1
|
De Angelis E, Borghetti P, Passeri B, Cavalli V, Ferrari L, Andrani M, Martelli P, Saleri R. Hyperosmotic Stress Induces the Expression of Organic Osmolyte Transporters in Porcine Intestinal Cells and Betaine Exerts a Protective Effect on the Barrier Function. Biomedicines 2024; 12:2391. [PMID: 39457703 PMCID: PMC11503993 DOI: 10.3390/biomedicines12102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/objectives: The porcine intestinal epithelium plays a fundamental role as a defence interface against pathogens. Its alteration can cause severe inflammatory conditions and diseases. Hyperosmotic stress under physiological conditions and upon pathogen challenge can cause malabsorption. Different cell types counteract the osmolarity increase by accumulating organic osmolytes such as betaine, taurine, and myo-inositol through specific transporters. Betaine is known for protecting cells from hyperosmotic stress and has positive effects when fed to pigs. The aim of this study is to demonstrate the modulation of osmolyte transporters gene expression in IPEC-J2 during osmolarity changes and assess the effects of betaine. Methods: IPEC-J2 were seeded in transwells, where differentiate as a polarized monolayer. Epithelial cell integrity (TEER), oxidative stress (NO) and gene expression of osmolyte transporters, tight junction proteins (TJp) and pro-inflammatory cytokines were evaluated. Results: Cells treated with NaCl hyperosmolar medium (500 mOsm/L) showed a TEER decrease at 3 h and detachment within 24 h, associated with an osmolyte transporters reduction. IPEC-J2 treated with mannitol hyperosmolar medium (500 mOsm/L) upregulated taurine (TauT), myo-inositol (SMIT) and betaine (BGT1) transporters expression. A decrease in TJp expression was associated with a TEER decrease and an increase in TNFα, IL6, and IL8. Betaine could attenuate the hyperosmolarity-induced reduction in TEER and TJp expression, the NO increase and cytokines upregulation. Conclusions: This study demonstrates the expression of osmolyte transporters in IPEC-J2, which was upregulated upon hyperosmotic treatment. Betaine counteracts changes in intracellular osmolarity by contributing to maintaining the epithelial barrier function and reducing the inflammatory condition. Compatible osmolytes may provide beneficial effects in therapies for diseases characterized by inflammation and TJp-related dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | - Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (E.D.A.); (P.B.); (B.P.); (V.C.); (L.F.); (P.M.); (R.S.)
| | | | | |
Collapse
|
2
|
Lee C, Cho H, Kim M, Kim B, Jang YP, Park J. Evaluating the Dermatological Benefits of Snowberry ( Symphoricarpos albus): A Comparative Analysis of Extracts and Fermented Products from Different Plant Parts. Int J Mol Sci 2024; 25:9660. [PMID: 39273607 PMCID: PMC11394855 DOI: 10.3390/ijms25179660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Skin ageing is influenced by both intrinsic and extrinsic factors, with excessive ultraviolet (UV) exposure being a significant contributor. Such exposure can lead to moisture loss, sagging, increased wrinkling, and decreased skin elasticity. Prolonged UV exposure negatively impacts the extracellular matrix by reducing collagen, hyaluronic acid, and aquaporin 3 (AQP-3) levels. Fermentation, which involves microorganisms, can produce and transform beneficial substances for human health. Natural product fermentation using lactic acid bacteria have demonstrated antioxidant, anti-inflammatory, antibacterial, whitening, and anti-wrinkle properties. Snowberry, traditionally used as an antiemetic, purgative, and anti-inflammatory agent, is now also used as an immune stimulant and for treating digestive disorders and colds. However, research on the skin benefits of Fermented Snowberry Extracts remains limited. Thus, we aimed to evaluate the skin benefits of snowberry by investigating its moisturising and anti-wrinkle effects, comparing extracts from different parts of the snowberry plant with those subjected to fermentation using Lactobacillus plantarum. Chlorophyll-free extracts were prepared from various parts of the snowberry plant, and ferments were created using Lactobacillus plantarum. The extracts and ferments were analysed using high-performance liquid chromatography (HPLC) to determine and compare their chemical compositions. Moisturising and anti-ageing tests were conducted to assess the efficacy of the extracts and ferments on the skin. The gallic acid content remained unchanged across all parts of the snowberry before and after fermentation. However, Fermented Snowberry Leaf Extracts exhibited a slight decrease in chlorogenic acid content but a significant increase in ferulic acid content. The Fermented Snowberry Fruit Extract demonstrated increased chlorogenic acid and a notable rise in ferulic acid compared to its non-fermented counterpart. Skin efficacy tests revealed that Fermented Snowberry Leaf and Fruit Extracts enhanced the expression of AQP-3, HAS-3, and COL1A1. These extracts exhibited distinct phenolic component profiles, indicating potential skin benefits such as improved moisture retention and protection against ageing. These findings suggest that Fermented Snowberry Extracts could be developed into effective skincare products, providing a natural alternative for enhancing skin hydration and reducing signs of ageing.
Collapse
Affiliation(s)
- Chanwoo Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Miglim Co., Ltd., A-1309, 30, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Hana Cho
- Technology R&D Institute, ICBIO, 1 Naeyuri 1-gil, Ipjang-meyon, Seobuk-gu, Cheonan-si 31027, Republic of Korea
| | - Myunsoo Kim
- Technology R&D Institute, ICBIO, 1 Naeyuri 1-gil, Ipjang-meyon, Seobuk-gu, Cheonan-si 31027, Republic of Korea
| | - Boae Kim
- Department of Cosmetic Engineering, Collage of Technology Sciences, Mokwon University, Daejeon 35349, Republic of Korea
| | - Young-Pyo Jang
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junseong Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
3
|
Luo Y, Bollag WB. The Role of PGC-1α in Aging Skin Barrier Function. Cells 2024; 13:1135. [PMID: 38994987 PMCID: PMC11240425 DOI: 10.3390/cells13131135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Skin provides a physical and immune barrier to protect the body from foreign substances, microbial invasion, and desiccation. Aging reduces the barrier function of skin and its rate of repair. Aged skin exhibits decreased mitochondrial function and prolonged low-level inflammation that can be seen in other organs with aging. Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), an important transcriptional coactivator, plays a central role in modulating mitochondrial function and antioxidant production. Mitochondrial function and inflammation have been linked to epidermal function, but the mechanisms are unclear. The aim of this review is to discuss the mechanisms by which PGC-1α might exert a positive effect on aged skin barrier function. Initially, we provide an overview of the function of skin under physiological and aging conditions, focusing on the epidermis. We then discuss mitochondrial function, oxidative stress, cellular senescence, and inflamm-aging, the chronic low-level inflammation observed in aging individuals. Finally, we discuss the effects of PGC-1α on mitochondrial function, as well as the regulation and role of PGC-1α in the aging epidermis.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, Van Doorslaer K. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling. PLoS One 2023; 18:e0292368. [PMID: 37792852 PMCID: PMC10550192 DOI: 10.1371/journal.pone.0292368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e., cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data (https://viz.datascience.arizona.edu/3DEpiEx/).
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Esha V. Rajadhyaksha
- College of Medicine and College of Science, University of Arizona, Tucson, Arizona, United States of America
| | - Reid S. Loeffler
- Biosystems Engineering, College of Agriculture and Life Sciences, College of Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Caitlyn E. Flores
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
5
|
Ernstsen CV, Riishede A, Iversen AKS, Bay L, Bjarnsholt T, Nejsum LN. E-cadherin and aquaporin-3 are downregulated in wound edges of human chronic wounds. APMIS 2023. [PMID: 37267058 DOI: 10.1111/apm.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023]
Abstract
Chronic wounds are defined as wounds that fail to proceed through the normal phases of wound healing; a complex process involving different dynamic events including migration of keratinocytes in the epidermis. Chronic wounds are estimated to affect 1-2% of the human population worldwide and are a major socioeconomic burden. The prevalence of chronic wounds is expected to increase with the rising number of elderly and patients with diabetes and obesity, who are at high risk of developing chronic wounds. Since E-cadherin and the water channel aquaporin-3 are important for both skin function and cell migration, and aquaporin-3 is furthermore involved in wound healing of the skin demonstrated by impaired wound healing in aquaporin-3-null mice, we hypothesized that E-cadherin and aquaporin-3 expression may be dysregulated in chronic wounds. Therefore, we investigated the expression of E-cadherin and aquaporin-3 in biopsies from the edges of chronic wounds from human patients. This was accomplished by immunohistochemical stainings of E-cadherin and aquaporin-3 on serial sections followed by qualitative evaluation of staining patterns, which revealed low expression of both E-cadherin and aquaporin-3 at the wound edge. Future studies are needed to reveal if this downregulation is associated with the pathophysiology of chronic wounds.
Collapse
Affiliation(s)
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Kristine S Iversen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Lene Bay
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, Van Doorslaer K. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524743. [PMID: 36711548 PMCID: PMC9882319 DOI: 10.1101/2023.01.19.524743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e. , cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data ( https://viz.datascience.arizona.edu/3DEpiEx/ ).
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Esha V Rajadhyaksha
- College of Medicine and College of Science, University of Arizona, Tucson, AZ, USA
| | - Reid S Loeffler
- Biosystems Engineering, College of Agriculture and Life Sciences; College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Caitlyn E Flores
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology; Cancer Biology Graduate Interdisciplinary Program; Genetics Graduate Interdisciplinary Program; and University of Arizona Cancer Center, University of Arizona, Tucson, AZ USA
| |
Collapse
|
7
|
Nicolas-Espinosa J, Yepes-Molina L, Carvajal M. Bioactive peptides from broccoli stems strongly enhance regenerative keratinocytes by stimulating controlled proliferation. PHARMACEUTICAL BIOLOGY 2022; 60:235-246. [PMID: 35086428 PMCID: PMC8797740 DOI: 10.1080/13880209.2021.2009522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT As the interest on the research of plant derived bioactive peptides (BPs) for nutraceutical, cosmeceutical and medical applications is increasing, in this work, the application of peptide derived from broccoli to keratinocytes was studied. OBJECTIVE We focussed on the characterization of different peptides hydrolysates from broccoli stems [extracted from total protein (E) and from membrane protein (MF)], and their activity when applied to human keratinocytes. MATERIALS AND METHODS Peptide mixtures from broccoli stems (E and MF) were characterized by proteomics. They were applied to HaCaT cells in order to study cytotoxicity in a concentration range between 20 and 0.15625 µg of protein/mL and wound healing was studied after 24 and 48 h of treatment application. Also, proteomic and gene expression of keratinocytes were analysed. RESULTS Depending on the source, proteins varied in peptide and amino acid composition. An increased proliferation of keratinocytes was shown after the application of the E peptides mixtures, reaching 190% with the lowest concentrations, but enhanced wound healing repair with E and MF appeared, reaching 59% of wound closure after 48 h. At the gene expression and protein levels of keratinocytes, the upregulation of anti-oncogene p53 and keratinization factors were observed. DISCUSSION These results suggest that peptide mixtures obtained from broccoli augmented cell proliferation and prevented the carcinogenic, uncontrolled growth of the cells, with different mechanisms depending on the protein source. CONCLUSIONS The results encourage the opening of new lines of research involving the use of Brassica peptides for pharmaceutic or cosmetic use.
