1
|
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 2023; 13:1084101. [PMID: 36685598 PMCID: PMC9853461 DOI: 10.3389/fimmu.2022.1084101] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that is often associated with significant loss of function and/or permanent disability. The pathophysiology of SCI is complex and occurs in two phases. First, the mechanical damage from the trauma causes immediate acute cell dysfunction and cell death. Then, secondary mechanisms of injury further propagate the cell dysfunction and cell death over the course of days, weeks, or even months. Among the secondary injury mechanisms, inflammation has been shown to be a key determinant of the secondary injury severity and significantly worsens cell death and functional outcomes. Thus, in addition to surgical management of SCI, selectively targeting the immune response following SCI could substantially decrease the progression of secondary injury and improve patient outcomes. In order to develop such therapies, a detailed molecular understanding of the timing of the immune response following SCI is necessary. Recently, several studies have mapped the cytokine/chemokine and cell proliferation patterns following SCI. In this review, we examine the immune response underlying the pathophysiology of SCI and assess both current and future therapies including pharmaceutical therapies, stem cell therapy, and the exciting potential of extracellular vesicle therapy.
Collapse
Affiliation(s)
- Robert C. Sterner
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rosalie M. Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States,*Correspondence: Rosalie M. Sterner,
| |
Collapse
|
2
|
Feng Y, Peng Y, Jie J, Yang Y, Yang P. The immune microenvironment and tissue engineering strategies for spinal cord regeneration. Front Cell Neurosci 2022; 16:969002. [PMID: 35990891 PMCID: PMC9385973 DOI: 10.3389/fncel.2022.969002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regeneration of neural tissue is limited following spinal cord injury (SCI). Successful regeneration of injured nerves requires the intrinsic regenerative capability of the neurons and a suitable microenvironment. However, the local microenvironment is damaged, including insufficient intraneural vascularization, prolonged immune responses, overactive immune responses, dysregulated bioenergetic metabolism and terminated bioelectrical conduction. Among them, the immune microenvironment formed by immune cells and cytokines plays a dual role in inflammation and regeneration. Few studies have focused on the role of the immune microenvironment in spinal cord regeneration. Here, we summarize those findings involving various immune cells (neutrophils, monocytes, microglia and T lymphocytes) after SCI. The pathological changes that occur in the local microenvironment and the function of immune cells are described. We also summarize and discuss the current strategies for treating SCI with tissue-engineered biomaterials from the perspective of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jing Jie
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, China
- Jing Jie,
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Yumin Yang,
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
- *Correspondence: Pengxiang Yang,
| |
Collapse
|
3
|
Korbecki J, Gąssowska-Dobrowolska M, Wójcik J, Szatkowska I, Barczak K, Chlubek M, Baranowska-Bosiacka I. The Importance of CXCL1 in Physiology and Noncancerous Diseases of Bone, Bone Marrow, Muscle and the Nervous System. Int J Mol Sci 2022; 23:ijms23084205. [PMID: 35457023 PMCID: PMC9024980 DOI: 10.3390/ijms23084205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
This review describes the role of CXCL1, a chemokine crucial in inflammation as a chemoattractant for neutrophils, in physiology and in selected major non-cancer diseases. Due to the vast amount of available information, we focus on the role CXCL1 plays in the physiology of bones, bone marrow, muscle and the nervous system. For this reason, we describe its effects on hematopoietic stem cells, myoblasts, oligodendrocyte progenitors and osteoclast precursors. We also present the involvement of CXCL1 in diseases of selected tissues and organs including Alzheimer’s disease, epilepsy, herpes simplex virus type 1 (HSV-1) encephalitis, ischemic stroke, major depression, multiple sclerosis, neuromyelitis optica, neuropathic pain, osteoporosis, prion diseases, rheumatoid arthritis, tick-borne encephalitis (TBE), traumatic spinal cord injury and West Nile fever.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Jerzy Wójcik
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
4
|
Effect of Progranulin on Proliferation and Differentiation of Neural Stem/Progenitor Cells after Oxygen/Glucose Deprivation. Int J Mol Sci 2022; 23:ijms23041949. [PMID: 35216064 PMCID: PMC8879483 DOI: 10.3390/ijms23041949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022] Open
Abstract
We previously demonstrated that sivelestat, a selective neutrophil elastase inhibitor, attenuates the cleavage of progranulin (PGRN) and ischemia-induced cell injury in the brain. To obtain further insight into the role of PGRN, in the present study we evaluated the direct effects of sivelestat and recombinant PGRN (rPGRN) on the proliferation and differentiation of neural stem cells in cultures of neural stem/progenitor cells (NS/PC) under the ischemic condition in vitro. We demonstrated that oxygen/glucose deprivation (OGD)-induced cell proliferation of NS/PC was increased by rPGRN treatment. In addition, this increase was accompanied by increased phosphorylation of Akt and GSK-3β (Ser9) after OGD. But none of these responses occurred by treatment with sivelestat. Therefore, activation of the Akt/GSK-3β pathway could well be involved in this proliferative effect of rPGRN. Although OGD and reoxygenation-induced changes in the differentiation of NS/PC into neurons or astrocytes was not affected by treatment with rPGRN or sivelestat, it is noteworthy that rPGRN enhanced neurite outgrowth of β3-tubulin-positive neurons that had differentiated from the NS/PC. These findings suggest that enhancement of proliferation of endogenous NS/PC and neurite outgrowth of differentiated neurons from NS/PC by PGRN could be useful for a new therapeutic approach for cerebral ischemia.
Collapse
|
5
|
Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammation 2021; 18:284. [PMID: 34876174 PMCID: PMC8653609 DOI: 10.1186/s12974-021-02337-2] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/30/2021] [Indexed: 03/02/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating neurological condition that results in a loss of motor and sensory function. Although extensive research to develop treatments for SCI has been performed, to date, none of these treatments have produced a meaningful amount of functional recovery after injury. The primary injury is caused by the initial trauma to the spinal cord and results in ischemia, oxidative damage, edema, and glutamate excitotoxicity. This process initiates a secondary injury cascade, which starts just a few hours post-injury and may continue for more than 6 months, leading to additional cell death and spinal cord damage. Inflammation after SCI is complex and driven by a diverse set of cells and signaling molecules. In this review, we utilize an extensive literature survey to develop the timeline of local immune cell and cytokine behavior after SCI in rodent models. We discuss the precise functional roles of several key cytokines and their effects on a variety of cell types involved in the secondary injury cascade. Furthermore, variations in the inflammatory response between rats and mice are highlighted. Since current SCI treatment options do not successfully initiate functional recovery or axonal regeneration, identifying the specific mechanisms attributed to secondary injury is critical. With a more thorough understanding of the complex SCI pathophysiology, effective therapeutic targets with realistic timelines for intervention may be established to successfully attenuate secondary damage.
Collapse
Affiliation(s)
- Daniel J Hellenbrand
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Charles M Quinn
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Zachariah J Piper
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Carolyn N Morehouse
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Jordyn A Fixel
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Amgad S Hanna
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA.
