that CA1 is expressed in the motor neurons in human spinal cord. Unexpectedly, a subpopulation of CA1 appears to be associated with endoplasmic reticulum (ER) membranes. In addition, the membrane-associated CA1s are preferentially upregulated in amyotrophic lateral sclerosis (ALS) and exhibit altered distribution in motor neurons. Furthermore, long-term expression of CA1 in mammalian cells activates apoptosis. Our results suggest a previously unknown role for CA1 function in the CNS and its potential involvement in motor neuron degeneration in ALS.
Collapse
|
24
|
Cloning, expression, purification and characterization of human mitochondrial carbonic anhydrase VA. 3 Biotech 2016; 6:16. [PMID: 28330086 PMCID: PMC4705057 DOI: 10.1007/s13205-015-0334-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/23/2015] [Indexed: 10/25/2022] Open
Abstract
Carbonic anhydrase VA (CAVA) is a mitochondrial enzyme that catalyzes the reversible hydration of CO2 to produce HCO3- and proton. CAV is primarily involved in several biosynthetic processes such as ureagenesis, gluconeogenesis and lipogenesis by providing bicarbonate ion. Here, we report a new strategy for cloning, expression and purification for CAVA in the bacterial system followed by its biophysical characterization. The cDNA of CAVA, a 801 nucleotide long that encodes a 267-amino acid polypeptide of molecular mass of 30-kDa (excluding signal peptide), was sub-cloned in the expression vector pET21c and transformed into Escherichia coli strain BL21 (DE3) for expression. The recombinant protein was purified in two steps by Ni-NTA and DEAE weak anion-exchange chromatography under native condition from the supernatant, while inclusion bodies (IBs) were used to get protein under the denatured condition with a relatively high yield. CAVA was purified under denatured conditions in a single step using Ni-NTA chromatography. SDS-PAGE showed a band of 30-kDa, which was further confirmed as CAVA by Western blot and MALDI-TOF/MS. We further performed enzyme activity to ensure that both forms of purified proteins are enzymatically active. Measurements of secondary structure of the native, denatured and renatured proteins were carried out using circular dichroism. The purified protein can be further used for structural and biochemical studies.
Collapse
|
25
|
Filipeanu CM, Guidry JJ, Leonard ST, Winsauer PJ. Δ9-THC increases endogenous AHA1 expression in rat cerebellum and may modulate CB1 receptor function during chronic use. J Neurochem 2011; 118:1101-12. [PMID: 21781118 DOI: 10.1111/j.1471-4159.2011.07391.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To characterize the long-term effects of adolescent marijuana abuse, we performed a proteomic analysis of cerebellar extracts from adult female rats with and without ovariectomy that were treated with Δ9-THC for 40 days during adolescence. Six proteins were found to significantly differ among the four treatment groups, with Δ9-THC and ovariectomy (OVX) decreasing the mitochondrial proteins, pyruvate carboxylase and NADH dehydrogenase, whereas the levels of putative cytosolic molecular chaperones NM23B, translationally controlled tumor protein, DJ-1 and activator of heat-shock 90kDa protein ATPase homolog 1 (AHA1) were increased. We further analyzed the effects of AHA1, a HSP90 co-chaperone, on CB1R and CB2R trafficking and signaling in transfected HEK293T and Neuro-2A cells. In HEK293T cells, AHA1 over-expression enhanced plasma membrane levels of CB1R and increased CB1R-mediated effects on cAMP levels and on MAPK phosphorylation. AHA1 over-expression also enhanced cell surface levels of endogenous CB1R and the effects of Δ9-THC on the cAMP levels in Neuro-2A cells. In contrast, over-expression of AHA1 did not affect the subcellular localization and signaling of CB2R. Our data indicate that chronic Δ9-THC administration in adolescence altered the endogenous levels of specialized proteins in the cerebellum, such as AHA1, and that this protein can change CB1R cell surface levels and signaling.