Collapse
Affiliation(s)
- Juan Nicolas-Espinosa
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
8
|
Liu JK. Natural products in cosmetics. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:40. [PMID: 36437391 PMCID: PMC9702281 DOI: 10.1007/s13659-022-00363-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/11/2022] [Indexed: 05/14/2023]
Abstract
The global cosmetics market reached US$500 billion in 2017 and is expected to exceed US$800 billion by 2023, at around a 7% annual growth rate. The cosmetics industry is emerging as one of the fastest-growing industries of the past decade. Data shows that the Chinese cosmetics market was US$60 billion in 2021. It is expected to be the world's number one consumer cosmetics market by 2050, with a size of approximately US$450 billion. The influence of social media and the internet has raised awareness of the risks associated with the usage of many chemicals in cosmetics and the health benefits of natural products derived from plants and other natural resources. As a result, the cosmetic industry is now paying more attention to natural products. The present review focus on the possible applications of natural products from various biological sources in skin care cosmetics, including topical care products, fragrances, moisturizers, UV protective, and anti-wrinkle products. In addition, the mechanisms of targets for evaluation of active ingredients in cosmetics and the possible benefits of these bioactive compounds in rejuvenation and health, and their potential role in cosmetics are also discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- Wuhan Institute of Health, Shenzhen Moore Vaporization Health & Medical Technology Co., Ltd., Wuhan, 430074, People's Republic of China.
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
9
|
Charlestin V, Fulkerson D, Arias Matus CE, Walker ZT, Carthy K, Littlepage LE. Aquaporins: New players in breast cancer progression and treatment response. Front Oncol 2022; 12:988119. [PMID: 36212456 PMCID: PMC9532844 DOI: 10.3389/fonc.2022.988119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaporins (AQPs) are a family of small transmembrane proteins that selectively transport water and other small molecules and ions following an osmotic gradient across cell plasma membranes. This enables them to regulate numerous functions including water homeostasis, fat metabolism, proliferation, migration, and adhesion. Previous structural and functional studies highlight a strong biological relationship between AQP protein expression, localization, and key biological functions in normal and cancer tissues, where aberrant AQP expression correlates with tumorigenesis and metastasis. In this review, we discuss the roles of AQP1, AQP3, AQP4, AQP5, and AQP7 in breast cancer progression and metastasis, including the role of AQPs in the tumor microenvironment, to highlight potential contributions of stromal-derived to epithelial-derived AQPs to breast cancer. Emerging evidence identifies AQPs as predictors of response to cancer therapy and as targets for increasing their sensitivity to treatment. However, these studies have not evaluated the requirements for protein structure on AQP function within the context of breast cancer. We also examine how AQPs contribute to a patient's response to cancer treatment, existing AQP inhibitors and how AQPs could serve as novel predictive biomarkers of therapy response in breast cancer. Future studies also should evaluate AQP redundancy and compensation as mechanisms used to overcome aberrant AQP function. This review highlights the need for additional research into how AQPs contribute molecularly to therapeutic resistance and by altering the tumor microenvironment.
Collapse
Affiliation(s)
- Verodia Charlestin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Carlos E. Arias Matus
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
- Department of Biotechnology, Universidad Popular Autónoma del Estado de Puebla, Pue, Mexico
| | - Zachary T. Walker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Kevin Carthy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Laurie E. Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| |
Collapse
|
10
|
LGR5 is a conserved marker of hair follicle stem cells in multiple species and is present early and throughout follicle morphogenesis. Sci Rep 2022; 12:9104. [PMID: 35650234 PMCID: PMC9160037 DOI: 10.1038/s41598-022-13056-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Hair follicle stem cells are key for driving growth and homeostasis of the hair follicle niche, have remarkable regenerative capacity throughout hair cycling, and display fate plasticity during cutaneous wound healing. Due to the need for a transgenic reporter, essentially all observations related to LGR5-expressing hair follicle stem cells have been generated using transgenic mice, which have significant differences in anatomy and physiology from the human. Using a transgenic pig model, a widely accepted model for human skin and human skin repair, we demonstrate that LGR5 is a marker of hair follicle stem cells across species in homeostasis and development. We also report the strong similarities and important differences in expression patterns, gene expression profiles, and developmental processes between species. This information is important for understanding the fundamental differences and similarities across species, and ultimately improving human hair follicle regeneration, cutaneous wound healing, and skin cancer treatment.
Collapse
|
11
|
Maiese A, Del Duca F, Santoro P, Pellegrini L, De Matteis A, La Russa R, Frati P, Fineschi V. An Overview on Actual Knowledge About Immunohistochemical and Molecular Features of Vitality, Focusing on the Growing Evidence and Analysis to Distinguish Between Suicidal and Simulated Hanging. Front Med (Lausanne) 2022; 8:793539. [PMID: 35096882 PMCID: PMC8795912 DOI: 10.3389/fmed.2021.793539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022] Open
Abstract
In forensic practice, the pathologist is often asked to determine whether a hanging was committed as suicide or as a simulated hanging (when a dead body is suspended after death). When exterior evidence of violence is absent and the crime scene investigation fails to identify useful proof, it is nearly impossible to tell whether the dead body was suspended or not. As a result, determining whether the ligature mark was created during life or not should rely on the research and demonstration of vital reactions on the ligature mark. The main purpose of this review article is to provide a summary of current knowledge about the histological and immunohistochemical characteristics of vitality in hanging. The authors also aim to identify the most significant vitality markers on ligature marks for further scientific validation and to propose a standardized diagnostic protocol for hanging. The study was conducted according to the Preferred Reporting Items for Systematic Review (PRISMA) Protocol. Relevant scientific papers were found from PubMed up to April 2021, using the following keywords: hanging AND skin AND vitality. Three main points were studied: ligature mark dehydration, immunological response to mechanical injury, and apoptosis induction as a result of the previous points. An increase in apoptosis is evident in the ligature mark (due to physical and chemical processes involved), as demonstrated by FLICE-inhibitory protein (FLIP) depletion. Immunohistochemical detection of Aquaporin 3 (AQP3) and increase in the concentration of different electrolytes rely solely on ligature mark dehydration. Also, microRNAs (MiRNAs) could become reliable forensic biomarkers for ligature mark vitality diagnosis in the near future. To ensure high reliability in court cases, forensic investigation in hanging should rely on modern and proven markers, even a mix of several markers.
Collapse
Affiliation(s)
- Aniello Maiese
- Section of Legal Medicine, S. Chiara Hospital, University of Pisa, Pisa, Italy
| | - Fabio Del Duca
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Santoro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Lavinia Pellegrini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Paola Frati
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
13
|
Prangenberg J, Doberentz E, Madea B. Mini Review: Forensic Value of Aquaporines. Front Med (Lausanne) 2022; 8:793140. [PMID: 34977094 PMCID: PMC8718671 DOI: 10.3389/fmed.2021.793140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/29/2022] Open
Abstract
Forensic pathologists are routinely confronted with unclear causes of death or findings. In some scenarios, it can be difficult to answer the specific questions posed by criminal investigators or prosecutors. Such scenarios may include questions about wound vitality or causes of death when typical or landmark findings are difficult to find. In addition to the usual subsequent examinations to clarify unclear causes of death or special questions, immunohistochemical analysis has become increasingly important since its establishment in the early 40s of the 20th century. Since then, numerous studies have been conducted to determine the usefulness and significance of immunohistochemical investigations on various structures and proteins. These proteins include, for example, aquaporins, which belong to the family of water channels. They enable the transport of water and of small molecules, such as glycerol, through biological channels and so far, 13 classes of aquaporins could have been identified in vertebrates. The classic aquaporin channels 1, 2, 4 and 5 are only permeable to water. The aquaporin channels 3, 7, 9, and 10 are also called aquaglycerolporins since they can also transport glycerol. This mini review discusses the immunohistochemical research on aquaporins, their range of applications, and respective forensic importance, their current limitations, and possible further implementations in the future.
Collapse
Affiliation(s)
| | - Elke Doberentz
- Institute of Legal Medicine, University Hospital Bonn, Bonn, Germany
| | - Burkhard Madea
- Institute of Legal Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
14
|
Expression and Significance of AQP3 in Cutaneous Lesions. ACTA ACUST UNITED AC 2021; 2021:7866471. [PMID: 34745849 PMCID: PMC8564211 DOI: 10.1155/2021/7866471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022]
Abstract
Aquaporin 3 (AQP3) is the membrane channel of water and involved in fluid homeostasis. The aim of this study was to reveal the expression and significance of AQP3 in cutaneous lesions. We analyzed AQP3 mRNA levels using RT-PCR in 311 cutaneous lesions and confirmed AQP3 expression in these lesions by immunohistochemistry. AQP3 mRNA was detected in normal epidermis, seborrheic keratosis, solar keratosis, Bowen's disease, squamous cell carcinoma, eccrine poroma, apocrine carcinoma, and sebaceoma; however, AQP3 mRNA was absent in basal cell carcinoma, nevocellular nevus, or malignant melanoma. By immunohistochemistry, diffuse AQP3 expression was seen in all keratotic lesions including seborrheic keratosis, verruca vulgaris, molluscum contagiosum, solar keratosis, Bowen's disease, and squamous cell carcinoma. Diffuse AQP3 expression was also present in all extramammary Paget's disease. No AQP3 staining was obtained in basal cell carcinoma. Positive AQP3 staining was seen in sweat gland tumors including hidradenoma, eccrine poroma, and apocrine carcinoma. Among sebaceous tumors, AQP3 expressed diffusely in all sebaceous hyperplasia and sebaceous adenoma, but not in sebaceous carcinomas. Only focal AQP3 staining was seen in nevocellular nevus and no AQP3 staining in melanoma. Our findings indicate the function of AQP3 maintained in most skin tumors. AQP3 may be used for differential diagnosis in skin tumors.