| |
Collapse
|
6
|
Rayasam A, Jullienne A, Chumak T, Faustino J, Szu J, Hamer M, Ek CJ, Mallard C, Obenaus A, Vexler ZS. Viral mimetic triggers cerebral arteriopathy in juvenile brain via neutrophil elastase and NETosis. J Cereb Blood Flow Metab 2021; 41:3171-3186. [PMID: 34293939 PMCID: PMC8669290 DOI: 10.1177/0271678x211032737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stroke is among the top ten causes of death in children but has received disproportionally little attention. Cerebral arteriopathies account for up to 80% of childhood arterial ischemic stroke (CAIS) cases and are strongly predictive of CAIS recurrence and poorer outcomes. The underlying mechanisms of sensitization of neurovasculature by viral infection are undefined. In the first age-appropriate model for childhood arteriopathy-by administration of viral mimetic TLR3-agonist Polyinosinic:polycytidylic acid (Poly-IC) in juvenile mice-we identified a key role of the TLR3-neutrophil axis in disrupting the structural-functional integrity of the blood-brain barrier (BBB) and distorting the developing neurovascular architecture and vascular networks. First, using an array of in-vivo/post-vivo vascular imaging, genetic, enzymatic and pharmacological approaches, we report marked Poly-IC-mediated extravascular leakage of albumin (66kDa) and of a small molecule DiI (∼934Da) and disrupted tight junctions. Poly-IC also enhanced the neuroinflammatory milieu, promoted neutrophil recruitment, profoundly upregulated neutrophil elastase (NE), and induced neutrophil extracellular trap formation (NETosis). Finally, we show that functional BBB disturbances, NETosis and neuroinflammation are markedly attenuated by pharmacological inhibition of NE (Sivelestat). Altogether, these data reveal NE/NETosis as a novel therapeutic target for viral-induced cerebral arteriopathies in children.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology, University California San Francisco, San Francisco, CA, USA
| | - Amandine Jullienne
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Tetyana Chumak
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Faustino
- Department of Neurology, University California San Francisco, San Francisco, CA, USA
| | - Jenny Szu
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Mary Hamer
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - C Joakim Ek
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andre Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Rayasam A, Fukuzaki Y, Vexler ZS. Microglia-leucocyte axis in cerebral ischaemia and inflammation in the developing brain. Acta Physiol (Oxf) 2021; 233:e13674. [PMID: 33991400 DOI: 10.1111/apha.13674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Development of the Central Nervous System (CNS) is reliant on the proper function of numerous intricately orchestrated mechanisms that mature independently, including constant communication between the CNS and the peripheral immune system. This review summarizes experimental knowledge of how cerebral ischaemia in infants and children alters physiological communication between leucocytes, brain immune cells, microglia and the neurovascular unit (NVU)-the "microglia-leucocyte axis"-and contributes to acute and long-term brain injury. We outline physiological development of CNS barriers in relation to microglial and leucocyte maturation and the plethora of mechanisms by which microglia and peripheral leucocytes communicate during postnatal period, including receptor-mediated and intracellular inflammatory signalling, lipids, soluble factors and extracellular vesicles. We focus on the "microglia-leucocyte axis" in rodent models of most common ischaemic brain diseases in the at-term infants, hypoxic-ischaemic encephalopathy (HIE) and focal arterial stroke and discuss commonalities and distinctions of immune-neurovascular mechanisms in neonatal and childhood stroke compared to stroke in adults. Given that hypoxic and ischaemic brain damage involve Toll-like receptor (TLR) activation, we discuss the modulatory role of viral and bacterial TLR2/3/4-mediated infection in HIE, perinatal and childhood stroke. Furthermore, we provide perspective of the dynamics and contribution of the axis in cerebral ischaemia depending on the CNS maturational stage at the time of insult, and modulation independently and in consort by individual axis components and in a sex dependent ways. Improved understanding on how to modify crosstalk between microglia and leucocytes will aid in developing age-appropriate therapies for infants and children who suffered cerebral ischaemia.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Yumi Fukuzaki
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Zinaida S. Vexler
- Department of Neurology University of California San Francisco San Francisco CA USA
| |
Collapse
|
8
|
Horinokita I, Hayashi H, Yoshizawa R, Ichiyanagi M, Imamura Y, Iwatani Y, Takagi N. Possible involvement of progranulin in the protective effect of elastase inhibitor on cerebral ischemic injuries of neuronal and glial cells. Mol Cell Neurosci 2021; 113:103625. [PMID: 33933589 DOI: 10.1016/j.mcn.2021.103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022] Open
Abstract
In a previous study, we demonstrated that neutrophil elastase is activated in the brain parenchyma after cerebral ischemia, which enzyme cleaves progranulin (PGRN), an anti-inflammatory factor. In that study, we also found that sivelestat, a selective neutrophil elastase inhibitor, attenuates ischemia-induced inflammatory responses. However, it was not clear whether this anti-inflammatory effect was due to the direct effect of sivelestat. In this study, we evaluated the effects of sivelestat or recombinant PGRN (rPGRN) on cell injuries in cultured neurons, astrocytes, and microglia under oxygen/glucose deprivation (OGD) conditions. We demonstrated that OGD-induced neuronal cell injury, astrocyte activation, and increased proinflammatory cytokines caused by microglial activation, were suppressed by rPGRN treatment, whereas sivelestat had no effect on any of these events. These results indicate that the anti-inflammatory responses after in vivo cerebral ischemia were not due to the direct action of sivelestat but due to the suppression of PGRN cleavage by inhibition of elastase activity. It was also suggested that the pleiotropic effect of rPGRN could be attributed to the differentiation of M1 microglia into anti-inflammatory type M2 microglia. Therefore, the inhibition of PGRN cleavage by sivelestat could contribute to the establishment of a new therapeutic approach for cerebral ischemia.
Collapse
Affiliation(s)
- Ichiro Horinokita
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Rihona Yoshizawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mika Ichiyanagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yui Imamura
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yui Iwatani
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
9
|
Khalfin B, Lichtenstein A, Albeck A, Nathan I. Targeting Necrosis: Elastase-like Protease Inhibitors Curtail Necrotic Cell Death Both In Vitro and in Three In Vivo Disease Models. J Med Chem 2021; 64:1510-1523. [PMID: 33522230 DOI: 10.1021/acs.jmedchem.0c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Necrosis is the main mode of cell death, which leads to multiple clinical conditions affecting hundreds of millions of people worldwide. Its molecular mechanisms are poorly understood, hampering therapeutics development. Here, we identify key proteolytic activities essential for necrosis using various biochemical approaches, enzymatic assays, medicinal chemistry, and siRNA library screening. These findings provide strategies to treat and prevent necrosis, including known medicines used for other indications, siRNAs, and establish a platform for the design of new inhibitory molecules. Indeed, inhibitors of these pathways demonstrated protective activity in vitro and in vivo in animal models of traumatic brain injury, acute myocardial infarction, and drug-induced liver toxicity. Consequently, this study may pave the way for the development of novel therapies for the treatment, inhibition, or prevention of a large number of hitherto untreatable diseases.
Collapse
Affiliation(s)
- Boris Khalfin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Alexandra Lichtenstein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Soroka University Medical Center, Beer Sheva 8457108, Israel
| |
Collapse
|
10
|
Sencar L, Yilmaz DM, Tuli A, Polat S. Effects of combined treatment of minocycline and methylprednisolone on the expression of tumor necrosis factor alpha and interleukine-6 in experimental spinal cord injury: a light and electron microscopic study. Ultrastruct Pathol 2020; 44:283-299. [PMID: 32567988 DOI: 10.1080/01913123.2020.1771493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Spinal cord injury (SCI) is an important health problem, and there is no universal treatment protocol for it today. Following SCI pro-inflammatory mediators such as tumor necrosis factor- alpha (TNF-α) and interleukin-6 (IL-6) increase at the lesion site and play important roles in secondary tissue damage. Methylprednisolone (MP) is a glucocorticoid, and minocycline is a tetracycline-derived antibiotic both with neuroprotective effects on central nervous system trauma. However, there are limited studies on their effects on SCI. In this study, we aimed to evaluate effects of MP+minocycline combined treatment on cellular distribution and localization of TNF-α And IL-6 after SCI. Eighty Wistar rats were divided into three main groups as the intact control group, sham operation group, and experimental control group that received spinal cord compression injury. Following the injury, the experimental control group was subdivided into four groups as control, methylprednisolone treatment, minocycline treatment and, MP+minocycline combined treatment groups. Tissue samples were obtained from all groups at 24 hours and 72 hours after the injury. We found a significant decrease in TNF-α And IL-6 expressions in combined treatment group at 24 hours after injury. Also, there was a significant decrease in MDA and increase in SOD levels in this group. Furthermore, decreased lipid peroxidation and neuronal and glial cell death were also observed in combined treatment group. These results suggest that MP+minocycline combined treatment promotes functional recovery and, it should be considered as an effective treatment protocol following SCI.
Collapse
Affiliation(s)
- Leman Sencar
- Faculty of Medicine, Histology and Embryology Department, Cukurova University , Adana, Turkey
| | - Derviş Mansuri Yilmaz
- Faculty of Medicine, Department of Neurosurgery, Cukurova University , Adana, Turkey
| | - Abdullah Tuli
- Faculty of Medicine, Biochemistry Department, Cukurova University , Adana, Turkey
| | - Sait Polat
- Faculty of Medicine, Histology and Embryology Department, Cukurova University , Adana, Turkey
| |
Collapse
|
11
|
Involvement of Progranulin and Granulin Expression in Inflammatory Responses after Cerebral Ischemia. Int J Mol Sci 2019; 20:ijms20205210. [PMID: 31640144 PMCID: PMC6829276 DOI: 10.3390/ijms20205210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 01/17/2023] Open
Abstract
Progranulin (PGRN) plays a crucial role in diverse biological processes, including cell proliferation and embryonic development. PGRN can be cleaved by neutrophil elastase to release granulin (GRN). PGRN has been found to inhibit inflammation. Whereas, GRN plays a role as a pro-inflammatory factor. However, the pathophysiological roles of PGRN and GRN, at early stages after cerebral ischemia, have not yet been fully understood. The aim of this study was to obtain further insight into the pathologic roles of PGRN and GRN. We demonstrated that the amount of PGRN was significantly increased in microglial cells after cerebral ischemia in rats and that neutrophil elastase activity was also increased at an early stage after cerebral ischemia, resulting in the production of GRN. The inhibition of neutrophil elastase activity suppressed PGRN cleavage and GRN production, as well as the increase in pro-inflammatory cytokines, after cerebral ischemia. The administration of an elastase inhibitor decreased the number of injured cells and improved the neurological deficits test scores. Our findings suggest that an increase in the activity of elastase to cleave PGRN, and to produce GRN, was involved in an inflammatory response at the early stages after cerebral ischemia, and that inhibition of elastase activity could suppress the progression of cerebral ischemic injury.
