1
|
Reeder TL, Zarlenga DS, Dyer RM. Molecular evidence sterile tissue damage during pathogenesis of pododermatitis aseptica hemorrhagica circumscripta is associated with disturbed epidermal-dermal homeostasis. J Dairy Sci 2024:S0022-0302(24)00842-7. [PMID: 38825113 DOI: 10.3168/jds.2023-24577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
Podermatitis aseptica hemorrhagica circumscripta is associated with metalloproteinase 2 weakening of distal phalangeal suspensory structures and sinkage of the distal phalanx in the claw capsule. Pressure from the tuberculum flexorium on the sole epidermis and dermis produces hemorrhagic tissue injury and defective horn production appearing as yellow-red, softened claw horn in region 4 of the sole. A model of the MAPK/ERK signal cascade orchestrating epidermal-dermal homeostasis was employed to determine if sterile inflammatory responses are linked to disturbed signal transduction for epidermal homeostasis in sole epidermis and dermis. The objective was to assess shifts in target genes of inflammation, up- and downstream MAPK/ERK signal elements, and targeted genes supporting epidermal proliferation and differentiation. Sole epidermis and dermis was removed from lateral claws bearing lesions of podermatitis aseptica hemorrhagica circumscripta, medial claws from the same limb and lateral claws from completely normal limbs of multiparous, lactating Holstein cows. The abundance levels of targeted transcripts were evaluated by real-time QPCR. Lesion effects were assessed by ANOVA, and mean comparisons were performed with t-tests to assess variations between mean expression in ulcer-bearing or medial claw dermis and epidermis and completely normal lateral claw dermis and epidermis or between ulcer-bearing dermis and epidermis and medial claw dermis and epidermis. The lesions were sterile and showed losses across multiple growth factors, their receptors, several downstream AP1 transcription components, CMYC, multiple cell cycle and terminal differentiation elements conducted by MAPK/ERK signals and β 4, α 6 and collagen 17A hemidesmosome components. These losses coincided with increased cytokeratin 6, β 1 integrin, proinflammatory metalloproteinases 2 and 9, IL1B and physiologic inhibitors of IL1B, the decoy receptor and receptor antagonist. Medial claw epidermis and dermis from limbs with lateral claws bearing podermatitis aseptica hemorrhagica circumscripta showed reductions in upstream MAPK/ERK signal elements and downstream targets that paralleled those in hemorrhagic lesions. Inhibitors of IL1B increased in the absence of real increases in inflammatory targets in the medial claw dermis and epidermis. Losses across multiple signal path elements and downstream targets were associated with negative effects on targeted transcripts supporting claw horn production and wound repair across lesion-bearing lateral claws and lesion-free medial claw dermis and epidermis. It was unclear if the sterile inflammation was causative or a consequence of these perturbations.
Collapse
Affiliation(s)
- T L Reeder
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303
| | - D S Zarlenga
- Animal Parasitic Disease Laboratory, Beltsville Agriculture Research Center, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705-2350
| | - R M Dyer
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303.
| |
Collapse
|
2
|
Wang L, Cheng B, Ju Q, Sun BK. AhR Regulates Peptidoglycan-Induced Inflammatory Gene Expression in Human Keratinocytes. J Innate Immun 2021; 14:124-134. [PMID: 34352786 DOI: 10.1159/000517627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Bacterial peptidoglycan (PGN) stimulates toll-like receptor 2 (TLR2) on the surface of keratinocytes (KCs), triggering signaling pathways that promote an innate immune response. However, excessive TLR2 activation can lead to inappropriate inflammation, which contributes to skin conditions such as rosacea. To better treat these conditions, there is a need to understand the molecular mechanisms that regulate the cellular response to TLR2 activation in the skin. Aryl hydrocarbon receptor (AhR) is a transcription factor that modulates the immune response in KCs and is a promising therapeutic target for inflammatory skin diseases. Here, we investigated the role of the AhR in regulating the transcriptional response of human KCs to PGN. We performed whole-transcriptome sequencing in wild-type and AhR-depleted KCs after PGN stimulation. AhR depletion altered the expression of 72 genes in response to PGN, leading to increased expression of 48 genes and repression of 24 genes, including interleukin (IL)-1β. Chromatin immunoprecipitation showed that PGN stimulation resulted in AhR binding the promoters of IL-1β and IL-6 to activate them. More broadly, AhR promoted inflammatory gene expression by increasing JNK/mitogen-activated protein kinase signaling and FosB expression. Finally, we observed that AhR depletion increased TLR2 expression itself, raising the hypothesis that AhR may serve to restrain TLR2-mediated inflammation in KCs through negative feedback. Viewed together, our findings demonstrate a significant and complex role for AhR in modulating the expression of inflammatory genes in KCs in response to PGN.