Collapse
Affiliation(s)
- Catalin M Filipeanu
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.
| | | | | | | |
Collapse
|
26
|
Wahab A, Albus K, Heinemann U. Age- and region-specific effects of anticonvulsants and bumetanide on 4-aminopyridine-induced seizure-like events in immature rat hippocampal-entorhinal cortex slices. Epilepsia 2010; 52:94-103. [PMID: 21083847 DOI: 10.1111/j.1528-1167.2010.02722.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Seizure-like events (SLEs) induced by 4-aminopyridine in rat organotypic slices cultures, which are prepared early after birth, are resistant to standard antiepileptic drugs. In this study we tested the hypothesis that pharmacoresistance may be an intrinsic property of the immature brain. METHODS Frequently recurring SLEs presumably representing status epilepticus were induced by 4-aminopyridine in acute rat hippocampal-entorhinal cortex slices obtained from postnatal day 3-19 (P3-P19), and the effects of carbamazepine, phenytoin, valproic acid, and phenobarbital were examined. In addition, bumetanide was tested, which blocks the Na(+) -K(+) -2Cl(-) (NKCC1) cotransporter, and also acetazolamide, which blocks the carbonic anhydrase and thereby the accumulation of bicarbonate inside neurons. RESULTS The efficacy of all antiepileptic drugs in blocking SLEs was dependent on postnatal age, with low efficacy in P3-P5 slices. Antiepileptic drugs suppressed SLEs more readily in the medial entorhinal cortex (ECm) than in the CA3. In P3-P5 slices, valproic acid and phenobarbital increased both tonic and clonic seizure-like activities in the CA3, whereas phenytoin and carbamazepine blocked tonic-like but prolonged clonic-like activity. In P3-P5 slices, bumetanide often blocked SLEs in the CA3, but was not as effective in the ECm. Like with other antiepileptic drugs, the seizure-suppressing effects of acetazolamide increased with postnatal age. CONCLUSION We conclude that pharmacoresistance may be inherent to very immature tissue and suggest that expression of the NKCC1 cotransporter might contribute to pharmacoresistance.
Collapse
Affiliation(s)
- Abdul Wahab
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
27
|
Deforges S, Branchu J, Biondi O, Grondard C, Pariset C, Lécolle S, Lopes P, Vidal PP, Chanoine C, Charbonnier F. Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis. J Physiol 2009; 587:3561-72. [PMID: 19491245 DOI: 10.1113/jphysiol.2009.169748] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Several studies using transgenic mouse models of familial amyotrophic lateral sclerosis (ALS) have reported a life span increase in exercised animals, as long as animals are submitted to a moderate-intensity training protocol. However, the neuroprotective potential of exercise is still questionable. To gain further insight into the cellular basis of the exercise-induced effects in neuroprotection, we compared the efficiency of a swimming-based training, a high-frequency and -amplitude exercise that preferentially recruits the fast motor units, and of a moderate running-based training, that preferentially triggers the slow motor units, in an ALS mouse model. Surprisingly, we found that the swimming-induced benefits sustained the motor function and increased the ALS mouse life span by about 25 days. The magnitude of this beneficial effect is one of the highest among those induced by any therapeutic strategy in this disease. We have shown that, unlike running, swimming significantly delays spinal motoneuron death and, more specifically, the motoneurons of large soma area. Analysis of the muscular phenotype revealed a swimming-induced relative maintenance of the fast phenotype in fast-twitch muscles. Furthermore, the swimming programme preserved astrocyte and oligodendrocyte populations in ALS spinal cord. As a whole, these data are highly suggestive of a causal relationship not only linking motoneuron activation and protection, but also motoneuron protection and the maintenance of the motoneuron surrounding environment. Basically, exercise-induced neuroprotective mechanisms provide an example of the molecular adaptation of activated motoneurons.