Collapse
|
12
|
A Causal Relationship in Spinal Cord Injury Rat Model Between Microglia Activation and EGFR/MAPK Detected by Overexpression of MicroRNA-325-3p. J Mol Neurosci 2019; 68:181-190. [PMID: 30911940 DOI: 10.1007/s12031-019-01297-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Microglial activation and inflammatory response played an important role in the secondary injury of spinal cord injury (SCI). Several microRNAs were associated with this procedure, but the underlying molecular mechanism was poorly understood. Sprague-Dawley (SD) rats were divided into four groups: SCI group (n = 7), agomiR-325-3p group (n = 7), and their control groups. Expression of miR-325-3p and proteins in epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling pathway was evaluated in microglia from SCI rats and primary microglia/BV2 cells activated by lipopolysaccharide (LPS). Concentrations of interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) in supernatants were measured by ELISA. Low expression of miR-325-3p and activation of EGFR/MAPK was observed in microglia of SCI and LPS-induced primary microglia. Overexpression of miR-325-3p in LPS-induced BV2 cells inhibited microglial activation and release of TNF-α and IL-1β. Luciferase reporter assay confirmed that miR-325-3p negatively regulated EGFR by targeting its 3'-untranslated regions. Additionally, agomiR-325-3p inhibited the activation of microglia and EGFR/MAPK, alleviating the inflammatory response. These results indicated that miR-325-3p attenuated secondary injury after SCI through inhibition of EGFR/MAPK signaling pathway, the microglial activation, and the release of inflammatory cytokines, suggesting that miR-325-3p may be employed as a therapeutic target for SCI.
Collapse
|
13
|
von Leden RE, Parker KN, Bates AA, Noble-Haeusslein LJ, Donovan MH. The emerging role of neutrophils as modifiers of recovery after traumatic injury to the developing brain. Exp Neurol 2019; 317:144-154. [PMID: 30876905 DOI: 10.1016/j.expneurol.2019.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
Abstract
The innate immune response plays a critical role in traumatic brain injury (TBI), contributing to ongoing pathogenesis and worsening long-term outcomes. Here we focus on neutrophils, one of the "first responders" to TBI. These leukocytes are recruited to the injured brain where they release a host of toxic molecules including free radicals, proteases, and pro-inflammatory cytokines, all of which promote secondary tissue damage. There is mounting evidence that the developing brain is more vulnerable to injury that the adult brain. This vulnerability to greater damage from TBI is, in part, attributed to relatively low antioxidant reserves coupled with an early robust immune response. The latter is reflected in enhanced sensitivity to cytokines and a prolonged recruitment of neutrophils into both cortical and subcortical regions. This review considers the contribution of neutrophils to early secondary pathogenesis in the injured developing brain and raises the distinct possibility that these leukocytes, which exhibit phenotypic plasticity, may also be poised to support wound healing. We provide a basic review of the development, life cycle, and granular contents of neutrophils and evaluate their potential as therapeutic targets for early neuroprotection and functional recovery after injury at early age. While neutrophils have been broadly studied in neurotrauma, we are only beginning to appreciate their diverse roles in the developing brain and the extent to which their acute manipulation may result in enduring neurological recovery when TBI is superimposed upon brain development.
Collapse
Affiliation(s)
- Ramona E von Leden
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA.
| | - Kaila N Parker
- Department of Psychology, Behavioral Neuroscience, The University of Texas at Austin, 108 E. Dean Keeton St., Austin, TX 78712, USA.
| | - Adrian A Bates
- Institute for Neuroscience, The University of Texas at Austin, 100 E. 24(th) St., Austin, TX 78712, USA.
| | - Linda J Noble-Haeusslein
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA; Department of Psychology, Behavioral Neuroscience, The University of Texas at Austin, 108 E. Dean Keeton St., Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, 100 E. 24(th) St., Austin, TX 78712, USA.
| | - Michael H Donovan
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA.
| |
Collapse
|
14
|
Kumar H, Choi H, Jo MJ, Joshi HP, Muttigi M, Bonanomi D, Kim SB, Ban E, Kim A, Lee SH, Kim KT, Sohn S, Zeng X, Han I. Neutrophil elastase inhibition effectively rescued angiopoietin-1 decrease and inhibits glial scar after spinal cord injury. Acta Neuropathol Commun 2018; 6:73. [PMID: 30086801 PMCID: PMC6080383 DOI: 10.1186/s40478-018-0576-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/13/2023] Open
Abstract
After spinal cord injury (SCI), neutrophil elastase (NE) released at injury site disrupts vascular endothelium integrity and stabilization. Angiopoietins (ANGPTs) are vascular growth factors that play an important role in vascular stabilization. We hypothesized that neutrophil elastase is one of the key determinants of vascular endothelium disruption/destabilization and affects angiopoietins expression after spinal cord injury. To test this, tubule formation and angiopoietins expression were assessed in endothelial cells exposed to different concentrations of recombinant neutropil elastase. Then, the expression of angiopoietin-1, angiopoietin-2, and neutrophil elastase was determined at 3 h and at 1, 3, 5, 7, 14, 21, and 28 days in a clinically relevant model of moderate compression (35 g for 5 min at T10) spinal cord injury. A dichotomy between the levels of angiopoietin-1 and angiopoietin-2 was observed; thus, we utilized a specific neutrophil elastase inhibitor (sivelestat sodium; 30 mg/kg, i.p., b.i.d.) after spinal cord injury. The expression levels of neutropil elastase and angiopoietin-2 increased, and that of angiopoietin-1 decreased after spinal cord injury in rats. The sivelestat regimen, optimized via a pharmacokinetics study, had potent effects on vascular stabilization by upregulating angiopoietin-1 via the AKT pathway and preventing tight junction protein degradation. Moreover, sivelestat attenuated the levels of inflammatory cytokines and chemokines after spinal cord injury and hence subsequently alleviated secondary damage observed as a reduction in glial scar formation and the promotion of blood vessel formation and stabilization. As a result, hindlimb locomotor function significantly recovered in the sivelestat-treated animals as determined by the Basso, Beattie, and Bresnahan scale and footprint analyses. Furthermore, sivelestat treatment attenuated neuropathic pain as assessed by responses to von Frey filaments after spinal cord injury. Thus, our result suggests that inhibiting neutropil elastase by administration of sivelestat is a promising therapeutic strategy to inhibit glial scar and promote functional recovery by upregulating angiopoietin-1 after spinal cord injury.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Min-Jae Jo
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Hari Prasad Joshi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Manjunatha Muttigi
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Dario Bonanomi
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Eunmi Ban
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, Kyungpook National University, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Neurosurgery, School of Medicine,Kyungpook National University, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China.
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
15
|
Abstract
Supplemental Digital Content is Available in the Text. Inhibitors of leukocyte elastase inhibit spontaneous and evoked pain behaviors in mouse models of chronic pain of neuropathic, cancer, and diabetic origins. Neuropathic pain is an integral component of several chronic pain conditions and poses a major health problem worldwide. Despite emerging understanding of mechanisms behind neuropathic pain, the available treatment options are still limited in efficacy or associated with side effects, therefore making it necessary to find viable alternatives. In a genetic screen, we recently identified SerpinA3N, a serine protease inhibitor secreted in response to nerve damage by the dorsal root ganglion neurons and we showed that SerpinA3N acts against induction of neuropathic pain by inhibiting the T-cell- and neutrophil-derived protease, leucocyte elastase (LE). In the current study, via detailed in vivo pharmacology combined with analyses of evoked- and spontaneous pain-related behaviors in mice, we report that on systemic delivery, a single dose of 3 independent LE inhibitors can block established nociceptive hypersensitivity in early and late phases in the spared nerve injury model of traumatic neuropathic pain in mice. We further report the strong efficacy of systemic LE inhibitors in reversing ongoing pain in 2 other clinically relevant mouse models—painful diabetic neuropathy and cancer pain. Detailed immunohistochemical analyses on the peripheral tissue samples revealed that both T-Lymphocytes and neutrophils are the sources of LE on peripheral nerve injury, whereas neutrophils are the primary source of LE in diabetic neuropathic conditions. In summary, our results provide compelling evidence for a strong therapeutic potential of generic LE inhibitors for the treatment of neuropathic pain and other chronic pain conditions harboring a neuropathic pain component.
Collapse
|
16
|
Grist JJ, Marro B, Lane TE. Neutrophils and viral-induced neurologic disease. Clin Immunol 2018; 189:52-56. [PMID: 27288312 PMCID: PMC5145788 DOI: 10.1016/j.clim.2016.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 10/27/2022]
Abstract
Infection of the central nervous system (CNS) by neurotropic viruses represents an increasing worldwide problem in terms of morbidity and mortality for people of all ages. Although unique structural features of the blood-brain-barrier (BBB) provide a physical and physiological barrier, a number of neurotropic viruses are able to enter the CNS resulting in a variety of pathological outcomes. Nonetheless, antigen-specific lymphocytes are ultimately able to accumulate within the CNS and contribute to defense by reducing or eliminating the invading viral pathogen. Alternatively, infiltration of activated cells of the immune system may be detrimental, as these cells can contribute to neuropathology that may result in long-term cellular damage or death. More recently, myeloid cells e.g. neutrophils have been implicated in contributing to both host defense and disease in response to viral infection of the CNS. This review highlights recent studies using coronavirus-induced neurologic disease as a model to determine how neutrophils affect effective control of viral replication as well as demyelination.