Collapse
Affiliation(s)
- Lanqi Wang
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Binbin Cheng
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Wound-Healing and Skin-Moisturizing Effects of Sasa veitchii Extract. Healthcare (Basel) 2021; 9:healthcare9060761. [PMID: 34205315 PMCID: PMC8235400 DOI: 10.3390/healthcare9060761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
Sasa veitchii (S. veitchii) is a traditional herb derived from the bamboo genus, which is collectively called Kumazasa. Although Kumazasa extract is believed to have various effects on the skin, there is little scientific evidence for these effects. In this study, we aimed to obtain scientific evidence regarding the wound-healing and skin-moisturizing effects of Kumazasa extract. Kumazasa extract was applied to the skin of a mouse wound model for 14 days, and the wound area and dermal water content were measured. Mice treated with Kumazasa extract had smaller wound areas than control mice. The dermal water content in the Kumazasa extract-treated group was significantly higher than that in the control group. The mRNA and protein expression levels of cutaneous aquaporin-3 (AQP3), which is involved in wound healing and increases in dermal water content, were significantly increased by treatment with Kumazasa extract. Kumazasa extract-treated HaCaT cells exhibited significantly higher AQP3 expression and p38 mitogen-activated protein kinase (MAPK) phosphorylation than control cells. With continuous application, Kumazasa extract increases AQP3 expression and exerts wound-healing and moisturizing effects. The increase in AQP3 expression elicited by Kumazasa extract may be due to enhancement of transcription via activation of p38 MAPK signaling.
Collapse
|
4
|
Prabhakar PK, Singh K, Kabra D, Gupta J. Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153252. [PMID: 32505916 DOI: 10.1016/j.phymed.2020.153252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The occurrence of chronic wounds, account for significant suffering of diabetic people, together with increasing healthcare burden. The chronic wounds associated with diabetes do not undergo the normal healing process rather stagnate into chronic proinflammatory phase as well as declined fibroblast function and impaired cell migration. HYPOTHESIS SIRT1, which is the most studied isoform of the sirtuin family in mammals, has now emerged as a crucial target for improving diabetic wound healing. It is an NAD+ dependent deacetylase, originally characterized to deacetylate histone proteins leading to heterochromatin formation and gene silencing. It is now known to regulate a number of cellular processes like cell proliferation, division, senescence, apoptosis, DNA repair, and metabolism. METHODOLOGY The retrieval of potentially relevant studies was done by systematically searching of three databases (Google Scholar, Web of science and PubMed) in December 2019. The keywords used as search terms were related to SIRT1 and wound healing. The systematic search retrieved 649 papers that were potentially relevant and after selection procedure, 73 studies were included this review and discussed below. RESULTS Many SIRT1 activating compounds (SACs) were found protective and improve diabetic wound healing through regulation of inflammation, cell migration, oxidative stress response and formation of granulation tissue at the wound site. CONCLUSIONS However, contradictory reports describe the opposing role of SACs on the regulation of cell migration and cancer incidence. SACs are therefore subjected to intense research for understanding the mechanisms responsible for controlling cell migration and therefore possess prospective to enter the clinical arena in the foreseeable future.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, Lovely Professional University Punjab, India 144411
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Dhiraj Kabra
- Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Limited, Vadodara, Gujarat, India, 390010
| | - Jeena Gupta
- Department of Biochemistry, Lovely Professional University Punjab, India 144411.