Collapse
Affiliation(s)
- Séverine Deforges
- University Paris Descartes, UMR 7060 CNRS, 45 rue des Saints-Pères, Paris 75006, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Obara M, Szeliga M, Albrecht J. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int 2007; 52:905-19. [PMID: 18061308 DOI: 10.1016/j.neuint.2007.10.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 11/27/2022]
Abstract
The maintenance of pH homeostasis in the CNS is of key importance for proper execution and regulation of neurotransmission, and deviations from this homeostasis are a crucial factor in the mechanism underlying a spectrum of pathological conditions. The first few sections of the review are devoted to the brain operating under normal conditions. The article commences with an overview of how extrinsic factors modelling the brain at work: neurotransmitters, depolarising stimuli (potassium and voltage changes) and cyclic nucleotides as major signal transducing vehicles affect pH in the CNS. Further, consequences of pH alterations on the major aspects of CNS function and metabolism are outlined. Next, the major cellular events involved in the transport, sequestration, metabolic production and buffering of protons that are common to all the mammalian cells, including the CNS cells. Since CNS function reflects tight interaction between astrocytes and neurons, the pH regulatory events pertinent to either cell type are discussed: overwhelming evidence implicates astrocytes as a key player in pH homeostasis in the brain. The different classes of membrane proteins involved in proton shuttling are listed and their mechanisms of action are given. These include: the Na+/H+ exchanger, different classes of bicarbonate transporters acting in a sodium-dependent- or -independent mode, monocarboxylic acid transporters and the vacuolar-type proton ATPase. A separate section is devoted to carbonic anhydrase, which is represented by multiple isoenzymes capable of pH buffering both in the cell interior and in the extracellular space. Next, impairment of pH regulation and compensatory responses occurring in brain affected by different pathologies: hypoxia/ischemia, epilepsy, hyperammonemic encephalopathies, cerebral tumours and HIV will be described. The review is limited to facts and plausible hypotheses pertaining to phenomena directly involved in pH regulation: changes in pH that accompany metabolic stress but have no distinct implications for the pH regulatory mechanisms are not dealt with. In most cases, the vast body of knowledge derived from in vitro studies remains to be verified in in vivo settings.
Collapse
Affiliation(s)
- Marta Obara
- Department of Neurotoxicology, Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
29
|
Temperini C, Innocenti A, Mastrolorenzo A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Interaction of the antiepileptic drug sulthiame with twelve mammalian isoforms: Kinetic and X-ray crystallographic studies. Bioorg Med Chem Lett 2007; 17:4866-72. [PMID: 17588751 DOI: 10.1016/j.bmcl.2007.06.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
Sulthiame, a clinically used antiepileptic, was investigated for its interaction with 12 catalytically active mammalian carbonic anhydrase (CA, EC 4.2.1.1) isoforms. The drug is a potent inhibitor of CA II, VII, IX, and XII (K(I)s of 6-56 nM), and a medium potency inhibitor against CA IV, VA, VB, and VI (K(I)s of 81-134 nM). The high resolution crystal structure of the hCA II-sulthiame adduct revealed a large number of favorable interactions between the drug and the enzyme which explain its strong low nanomolar affinity for this isoform and may also be exploited for the design of effective inhibitors incorporating sultam moieties.