Collapse
Affiliation(s)
- Jonathan J Grist
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States
| | - Brett Marro
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Thomas E Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| |
Collapse
|
17
|
Systemic Neutrophil Depletion Modulates the Migration and Fate of Transplanted Human Neural Stem Cells to Rescue Functional Repair. J Neurosci 2017; 37:9269-9287. [PMID: 28847814 DOI: 10.1523/jneurosci.2785-16.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 06/15/2017] [Accepted: 07/30/2017] [Indexed: 01/19/2023] Open
Abstract
The interaction of transplanted stem cells with local cellular and molecular cues in the host CNS microenvironment may affect the potential for repair by therapeutic cell populations. In this regard, spinal cord injury (SCI), Alzheimer's disease, and other neurological injuries and diseases all exhibit dramatic and dynamic changes to the host microenvironment over time. Previously, we reported that delayed transplantation of human CNS-derived neural stem cells (hCNS-SCns) at 9 or 30 d post-SCI (dpi) resulted in extensive donor cell migration, predominantly neuronal and oligodendrocytic donor cell differentiation, and functional locomotor improvements. Here, we report that acute transplantation of hCNS-SCns at 0 dpi resulted in localized astroglial differentiation of donor cells near the lesion epicenter and failure to produce functional improvement in an all-female immunodeficient mouse model. Critically, specific immunodepletion of neutrophils (polymorphonuclear leukocytes) blocked hCNS-SCns astroglial differentiation near the lesion epicenter and rescued the capacity of these cells to restore function. These data represent novel evidence that a host immune cell population can block the potential for functional repair derived from a therapeutic donor cell population, and support targeting the inflammatory microenvironment in combination with cell transplantation after SCI.SIGNIFICANCE STATEMENT The interaction of transplanted cells with local cellular and molecular cues in the host microenvironment is a key variable that may shape the translation of neurotransplantation research to the clinical spinal cord injury (SCI) human population, and few studies have investigated these events. We show that the specific immunodepletion of polymorphonuclear leukocyte neutrophils using anti-Ly6G inhibits donor cell astrogliosis and rescues the capacity of a donor cell population to promote locomotor improvement after SCI. Critically, our data demonstrate novel evidence that a specific host immune cell population can block the potential for functional repair derived from a therapeutic donor cell population.
Collapse
|
18
|
Ohta Y, Hamaguchi A, Ootaki M, Watanabe M, Takeba Y, Iiri T, Matsumoto N, Takenaga M. Intravenous infusion of adipose-derived stem/stromal cells improves functional recovery of rats with spinal cord injury. Cytotherapy 2017; 19:839-848. [DOI: 10.1016/j.jcyt.2017.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 01/05/2023]
|
19
|
Geremia NM, Hryciw T, Bao F, Streijger F, Okon E, Lee JHT, Weaver LC, Dekaban GA, Kwon BK, Brown A. The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage. Exp Neurol 2017; 295:125-134. [PMID: 28587875 DOI: 10.1016/j.expneurol.2017.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/11/2017] [Accepted: 06/01/2017] [Indexed: 11/30/2022]
Abstract
We have previously reported that administration of a CD11d monoclonal antibody (mAb) improves recovery in a clip-compression model of SCI. In this model the CD11d mAb reduces the infiltration of activated leukocytes into the injured spinal cord (as indicated by reduced intraspinal MPO). However not all anti-inflammatory strategies have reported beneficial results, suggesting that success of the CD11d mAb treatment may depend on the type or severity of the injury. We therefore tested the CD11d mAb treatment in a rat hemi-contusion model of cervical SCI. In contrast to its effects in the clip-compression model, the CD11d mAb treatment did not improve forelimb function nor did it significantly reduce MPO levels in the hemi-contused cord. To determine if the disparate results using the CD11d mAb were due to the biomechanical nature of the cord injury (compression SCI versus contusion SCI) or to the spinal level of the injury (12th thoracic level versus cervical) we further evaluated the CD11d mAb treatment after a T12 contusion SCI. In contrast to the T12 clip compression SCI, the CD11d mAb treatment did not improve locomotor recovery or significantly reduce MPO levels after T12 contusion SCI. Lesion analyses revealed increased levels of hemorrhage after contusion SCI compared to clip-compression SCI. SCI that is accompanied by increased intraspinal hemorrhage would be predicted to be refractory to the CD11d mAb therapy as this approach targets leukocyte diapedesis through the intact vasculature. These results suggest that the disparate results of the anti-CD11d treatment in contusion and clip-compression models of SCI are due to the different pathophysiological mechanisms that dominate these two types of spinal cord injuries.
Collapse
Affiliation(s)
- N M Geremia
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - T Hryciw
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - F Bao
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - F Streijger
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - E Okon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - J H T Lee
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - L C Weaver
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - G A Dekaban
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - B K Kwon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - A Brown
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
20
|
Kumar H, Jo MJ, Choi H, Muttigi MS, Shon S, Kim BJ, Lee SH, Han IB. Matrix Metalloproteinase-8 Inhibition Prevents Disruption of Blood–Spinal Cord Barrier and Attenuates Inflammation in Rat Model of Spinal Cord Injury. Mol Neurobiol 2017; 55:2577-2590. [DOI: 10.1007/s12035-017-0509-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/04/2017] [Indexed: 02/02/2023]
|
21
|
GAPDH/Siah1 cascade is involved in traumatic spinal cord injury and could be attenuated by sivelestat sodium. Neuroscience 2016; 330:171-80. [DOI: 10.1016/j.neuroscience.2016.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
|
22
|
Jiang D, Muschhammer J, Qi Y, Kügler A, de Vries JC, Saffarzadeh M, Sindrilaru A, Beken SV, Wlaschek M, Kluth MA, Ganss C, Frank NY, Frank MH, Preissner KT, Scharffetter-Kochanek K. Suppression of Neutrophil-Mediated Tissue Damage-A Novel Skill of Mesenchymal Stem Cells. Stem Cells 2016; 34:2393-406. [PMID: 27299700 PMCID: PMC5572139 DOI: 10.1002/stem.2417] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/18/2016] [Accepted: 04/29/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and regeneration. Though of prime interest, their potentially protective role on neutrophil-induced tissue damage, associated with high morbidity and mortality, has not been explored in sufficient detail. Here we report the therapeutic skill of MSCs to suppress unrestrained neutrophil activation and to attenuate severe tissue damage in a murine immune-complex mediated vasculitis model of unbalanced neutrophil activation. MSC-mediated neutrophil suppression was due to intercellular adhesion molecule 1-dependent engulfment of neutrophils by MSCs, decreasing overall neutrophil numbers. Similar to MSCs in their endogenous niche of murine and human vasculitis, therapeutically injected MSCs via upregulation of the extracellular superoxide dismutase (SOD3), reduced super-oxide anion concentrations and consequently prevented neutrophil death, neutrophil extracellular trap formation and spillage of matrix degrading neutrophil elastase, gelatinase and myeloperoxidase. SOD3-silenced MSCs did not exert tissue protective effects. Thus, MSCs hold substantial therapeutic promise to counteract tissue damage in conditions with unrestrained neutrophil activation.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Jana Muschhammer
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Yu Qi
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Andrea Kügler
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Juliane C de Vries
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Mona Saffarzadeh
- Department of Biochemistry, School of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Seppe Vander Beken
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | | | | | - Natasha Y Frank
- Department of Medicine, Boston VA Healthcare System, West Roxbury, Massachusetts, USA.,Division of Genetics, Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Markus H Frank
- Division of Genetics, Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Transplant Research Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Klaus T Preissner
- Department of Biochemistry, School of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | | |
Collapse
|
23
|
Kumar H, Ropper AE, Lee SH, Han I. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury. Mol Neurobiol 2016; 54:3578-3590. [PMID: 27194298 DOI: 10.1007/s12035-016-9910-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/03/2016] [Indexed: 01/09/2023]
Abstract
The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Alexander E Ropper
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
24
|
Gadani SP, Walsh JT, Lukens JR, Kipnis J. Dealing with Danger in the CNS: The Response of the Immune System to Injury. Neuron 2015; 87:47-62. [PMID: 26139369 PMCID: PMC4491143 DOI: 10.1016/j.neuron.2015.05.019] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fighting pathogens and maintaining tissue homeostasis are prerequisites for survival. Both of these functions are upheld by the immune system, though the latter is often overlooked in the context of the CNS. The mere presence of immune cells in the CNS was long considered a hallmark of pathology, but this view has been recently challenged by studies demonstrating that immunological signaling can confer pivotal neuroprotective effects on the injured CNS. In this review, we describe the temporal sequence of immunological events that follow CNS injury. Beginning with immediate changes at the injury site, including death of neural cells and release of damage-associated molecular patterns (DAMPs), and progressing through innate and adaptive immune responses, we describe the cascade of inflammatory mediators and the implications of their post-injury effects. We conclude by proposing a revised interpretation of immune privilege in the brain, which takes beneficial neuro-immune communications into account.