| |
Collapse
|
5
|
Guan E, Tian F, Liu Z. A novel risk score model for stomach adenocarcinoma based on the expression levels of 10 genes. Oncol Lett 2020; 19:1351-1367. [PMID: 31966067 PMCID: PMC6956285 DOI: 10.3892/ol.2019.11190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Stomach adenocarcinoma (STAD) accounts for 95% of cases of malignant gastric cancer, which is the third leading cause of cancer-associated mortality worldwide. The pathogenesis and effective diagnosis of STAD have become popular topics for research in the previous decade. In the present study, high-throughput RNA sequencing expression profiles and clinical data from patients with STAD were obtained from The Cancer Genome Atlas database and were used as a training dataset to screen differentially expressed genes (DEGs). Prognostic DEGs were identified using univariate Cox regression analysis and were further screened by the least absolute shrinkage and selection operator regularization regression algorithm. The resulting genes were used to construct a risk score model, the validation and effectiveness evaluation of which were performed on an independent dataset downloaded from the Gene Expression Omnibus database. Stratified and functional pathway (gene set enrichment) analyses were performed on groups with different estimated prognosis. A total of 92 genes significantly associated with STAD prognosis were obtained by univariate Cox regression analysis, and 10 prognosis-associated DEGs; hemoglobin b, chromosome 4 open reading frame 48, Dickkopf WNT signaling pathway inhibitor 1, coagulation factor V, serpin family E member 1, transmembrane protein 200A, NADPH oxidase organizer 1, C-X-C motif chemokine ligand 3, mannosidase endo-α-like and tripartite motif-containing 31; were selected for the development of the risk score model. The reliability of this prognostic method was verified using a validation set, and the results of multivariate Cox analysis indicated that the risk score may serve as an independent prognostic factor. In functional DEG analysis, eight Kyoto Encyclopedia of Genes and Genomes pathways were identified to be significantly associated with STAD risk factors. Thus, the 10-gene risk score model established in the present study was regarded as credible. This risk assessment tool may help identify patients with a high risk of STAD, and the proposed prognostic mRNAs may be useful in elucidating STAD pathogenesis.
Collapse
Affiliation(s)
- Encui Guan
- Department of Gastroenterology, The Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Feng Tian
- Department of Gastroenterology, The Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Zhaoxia Liu
- Department of Gastroenterology, The Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
6
|
Rhea L, Canady FJ, Le M, Reeb T, Canady JW, Kacmarynski DSF, Avvari R, Biggs LC, Dunnwald M. Interferon regulatory factor 6 is required for proper wound healing in vivo. Dev Dyn 2019; 249:509-522. [PMID: 31724286 DOI: 10.1002/dvdy.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Van der Woude syndrome (VWS) is the most common form of syndromic orofacial cleft caused predominantly by mutations in Interferon Regulatory Factor 6 (IRF6). We previously reported that individuals with VWS have increased risk of wound healing complications following cleft repair compared with individuals with nonsyndromic orofacial clefts (nonsyndromic cleft lip and palate-NSCLP). In vitro, absence of IRF6 leads to impaired keratinocyte migration and embryonic wound healing. However, there is currently no data on tissue repair in adult animals and cells with reduced levels of IRF6 like in VWS. RESULTS Excisional wounds of Irf6+/- and wild-type animals were analyzed 4 and 7 days post-wounding. Although all wounds were reepithelialized after 7 days, the epidermal and wound volume of repaired wounds was larger in Irf6+/- . These data were supported by increased keratinocyte proliferation in the neoformed epidermis and a less mature granulation tissue with increased cytokine levels. This effect was not cell autonomous, as Irf6+/- neonatal keratinocytes in vitro did not exhibit defects in scratch wound closure or proliferation. Keratinocytes from individuals with VWS also migrated similarly to keratinocytes from NSCLP individuals. CONCLUSIONS These data support a role for IRF6 in wound healing by regulating keratinocyte proliferation, granulation tissue maturation, and cytokine levels.