Collapse
Affiliation(s)
- Claudia Temperini
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | | | | | | | | |
Collapse
|
30
|
Winum JY, Thiry A, Cheikh KE, Dogné JM, Montero JL, Vullo D, Scozzafava A, Masereel B, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of isoforms I, II, IV, VA, VII, IX, and XIV with sulfonamides incorporating fructopyranose-thioureido tails. Bioorg Med Chem Lett 2007; 17:2685-91. [PMID: 17376683 DOI: 10.1016/j.bmcl.2007.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/02/2007] [Accepted: 03/03/2007] [Indexed: 11/27/2022]
Abstract
A series of aromatic/heterocyclic sulfonamides incorporating 2,3:4,5-bis-O-(isopropylidene)-beta-d-fructopyranosyl-thioureido moieties has been synthesized and assayed for the inhibition of seven human isoforms of the zinc enzyme carbonic anhydrase (hCA, EC 4.2.1.1). The new derivatives behaved as weak hCA I inhibitors (K(I)s of 9.4 -13.3microM), were efficient hCA II inhibitors (K(I)s of 6-750nM), and slightly inhibited isoforms hCA IV and hCA VA. Only the sulfanilamide derivative showed efficient and selective inhibition of hCA IV (K(I) of 10nM). These derivatives also showed excellent hCA VII inhibitory activity (K(I)s of 10-79nM), being less efficient as inhibitors of the transmembrane isoforms hCA IX (K(I)s of 10-4500nM) and hCA XIV (K(I)s of 21-3500nM). Two of the new compounds showed anticonvulsant action in a maximal electroshock seizure test in mice, with the fluorosulfanilamide derivative being a more efficient anticonvulsant than the antiepileptic drug topiramate.
Collapse
Affiliation(s)
- Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-UM1-UM2 Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jalabi W, Boehm N, Grucker D, Ghandour MS. Recovery of myelin after induction of oligodendrocyte cell death in postnatal brain. J Neurosci 2006; 25:2885-94. [PMID: 15772348 PMCID: PMC6725149 DOI: 10.1523/jneurosci.2748-04.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A transgenic mouse line (Oligo-TTK) was established to monitor oligodendrocyte cell death and myelin formation in the CNS. The expression of a conditionally toxic gene, the herpes simplex virus-1 thymidine kinase (HSV1-TK), was made under control of the MBP (myelin basic protein) gene promoter. A truncated form of the HSV1-TK (TTK) gene was used to avoid both bystander effect resulting from leaking in thymidine kinase activity and sterility in transgenic males observed in previous transgenic mice. The transgene was expressed in the CNS with a restricted localization in oligodendrocytes. Oligodendrocyte proliferation and myelin formation are therefore tightly controlled experimentally by administration of ganciclovir (GCV) via the induction of oligodendrocyte cell death. The most severe and irreversible hypomyelination was obtained when GCV was given daily from postnatal day 1 (P1) to P30. Oligodendrocyte plasticity and myelin recovery were analyzed in another phenotype generated by GCV treatment from P1 to P15. In this model, after dysmyelination, an apparent normal behavior was restored with no visible pathological symptoms by P30. Proliferating cells, which may be implicated in myelin repair in this model, are detected primarily in myelin tracts expressing the oligodendrocyte phenotype. Therefore, the endogenous potential of oligodendrocytes to remyelinate was clearly demonstrated in the mice of this study.