Collapse
|
15
|
Jo MH, Kim B, Ju JH, Heo SY, Ahn KH, Lee HJ, Yeom HS, Jang H, Kim MS, Kim CH, Oh BR. Tremella fuciformis TFCUV5 Mycelial Culture-derived Exopolysaccharide Production and Its Anti-aging Effects on Skin Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0361-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Seo SA, Park HJ, Han MG, Lee R, Kim JS, Park JH, Lee WY, Song H. Fermented Colostrum Whey Upregulates Aquaporin-3 Expression in, and Proliferation of, Keratinocytes via p38/c-Jun N-Terminal Kinase Activation. Food Sci Anim Resour 2021; 41:749-762. [PMID: 34632396 PMCID: PMC8460327 DOI: 10.5851/kosfa.2021.e33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 01/03/2023] Open
Abstract
Colostrum, which contains various immune and growth factors, aids wound healing by promoting keratinocyte proliferation. Aquaporins (AQPs) are small, hydrophobic membrane proteins that regulate cellular water retention. However, few studies have examined the effect of processed colostrum whey on AQP-3 expression in human skin cells. Here, we investigated the effect of milk, colostrum, fermented milk, and fermented colostrum whey on AQP-3 expression in keratinocyte HaCaT cells. Concentrations of 100-400 μg/mL of fermented colostrum whey were found to induce HaCaT cell proliferation. AQP-3 was found to be expressed exclusively in HaCaT cells. AQP-3 expression was significantly increased in 100 μg/mL fermented colostrum whey-treated cells compared with that in controls. Moreover, fermented colostrum increased p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) phosphorylation, but not ERK1/2 phosphorylation. Thus, our results suggest that fermented colostrum whey increased AQP-3 expression in, and the proliferation of, keratinocytes via JNK and p38 MAPK activation.
Collapse
Affiliation(s)
- Sang-Ah Seo
- Department of Stem Cells and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Korea
| | - Hyun-Jung Park
- Department of Stem Cells and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Korea.,Department of Animal Biotechnology, College of Life Science and Natural Resources, Sangji University, Wonju 26339, Korea
| | - Min-Gi Han
- Department of Stem Cells and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Korea
| | - Ran Lee
- Department of Stem Cells and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Korea
| | - Ji-Soo Kim
- Department of Stem Cells and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Korea
| | - Ji-Hoo Park
- Department of Stem Cells and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Korea
| | - Won-Young Lee
- Department of Beef & Dairy Science, Korea National College of Agricultures and Fisheries, Jeonbuk 54874, Korea
| | - Hyuk Song
- Department of Stem Cells and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
17
|
Min SY, Park CH, Yu HW, Park YJ. Anti-Inflammatory and Anti-Allergic Effects of Saponarin and Its Impact on Signaling Pathways of RAW 264.7, RBL-2H3, and HaCaT Cells. Int J Mol Sci 2021; 22:ijms22168431. [PMID: 34445132 PMCID: PMC8395081 DOI: 10.3390/ijms22168431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Saponarin{5-hydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-7-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one}, a flavone found in young green barley leaves, is known to possess antioxidant, antidiabetic, and hepatoprotective effects. In the present study, the anti-inflammatory, anti-allergic, and skin-protective effects of saponarin were investigated to evaluate its usefulness as a functional ingredient in cosmetics. In lipopolysaccharide-induced RAW264.7 (murine macrophage) cells, saponarin (80 μM) significantly inhibited cytokine expression, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, inducible nitric oxide synthase, and cyclooxygenase (COX)-2. Saponarin (80 μM) also inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 involved in the mitogen-activated protein kinase signaling pathway in RAW264.7 cells. Saponarin (40 μM) significantly inhibited β-hexosaminidase degranulation as well as the phosphorylation of signaling effectors (Syk, phospholipase Cγ1, ERK, JNK, and p38) and the expression of inflammatory mediators (tumor necrosis factor [TNF]-α, IL-4, IL-5, IL-6, IL-13, COX-2, and FcεRIα/γ) in DNP-IgE- and DNP-BSA-stimulated RBL-2H3 (rat basophilic leukemia) cells. In addition, saponarin (100 μM) significantly inhibited the expression of macrophage-derived chemokine, thymus and activation-regulated chemokine, IL-33, thymic stromal lymphopoietin, and the phosphorylation of signaling molecules (ERK, p38 and signal transducer and activator of transcription 1 [STAT1]) in TNF-α- and interferon (IFN)-γ-stimulated HaCaT (human immortalized keratinocyte) cells. Saponarin (100 μM) also significantly induced the expression of hyaluronan synthase-3, aquaporin 3, and cathelicidin antimicrobial peptide (LL-37) in HaCaT cells, which play an important role as skin barriers. Saponarin remarkably inhibited the essential factors involved in the inflammatory and allergic responses of RAW264.7, RBL-2H3, and HaCaT cells, and induced the expression of factors that function as physical and chemical skin barriers in HaCaT cells. Therefore, saponarin could potentially be used to prevent and relieve immune-related skin diseases, including atopic dermatitis.
Collapse
|
18
|
Yang M, Zhang Z, He Y, Li C, Wang J, Ma X. Study on the structure characterization and moisturizing effect of Tremella polysaccharide fermented from GCMCC5.39. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
da Silva IV, Silva AG, Pimpão C, Soveral G. Skin aquaporins as druggable targets: Promoting health by addressing the disease. Biochimie 2021; 188:35-44. [PMID: 34097985 DOI: 10.1016/j.biochi.2021.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Skin is the most vulnerable organ of the human body since it is the first line of defense, covering the entire external body surface. Additionally, skin has a critical role in thermoregulation, sensation, immunological surveillance, and biochemical processes such as Vitamin D3 production by ultraviolet irradiation. The ability of the skin layers and resident cells to maintain skin physiology, such as hydration, regulation of keratinocytes proliferation and differentiation and wound healing, is supported by key proteins such as aquaporins (AQPs) that facilitate the movements of water and small neutral solutes across membranes. Various AQP isoforms have been detected in different skin-resident cells where they perform specific roles, and their dysregulation has been associated with several skin pathologies. This review summarizes the current knowledge of AQPs involvement in skin physiology and pathology, highlighting their potential as druggable targets for the treatment of skin disorders.
Collapse
Affiliation(s)
- Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| | - Andreia G Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| |
Collapse
|
20
|
Prangenberg J, Doberentz E, Witte AL, Madea B. Aquaporin 1 and 3 as local vitality markers in mechanical and thermal skin injuries. Int J Legal Med 2021; 135:1837-1842. [PMID: 33855630 PMCID: PMC8354899 DOI: 10.1007/s00414-021-02588-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Assessment of the vitality of an injury is one of to the main tasks in daily forensic casework. Aquaporins belong to the family of water channels. They enable the transport of water and of small molecules like glycerol through biological channels. So far, 13 classes of aquaporins are identified in vertebrates. The classical aquaporin channels 1, 2 and 4 are only permeable for water. The aquaporin channels 3, 7, 9 and 10 are also called aquaglycerolporins since they can also transport glycerol. Aquaporin 3 is expressed in epidermal keratinocytes. In the present investigation, the aquaporin 1 and 3 expression in mechanically and thermally damaged skin is investigated by immunohistochemistry. The study collective comprises 30 cases (63.3% male and 36.7% female) with an age range between 19 and 95 years (mean value 54.6 years). The skin injury comprises different kinds of blunt force, sharp force, strangulation marks, thermal injury, gunshot wounds and frost erythema. In all kinds of mechanical and trauma injury, an increased expression of aquaporin 3 in the keratinocytes of the epidermis was found. There is no correlation of the aquaporin 3 expression with age, sex, body mass index, duration of agonal period and postmortem interval. Concerning aquaporin 1, there were no differences between injured and uninjured skin. Aquaporin 3 is independently from the kind of skin injury and appears to be a valuable immunohistochemical parameter of vitality.
Collapse
Affiliation(s)
- Julian Prangenberg
- Institute of Legal Medicine, University Hospital Bonn, Stiftsplatz 12, 53111, Bonn, Germany.
| | - E Doberentz
- Institute of Legal Medicine, University Hospital Bonn, Stiftsplatz 12, 53111, Bonn, Germany
| | - A -L Witte
- Institute of Legal Medicine, University Hospital Bonn, Stiftsplatz 12, 53111, Bonn, Germany
| | - B Madea
- Institute of Legal Medicine, University Hospital Bonn, Stiftsplatz 12, 53111, Bonn, Germany
| |
Collapse
|
21
|
Wegner A, Doberentz E, Madea B. Death in the sauna-vitality markers for heat exposure. Int J Legal Med 2021; 135:903-908. [PMID: 33447890 PMCID: PMC8036176 DOI: 10.1007/s00414-021-02504-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/04/2021] [Indexed: 01/19/2023]
Abstract
In sauna-associated deaths, the vitality of heat exposure is of great importance. Two case reports address this. First, we present the case of a 77-year-old man who was found dead in the sauna of his family home. When found, the sauna door was closed, and the sauna indicated a temperature of 78 °C. The body had already begun to decay and was partially mummified when it was found. In the other case, a 73-year-old woman was found dead in the sauna by her husband. In this case, the sauna door was also closed. The sauna was still in operation at a temperature of approximately 70 °C. Epidermal detachments were found. In both autopsies and their follow-up examinations, there were no indications of a cause of death competing with heat shock. The expression of heat shock proteins in kidneys and lungs and the expression of aquaporin 3 in skin were investigated to detect pre-mortal temperature influences.