Collapse
Affiliation(s)
- Lindsey Rhea
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | | | - Marc Le
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa
| | - Tanner Reeb
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa.,Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa
| | - John W Canady
- Department of Otolaryngology, Head and Neck Surgery, The University of Iowa, Iowa City, Iowa.,Department of Surgery, The University of Iowa, Iowa City, Iowa
| | - Deborah S F Kacmarynski
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa.,Department of Otolaryngology, Head and Neck Surgery, The University of Iowa, Iowa City, Iowa
| | - Rishika Avvari
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Leah C Biggs
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa
| | - Martine Dunnwald
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa.,Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
7
|
Gkogkolou P, Sarna M, Sarna T, Paus R, Luger T, Böhm M. Protection of glucotoxicity by a tripeptide derivative of α‐melanocyte‐stimulating hormone in human epidermal keratinocytes. Br J Dermatol 2018; 180:836-848. [DOI: 10.1111/bjd.17125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Affiliation(s)
- P. Gkogkolou
- Department of Dermatology Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology University of Münster Von Esmarch‐Str. 58 48149 Münster Germany
| | - M. Sarna
- Department of Biophysics Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Cracow Poland
- Laboratory of Imaging and Atomic Force Spectroscopy Malopolska Centre of Biotechnology Jagiellonian University Cracow Poland
| | - T. Sarna
- Department of Biophysics Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Cracow Poland
- Laboratory of Imaging and Atomic Force Spectroscopy Malopolska Centre of Biotechnology Jagiellonian University Cracow Poland
| | - R. Paus
- Department of Dermatology Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology University of Münster Von Esmarch‐Str. 58 48149 Münster Germany
- Centre for Dermatology Research Institute of Inflammation and Repair University of Manchester Manchester U.K
| | - T.A. Luger
- Department of Dermatology Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology University of Münster Von Esmarch‐Str. 58 48149 Münster Germany
| | - M. Böhm
- Department of Dermatology Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology University of Münster Von Esmarch‐Str. 58 48149 Münster Germany
| |
Collapse
|
8
|
Thomas B, Kurien JS, Jose T, Ulahannan SE, Varghese SA. Topical timolol promotes healing of chronic leg ulcer. J Vasc Surg Venous Lymphat Disord 2017; 5:844-850. [PMID: 29037357 DOI: 10.1016/j.jvsv.2017.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/18/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chronic ulcers are a common problem, with chronic diabetic and venous ulcers forming a large proportion. This is the first case-control study to assess the effect of topical timolol on healing of chronic venous and chronic diabetic ulcers. METHODS The study included 60 patients with chronic leg ulcers. The ulcers in the study group (n = 30) were treated with topical 0.5% timolol maleate solution along with antibiotics and dressings; those in the control group (n = 30) received only antibiotics and dressings. The ulcers in both groups were evaluated at 4, 8, and 12 weeks, and ulcer area was calculated. Healing rate was assessed by calculating the percentage change in ulcer area. RESULTS The mean percentage change in area at 4, 8, and 12 weeks was 25.29, 43.77, and 61.79 in the study group and 11.92, 22.40, and 29.62 in the control group. Analysis showed that there were significant differences in percentage change in ulcer of the study and control groups at all three time points and also within the groups. The type of ulcer, history of alcohol consumption, and smoking did not affect the healing rates in the study group. CONCLUSIONS Topical β-blockade using timolol improves the healing of chronic leg ulcers.
Collapse
Affiliation(s)
- Bindhiya Thomas
- Department of General Surgery, Government Medical College, Kottayam, Kerala, India
| | - John Sajan Kurien
- Department of General Surgery, Government Medical College, Kottayam, Kerala, India
| | - Toney Jose
- Department of General Surgery, Government Medical College, Kottayam, Kerala, India.
| | | | | |
Collapse
|
9
|
Plutoni C, Bazellieres E, Le Borgne-Rochet M, Comunale F, Brugues A, Séveno M, Planchon D, Thuault S, Morin N, Bodin S, Trepat X, Gauthier-Rouvière C. P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces. J Cell Biol 2016; 212:199-217. [PMID: 26783302 PMCID: PMC4738379 DOI: 10.1083/jcb.201505105] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
P-cadherin induces polarization and collective cell migration through an increase in the strength and anisotropy of mechanical forces, which is mediated by the P-cadherin/β-PIX/Cdc42 axis. Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM.