Collapse
MESH Headings
- Age Factors
- Analysis of Variance
- Animals
- Animals, Newborn
- Antiviral Agents/pharmacology
- Brain/cytology
- Brain/growth & development
- Bromodeoxyuridine/metabolism
- Cell Death/drug effects
- Cell Death/physiology
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/metabolism
- Disease Models, Animal
- Ganciclovir/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/physiology
- Herpesvirus 1, Human/physiology
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Male
- Mice
- Mice, Transgenic
- Microscopy, Electron, Transmission/methods
- Myelin Basic Protein/genetics
- Myelin Basic Protein/metabolism
- Myelin Sheath/metabolism
- Oligodendroglia/drug effects
- Oligodendroglia/physiology
- Promoter Regions, Genetic/physiology
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Thymidine Kinase/genetics
Collapse
Affiliation(s)
- Walid Jalabi
- Institut de Physique Biologique, Unité Mixte de Recherche 7004, Université Louis Pasteur/Centre National de la Recherche Scientifique, Faculté de Médecine, 67085 Strasbourg, France
| | | | | | | |
Collapse
|
32
|
Nagelhus EA, Mathiisen TM, Bateman AC, Haug FM, Ottersen OP, Grubb JH, Waheed A, Sly WS. Carbonic anhydrase XIV is enriched in specific membrane domains of retinal pigment epithelium, Muller cells, and astrocytes. Proc Natl Acad Sci U S A 2005; 102:8030-5. [PMID: 15901897 PMCID: PMC1142392 DOI: 10.1073/pnas.0503021102] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous enzymes important to many cell types throughout the body. They help determine levels of H(+) and HCO(-)(3) and thereby regulate intracellular and extracellular pH and volume. CA XIV, an extracellular membrane-bound CA, was recently shown to be present in brain and retina. Here, we analyze the subcellular distribution of CA XIV in retina by high-resolution immunogold cytochemistry and show that the distribution in retina (on glial cells but not neurons) is different from that reported for brain (on neurons but not glia). In addition, CA XIV is strongly expressed on retinal pigment epithelium (RPE). The specific membrane domains that express CA XIV were endfoot and nonendfoot membranes on Muller cells and astrocytes and apical and basolateral membranes of RPE. Gold particle density was highest on microvilli plasma membranes of RPE, where it was twice that of glial endfoot and Muller microvilli membranes and four times that of other glial membrane domains. Neither neurons nor capillary endothelial cells showed detectable labeling for CA XIV. This enrichment of CA XIV on specific membrane domains of glial cells and RPE suggests specialization for buffering pH and volume in retinal neurons and their surrounding extracellular spaces. We suggest that CA XIV is the target of CA inhibitors that enhance subretinal fluid absorption in macular edema. In addition, CA XIV may facilitate CO(2) removal from neural retina and modulate photoreceptor function.
Collapse
Affiliation(s)
- Erlend A Nagelhus
- Nordic Centre for Water Imbalance Related Disorders and Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Henmi C, Sawa H, Iwata H, Orba Y, Tanaka S, Nagashima K. Establishment of an immunoscreening system using recombinant VP1 protein for the isolation of a monoclonal antibody that blocks JC virus infection. Biochem Biophys Res Commun 2005; 327:242-51. [PMID: 15629455 PMCID: PMC7117536 DOI: 10.1016/j.bbrc.2004.11.158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Indexed: 11/24/2022]
Abstract
Polyomavirus JC (JCV) infection causes the fatal human demyelinating disease, progressive multifocal leukoencephalopathy. Although the initial interaction of JCV with host cells occurs through direct binding of the major viral capsid protein (VP1) with cell-surface molecules possessing sialic acid, these molecules have not yet been identified. In order to isolate monoclonal antibodies which inhibit attachment of JCV, we established an immunoscreening system using virus-like particles consisting of the VP1. Using this system, among monoclonal antibodies against the cell membrane fraction from JCV-permissive human neuroblastoma IMR-32 cells, we isolated a monoclonal antibody designated as 24D2 that specifically inhibited attachment and infection of JCV to IMR-32 cells. The antibody 24D2 recognized a single molecule of around 60 kDa in molecular weight in the IMR-32 membrane fraction. Immunohistochemical staining with 24D2 demonstrated immunoreactivity in the cell membrane of JCV-permissive cell lines and glial cells of the human brain. These results suggested that the molecule recognized by 24D2 plays a role in JCV infection, and that it might participate as a receptor or a co-receptor in JCV attachment and entry into the cells.