Collapse
Affiliation(s)
- Anja Wegner
- Institute of Legal Medicine, University Hospital Bonn, Stiftsplatz 12, 53111, Bonn, Germany.
| | - Elke Doberentz
- Institute of Legal Medicine, University Hospital Bonn, Stiftsplatz 12, 53111, Bonn, Germany
| | - Burkhard Madea
- Institute of Legal Medicine, University Hospital Bonn, Stiftsplatz 12, 53111, Bonn, Germany
| |
Collapse
|
22
|
Identification of compounds in red wine that effectively upregulate aquaporin-3 as a potential mechanism of enhancement of skin moisturizing. Biochem Biophys Rep 2020; 24:100864. [PMID: 33294640 PMCID: PMC7695920 DOI: 10.1016/j.bbrep.2020.100864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022] Open
Abstract
In a previous clinical study, the moisture content in the stratum corneum of healthy Japanese women who consumed a beverage rich in oligomeric proanthocyanidins (OPCs) made from red wine extract was found to be higher than that in the control group. This finding suggested that OPCs can increase skin moisture content. In this study, we determined the expression level of aquaporin-3 (AQP3) in keratinocytes to elucidate the mechanism by which compounds in red wine grape increase moisture content in stratum corneum. Through in vitro studies, we confirmed that normal human epidermal keratinocytes (NHEK) incubated with red wine induced AQP3 expression. Furthermore, the supplementation of red wine fractions enriched in OPC was shown to increase AQP3 expression. Besides, the component of OPC-rich fractions that upregulated AQP3 expression was found to be a gallic acid (GA)-binding flavan-3-ol, particularly oligomeric compounds. We found that GA-binding OPC were able to upregulate AQP3 expression and that these compounds were enriched in red wine. Our findings might suggest that the mechanism of enhancement of moisture content in stratum corneum by red wine might be via the upregulation of AQP3 expression in the epidermal keratinocytes. Our previous clinical study showed red wine polyphenol induced skin moisture. We demonstrated the mechanism of skin moisturization via AQP3 in keratinocytes. OPCs, especially GA-binding, were active compound for upregulation of AQP3. Skin moisturization mechanism by OPCs was suggested via AQP3 expression.
Collapse
Key Words
- AQP3, aquaporin-3
- Aquaporin-3
- C, (−)-catechin
- C-EC, procyanidin B4
- C–C, procyanidin B3
- EC, (−)-epicatechin
- EC-C, procyanidin B1
- EC-EC, procyanidin B2
- EC-EC-EC, procyanidin C1
- ECG, (−)-epicatechin gallate
- EGCG, (−)-epigallocatechin
- Flavan-3-ol
- GA, gallic acid
- Grape
- HIF-1α, hypoxia-inducible factor 1α
- LC-TOF-MS, liquid chromatography/time-of-flight/mass spectrometry
- NHEK, normal human epidermal keratinocytes
- OPC, oligomeric proanthocyanidin
- Oligomeric proanthocyanidin
- PPARγ, peroxisome proliferator-activated receptor γ
- RA, retinoic acid
- Skin moisturization
- Vitis vinifera
Collapse
|
23
|
Ma X, Wang F, Wang B. Application of an in vitro reconstructed human skin on cosmetics in skin irritation tests. J Cosmet Dermatol 2020; 20:1933-1941. [PMID: 33053260 DOI: 10.1111/jocd.13789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND At present, it is no longer possible to use animal testing for ingredients and cosmetic products in the Organisation for Economic Co-operation and Development (OECD) member states. However, in vitro tests are widely used to determine the safety and efficacy of ingredients and medicines. OBJECTIVE Obviously, 3D skin models with natural human features can be used to analyze cosmetic ingredients and formulations. Skin irritation by cosmetic products is studied less than ingredients on 3D skin models. Therefore, it is necessary for us to explore using 3D skin models to detect skin irritation with resident and cleaning cosmetic products. METHODS We used HE staining to observe the structure of reconstructed skin models, the MTT assay to analyze tissue activity, and the ELISA to detect the relative expression of IL-1α release to evaluate skin irritation with cosmetic products. RESULTS We found that 0.3% SLS treatment and 1% Triton X-100 in 3D skin models resulted in a tissue activity of <20% and increased IL-1α release. We suggest that 0.3% SLS be used as a positive control for resident cosmetics and 1% Triton X-100 be used for cleaning products. After a comprehensive analysis of the relative expression of tissue activity and IL-1α, we found that 4 cosmetic products were skin irritants. Compared with multiple skin irritation tests using rabbit irritancy evaluation, we find that skin models can objectively respond to skin irritation with reliability. CONCLUSION We may redefine the exposure method time for cosmetics. For resident cosmetic products, the exposure time is 18 hours. For cosmetic cleaning products, the exposure time is 1 hour, with 10% dilution. We suggest that skin irritation evaluation in 3D skin models have a tissue activity of <50% and, at the same time, have a relative expression of IL-1α that is 3-fold greater than baseline.
Collapse
Affiliation(s)
- Xiao Ma
- Yunnan Botanee Bio-technology Group Co., Ltd., Yunnan, China.,Shanghai Jiyan Bio-pharmaceutical Co., Ltd., Shanghai, China
| | - Feifei Wang
- Yunnan Botanee Bio-technology Group Co., Ltd., Yunnan, China.,Shanghai Jiyan Bio-pharmaceutical Co., Ltd., Shanghai, China
| | - Bo Wang
- Yunnan Botanee Bio-technology Group Co., Ltd., Yunnan, China.,Shanghai Jiyan Bio-pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|
24
|
Wang B, Tai M, Zhang K, Chen H, Gan X, Che B, Abudukelimu N, Wang G, Xin X, Lin L, Han P, Peng Y, Du Z, Aker Aisa H. Elaeagnus L gum polysaccharides alleviate the impairment of barrier function in the dry skin model mice. J Cosmet Dermatol 2020; 20:647-656. [PMID: 33098181 DOI: 10.1111/jocd.13541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dry skin is a common skin condition caused by reduction of water-holding capacity, which is regulated by skin barrier function. Dry skin can also be a symptom that indicates a more serious diagnosis. There are a number of moisturizers on the market, which play an important role in dermatologic and cosmetic therapies. However, the demand for these products with good and therapeutic efficiency is still growing. AIMS It remains necessary to investigate the effects of Elaeagnus L gum polysaccharides (EAP), which are prepared from gum of Elaeagnus angustifolia L. on the epidermal permeability barrier function and their possible underlying mechanisms. PATIENTS/METHODS EAP were purified, analyzed, and tested on human keratinocyte cell line (HaCaT) and then on the skin in vivo to evaluate their antiinflammatory activities and their impacts on impaired skin barrier function. RESULTS Histological analyses revealed that topical administration with EAP effectively attenuated dryness-like skin condition, including less percutaneous water loss rate, less infiltrate inflammation cells, and less epidermal thickening. Moreover, EAP inhibited the production of various inflammatory mediators and increased AQP-3, FLG, and LOR expression. CONCLUSION Our results indicated that EAP enhances epidermal permeability barrier function, and they can be used as a promising adjuvant agent in skin care cosmetics and in treating some skin disorders characterized by cutaneous inflammation and abnormal barrier function.
Collapse
Affiliation(s)
- Bingying Wang
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | | | - Kun Zhang
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Huixiong Chen
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, Paris Cedex 06, France
| | | | - Biao Che
- Infinitus(China) Co. Ltd., Guangzhou, China
| | - N Abudukelimu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, China Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Guoping Wang
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, China Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Xuelei Xin
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, China Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Li Lin
- Foshan Conney Allan Biotechnology Co. Ltd, Foshan, China
| | - Ping Han
- Foshan Conney Allan Biotechnology Co. Ltd, Foshan, China
| | - Yi Peng
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Zhiyun Du
- The School of Biomedical and Pharmaceutical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Haji Aker Aisa
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, China Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
25
|
de Filippis A, D'Agostino A, Pirozzi AVA, Tufano MA, Schiraldi C, Baroni A. Q-switched Nd-YAG laser alone and in combination with innovative hyaluronic acid gels improve keratinocytes wound healing in vitro. Lasers Med Sci 2020; 36:1047-1057. [PMID: 32979135 PMCID: PMC8222021 DOI: 10.1007/s10103-020-03145-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
During the last years, several attempts have been accomplished to improve the wound healing. Device application aimed at enhancing skin ability to reconstruct its damaged sites through a proper dermal regenerative process. In particular, Q-switched Nd-YAG laser (Medlite C6 laser, Conbio, USA) applied with a fluence of 8 J/cm2, a pulse width of 5 ns, and a spot size of 4 mm exerts a photo-mechanical action that improve skin repair. Besides, hyaluronan hybrid cooperative complexes (HCC) widely exploited in dermoesthetic applications proved specific actions on keratinocytes and fibroblasts monolayer repair. We evaluated this specific laser treatment in vitro on a wound healing model based on human keratinocytes (HaCaT) alone and in combination with HCC. In addition, we evaluated key biomarkers of dermal repair. Scratched HaCaT monolayers were treated with laser and successively with HA-based formulations (HHA and HCC). For each treatment and the control samples, at least 3 different wells were analyzed. Wound closure was quantified, measuring five view filed for each well at increasing incubation time, exploiting time lapse videomicroscopy and image analysis, permitting to compare the different healing rate of treatments respect to control. By real-time PCR and western blotting, we evaluated biomarkers of wound regeneration, such as integrins, aquaporin three (AQP3), and proinflammatory cytokines. The ANOVA test was used to assess statistical significance of the results obtained. Laser-treated cells achieved wound closure in about 37 h, faster than the control, while when coupled to HCC, the complete reparation was obtained in 24 h. Integrin αV was upregulated by treatments, with in particular about four-fold increase respect to the control when HCC + laser was used. In addition, integrin β3 was upregulated by all treatments especially with the combination of laser and HCC proved more efficient than others (~ 14-folds). A slighter but significant increase of AQP3 gene expression of 61% was found for laser treatment while the latter combined with HCC determined an upregulation of 72%. By coupling laser treatment and HCC, further healing improvement and consistent biomarker modulation was observed. Our results may support clinical implementation of new dermatology protocols conjugating laser treatments with topical or injective HA formulations as a valid tool in treatments to repair scars or other skin defects.