Collapse
Affiliation(s)
- Sachin P Gadani
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - James T Walsh
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
25
|
Ding T, Zhu C, Yin JB, Zhang T, Lu YC, Ren J, Li YQ. Slow-releasing rapamycin-coated bionic peripheral nerve scaffold promotes the regeneration of rat sciatic nerve after injury. Life Sci 2015; 122:92-9. [DOI: 10.1016/j.lfs.2014.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 01/28/2023]
|
26
|
Semple BD, Trivedi A, Gimlin K, Noble-Haeusslein LJ. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain. Neurobiol Dis 2014; 74:263-80. [PMID: 25497734 DOI: 10.1016/j.nbd.2014.12.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/19/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
While neutrophil elastase (NE), released by activated neutrophils, is a key mediator of secondary pathogenesis in adult models of brain ischemia and spinal cord injury, no studies to date have examined this protease in the context of the injured immature brain, where there is notable vulnerability resulting from inadequate antioxidant reserves and prolonged exposure to infiltrating neutrophils. We thus reasoned that NE may be a key determinant of secondary pathogenesis, and as such, adversely influence long-term neurological recovery. To address this hypothesis, wild-type (WT) and NE knockout (KO) mice were subjected to a controlled cortical impact at post-natal day 21, approximating a toddler-aged child. To determine if NE is required for neutrophil infiltration into the injured brain, and whether this protease contributes to vasogenic edema, we quantified neutrophil numbers and measured water content in the brains of each of these genotypes. While leukocyte trafficking was indistinguishable between genotypes, vasogenic edema was markedly attenuated in the NE KO. To determine if early pathogenesis is dependent on NE, indices of cell death (TUNEL and activated caspase-3) were quantified across genotypes. NE KO mice showed a reduction in these markers of cell death in the injured hippocampus, which corresponded to greater preservation of neuronal integrity as well as reduced expression of heme oxygenase-1, a marker of oxidative stress. WT mice, treated with a competitive inhibitor of NE at 2, 6 and 12h post-injury, likewise showed a reduction in cell death and oxidative stress compared to vehicle-treated controls. We next examined the long-term behavioral and structural consequences of NE deficiency. NE KO mice showed an improvement in long-term spatial memory retention and amelioration of injury-induced hyperactivity. However, volumetric and stereological analyses found comparable tissue loss in the injured cortex and hippocampus independent of genotype. Further, WT mice treated acutely with the NE inhibitor showed no long-term behavioral or structural improvements. Together, these findings validate the central role of NE in both acute pathogenesis and chronic functional recovery, and support future exploration of the therapeutic window, taking into account the prolonged period of neutrophil trafficking into the injured immature brain.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC 3000, Australia.
| | - Alpa Trivedi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Kayleen Gimlin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Linda J Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Physical Therapy and Rehabilitation Sciences, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
27
|
Sakai H, Sagara A, Matsumoto K, Jo A, Hirosaki A, Takase K, Sugiyama R, Sato K, Ikegami D, Horie S, Matoba M, Narita M. Neutrophil recruitment is critical for 5-fluorouracil-induced diarrhea and the decrease in aquaporins in the colon. Pharmacol Res 2014; 87:71-9. [DOI: 10.1016/j.phrs.2014.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/14/2014] [Accepted: 05/28/2014] [Indexed: 01/01/2023]
|
28
|
Hosking MP, Lane TE. ELR(+) chemokine signaling in host defense and disease in a viral model of central nervous system disease. Front Cell Neurosci 2014; 8:165. [PMID: 24987333 PMCID: PMC4060560 DOI: 10.3389/fncel.2014.00165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/31/2014] [Indexed: 11/23/2022] Open
Abstract
Intracranial infection of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of susceptible strains of mice results in an acute encephalomyelitis, accompanied by viral replication in glial cells and robust infiltration of virus-specific T cells that contribute to host defense through cytokine secretion and cytolytic activity. Mice surviving the acute stage of disease develop an immune-mediated demyelinating disease, characterized by viral persistence in white matter tracts and a chronic neuroinflammatory response dominated by T cells and macrophages. Chemokines and their corresponding chemokine receptors are dynamically expressed throughout viral infection of the CNS, influencing neuroinflammation by regulating immune cell infltration and glial biology. This review is focused upon the pleiotropic chemokine receptor CXCR2 and its effects upon neutrophils and oligodendrocytes during JHMV infection and a number of other models of CNS inflammation.
Collapse
Affiliation(s)
- Martin P. Hosking
- Department of Molecular Biology and Biochemistry, University of CaliforniaIrvine, CA, USA
| | - Thomas E. Lane
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of UtahSalt Lake City, UT, USA
| |
Collapse
|
29
|
Austin JW, Afshar M, Fehlings MG. The relationship between localized subarachnoid inflammation and parenchymal pathophysiology after spinal cord injury. J Neurotrauma 2013; 29:1838-49. [PMID: 22655536 DOI: 10.1089/neu.2012.2354] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Subarachnoid inflammation following spinal cord injury (SCI) can lead to the formation of localized subarachnoid scarring and the development of post-traumatic syringomyelia (PTS). While PTS is a devastating complication of SCI, its relative rarity (occurring symptomatically in about 5% of clinical cases), and lack of fundamental physiological insights, have led us to examine an animal model of traumatic SCI with induced arachnoiditis. We hypothesized that arachnoiditis associated with SCI would potentiate early parenchymal pathophysiology. To test this theory, we examined early spatial pathophysiology in four groups: (1) sham (non-injured controls), (2) arachnoiditis (intrathecal injection of kaolin), (3) SCI (35-g clip contusion/compression injury), and (4) PTS (intrathecal kaolin+SCI). Overall, there was greater parenchymal inflammation and scarring in the PTS group relative to the SCI group. This was demonstrated by significant increases in cytokine (IL-1α and IL-1β) and chemokine (MCP-1, GRO/KC, and MIP-1α) production, MPO activity, blood-spinal cord barrier (BSCB) permeability, and MMP-9 activity. However, parenchymal inflammatory mediator production (acute IL-1α and IL-1β, subacute chemokines), BSCB permeability, and fibrous scarring in the PTS group were larger than the sum of the SCI group and arachnoiditis group combined, suggesting that arachnoiditis does indeed potentiate parenchymal pathophysiology. Accordingly, these findings suggest that the development of arachnoiditis associated with SCI can lead to an exacerbation of the parenchymal injury, potentially impacting the outcome of this devastating condition.
Collapse
Affiliation(s)
- James W Austin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
30
|
Weinger JG, Marro BS, Hosking MP, Lane TE. The chemokine receptor CXCR2 and coronavirus-induced neurologic disease. Virology 2013; 435:110-7. [PMID: 23217621 PMCID: PMC3522860 DOI: 10.1016/j.virol.2012.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 12/18/2022]
Abstract
Inoculation with the neurotropic JHM strain of mouse hepatitis virus (MHV) into the central nervous system (CNS) of susceptible strains of mice results in an acute encephalomyelitis in which virus preferentially replicates within glial cells while excluding neurons. Control of viral replication during acute disease is mediated by infiltrating virus-specific T cells via cytokine secretion and cytolytic activity, however sterile immunity is not achieved and virus persists resulting in chronic neuroinflammation associated with demyelination. CXCR2 is a chemokine receptor that upon binding to specific ligands promotes host defense through recruitment of myeloid cells to the CNS as well as protecting oligodendroglia from cytokine-mediated death in response to MHV infection. These findings highlight growing evidence of the diverse and important role of CXCR2 in regulating neuroinflammatory diseases.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Molecular Biology & Biochemistry, UC Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
31
|
Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci 2012; 32:9588-600. [PMID: 22787045 DOI: 10.1523/jneurosci.5977-11.2012] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The immaturity of the CNS at birth greatly affects injury after stroke but the contribution of the blood-brain barrier (BBB) to the differential response to stroke in adults and neonates is poorly understood. We asked whether the structure and function of the BBB is disrupted differently in neonatal and adult rats by transient middle cerebral artery occlusion. In adult rats, albumin leakage into injured regions was markedly increased during 2-24 h reperfusion but leakage remained low in the neonates. Functional assays employing intravascular tracers in the neonates showed that BBB permeability to both large (70 kDa dextran) and small (3 kDa dextran), gadolinium (III)-diethyltriaminepentaacetic acid tracers remained largely undisturbed 24 h after reperfusion. The profoundly different functional integrity of the BBB was associated with the largely nonoverlapping patterns of regulated genes in endothelial cells purified from injured and uninjured adult and neonatal brain at 24 h (endothelial transcriptome, 31,042 total probe sets). Within significantly regulated 1266 probe sets in injured adults and 361 probe sets in neonates, changes in the gene expression of the basal lamina components, adhesion molecules, the tight junction protein occludin, and matrix metalloproteinase-9 were among the key differences. The protein expression of collagen-IV, laminin, claudin-5, occludin, and zonula occludens protein 1 was also better preserved in neonatal rats. Neutrophil infiltration remained low in acutely injured neonates but neutralization of cytokine-induced neutrophil chemoattractant-1 in the systemic circulation enhanced neutrophil infiltration, BBB permeability, and injury. The markedly more integrant BBB in neonatal brain than in adult brain after acute stroke may have major implications for the treatment of neonatal stroke.