Collapse
Affiliation(s)
- Chizuka Henmi
- Laboratory of Molecular and Cellular Pathology, Hokkaido University School of Medicine, CREST, JST, Sapporo 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Ruusuvuori E, Li H, Huttu K, Palva JM, Smirnov S, Rivera C, Kaila K, Voipio J. Carbonic anhydrase isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J Neurosci 2004; 24:2699-707. [PMID: 15028762 PMCID: PMC6729533 DOI: 10.1523/jneurosci.5176-03.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Identification of the molecular mechanisms that enable synchronous firing of CA1 pyramidal neurons is central to the understanding of the functional properties of this major hippocampal output pathway. Using microfluorescence measurements of intraneuronal pH, in situ hybridization, as well as intracellular, extracellular, and K+-sensitive microelectrode recordings, we show now that the capability for synchronous gamma-frequency (20-80 Hz) firing in response to high-frequency stimulation (HFS) emerges abruptly in the rat hippocampus at approximately postnatal day 12. This was attributable to a steep developmental upregulation of intrapyramidal carbonic anhydrase isoform VII, which acts as a key molecule in the generation of HFS-induced tonic GABAergic excitation. These results point to a crucial role for the developmental expression of intrapyramidal carbonic anhydrase VII activity in shaping integrative functions, long-term plasticity and susceptibility to epileptogenesis.
Collapse
Affiliation(s)
- Eva Ruusuvuori
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 2004; 129:877-96. [PMID: 15561405 DOI: 10.1016/j.neuroscience.2004.09.053] [Citation(s) in RCA: 422] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Astrocytes are highly complex cells that respond to a variety of external stimulations. One of the chief functions of astrocytes is to optimize the interstitial space for synaptic transmission by tight control of water and ionic homeostasis. Several lines of work have, over the past decade, expanded the role of astrocytes and it is now clear that astrocytes are active participants in the tri-partite synapse and modulate synaptic activity in hippocampus, cortex, and hypothalamus. Thus, the emerging concept of astrocytes includes both supportive functions as well as active modulation of neuronal output. Glutamate plays a central role in astrocytic-neuronal interactions. This excitatory amino acid is cleared from the neuronal synapses by astrocytes via glutamate transporters, and is converted into glutamine, which is released and in turn taken up by neurons. Furthermore, metabotropic glutamate receptor activation on astrocytes triggers via increases in cytosolic Ca(2+) a variety of responses. For example, calcium-dependent glutamate release from the astrocytes modulates the activity of both excitatory and inhibitory synapses. In vivo studies have identified the astrocytic end-foot processes enveloping the vessel walls as the center for astrocytic Ca(2+) signaling and it is possible that Ca(2+) signaling events in the cellular component of the blood-brain barrier are instrumental in modulation of local blood flow as well as substrate transport. The hormonal regulation of water and ionic homeostasis is achieved by the opposing effects of vasopressin and atrial natriuretic peptide on astroglial water and chloride uptake. In conjuncture, the brain appears to have a distinct astrocytic perivascular system, involving several potassium channels as well as aquaporin 4, a membrane water channel, which has been localized to astrocytic endfeet and mediate water fluxes within the brain. The multitask functions of astrocytes are essential for higher brain function. One of the major challenges for future studies is to link receptor-mediated signaling events in astrocytes to their roles in metabolism, ion, and water homeostasis.
Collapse
Affiliation(s)
- M Simard
- Utah Diabetes Center, 615 Arapeen Drive, Suite 100, Salt Lake City, UT 84108, USA.
| | | |
Collapse
|
36
|
Casini A, Caccia S, Scozzafava A, Supuran CT. Carbonic anhydrase activators. The selective serotonin reuptake inhibitors fluoxetine, sertraline and citalopram are strong activators of isozymes I and II. Bioorg Med Chem Lett 2003; 13:2765-8. [PMID: 12873510 DOI: 10.1016/s0960-894x(03)00507-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective serotonin reuptake inhibitors (SSRI) fluoxetine, sertraline and citalopram have been investigated for their ability to activate two carbonic anhydrase (CA) isozymes, hCA I and hCA II, in parallel with two standard activators for which the X-ray structure (in complex with isozyme II) has been resolved: histamine and phenylalanine. All three SSRI activated both isozymes with potencies comparable to that of the standards although the profile was different: for hCA I, best activators were fluoxetine and histamine, with citalopram and sertraline showing weaker activity. For hCA II, the best activators were phenylalanine and citalopram, and the weakest histamine and sertraline, whereas fluoxetine showed an intermediate behavior. These results suggest that SSRI efficacy in major depression complicating Alzheimer's disease may be partly due to their ability to activate CA isozymes and may lead to the development of potent activators for the therapy of diseases associated with significant decreases in brain CA activity.