Collapse
Affiliation(s)
- Cédric Plutoni
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Elsa Bazellieres
- Institute for Bioengineering of Catalonia, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Maïlys Le Borgne-Rochet
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Franck Comunale
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Agusti Brugues
- Institute for Bioengineering of Catalonia, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Martial Séveno
- Functional Proteomics Platform, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicale U1191, Universités Montpellier, 34094 Montpellier, France
| | - Damien Planchon
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Sylvie Thuault
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Nathalie Morin
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Stéphane Bodin
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Universitat de Barcelona, 08007 Barcelona, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 08010 Barcelona, Spain
| | - Cécile Gauthier-Rouvière
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Universités Montpellier, 34293 Montpellier, France
| |
Collapse
|
10
|
Amadeu TP, Coulomb B, Desmouliere A, Costa AMA. Cutaneous Wound Healing: Myofibroblastic Differentiation and in Vitro Models. INT J LOW EXTR WOUND 2016; 2:60-8. [PMID: 15866829 DOI: 10.1177/1534734603256155] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Wound healing is an interactive, dynamic 3-phased process. During the formation of granulation tissue, many fibroblastic cells acquire some morphological and biochemical smooth muscle features and are called myofibroblasts. Myofibroblasts participate in both granulation tissue formation and remodeling phases. Excessive scarring, which is a feature of impaired healing, is a serious health problem that may affect the patient's quality of life. The treatment costs of such lesions are high, and often, the results are unsatisfactory. To understand the wound healing process better and to promote improvement in human healing, models are needed that can predict the in vivo situation in humans. In vitro models allow the study of cell behavior in a controlled environment. Such modeling partitions and reduces to small scales behavior perceived in vivo. This article is focused on `fibroblasts.' In vitro models to study wound healing, the role of (myo)fibroblasts, and skin reconstruction in tissue replacement and promotion of wound healing are discussed.
Collapse
Affiliation(s)
- Thaís Porto Amadeu
- Histology and Embryology Department, State University of Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
11
|
Prenzler F, Fragasso A, Schmitt A, Munz B. Functional analysis of ZFP36 proteins in keratinocytes. Eur J Cell Biol 2016; 95:277-84. [PMID: 27182009 DOI: 10.1016/j.ejcb.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/22/2022] Open
Abstract
The ZFP36 family of zinc finger proteins, including ZFP36, ZFP36L1, and ZFP36L2, regulates the production of growth factors and cytokines via destabilization of the respective mRNAs. We could recently demonstrate that in cultured keratinocytes, expression of the ZFP36, ZFP36L1, and ZFP36L2 genes is induced by growth factors and cytokines and that ZFP36L1 is a potent regulator of keratinocyte VEGF production. We now further analyzed the localization and function of ZFP36 proteins in the skin, specifically in epidermal keratinocytes. We found that in human epidermis, the ZFP36 protein could be detected in basal and suprabasal keratinocytes, whereas ZFP36L1 and ZFP36L2 were expressed mainly in the basal layer, indicating different and non-redundant functions of the three proteins in the epidermis. Consistently, upon inhibition of ZFP36 or ZFP36L1 expression using specific siRNAs, there was no major effect on expression of the respective other gene. In addition, we demonstrate that both ZFP36 and ZFP36L1 influence keratinocyte cell cycle, differentiation, and apoptosis in a distinct manner. Finally, we show that similarly as ZFP36L1, ZFP36 is a potent regulator of keratinocyte VEGF production. Thus, it is likely that both proteins regulate angiogenesis via paracrine mechanisms. Taken together, our results suggest that ZFP36 proteins might control reepithelialization and angiogenesis in the skin in a multimodal manner.
Collapse
Affiliation(s)
- Frauke Prenzler
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Annunziata Fragasso
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Angelika Schmitt
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Barbara Munz
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany.