Collapse
|
32
|
Nguyen DH, Cho N, Satkunendrarajah K, Austin JW, Wang J, Fehlings MG. Immunoglobulin G (IgG) attenuates neuroinflammation and improves neurobehavioral recovery after cervical spinal cord injury. J Neuroinflammation 2012; 9:224. [PMID: 22998664 PMCID: PMC3503837 DOI: 10.1186/1742-2094-9-224] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/30/2012] [Indexed: 01/02/2023] Open
Abstract
Background Evidence suggests that the inflammatory events in the acute phase of spinal cord injury (SCI) exacerbate the initial trauma to the cord leading to poor functional recovery. As a result, minimizing the detrimental aspects of the inflammatory response after SCI is a promising treatment strategy. In this regard, immunoglobulin G (IgG) from pooled human serum is a promising treatment candidate. Due to its putative, though poorly characterized immuno-modulatory effects, IgG has been used clinically to treat neuroinflammatory disorders such as Guillain-Barré syndrome, but its effects in neurotrauma remain largely unexplored. Methods This study examines the potential neuroprotective effects of IgG in a well-characterized cervical model of SCI. Female Wistar rats were subject to moderate-severe clip compression injury at the C7-T1 level. IgG (0.4 g/kg) or saline was injected intravenously to randomly selected animals at 15 min post SCI. At several time points post SCI, biochemical assays, histology and immunohistochemistry analyses, and neurobehavioral assessments were used to examine the neuroprotective effects of IgG at the molecular, cellular, and neurobehavioral levels. Results We found that intravenous treatment of IgG following acute clip-compression SCI at C7-T1 significantly reduced two important inflammatory cytokines: interleukin (IL)-1β and IL-6. This early reduction in pro-inflammatory signaling was associated with significant reductions in neutrophils in the spinal cord and reductions in the expression of myeloperoxidase and matrix metalloproteinase-9 in the injured spinal cord at 24 h after SCI. These beneficial effects of IgG were associated with enhanced tissue preservation, improved neurobehavioral recovery as measured by the BBB and inclined plane tests, and enhanced electrophysiological evidence of central axonal conduction as determined by motor-evoked potentials. Conclusion The findings from this study indicate that IgG is a novel immuno-modulatory therapy which shows promise as a potential treatment for SCI.
Collapse
Affiliation(s)
- Dung Hoang Nguyen
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Stammers A, Liu J, Kwon B. Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J Neurosci Res 2011; 90:782-90. [DOI: 10.1002/jnr.22820] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Geremia NM, Bao F, Rosenzweig TE, Hryciw T, Weaver L, Dekaban GA, Brown A. CD11d Antibody Treatment Improves Recovery in Spinal Cord-Injured Mice. J Neurotrauma 2011; 29:539-50. [PMID: 22044160 DOI: 10.1089/neu.2011.1976] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute administration of a monoclonal antibody (mAb) raised against the CD11d subunit of the leukocyte CD11d/CD18 integrin after spinal cord injury (SCI) in the rat greatly improves neurological outcomes. This has been chiefly attributed to the reduced infiltration of neutrophils into the injured spinal cord in treated rats. More recently, treating spinal cord-injured mice with a Ly-6G neutrophil-depleting antibody was demonstrated to impair neurological recovery. These disparate results could be due to different mechanisms of action utilized by the two antibodies, or due to differences in the inflammatory responses between mouse and rat that are triggered by SCI. To address whether the anti-CD11d treatment would be effective in mice, a CD11d mAb (205C) or a control mAb (1B7) was administered intravenously at 2, 24, and 48 h after an 8-g clip compression injury at the fourth thoracic spinal segment. The anti-CD11d treatment reduced neutrophil infiltration into the injured mouse spinal cord and was associated with increased white matter sparing and reductions in myeloperoxidase (MPO) activity, reactive oxygen species, lipid peroxidation, and scar formation. These improvements in the injured spinal cord microenvironment were accompanied by increased serotonin (5-HT) immunoreactivity below the level of the lesion and improved locomotor recovery. Our results with the 205C CD11d mAb treatment complement previous work using this anti-integrin treatment in a rat model of SCI.
Collapse
Affiliation(s)
- Nicole M Geremia
- The Spinal Cord Injury Team, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
35
|
Mitogen-activated protein kinase-activated protein kinase 2 (MK2) contributes to secondary damage after spinal cord injury. J Neurosci 2010; 30:13750-9. [PMID: 20943915 DOI: 10.1523/jneurosci.2998-10.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The inflammatory response contributes importantly to secondary tissue damage and functional deficits after spinal cord injury (SCI). In this work, we identified mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK2 or MK2), a downstream substrate of p38 MAPK, as a potential target using microarray analysis of contused spinal cord tissue taken at the peak of the inflammatory response. There was increased expression and phosphorylation of MK2 after SCI, with phospho-MK2 expressed in microglia/macrophages, neurons and astrocytes. We examined the role of MK2 in spinal cord contusion injury using MK2(-/-) mice. These results show that locomotor recovery was significantly improved in MK2(-/-) mice, compared with wild-type controls. MK2(-/-) mice showed reduced neuron and myelin loss, and increased sparing of serotonergic fibers in the ventral horn caudal to the injury site. We also found differential expression of matrix metalloproteinase-2 and 9 in MK2(-/-) and wild-type mice after SCI. Significant reduction was also seen in the expression of proinflammatory cytokines and protein nitrosylation in the injured spinal cord of MK2(-/-) mice. Our previous work has shown that macrophages lacking MK2 have an anti-inflammatory phenotype. We now show that there is no difference in the number of macrophages in the injured spinal cord between the two mouse strains and little if any difference in their phagocytic capacity, suggesting that macrophages lacking MK2 have a beneficial phenotype. These findings suggest that a lack of MK2 can reduce tissue damage after SCI and improve locomotor recovery. MK2 may therefore be a useful target to treat acute SCI.
Collapse
|
36
|
Neutrophil elastase inhibitor prevents ischemic brain damage via reduction of vasogenic edema. Hypertens Res 2010; 33:703-7. [DOI: 10.1038/hr.2010.58] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Nakajima Y, Osuka K, Seki Y, Gupta RC, Hara M, Takayasu M, Wakabayashi T. Taurine reduces inflammatory responses after spinal cord injury. J Neurotrauma 2010; 27:403-10. [PMID: 19831872 DOI: 10.1089/neu.2009.1044] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Taurine has multiple functions in the central nervous system (CNS), serving as an osmoregulator, antioxidant, inhibitory neuromodulator, and regulator of intracellular Ca(2+) flux. Since the role of taurine in traumatic spinal cord injury (SCI) is not fully understood, the present study was conducted with C57 black/6 mice (18-20 g) who underwent severe SCI at the Th-8 level using a weight compression device. Taurine was injected intraperitoneally at doses of 25, 80, 250, and 800 mg/kg within 30 min after SCI. Controls were injected with saline. The contusional cord segments were removed 6 h after SCI, and concentrations of interleukin-6 (IL-6) and myeloperoxidase (MPO) were measured using ELISA kits. Phosphorylation of STAT3, which is activated by IL-6, and expression of inducible cyclooxygenase-2 (COX-2) were also compared between the taurine treatment group (250 mg/kg) and the control group by Western blot analysis. Morphological changes were evaluated with H&E-stained sections. Taurine significantly decreased IL-6 and MPO levels in a dose-dependent manner, significantly reducing the phosphorylation of STAT3 and expression of COX-2 after SCI compared to controls. A reduced accumulation of neutrophils, especially in the subarachnoid spaces, and secondary degenerative changes in gray matter were also noted, and motor disturbances were significantly attenuated with taurine treatment (250 mg/kg). These findings indicate that taurine has anti-inflammatory effects against SCI, and may play a neuroprotective role against secondary damage, and thus it may have therapeutic potential.
Collapse
Affiliation(s)
- Yasuhiro Nakajima
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Ghaly A, Marsh DR. Ischaemia-reperfusion modulates inflammation and fibrosis of skeletal muscle after contusion injury. Int J Exp Pathol 2010; 91:244-55. [PMID: 20353423 DOI: 10.1111/j.1365-2613.2010.00708.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Regeneration of skeletal muscle following injury is dependent on numerous factors including age, the inflammatory response, revascularization, gene expression of myogenic and growth factors and the activation and proliferation of endogenous progenitor cells. It is our hypothesis that oxidative stress preceding a contusion injury to muscle modulates the inflammatory response to inhibit muscle regeneration and enhance fibrotic scar formation. Male F344/BN rats were assigned to one of four groups. Group 1: uinjured control; Group 2: ischaemic occlusion of femoral vessels for 2 h followed by reperfusion (I-R); Group 3: contusion injury of the tibialis anterior (TA); Group 4: I-R, then contusion injury. The acute inflammatory response (8 h, 3 days) was determined by expression of the chemokine CINC-1, TGF-beta1, IFN-gamma and markers of neutrophil (myeloperoxidase) and macrophage (CD68) activity and recruitment. Acute oxidative stress caused by I-R and/or contusion, was determined by measuring GP91(phox) and lipid peroxidation. Muscle recovery (21 days) was assessed by examining the fibrosis after I-R and contusion injuries to the TA with Sirius Red staining and quantification of collagen I expression. Consistent with our hypothesis, I-R preceding contusion increased all markers of the acute inflammatory response and oxidative stress after injury and elevated the expression of collagen. We conclude that ischaemia-induced oxidative stress exacerbated the inflammatory response and enhanced fibrotic scar tissue formation after injury. This response may be attributable to increased levels of TGF-beta1 and diminished expression of IFN-gamma in the ischaemic contused muscle.