Collapse
Affiliation(s)
- Angela Casini
- Università degli Studi di Firenze, Dipartimento di Chimica, Rm 188, Via della Lastruccia 3, I-50019 (Firenze), Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
37
|
Jalabi W, Cerghet M, Skoff RP, Ghandour MS. Detection of oligodendrocytes in tissue sections using PCR synthesis of digoxigenin-labeled probes. J Histochem Cytochem 2003; 51:913-9. [PMID: 12810841 DOI: 10.1177/002215540305100706] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Oligodendrocytes, the myelin-forming cells in the central nervous system, were visualized with excellent resolution at the light microscopic level using in situ hybridization (ISH). Digoxigenin (Dig)-tagged probes were synthesized and efficiently labeled by PCR. Specific probes to myelin genes were made by RT from brain total RNAs, followed by PCR with designed specific primers in the presence of Dig-11-dUTP. Probes specific to proteolipid protein (PLP), PLP and its isoform DM20 (PLP/DM20), and myelin oligodendrocyte glycoprotein (MOG) were synthesized and labeled. ISH was then applied on vibratomed tissue sections from mouse brains. Despite a low expression of MOG-specific and PLP-specific mRNAs in adult and newborn mouse brains, an oligodendrocyte population was detected. The specificity of Dig-labeled probes was confirmed with the double labeling of carbonic anhydrase II (CA II) and glial fibrillary acidic protein (GFAP) immunocytochemistry and ISH. This versatile and easy method for synthesis and labeling of specific probes to oligodendrocytes can be also applied to detect many other mRNAs in the nervous system and in other tissues.
Collapse
Affiliation(s)
- Walid Jalabi
- UMR 7004 CNRS/ULP, Faculté de Médecine, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg, France
| | | | | | | |
Collapse
|
38
|
Nógrádi A, Domoki F, Dégi R, Borda S, Pákáski M, Szabó A, Bari F. Up-regulation of cerebral carbonic anhydrase by anoxic stress in piglets. J Neurochem 2003; 85:843-50. [PMID: 12716416 DOI: 10.1046/j.1471-4159.2003.01721.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The resuscitation of asphyxiated babies is associated with changes in cerebral protein synthesis that can influence the neurological outcome. Insufficient gas exchange results in rapid shifts in extracellular and intracellular pH. Carbonic anhydrase (CA) plays an important role in buffering acute changes in pH in the brain. We investigated whether asphyxia/re-ventilation influences the expression of cerebral CA isoforms (CA-II, CA-III and CA-IV) in anaesthetized newborn pigs. The cerebral cortex, hippocampus, cerebellum and retina were sampled, and prepared for either CA immunohistochemistry or CA immunoblotting from piglets subjected to asphyxia (10 min) followed by 2-4 h of re-ventilation, and also from normoxic controls. The CA immunoreactivity (IR) of all the isoforms studied was weak in the controls, apart from staining of a few oligodendrocytes in the subcortical white matter, some astrocytes in the superficial layer of the cerebral cortex, the cerebellar Purkinje cells and the retinal Müller cells that possessed moderate CA-II IR. However, asphyxia induced a marked increase in the CA IR of all isoforms in all the cerebral regions investigated and the retina after 4 h of survival. The pyramidal cells of the frontal cortex and hippocampus displayed the most conspicuous increase in CA IR. Immunoblotting confirmed increased levels of all the CA isoenzymes. We conclude that raised CA levels after asphyxia may contribute to the compensatory mechanisms that protect against the pathological changes in the neonatal CNS.