Collapse
Affiliation(s)
- Anna de Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbioloy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella D'Agostino
- Department of Mental Health and Physics and Preventive Medicine, Section of Dermatology, University of Campania Luigi Vanvitelli, Naples, Italy.,Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania Luigi Vanvitelli, via De Crecchio n°7, 80138, Naples, Italy
| | - Anna Virginia Adriana Pirozzi
- Department of Mental Health and Physics and Preventive Medicine, Section of Dermatology, University of Campania Luigi Vanvitelli, Naples, Italy.,Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania Luigi Vanvitelli, via De Crecchio n°7, 80138, Naples, Italy
| | - Maria Antonietta Tufano
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbioloy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Schiraldi
- Department of Mental Health and Physics and Preventive Medicine, Section of Dermatology, University of Campania Luigi Vanvitelli, Naples, Italy. .,Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania Luigi Vanvitelli, via De Crecchio n°7, 80138, Naples, Italy.
| | - Adone Baroni
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbioloy, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Mental Health and Physics and Preventive Medicine, Section of Dermatology, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
26
|
Zhou J, Dong Y, Liu J, Ren J, Wu J, Zhu N. AQP5 regulates the proliferation and differentiation of epidermal stem cells in skin aging. ACTA ACUST UNITED AC 2020; 53:e10009. [PMID: 32965322 PMCID: PMC7510230 DOI: 10.1590/1414-431x202010009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
The epidermis, the outermost layer of the skin, is the first barrier that comes into contact with the external environment. It plays an important role in resisting the invasion of harmful substances and microbial infections. The skin changes with age and external environmental factors. This study aimed to investigate epidermal stem cells during the process of aging. This study enrolled 9 volunteers with benign pigmented nevus for clinical dermatologic surgery. The phenotypes associated with skin aging changes such as skin wrinkles and elasticity of the unexposed/healthy parts near benign pigmented skin were measured, and epidermal stem cells from this region were isolated for transcriptome sequencing. The results showed that epidermal stem cells could be obtained by magnetic activated cell sorting (MACS) with high purity. Results of the transcriptome sequencing revealed that aquaporin (AQP)5 significantly decreased in the epidermal stem cells with age, and further functional experiments revealed that AQP5 could promote the proliferation and dedifferentiation of HaCaT, but did not influence cell apoptosis. In summary, AQP5 regulated the proliferation and differentiation of epidermal stem cells in skin aging, and it may play an important role in the balance of proliferation and differentiation. However, further studies are needed to determine the mechanism by which AQP5 regulates the proliferation and differentiation of epidermal skin cells in aging.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yabing Dong
- Department of Oral Surgery, Shanghai Jiao Tong University School of Medicine, Ninth People's Hospital, Shanghai, China
| | - Jianlan Liu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Jie Ren
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Jinyan Wu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
27
|
Huang PW, Jeng SF, Liu CM, Chen CC, Chang LR, Shih HS, Chen HF, Yang CH, Chen JA, Feng GM. Involvement of Aquaporins in the Intense Pulsed Light-Enhanced Wound Healing in Diabetic Rats. Lasers Surg Med 2020; 53:549-556. [PMID: 32757279 DOI: 10.1002/lsm.23303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVES We previously demonstrated that intense pulsed light (IPL) irradiation prior to wounding improved the wound healing in rats with diabetes mellitus (DM). Also, we found that IPL upregulated the expression of aquaporin 3 (AQP3), a protein that is crucial for wound healing, in normal rats. This present study aimed to examine the involvement of AQPs in the IPL-enhanced wound healing in diabetic rats. STUDY DESIGN/MATERIALS AND METHODS Streptozotocin was used to induce diabetes in Sprague-Dawley rats. Animals were divided into four groups: normal group, DM only group, DM rats with IPL treatment 2 weeks before wounding (DM + IPL-Pre group), and DM rats with concurrent IPL irradiation and wounding (DM + IPL-Con group). Wounds were created on the dorsal skin of rats. The expressions of AQP1, 3, 4, 7, and 9 in the pre-injured skin, periwound, and wound were determined. RESULTS Among all the AQPs analyzed, only the expressions of AQP3 and AQP7 were significantly altered. Unirradiated diabetic rats showed much higher expression level of AQP3 in the regenerating skin compared with normal rats. IPL pretreatment, but not concurrent treatment, attenuated the expression toward the level detected in the normal wounds. In contrast, a lower expression level of AQP7 was noted in the regenerating skin of DM only rats and IPL pretreatment upregulated the expression to a level similar to that in the normal rats. CONCLUSION The beneficial effect of IPL pretreatment on the wound healing in diabetic rats might involve a mechanism by which the expression of AQPs is regulated. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Po-Wei Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Division of Urology, Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, 813, Taiwan
| | - Seng-Feng Jeng
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, 840, Taiwan.,Department of Plastic Surgery, E-DA Hospital, Kaohsiung, 824, Taiwan
| | - Chi-Ming Liu
- Division of General Surgery, Department of Surgery, Cheng Hsin General Hospital, Taipei, 112, Taiwan
| | - Chien-Chung Chen
- Department of Plastic Surgery, E-DA Hospital, Kaohsiung, 824, Taiwan
| | - Li-Ren Chang
- Department of Plastic Surgery, E-DA Hospital, Kaohsiung, 824, Taiwan
| | - Hsiang-Shun Shih
- Department of Plastic Surgery, E-DA Hospital, Kaohsiung, 824, Taiwan
| | - Hsing-Fu Chen
- Department of Plastic Surgery, E-DA Hospital, Kaohsiung, 824, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, 824, Taiwan
| | - Jian-An Chen
- Department of Plastic Surgery, E-DA Hospital, Kaohsiung, 824, Taiwan.,Division of Plastic Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 802, Taiwan
| | - Guan-Ming Feng
- Department of Plastic Surgery, E-DA Hospital, Kaohsiung, 824, Taiwan
| |
Collapse
|
28
|
Meng H, Li J, Dong Y, He Y, Ren H, Liu Y, Qu Z, Zhang W, Zhang L, Bao T, Yi F. Poly traditional Chinese medicine formulation prepared with skin moisturizing properties. Dermatol Ther 2020; 33:e14105. [PMID: 32735060 DOI: 10.1111/dth.14105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/28/2022]
Abstract
Many traditional Chinese medicine compositions can moisturize the skin and utilize in cosmetics. Using a combination of Chinese Medicine Materials and guided by Traditional Chinese Medicine principles, this study selected Echinacea purpurea to protect the skin barrier, Dendrobium nobile to clear heat and promote fluid production, Sophora flavescens to clear heat for diminished inflammation, and Aloe vera combined Lycium barbarum to nourish yin, to together form a "poly TCM moisturizing formulation." These poly plant extracts were investigated and optimized for the stability, safety, and moisturizing ability. The combination moisturizing effect was determined by measuring the expression of FLG mRNA, CLDN-1 mRNA, and AQP3 protein. Toxicological analysis included a red blood cell hemolysis test and a 3T3 phototoxicity test. It has been observed that by using polysaccharide yield as the evaluation criterion showed optimal extraction at a material-to-liquid ratio of 1:100, an extraction temperature of 100°C, and an extraction time of 3 hours. Moisturizing effect experiments showed that the expression of FLG mRNA, CLDN-1 mRNA, and AQP3 protein was significantly increased. Toxicological tests showed that the composition was safe and caused no irritating effects. Based on these results, this poly traditional Chinese medicine moisturizing formulation is safe within moisturizing effects and can be used as a moisturizing raw material in cosmetics.
Collapse
Affiliation(s)
- Hong Meng
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Jiarui Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yinmao Dong
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yifan He
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Hankun Ren
- Oriental Nutri-Woods Biotechnology Co. Ltd, Beijing, People's Republic of China
| | - Youting Liu
- Beijing Academy of TCM Beauty Supplements Co. Ltd, Beijing, People's Republic of China
| | - Zhaohui Qu
- Beijing Academy of TCM Beauty Supplements Co. Ltd, Beijing, People's Republic of China
| | - Weihong Zhang
- Beijing Academy of TCM Beauty Supplements Co. Ltd, Beijing, People's Republic of China
| | - Liping Zhang
- SMRITY International Cosmetics (Beijing) Co. Ltd, Beijing, People's Republic of China
| | - Tuya Bao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, People's Republic of China
| |
Collapse
|
29
|
Yao Q, Jia T, Qiao W, Gu H, Kaku K. Unsaturated fatty acid-enriched extract from Hippophae rhamnoides seed reduces skin dryness through up-regulating aquaporins 3 and hyaluronan synthetases 2 expressions. J Cosmet Dermatol 2020; 20:321-329. [PMID: 32638495 PMCID: PMC7818504 DOI: 10.1111/jocd.13482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/11/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Background Seed oil of sea buckthorn (SBT) is well known to contain high amount of polyunsaturated fatty acid (PUFA), and PUFA is generally acknowledged to promote skin hydration by reducing trans‐epidermal water loss (TEWL). Aims The present study is aimed to investigate that skin hydration offered by SBT seed oil is whether through up‐regulating AQP3 or HAS2 expression. Methods MTT assay was performed to detect cytotoxicity of SBT seed oil, and then, PCR was carried out to explore whether SBT seed oil can increase AQP3 mRNA expression in normal human epidermis keratinocytes (NHEK) cells or not. Immunofluorescence (IF) and Western blot analysis were used to test the protein level expression of AQP3 and HAS2 influenced by SBT seed oil in NHEK cells or in reconstructed epidermis skin model. Results According to the result of MTT assay, all test concentration of SBT seed oil showed no cytotoxicity to cells. 10 μg/mL SBT seed oil treatment evidently increased AQP3 mRNA level compared to negative control (NC). IF and Western blot analysis results demonstrated that AQP3 and HAS2 protein levels in NHEK cells treated with 10 μg/mL SBT seed oil were much higher than that of NC. Finally, treatment with 10 μg/mL SBT seed oil substantially up‐regulated expression of AQP3 and HAS2 protein in reconstructed epidermis skin model in comparison to NC. Conclusions In summary, our study first proved that SBT seed oil can improve skin hydration through increasing AQP3 and HAS2 expressions.