Collapse
Affiliation(s)
- Ahmed Ghaly
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
39
|
Ghasemlou N, Bouhy D, Yang J, López-Vales R, Haber M, Thuraisingam T, He G, Radzioch D, Ding A, David S. Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury. ACTA ACUST UNITED AC 2010; 133:126-38. [PMID: 20047904 DOI: 10.1093/brain/awp304] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretory leukocyte protease inhibitor is a serine protease inhibitor produced by various cell types, including neutrophils and activated macrophages, and has anti-inflammatory properties. It has been shown to promote wound healing in the skin and other non-neural tissues, however, its role in central nervous system injury was not known. We now report a beneficial role for secretory leukocyte protease inhibitor after spinal cord injury. After spinal cord contusion injury in mice, secretory leukocyte protease inhibitor is expressed primarily by astrocytes and neutrophils but not macrophages. We show, using transgenic mice over-expressing secretory leukocyte protease inhibitor, that this molecule has an early protective effect after spinal cord contusion injury. Furthermore, wild-type mice treated for the first week after spinal cord contusion injury with recombinant secretory leukocyte protease inhibitor exhibit sustained improvement in locomotor control and reduced secondary tissue damage. Recombinant secretory leukocyte protease inhibitor injected intraperitoneally localizes to the nucleus of circulating leukocytes, is detected in the injured spinal cord, reduces activation of nuclear factor-kappaB and expression of tumour necrosis factor-alpha. Administration of recombinant secretory leukocyte protease inhibitor might therefore be useful for the treatment of acute spinal cord injury.
Collapse
Affiliation(s)
- Nader Ghasemlou
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, Quebec, Canada H3G 1A4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ. Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. ACTA ACUST UNITED AC 2010; 133:433-47. [PMID: 20085927 DOI: 10.1093/brain/awp322] [Citation(s) in RCA: 460] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traumatic injury to the central nervous system results in the disruption of the blood brain/spinal barrier, followed by the invasion of cells and other components of the immune system that can aggravate injury and affect subsequent repair and regeneration. Although studies of chronic neuroinflammation in the injured spinal cord of animals are clinically relevant to most patients living with traumatic injury to the brain or spinal cord, very little is known about chronic neuroinflammation, though several studies have tested the role of neuroinflammation in the acute period after injury. The present study characterizes a novel cell preparation method that assesses, quickly and effectively, the changes in the principal immune cell types by flow cytometry in the injured spinal cord, daily for the first 10 days and periodically up to 180 days after spinal cord injury. These data quantitatively demonstrate a novel time-dependent multiphasic response of cellular inflammation in the spinal cord after spinal cord injury and are verified by quantitative stereology of immunolabelled spinal cord sections at selected time points. The early phase of cellular inflammation is comprised principally of neutrophils (peaking 1 day post-injury), macrophages/microglia (peaking 7 days post-injury) and T cells (peaking 9 days post-injury). The late phase of cellular inflammation was detected after 14 days post-injury, peaked after 60 days post-injury and remained detectable throughout 180 days post-injury for all three cell types. Furthermore, the late phase of cellular inflammation (14-180 days post-injury) did not coincide with either further improvements, or new decrements, in open-field locomotor function after spinal cord injury. However, blockade of chemoattractant C5a-mediated inflammation after 14 days post-injury reduced locomotor recovery and myelination in the injured spinal cord, suggesting that the late inflammatory response serves a reparative function. Together, these data provide new insight into cellular inflammation of spinal cord injury and identify a surprising and extended multiphasic response of cellular inflammation. Understanding the role of this multiphasic response in the pathophysiology of spinal cord injury could be critical for the design and implementation of rational therapeutic treatment strategies, including both cell-based and pharmacological interventions.
Collapse
Affiliation(s)
- Kevin D Beck
- Anatomy and Neurobiology, University of California, Irvine, CA 92697-4292, USA
| | | | | | | | | | | |
Collapse
|
41
|
Naphade SB, Kigerl KA, Jakeman LB, Kostyk SK, Popovich PG, Kuret J. Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathol 2010; 119:123-33. [PMID: 19946692 DOI: 10.1007/s00401-009-0616-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 01/22/2023]
Abstract
Progranulin (proepithelin) is a pleiotropic growth-factor associated with inflammation and wound repair in peripheral tissues. It also has been implicated in the response to acute traumatic brain injury as well as to chronic neurodegenerative diseases. To determine whether changes in progranulin expression also accompany acute spinal cord injury, C57BL/6 mice were subjected to mid-thoracic (T9 level) contusion spinal cord injury and analyzed by immunohistochemical and biochemical methods. Whereas spinal cord sections prepared from non-injured laminectomy control animals contained low basal levels of progranulin immunoreactivity in gray matter, sections from injured animals contained intense immunoreactivity throughout the injury epicenter that peaked 7-14 days post injury. Progranulin immunoreactivity colocalized with myeloid cell markers CD11b and CD68, indicating that expression increased primarily in activated microglia and macrophages. Immunoblot analysis confirmed that progranulin protein levels rose after injury. On the basis of quantitative polymerase chain reaction analysis, increased protein levels resulted from a tenfold rise in progranulin transcripts. These data demonstrate that progranulin is dramatically induced in myeloid cells after experimental spinal cord injury and is positioned appropriately both spatially and temporally to influence recovery after injury.
Collapse
Affiliation(s)
- Swati B Naphade
- Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hosking MP, Liu L, Ransohoff RM, Lane TE. A protective role for ELR+ chemokines during acute viral encephalomyelitis. PLoS Pathog 2009; 5:e1000648. [PMID: 19893623 PMCID: PMC2766051 DOI: 10.1371/journal.ppat.1000648] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 10/06/2009] [Indexed: 01/20/2023] Open
Abstract
The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressing the chemokine receptor CXCR2 into the blood. Migration of PMNs to the CNS coincided with increased expression of transcripts specific for the CXCR2 ELR-positive chemokine ligands CXCL1, CXCL2, and CXCL5 within the brain. Treatment of JHMV-infected mice with anti-CXCR2 blocking antibody reduced PMN trafficking into the CNS by >95%, dampened MMP-9 activity, and abrogated blood-brain-barrier (BBB) breakdown. Correspondingly, CXCR2 neutralization resulted in diminished infiltration of virus-specific T cells, an inability to control viral replication within the brain, and 100% mortality. Blocking CXCR2 signaling did not impair the generation of virus-specific T cells, indicating that CXCR2 is not required to tailor anti-JHMV T cell responses. Evaluation of mice in which CXCR2 is genetically silenced (CXCR2−/− mice) confirmed that PMNs neither expressed CXCR2 nor migrated in response to ligands CXCL1, CXCL2, or CXCL5 in an in vitro chemotaxis assay. Moreover, JHMV infection of CXCR2−/− mice resulted in an approximate 60% reduction of PMN migration into the CNS, yet these mice survived infection and controlled viral replication within the brain. Treatment of JHMV-infected CXCR2−/− mice with anti-CXCR2 antibody did not modulate PMN migration nor alter viral clearance or mortality, indicating the existence of compensatory mechanisms that facilitate sufficient migration of PMNs into the CNS in the absence of CXCR2. Collectively, these findings highlight a previously unappreciated role for ELR-positive chemokines in enhancing host defense during acute viral infections of the CNS. Consequences of viral infection of the central nervous system (CNS) can range from encephalitis and paralytic poliomyelitis to relatively benign infections with limited clinical outcomes. The localized expression of proinflammatory chemokines within the CNS in response to viral infection has been shown to be important in host defense by attracting antigen-specific lymphocytes from the microvasculature into the parenchyma that control and eventually eliminate the replicating pathogen. However, the relationship between chemokine expression and recruitment of myeloid cells, e.g. neutrophils, to the CNS following infection with a neurotropic virus is not well characterized. Emerging evidence has indicated that the mobilization of neutrophils into the blood and recruitment to the CNS following microbial infection or injury contributes to permeabilization of the blood-brain-barrier that subsequently allows entry of inflammatory leukocytes. Therefore, we have defined the chemokines involved in promoting the directional migration of neutrophils to the CNS in response to viral infection. Using the neurotropic JHM strain of mouse hepatitis virus (JHMV) as a model of acute viral encephalomyelitis, we demonstrate a previously unappreciated role for members of the ELR-positive CXC chemokine family in host defense by attracting PMNs bearing the receptor CXCR2 to the CNS in response to viral infection.
Collapse
Affiliation(s)
- Martin P. Hosking
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Liping Liu
- Neuroinflammation Research Center, Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Richard M. Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Thomas E. Lane
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
- Institute for Immunology, Infectious Diseases, and Vaccines, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Gál P, Kravcuková P, Mokrý M, Kluchová D. Chemokines as possible targets in modulation of the secondary damage after acute spinal cord injury: a review. Cell Mol Neurobiol 2009; 29:1025-35. [PMID: 19363652 DOI: 10.1007/s10571-009-9392-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 03/10/2009] [Indexed: 12/23/2022]
Abstract
In spite of many promising experimental studies, an effective treatment dramatically eliminating the secondary damage after spinal cord injury (SCI) is still missing. Since clinical data on the therapeutical effect after methylprednisolone treatment are not conclusive, new therapeutical modalities targeting specific components of secondary spinal cord damage needs to be developed. It is known that immune cells are recruited to injury sites by chemokines, which are small, structurally similar proteins released locally at the site of inflammation. Hence, this review was aimed to summarize possible roles of chemokines in the inflammation following SCI as well as to identify possible new therapeutical targets which can potentially be effective in ameliorating individual components of this inflammatory response. Data concerning inflammation reduction together with techniques improving axonal growth, cell replacement and remyelinization, may be crucial to move a small step forward in an attempt to make paraplegic and quadriplegic patients to walk.