Collapse
Affiliation(s)
- Antal Nógrádi
- Department of Ophthalmology, University of Szeged, H-6720 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
39
|
Leniger T, Wiemann M, Bingmann D, Widman G, Hufnagel A, Bonnet U. Carbonic anhydrase inhibitor sulthiame reduces intracellular pH and epileptiform activity of hippocampal CA3 neurons. Epilepsia 2002; 43:469-74. [PMID: 12027906 DOI: 10.1046/j.1528-1157.2002.32601.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Sulthiame is a carbonic anhydrase (CA) inhibitor with an anticonvulsant effect in the treatment of benign and symptomatic focal epilepsy in children. The aim of the study was to elucidate the mode of action of sulthiame with respect to possible changes of intracellular pH (pHi) that might develop along with sulthiame's anticonvulsant properties. METHODS The effects of sulthiame (a) on pHi of 2',7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxymetyl ester (BCECF-AM) loaded CA3 neurones as well as (b) on epileptiform activity (induced by 50 microM 4-aminopyridine) were compared with those of the CA inhibitors acetazolamide and benzolamide. RESULTS In the majority of neurons, sulthiame (1.0-1.5 mM; n = 8) as well as the membrane permeant acetazolamide (0.5-1.0 mM; n = 6) reversibly decreased pHi by 0.18 +/- 0.05 (SD) and 0.17 +/- 0.10 (SD) pH units, respectively, within 10 min. The poor membrane permeant benzolamide (1.0-2.0 mM) had no influence on pHi (n = 8). Sulthiame (1.0-2.5 mM) and acetazolamide (1.0-2.0 mM) reversibly reduced the frequency of action potentials and epileptiform bursts after 10-15 min (n = 9, n = 7), whereas benzolamide (1.0-2.0 mM) had no effect (n = 6). CONCLUSIONS The results suggest that sulthiame acts as a membrane-permeant CA inhibitor whose beneficial effect on epileptiform activity results at least in part from a modest intracellular acidosis of central neurons.
Collapse
Affiliation(s)
- Tobias Leniger
- Department of Neurology, University of Essen, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Parkkila S, Parkkila AK, Rajaniemi H, Shah GN, Grubb JH, Waheed A, Sly WS. Expression of membrane-associated carbonic anhydrase XIV on neurons and axons in mouse and human brain. Proc Natl Acad Sci U S A 2001; 98:1918-23. [PMID: 11172051 PMCID: PMC29357 DOI: 10.1073/pnas.98.4.1918] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although long suspected from histochemical evidence for carbonic anhydrase (CA) activity on neurons and observations that CA inhibitors enhance the extracellular alkaline shifts associated with synaptic transmission, an extracellular CA in brain had not been identified. A candidate for this CA was suggested by the recent discovery of membrane CA (CA XIV) whose mRNA is expressed in mouse and human brain and in several other tissues. For immunolocalization of CA XIV in mouse and human brain, we developed two antibodies, one against a secretory form of enzymatically active recombinant mouse CA XIV, and one against a synthetic peptide corresponding to the 24 C-terminal amino acids in the human enzyme. Immunostaining for CA XIV was found on neuronal membranes and axons in both mouse and human brain. The highest expression was seen on large neuronal bodies and axons in the anterolateral part of pons and medulla oblongata. Other CA XIV-positive sites included the hippocampus, corpus callosum, cerebellar white matter and peduncles, pyramidal tract, and choroid plexus. Mouse brain also showed a positive reaction in the molecular layer of the cerebral cortex and granular cellular layer of the cerebellum. These observations make CA XIV a likely candidate for the extracellular CA postulated to have an important role in modulating excitatory synaptic transmission in brain.
Collapse
Affiliation(s)
- S Parkkila
- Department of Anatomy and Cell Biology, University of Oulu, 90014 Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|