Collapse
Affiliation(s)
- Qifeng Yao
- Pigeon Manufacturing (Shanghai) Co., Ltd, Shanghai, China
| | - Tinghan Jia
- Pigeon Manufacturing (Shanghai) Co., Ltd, Shanghai, China
| | - Wu Qiao
- Pigeon Manufacturing (Shanghai) Co., Ltd, Shanghai, China
| | - Hongjian Gu
- Pigeon Manufacturing (Shanghai) Co., Ltd, Shanghai, China
| | - Ken Kaku
- Pigeon Manufacturing (Shanghai) Co., Ltd, Shanghai, China
| |
Collapse
|
30
|
Duval I, Doberentz E, Madea B. Lethal hypothermia due to impalement. Forensic Sci Int 2020; 314:110397. [PMID: 32668371 DOI: 10.1016/j.forsciint.2020.110397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/26/2022]
Abstract
Impalement injuries in the region of large blood vessels can lead to extensive and even lethal blood loss. However, they can also lead to forced positions from which the affected persons cannot free themselves. This 85-year-old woman was found dead in a prone position in her garden. A metal bar had penetrated deeply into the front of her right thigh, while the other end of the bar was stuck firmly in the soil. The metal bar had merely displaced the woman's muscles and the larger blood vessels without causing major blood loss. There were typical findings of lethal hypothermia, including Wischnewski spots of the gastric mucosa and frost erythema on both knees and the left lower leg. The fall onto the metal bar caused an impalement injury leading to a forced position from which the woman could not free herself where she finally succumbed to lethal hypothermia.
Collapse
Affiliation(s)
- Inga Duval
- Institute of Legal Medicine, University Hospital Bonn, Germany.
| | - Elke Doberentz
- Institute of Legal Medicine, University Hospital Bonn, Germany
| | - Burkhard Madea
- Institute of Legal Medicine, University Hospital Bonn, Germany
| |
Collapse
|
31
|
Park CH, Min SY, Yu HW, Kim K, Kim S, Lee HJ, Kim JH, Park YJ. Effects of Apigenin on RBL-2H3, RAW264.7, and HaCaT Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities. Int J Mol Sci 2020; 21:ijms21134620. [PMID: 32610574 PMCID: PMC7370139 DOI: 10.3390/ijms21134620] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/31/2022] Open
Abstract
Apigenin (4',5,7-trihydroxyflavone, flavonoid) is a phenolic compound that is known to reduce the risk of chronic disease owing to its low toxicity. The first study on apigenin analyzed its effect on histamine release in the 1950s. Since then, anti-mutation and antitumor properties of apigenin have been widely reported. In the present study, we evaluated the apigenin-mediated amelioration of skin disease and investigated its applicability as a functional ingredient, especially in cosmetics. The effect of apigenin on RAW264.7 (murine macrophage), RBL-2H3 (rat basophilic leukemia), and HaCaT (human immortalized keratinocyte) cells were analyzed. Apigenin (100 μM) significantly inhibited nitric oxide (NO) production, cytokine expression (interleukin (IL)-1β, IL6, cyclooxygenase (COX)-2, and inducible nitric oxide synthase [iNOS]), and phosphorylation of mitogen-activated protein kinase (MAPK) signal molecules, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) in RAW264.7 cells. Apigenin (30 M) also inhibited the phosphorylation of signaling molecules (Lyn, Syk, phospholipase Cγ1, ERK, and JNK) and the expression of high-affinity IgE receptor FcεRIα and cytokines (tumor necrosis factor (TNF)-α, IL-4, IL-5, IL-6, IL-13, and COX-2) that are known to induce inflammation and allergic responses in RBL-2H3 cells. Further, apigenin (20 μM) significantly induced the expression of filaggrin, loricrin, aquaporin-3, hyaluronic acid, hyaluronic acid synthase (HAS)-1, HAS-2, and HAS-3 in HaCaT cells that are the main components of the physical barrier of the skin. Moreover, it promoted the expression of human β-defensin (HBD)-1, HBD-2, HBD-3, and cathelicidin (LL-37) in HaCaT cells. These antimicrobial peptides are known to play an important role in the skin as chemical barriers. Apigenin significantly suppressed the inflammatory and allergic responses of RAW264.7 and RBL cells, respectively, and would, therefore, serve as a potential prophylactic and therapeutic agent for immune-related diseases. Apigenin could also be used to improve the functions of the physical and chemical skin barriers and to alleviate psoriasis, acne, and atopic dermatitis.
Collapse
Affiliation(s)
- Che-Hwon Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Seon-Young Min
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Hye-Won Yu
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Kyungmin Kim
- Jeju R&D Center, AMI Cosmetics Co., Ltd., 16, Sancheondandong-gil, Jeju-si 63359, Korea; (K.K.); (S.K.)
| | - Suyeong Kim
- Jeju R&D Center, AMI Cosmetics Co., Ltd., 16, Sancheondandong-gil, Jeju-si 63359, Korea; (K.K.); (S.K.)
| | - Hye-Ja Lee
- Natural Products Laboratory, DAEBONG Life Science Co., Ltd., 213-4, Chumdan-Ro, Jeju-si 63309, Korea; (H.-J.L.); (J.-H.K.)
| | - Ji-Hye Kim
- Natural Products Laboratory, DAEBONG Life Science Co., Ltd., 213-4, Chumdan-Ro, Jeju-si 63309, Korea; (H.-J.L.); (J.-H.K.)
| | - Young-Jin Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
- Correspondence: ; Tel.: +82-43-840-3601
| |
Collapse
|
32
|
Shchepareva ME, Zakharova MN. Functional Role of Aquaporins in the Nervous System under Normal and Pathological Conditions. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Narda M, Brown A, Muscatelli-Groux B, Grimaud JA, Granger C. Epidermal and Dermal Hallmarks of Photoaging are Prevented by Treatment with Night Serum Containing Melatonin, Bakuchiol, and Ascorbyl Tetraisopalmitate: In Vitro and Ex Vivo Studies. Dermatol Ther (Heidelb) 2020; 10:191-202. [PMID: 31900804 PMCID: PMC6994585 DOI: 10.1007/s13555-019-00349-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Photoaging is a complex process that is chiefly the result of oxidative stress caused by ultraviolet (UV)-generated reactive oxygen species. To counter this process, we developed a 3-in-1 night facial serum (3-in-1 NFS) containing a combination of direct and indirect antioxidants and polyphenols that is designed to attenuate UV-generated free radicals and stimulate dermal protein synthesis. In clinical trials 3-in-1 NFS improved the appearance of photoaged skin. In this study we sought to identify some of the main histologic changes responsible for this. METHODS We performed an immunolabeling analysis of some of the salient epidermal and dermal proteins in 3-in-1 NFS-treated primary epidermal keratinocytes (HEKs) and dermal fibroblasts (HDFs) in vitro, and in UV-exposed skin explants ex vivo. Numbers of apoptotic sunburn cells following exposure of 3-in-1 NFS-treated skin explants to UV radiation were also determined. RESULTS We demonstrate that 3-in-1 NFS increases levels of filaggrin and aquaporin 3 in HEKs, and levels of collagen I and collagen III in HDFs in vitro. Levels of precursor procollagen type I and tropoelastin were increased in ex vivo skin explants. Numbers of apoptotic sunburn cells were significantly reduced in UV-exposed skin explants. These effects were only observed with the combination of ingredients in 3-in-1 NFS, suggesting that they have a synergistic effect on photoaged skin biology. CONCLUSION Our results show that some of the histological hallmarks of photoaging are improved with the use of 3-in-1 NFS.
Collapse
|
34
|
Osorio G, Zulueta-Dorado T, González-Rodríguez P, Bernabéu-Wittel J, Conejo-Mir J, Ramírez-Lorca R, Echevarría M. Expression Pattern of Aquaporin 1 and Aquaporin 3 in Melanocytic and Nonmelanocytic Skin Tumors. Am J Clin Pathol 2019; 152:446-457. [PMID: 31305898 DOI: 10.1093/ajcp/aqz066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Study of aquaporin 1 (AQP1) and aquaporin 3 (AQP3) expression to understand its potential role in the pathophysiology of skin cancer. METHODS Analysis of AQP1 and AQP3 expression by immunohistochemistry of 72 skin biopsy specimens from melanocytic skin tumors, nonmelanocytic tumors, or healthy samples. RESULTS AQP1 showed strong labeling in 100% of benign common melanocytic nevi. Small blood vessels, stroma, and melanophages surrounding different types of melanomas tumors also were positive. Tumoral melanocytes in atypical nevi and melanomas were negative for AQP1. AQP3 showed strong labeling in 100% of melanocytic nevi, 100% of atypical melanocytic nevi, and 100% of melanomas. In all basal cell carcinomas and squamous cell carcinomas, staining for AQP3 was positive. CONCLUSIONS To our knowledge, this work represents the first demonstration of AQP1/AQP3 expression in human melanocytic skin tumors. More studies are needed to understand the underlying molecular mechanisms of expression of both AQPs in melanocytic tumors and their potential as molecular therapeutic targets.
Collapse
Affiliation(s)
- Giovana Osorio
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Dermatology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Teresa Zulueta-Dorado
- Department of Pathological Anatomy, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Patricia González-Rodríguez
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Bernabéu-Wittel
- Department of Dermatology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Julian Conejo-Mir
- Department of Dermatology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Reposo Ramírez-Lorca
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miriam Echevarría
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
35
|
Dini I, Laneri S. Nutricosmetics: A brief overview. Phytother Res 2019; 33:3054-3063. [PMID: 31478301 DOI: 10.1002/ptr.6494] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 11/08/2022]
Abstract
The nutricosmetics are products and ingredients that act as nutritional supplements to care skin, nails, and hair natural beauty. They work from the inside to promote beauty from within. Nutricosmetic is the latest trend in the beauty industry. This tendency rapidly gained many followers because it fits with the modern culture: Today, consumers are very careful with the food that they introduce into their body, and there is also an increasing demand for natural products able to enhance one's health and beauty without side effects and significant traction before use. However, many nutricosmetic products are considered effective due to the historical use and word of mouth. Comprehensive analysis of the global nutricosmetics market is conducted considering form, end-user applications, and some product components such as collagen, peptides, proteins, vitamins, carotenes, minerals, and omega-3 fatty acid are reported. Plant extract ingredients used in nutricosmetic are also described.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Naples, 80131, Italy
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, 80131, Italy
| |
Collapse
|
36
|
Huang PH, Hu SCS, Yen FL, Tseng CH. Improvement of Skin Penetration, Antipollutant Activity and Skin Hydration of 7,3',4'-Trihydroxyisoflavone Cyclodextrin Inclusion Complex. Pharmaceutics 2019; 11:pharmaceutics11080399. [PMID: 31398912 PMCID: PMC6723501 DOI: 10.3390/pharmaceutics11080399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
As is known, many antioxidants from plant extracts have been used as additives in skincare products to prevent skin damage following overexposure to environmental pollutants. 7,3′,4′-trihydroxyisoflavone (734THIF), an isoflavone compound, possesses various biological activities, including antioxidant, antityrosinase, photodamage protection, and anticancer effects. Unfortunately, 734THIF has poor water solubility, which limits its skin penetration and absorption, and subsequently influences its biological activity. The aim of the present study was to investigate the mechanisms for the improvement in water solubility and skin penetration of 2-hydroxypropyl-β-cyclodextrin (HPBCD) inclusion complex with 734THIF (5-7HP). We also determined its photostability, antipollutant activity in HaCaT keratinocytes, and moisturizing effect in human subjects. Our results showed that 734THIF was embedded into the lipophilic inner cavity of HPBCD and its water solubility and skin penetration were thereby improved through amorphous transformation, surface area enhancement, and hydrogen bonding formation between 734THIF and HPBCD. In addition, 5-7HP inhibited PM-induced ROS generation and then downregulated ROS-mediated COX-2 and MMP9 production and AQP-3 consumption by inhibiting the phosphorylation of MAPKs. Consequently, we suggest that 5-7HP is a safe and photostable topical ingredient to enhance the skin penetration of 734THIF and skin hydration, and therefore 5-7HP may be used as an antipollutant additive in skin care products.