Collapse
Affiliation(s)
- Peter Gál
- Institute of Biology and Ecology, Pavol Jozef Safárik University, 041 80 Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
44
|
Weber J, Mitchell D, Veliotes D, Mitchell B, Kamerman PR. Hyperalgesia induced by oral stavudine administration to rats does not depend on spinal neuronal cell death, or on spinal or systemic inflammatory cytokine secretion, or metabolic dysregulation. Neurotoxicology 2009; 30:423-9. [PMID: 19442827 DOI: 10.1016/j.neuro.2009.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/21/2008] [Accepted: 02/09/2009] [Indexed: 11/27/2022]
Abstract
To investigate possible mechanisms of the hyperalgesia induced by the nucleoside reverse transcriptase inhibitor (NRTI) stavudine in rats, we examined neuronal death and inflammatory cytokine secretion in the spinal cord, and cytokine and lactate secretion in the plasma. Stavudine (50 mg kg(-1)) or placebo was administered orally to Sprague-Dawley rats once daily for three or six weeks. In one group, rats' responses to a blunt noxious mechanical stimulus applied to their tails were recorded before and at the end of the period of stavudine or placebo administration. Spinal cords excised from these rats after three and six weeks of stavudine or placebo administration were examined for neuronal necrosis and apoptosis. In a second group of rats, plasma and spinal cord samples collected after three and six weeks of placebo or stavudine administration were examined for changes in CINC-1, IL-6, adiponectin (plasma only) and lactate (plasma only) concentration. Daily stavudine administration induced mechanical hyperalgesia within three weeks, which was sustained until week six, but the hyperalgesia was not associated with neuronal apoptosis or necrosis, or elevated IL-6 concentrations in the spinal cord. The spinal cord concentration of CINC-1 increased, but only after six weeks of stavudine administration, when the hyperalgesia had been established for over three weeks. Stavudine administration did not affect the plasma concentration of IL-6, CINC-1, adiponectin or lactate. Thus, neither peripheral nor central inflammatory cytokine secretion, or neuronal death, or metabolic dysregulation contributed to the development of hyperalgesia in our model of stavudine-induced hyperalgesia in rats.
Collapse
Affiliation(s)
- Juliane Weber
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | | | | | | | | |
Collapse
|
45
|
Neutrophil elastase inhibitor attenuates hippocampal neuronal damage after transient forebrain ischemia in rats. Brain Res 2009; 1259:98-106. [DOI: 10.1016/j.brainres.2008.12.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/26/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
|
46
|
Hagio T, Kishikawa K, Kawabata K, Tasaka S, Hashimoto S, Hasegawa N, Ishizaka A. Inhibition of neutrophil elastase reduces lung injury and bacterial count in hamsters. Pulm Pharmacol Ther 2008; 21:884-91. [DOI: 10.1016/j.pupt.2008.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 09/08/2008] [Accepted: 10/01/2008] [Indexed: 11/30/2022]
|
47
|
Hara S, Nemoto K, Ninomiya N, Kubota M, Kuno M, Yamamoto Y. CONTINUOUS INFUSION OF SIVELESTAT SODIUM HYDRATE PREVENTS LIPOPOLYSACCHARIDE-INDUCED INTESTINAL PARALYSIS AND HYPOTENSION IN CONSCIOUS GUINEA-PIGS. Clin Exp Pharmacol Physiol 2008; 35:841-5. [DOI: 10.1111/j.1440-1681.2008.04921.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Trivedi A, Olivas AD, Noble-Haeusslein LJ. Inflammation and Spinal Cord Injury: Infiltrating Leukocytes as Determinants of Injury and Repair Processes. ACTA ACUST UNITED AC 2006; 6:283-292. [PMID: 18059979 DOI: 10.1016/j.cnr.2006.09.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The immune response that accompanies spinal cord injury contributes to both injury and reparative processes. It is this duality that is the focus of this review. Here we consider the complex cellular and molecular immune responses that lead to the infiltration of leukocytes and glial activation, promote oxidative stress and tissue damage, influence wound healing, and subsequently modulate locomotor recovery. Immunomodulatory strategies to improve outcomes are gaining momentum as ongoing research carefully dissects those pathways, which likely mediate cell injury from those, which favor recovery processes. Current therapeutic strategies address divergent approaches including early immunoblockade and vaccination with immune cells to prevent early tissue damage and support a wound-healing environment that favors plasticity. Despite these advances, there remain basic questions regarding how inflammatory cells interact in the injured spinal cord. Such questions likely arise as a result of our limited understanding of immune cell/neural interactions in a dynamic environment that culminates in progressive cell injury, demyelination, and regenerative failure.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Neurosurgery, University of California San Francisco, CA 94143
| | | | | |
Collapse
|
49
|
KIGERL KRISTINAA, McGAUGHY VIOLETAM, POPOVICH PHILLIPG. Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol 2006; 494:578-94. [PMID: 16374800 PMCID: PMC2655318 DOI: 10.1002/cne.20827] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Susceptibility to neuroinflammatory disease is influenced in part by genetics. Recent data indicate that survival of traumatized neurons is strain dependent and influenced by polygenic loci that control resistance/susceptibility to experimental autoimmune encephalomyelitis (EAE), a model of CNS autoimmune disease. Here, we describe patterns of neurodegeneration and intraparenchymal inflammation after traumatic spinal cord injury (SCI) in mice known to exhibit varying degrees of EAE susceptibility [EAE-resistant (r) or EAE-susceptible (s) mice]. Spinal cords from C57BL/6 (EAE-s), C57BL/10 (EAE-r), BALB/c (EAE-r), and B10.PL (EAE-s) mice were prepared for stereological and immunohistochemical analysis at 6 hours or 3, 7, 14, 28, or 42 days following midthoracic (T9) spinal contusion injury. In general, genetic predisposition to EAE predicted the magnitude of intraparenchymal inflammation but not lesion size/length or locomotor recovery. Specifically, microglia/macrophage activation, recruitment of neutrophils and lymphocytes, and de novo synthesis of MHC class II were greatest in C57BL/6 mice and least in BALB/c mice at all times examined. However, lesion volume and axial spread of neurodegeneration were similar in C57BL/6 and BALB/c mice and were significantly greater than in C57BL/10 or B10.PL mice. Strains with marked intraspinal inflammation also developed the most intense lesion fibrosis. Thus, strain-dependent neuroinflammation was observed after SCI, but without a consistent relationship to EAE susceptibility or lesion progression. Only in C57BL/6 mice was the magnitude of intraspinal inflammation predictive of secondary neurodegeneration, functional recovery, or fibrosis.
Collapse
Affiliation(s)
- KRISTINA A. KIGERL
- Integrated Biomedical Science Graduate Program, The Spinal Trauma and Repair (STAR) Laboratories and The Institute for Behavioral Medicine Research, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210
| | - VIOLETA M. McGAUGHY
- Department of Molecular Virology, Immunology and Medical Genetics, The Spinal Trauma and Repair (STAR) Laboratories and The Institute for Behavioral Medicine Research, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210
| | - PHILLIP G. POPOVICH
- Integrated Biomedical Science Graduate Program, The Spinal Trauma and Repair (STAR) Laboratories and The Institute for Behavioral Medicine Research, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210
- Department of Molecular Virology, Immunology and Medical Genetics, The Spinal Trauma and Repair (STAR) Laboratories and The Institute for Behavioral Medicine Research, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210
- Correspondence to: Dr. Phillip Popovich, Dept. Molecular Virology, Immunology & Medical Genetics, 2078 Graves Hall, 333 W. 10th Ave, Columbus, Ohio 43210. Phone: 614-688-8576, FAX: 614-292-9805,
| |
Collapse
|
50
|
Morohoshi Y, Matsuoka K, Chinen H, Kamada N, Sato T, Hisamatsu T, Okamoto S, Inoue N, Takaishi H, Ogata H, Iwao Y, Hibi T. Inhibition of neutrophil elastase prevents the development of murine dextran sulfate sodium-induced colitis. J Gastroenterol 2006; 41:318-24. [PMID: 16741610 DOI: 10.1007/s00535-005-1768-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 12/09/2005] [Indexed: 02/04/2023]
Abstract
BACKGROUND Neutrophil elastase (NE) is a major secretory product from activated neutrophils and a major contributor to tissue destruction. However, little is known about the pathogenic contribution of NE to ulcerative colitis (UC). This study was designed to investigate the contribution of NE by measuring NE activity in plasma and colonic mucosal tissue from UC patients and a murine acute colitis model, and to elucidate the therapeutic effect of the NE-specific inhibitor ONO-5046. METHODS The NE enzyme activities in plasma and colonic mucosal tissue from UC patients were directly measured using an enzyme-substrate reaction. Acute colitis was induced in mice by administration of 1.5% dextran sulfate sodium (DSS) for 5 days. DSS-induced colitis mice were then treated with ONO-5046 (50 mg/kg body weight) intraperitoneally twice a day. RESULTS In UC patients, the NE enzyme activity was significantly elevated in both the plasma and colonic mucosal tissue compared with healthy controls. In DSS-induced colitis mice, the NE enzyme activity increased in parallel with the disease development. ONO-5046 showed therapeutic effects in DSS-treated mice by significantly reducing weight loss and histological score. ONO-5046 suppressed the NE enzyme activities in both plasma and culture supernatant of colonic mucosa from DSS-induced colitis mice. CONCLUSIONS ONO-5046, a specific NE inhibitor, prevented the development of DSS-induced colitis in mice. NE therefore represents a promising target for the treatment of UC patients.
Collapse
Affiliation(s)
- Yuichi Morohoshi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|