Collapse
Affiliation(s)
- Pao Hsien Huang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Stephen Chu Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Feng Lin Yen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.
| | - Chih Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan.
- Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 801, Taiwan.
| |
Collapse
|
37
|
Glycolic acid attenuates UVB-induced aquaporin-3, matrix metalloproteinase-9 expression, and collagen degradation in keratinocytes and mouse skin. Biochem J 2019; 476:1387-1400. [DOI: 10.1042/bcj20180974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023]
Abstract
Abstract
Ultraviolet-B exposure causes an inflammatory response, photoaged skin, and degradation of extracellular matrix proteins including collagen and elastin. The regulation of these genes was suggested as an important mechanism to attenuate skin aging. Glycolic acid (GA) is commonly present in fruits and recently used to treat dermatological diseases. We reported that GA slows down cell inflammation and aging caused by UVB. Little is known about GA retarding the skin premature senescence or how to impede these events. To investigate the potential of GA to regulate the expression of MMPs and collagen, GA was topically applied onto human keratinocytes and the C57BL/6J mice dorsal skin. In the present study, we demonstrated that GA reduced UVB-induced type-I procollagen expression and secretory collagen levels. GA reverted and dose-dependently increased the level of aquaporin-3 (AQP3), the expression of which was down-regulated by UVB. The UV-induced MMP-9 level and activity were reduced by GA pre-treatment. Concomitantly, GA reverted mitogen-activated protein kinase (MMP-9) activation and inhibited the extracellular signal-regulated kinase activation (p38, pERK) triggered by UVB. The animal model also presented that GA attenuated the wrinkles caused by UVB on the mouse dorsal skin. Finally, GA triggers the transient receptor potential vanilloid-1 (TRPV-1) channel to initiate the anti-photoaging mechanism in keratinocytes. These findings clearly indicated that the mechanisms of GA promote skin protection against UVB-induced photoaging and wrinkle formation. GA might be an important reagent and more widely used to prevent UVB-induced skin aging.
Collapse
|
38
|
Kamar SS, Abdel-Kader DH, Rashed LA. Beneficial effect of Curcumin Nanoparticles-Hydrogel on excisional skin wound healing in type-I diabetic rat: Histological and immunohistochemical studies. Ann Anat 2019; 222:94-102. [DOI: 10.1016/j.aanat.2018.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 01/15/2023]
|
39
|
Sisto M, Ribatti D, Lisi S. Aquaporin water channels: New perspectives on the potential role in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:311-345. [PMID: 31036295 DOI: 10.1016/bs.apcsb.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that osmotically modulate water fluid homeostasis in several tissues; some of them also transport small solutes such as glycerol. At the cellular level, the AQPs regulate not only cell migration and transepithelial fluid transport across membranes, but also common events that are crucial for the inflammatory response. Emerging data reveal a new function of AQPs in the inflammatory process, as demonstrated by their dysregulation in a wide range of inflammatory diseases including edematous states, cancer, obesity, wound healing and several autoimmune diseases. This chapter summarizes the discoveries made so far about the structure and functions of the AQPs and provides updated information on the underlying mechanisms of AQPs in several human inflammatory diseases. The discovery of new functions for AQPs opens new vistas offering promise for the discovery of mechanisms and therapeutic opportunities in inflammatory disorders.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| | - Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
40
|
Zang Y, Chen J, Zhong H, Ren J, Zhao W, Man Q, Shang S, Tang X. Genome-wide analysis of the Aquaporin gene family in reptiles. Int J Biol Macromol 2019; 126:1093-1098. [PMID: 30611807 DOI: 10.1016/j.ijbiomac.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 11/16/2022]
Abstract
Aquaporin (AQP) genes are widely distributed in plants, unicellular organisms, invertebrates and vertebrates. They play a critical role in the transport of water and other solutes across cell membranes. AQP genes have been identified and studied in many species but the AQPs of reptiles are unknown. Newly obtained genome assemblies provide an opportunity to identify the complete AQPs set and explore the evolutionary relationship of these genes. A total of 212 putative AQP genes were identified from 18 reptile species, including 20 partial genes and 192 intact genes. Phylogenetic results showed that 193 AQP genes could be classified into three major clades according to their subfamily. The divergence or phylogenetic distance between reptile AQP genes was closely related to traditional taxonomic groupings. Evolutionary analysis indicated the presence of positively selected sites in the AQP3 (P = 0.0104⁎⁎) and AQP7 (P = 0.0202⁎⁎) among land reptiles, suggesting their relationship to terrestrial environment adaptation.
Collapse
Affiliation(s)
- Yu Zang
- College of Marine Life, Ocean University of China, Qingdao, Shandong, China
| | - Jun Chen
- College of Marine Life, Ocean University of China, Qingdao, Shandong, China
| | - Huaming Zhong
- College of Life Science, Qufu Normal University, Qufu, Shandong, China
| | - Jiayun Ren
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, China; College of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong, China
| | - Wangfeng Zhao
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, China
| | - Qiang Man
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, China
| | - Shuai Shang
- College of Marine Life, Ocean University of China, Qingdao, Shandong, China; Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, China; College of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong, China.
| | - Xuexi Tang
- College of Marine Life, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
41
|
Wei H, Hu Q, Wu J, Yao C, Xu L, Xing F, Zhao X, Yu S, Wang X, Chen G. Molecular mechanism of the increased tissue uptake of trivalent inorganic arsenic in mice with type 1 diabetes mellitus. Biochem Biophys Res Commun 2018; 504:393-399. [PMID: 29890131 DOI: 10.1016/j.bbrc.2018.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022]
Abstract
Arsenic is associated with several adverse health outcomes, and people with diabetes may be more susceptible to arsenic. In this study, we found that arsenic levels in some tissues such as liver, kidney, and heart but not lung of type 1 diabetes mellitus (T1DM) mice were higher than in those of normal mice after a single oral dose of arsenic trioxide for 2 h. However, little is known about the molecular mechanism of the increased tissue uptake of trivalent inorganic arsenic in mice with T1DM. This study aimed to investigate the expression of the mammalian arsenic transporters aquaglyceroporins (AQPs) and glucose transporter 1 (GLUT1) in T1DM mice and compare them with those in normal mice. Results showed that the levels of AQP9 and GLUT1 mRNA and protein were higher in T1DM mouse liver than in the normal one. The levels of AQP7 mRNA and protein were higher in T1DM mouse kidney. In the heart, we observed that the levels of AQP7 and GLUT1 mRNA and protein were higher in T1DM mice, but the levels of AQP9 mRNA and protein in the lung had no significant difference between both mice. These results suggested that T1DM may increase the expression of transporters of trivalent inorganic arsenic and thus increase the arsenic uptake in specific tissues.
Collapse
Affiliation(s)
- Haiyan Wei
- Department of Environmental Health, School of Public Health, Nantong University, Nantong, 226001, China
| | - Qiaoyun Hu
- Department of Environmental Health, School of Public Health, Nantong University, Nantong, 226001, China
| | - Junxia Wu
- The Third People's Hospital of Nantong, Nantong, 226006, China
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-Shi, Tokushima, Japan
| | - Lingfei Xu
- Department of Environmental Health, School of Public Health, Nantong University, Nantong, 226001, China
| | - Fengjun Xing
- Department of Environmental Health, School of Public Health, Nantong University, Nantong, 226001, China
| | - Xinyuan Zhao
- Department of Environmental Health, School of Public Health, Nantong University, Nantong, 226001, China
| | - Shali Yu
- Department of Environmental Health, School of Public Health, Nantong University, Nantong, 226001, China
| | - Xiaoke Wang
- Department of Environmental Health, School of Public Health, Nantong University, Nantong, 226001, China.
| | - Gang Chen
- Department of Environmental Health, School of Public Health, Nantong University, Nantong, 226001, China.
| |
Collapse
|
42
|
Abstract
The purpose of this review is to focus on determinants of skin barrier function in neonates at molecular and cellular levels. The skin barrier is critical in terms of water and gas exchanges during fetal life and undergoes rapid changes at birth, followed by a progressive maturation. Consequences of skin barrier disruption can be extremely detrimental or lethal, as shown in severe genetic epidermal defects. In this context, the fine-tuned rapid adaptation from a liquid to a gaseous milieu is not fully understood. The stratum corneum provides an air-liquid barrier, tight junctions in the granular layer provide a liquid-liquid barrier, aquaporins represent a plumbing system for water-glycerol as well as gas exchanges, and Langerhans cells are central to the immunological barrier. Acid mantle formation is essential for appropriate interaction between the skin and microbial symbionts. Temperature and pH regulate the key enzyme activities responsible for the integrity of the stratum corneum. Skin barrier permeability can be assessed noninvasively and simply with miniaturized devices measuring transepidermal water loss, where water flow is faster in cases of a damaged or functionally premature barrier. New avenues for therapeutic skin barrier research in neonates include a better delineation of the maturation of aquaporins in water balance and gas exchanges from fetal to neonatal life and a better understanding of the role of vernix caseosa, in particular, for the implantation of a healthy microbiote. Practical applications should be derived for caring for infant skin, particularly in fragile zones, such as the diaper area.
Collapse
Affiliation(s)
- Alain Taïeb
- Department of Dermatology and Pediatric Dermatology, Bordeaux University Hospitals, INSERM U 1035, University of Bordeaux, Bordeaux, France
| |
Collapse
|
43
|
Shim JH. Human Dermal Stem/Progenitor Cell-derived Conditioned Medium Ameliorates Ultraviolet A-induced Damage of Normal Human Epidermal Keratinocytes. ACTA ACUST UNITED AC 2018. [DOI: 10.20402/ajbc.2017.0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Ishida Y, Kuninaka Y, Nosaka M, Shimada E, Hata S, Yamamoto H, Hashizume Y, Kimura A, Furukawa F, Kondo T. Forensic application of epidermal AQP3 expression to determination of wound vitality in human compressed neck skin. Int J Legal Med 2018; 132:1375-1380. [PMID: 29356947 DOI: 10.1007/s00414-018-1780-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
Abstract
In forensic practices, it is often difficult to determine wound vitality in compression marks of the neck with naked eyes. AQP1 and AQP3 are the major water channels associated with skin. Thus, we immunohistochemically examined the expression of AQP1 and AQP3 in neck skin samples to discuss their forensic applicability to determination of the wound vitality. Skin samples were obtained from 56 neck compression cases (hanging, 35 cases; strangulation, 21 cases). The intact skin from the same individual was taken as a control. Although AQP1 was immnunostained in dermal capillaries in both the neck compression marks and intact skin samples, there was no significant difference in the magnitude of AQP1 expression between both groups. On the contrary, AQP3-positive signals could be faintly detected in uninjured skin samples, and the positive signals seemed more intense in the keratinocytes in compression regions. Morphometrical analyses revealed that the ratio of AQP3-expressed keratinocytes was significantly enhanced in neck compression regions, compared with control groups. From the viewpoints of forensic pathology, immunohistochemical detection of AQP3 in the neck skin can be considered a valuable marker to diagnose the trace of antemortem compression.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Emi Shimada
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Satoshi Hata
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yumiko Hashizume
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Fukumi Furukawa
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.,Takatsuki Red Cross Hospital, Japan, 1-1-1 Abuno, Takatsuki, 569-1045, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
45
|
10-Hydroxy-2-Decenoic Acid in Royal Jelly Extract Induced Both Filaggrin and Amino Acid in a Cultured Human Three-Dimensional Epidermis Model. COSMETICS 2017. [DOI: 10.3390/cosmetics4040048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
46
|
Ishida Y, Kuninaka Y, Furukawa F, Kimura A, Nosaka M, Fukami M, Yamamoto H, Kato T, Shimada E, Hata S, Takayasu T, Eisenmenger W, Kondo T. Immunohistochemical analysis on aquaporin-1 and aquaporin-3 in skin wounds from the aspects of wound age determination. Int J Legal Med 2017; 132:237-242. [PMID: 29080917 DOI: 10.1007/s00414-017-1725-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 12/24/2022]
Abstract
Immunohistochemical investigation of aquaporin (AQP)1 and AQP3 was performed in human skin wounds obtained from forensic autopsy cases. A total of 55 human skin wounds of different postinfliction intervals were collected as follows: group I, 0-3 days (n = 16); II, 4-7 days (n = 11); III, 9-14 days (n = 16); and IV, 17-21 days (n = 12). In uninjured skin samples, AQP1 and AQP3 could be slightly detected in dermal vessels and keratinocytes, respectively. The percentage of AQP1+ vessels and the number of AQP3+ keratinocytes were apparently elevated in accordance with wound ages. The number of AQP3+ keratinocytes was distinctly evident in groups II and III. Morphometrically, both AQP1+ vessel area and AQP3+ cell number were markedly increased in group II, compared with other three groups. With regard to forensic safety, AQP1+ vessel area of over 5% would imply wound ages of 4-12 days. Moreover, the positive area of > 15% would suggest wound age of 7-10 days. Especially, most samples of skin wounds aged 5-10 days except for only one sample (a 10-day-old wound) showed AQP3+ cell number of > 300, and the remaining other samples had that of < 300. Thus, the AQP3+ cell number of > 300 would indicate wound ages of 5-10 days. Collectively, immunohistochemical analyses of AQP1 and AQP3 in human skin wounds would support the objective accuracy of wound age determination.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Fukumi Furukawa
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Mie Fukami
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Takashi Kato
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Emi Shimada
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Satoshi Hata
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Tatsunori Takayasu
- Forensic Toxicology Unit, Department of Forensic Medicine and Pathology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Wolfgang Eisenmenger
- Institute of Legal Medicine, University of Munich, Nuβbaumstraβe 26, 80336, Munich, Germany
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
47
|
Abstract
Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a pivotal role in cancer metastasis. AQP3 knockout mice were resistant to skin tumor formation and overexpression correlated with metastasis and poor prognosis in patients with breast or gastric cancer. In cultured cancer cells, increased AQP3 expression stimulated several intracellular signaling pathways and resulted in increased cell proliferation, migration, and invasion as well as aggravation of epithelial-to-mesenchymal transition. Besides AQP facilitated water transport at the leading edge of migrating cells, AQP3 signaling mechanisms are beginning to be unraveled. Here, we give a thorough review of current knowledge regarding AQP3 expression in cancer and how AQP3 contributes to cancer progression via signaling that modulates cellular mechanisms. This review article will expand our understanding of the known pathophysiological findings regarding AQP3 in cancer.
Collapse
|
48
|
Agerarin, identified from Ageratum houstonianum, stimulates circadian CLOCK-mediated aquaporin-3 gene expression in HaCaT keratinocytes. Sci Rep 2017; 7:11175. [PMID: 28894278 PMCID: PMC5593932 DOI: 10.1038/s41598-017-11642-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/25/2017] [Indexed: 12/19/2022] Open
Abstract
The juice of Ageratum houstonianum is used in folk medicine as an external wound healing aid for skin injuries. However, the active component of A. houstonianum and its mode of action in skin wound healing has not been investigated. This study was conducted to investigate the effect of A. houstonianum ethanolnolic extract (AHE) on the expression of aquaporin-3 (AQP3), an integral membrane protein for water and glycerol transport in keratinocytes, and to identify the structure of the A. houstonianum bioactive compound. Here, we show that AHE increased AQP3 gene expression at the transcriptional level through the p38 MAPK pathway in HaCaT cells. Furthermore, AHE ameliorated suppression of AQP3 expression caused by ultraviolet B (UVB) irradiation. Agerarin (6,7-dimethoxy-2,2-dimethyl-2H-chromene) was identified as the bioactive compound responsible for the up-regulation of AQP3 expression by enhancing the expression of the transcription factor circadian locomotor output cycles kaput (CLOCK). In conclusion, agerarin is a bioactive compound in AHE responsible for CLOCK-mediated AQP3 expression in keratinocytes.
Collapse
|
49
|
Sutka M, Amodeo G, Ozu M. Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives. Biophys Rev 2017; 9:545-562. [PMID: 28871493 DOI: 10.1007/s12551-017-0313-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Aquaporins (AQPs) can be revisited from a distinct and complementary perspective: the outcome from analyzing them from both plant and animal studies. (1) The approach in the study. Diversity found in both kingdoms contrasts with the limited number of crystal structures determined within each group. While the structure of almost half of mammal AQPs was resolved, only a few were resolved in plants. Strikingly, the animal structures resolved are mainly derived from the AQP2-lineage, due to their important roles in water homeostasis regulation in humans. The difference could be attributed to the approach: relevance in animal research is emphasized on pathology and in consequence drug screening that can lead to potential inhibitors, enhancers and/or regulators. By contrast, studies on plants have been mainly focused on the physiological role that AQPs play in growth, development and stress tolerance. (2) The transport capacity. Besides the well-described AQPs with high water transport capacity, large amount of evidence confirms that certain plant AQPs can carry a large list of small solutes. So far, animal AQP list is more restricted. In both kingdoms, there is a great amount of evidence on gas transport, although there is still an unsolved controversy around gas translocation as well as the role of the central pore of the tetramer. (3) More roles than expected. We found it remarkable that the view of AQPs as specific channels has evolved first toward simple transporters to molecules that can experience conformational changes triggered by biochemical and/or mechanical signals, turning them also into signaling components and/or behave as osmosensor molecules.
Collapse
Affiliation(s)
- Moira Sutka
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
50
|
Is Aquaporin-3 a Determinant Factor of Intrinsic and Extrinsic Aging? An Immunohistochemical and Morphometric Study. Appl Immunohistochem Mol Morphol 2017; 25:49-57. [PMID: 26509906 DOI: 10.1097/pai.0000000000000265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aquaporin-3 (AQP3) is an aquaglyceroporin that plays a role in skin hydration, cell proliferation, and migration. The aim of this work was to investigate the expression of AQP3 in sun-exposed and sun-protected human skin from different age groups to understand the relationship between AQP3 and skin aging. Using standard immunohistochemical techniques, sun-exposed and sun-protected skin biopsies were taken from 60 normal individuals. AQP3 was expressed in the basal and the suprabasal layers, sparing the stratum corneum, in all specimens. Dermal expression was detected in fibroblasts, endothelial cells, and adnexa. Sun-protected skin showed a significantly higher epidermal H-score and percentage of expression (P=0.002 and <0.001, respectively) compared with sun-exposed skin. The AQP3 expression intensity showed a gradual decrease from the 20 to 35-year-old group to the 35 to 50-year-old group, with the least immunoreactivity in the above 50-year-old group. A significant difference was detected in the H-score in favor of the 20 to 35-year-old group in sun-exposed and sun-protected skin (P<0.001 for both). A significant negative correlation was noted between the AQP3 expression percentage and the age in sun-exposed (r=-0.64, P<0.001) and sun-protected skin (r=-0.53, P<0.001). In conclusion, the skin dryness observed in intrinsic and extrinsic aged skin may be explained, at least in part, by AQP3 downregulation. This may open new avenues sufficient to control skin texture and beauty. Its interaction in skin protein organization and gene polymorphism can also be tackled in future research. In addition, clinical trials using AQP3 topical applications should be carried out to evaluate its effectiveness in the reversal of age-related skin changes.
Collapse
|