| |
Collapse
|
12
|
Simone TM, Higgins CE, Czekay RP, Law BK, Higgins SP, Archambeault J, Kutz SM, Higgins PJ. SERPINE1: A Molecular Switch in the Proliferation-Migration Dichotomy in Wound-"Activated" Keratinocytes. Adv Wound Care (New Rochelle) 2014; 3:281-290. [PMID: 24669362 DOI: 10.1089/wound.2013.0512] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/13/2014] [Indexed: 11/13/2022] Open
Abstract
Significance: A highly interactive serine protease/plasmin/matrix metalloproteinase axis regulates stromal remodeling in the wound microenvironment. Current findings highlight the importance of stringent controls on protease expression and their topographic activities in cell proliferation, migration, and tissue homeostasis. Targeting elements in this cascading network may lead to novel therapeutic approaches for fibrotic diseases and chronic wounds. Recent Advances: Matrix-active proteases and their inhibitors orchestrate wound site tissue remodeling, cell migration, and proliferation. Indeed, the serine proteases urokinase plasminogen activator and tissue-type plasminogen activator (uPA/tPA) and their major phsyiological inhibitor, plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor clade E member 1 [SERPINE1]), are upregulated in several cell types during injury repair. Coordinate expression of proteolytic enzymes and their inhibitors in the wound bed provides a mechanism for fine control of focal proteolysis to facilitate matrix restructuring and cell motility in complex environments. Critical Issues: Cosmetic and tissue functional consequences of wound repair anomalies affect the quality of life of millions of patients in the United States alone. The development of novel therapeutics to manage individuals most affected by healing anomalies will likely derive from the identification of critical, translationally accessible, control elements in the wound site microenvironment. Future Directions: Activation of the PAI-1 gene early after wounding, its prominence in the repair transcriptome and varied functions suggest a key role in the global cutaneous injury response program. Targeting PAI-1 gene expression and/or PAI-1 function with molecular genetic constructs, neutralizing antibodies or small molecule inhibitors may provide a novel, therapeutically relevant approach, to manage the pathophysiology of wound healing disorders associated with deficient or excessive PAI-1 levels.
Collapse
Affiliation(s)
- Tessa M. Simone
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Craig E. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Ralf-Peter Czekay
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Stephen P. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Jaclyn Archambeault
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Stacie M. Kutz
- Department of Biology, Sage College of Albany, Albany, New York
| | - Paul J. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| |
Collapse
|
13
|
Girault A, Brochiero E. Evidence of K+ channel function in epithelial cell migration, proliferation, and repair. Am J Physiol Cell Physiol 2013; 306:C307-19. [PMID: 24196531 DOI: 10.1152/ajpcell.00226.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Efficient repair of epithelial tissue, which is frequently exposed to insults, is necessary to maintain its functional integrity. It is therefore necessary to better understand the biological and molecular determinants of tissue regeneration and to develop new strategies to promote epithelial repair. Interestingly, a growing body of evidence indicates that many members of the large and widely expressed family of K(+) channels are involved in regulation of cell migration and proliferation, key processes of epithelial repair. First, we briefly summarize the complex mechanisms, including cell migration, proliferation, and differentiation, engaged after epithelial injury. We then present evidence implicating K(+) channels in the regulation of these key repair processes. We also describe the mechanisms whereby K(+) channels may control epithelial repair processes. In particular, changes in membrane potential, K(+) concentration, cell volume, intracellular Ca(2+), and signaling pathways following modulation of K(+) channel activity, as well as physical interaction of K(+) channels with the cytoskeleton or integrins are presented. Finally, we discuss the challenges to efficient, specific, and safe targeting of K(+) channels for therapeutic applications to improve epithelial repair in vivo.
Collapse
Affiliation(s)
- Alban Girault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; and
| | | |
Collapse
|
14
|
Bertero T, Gastaldi C, Bourget-Ponzio I, Mari B, Meneguzzi G, Barbry P, Ponzio G, Rezzonico R. CDC25A targeting by miR-483-3p decreases CCND-CDK4/6 assembly and contributes to cell cycle arrest. Cell Death Differ 2013; 20:800-11. [PMID: 23429262 DOI: 10.1038/cdd.2013.5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Disruption of contact inhibition and serum afflux that occur after a tissue injury activate cell cycle, which then stops when confluence is reached again. Although the events involved in cell cycle entry have been widely documented, those managing cell cycle exit have remained so far ill defined. We have identified that the final stage of wound closure is preceded in keratinocytes by a strong accumulation of miR-483-3p, which acts as a mandatory signal triggering cell cycle arrest when confluence is reached. Blocking miR-483-3p accumulation strongly delays cell cycle exit, maintains cells into a proliferative state and retards their differentiation program. Using two models of cell cycle synchronization (i.e. mechanical injury and serum addition), we show that an ectopic upregulation of miR-483-3p blocks cell cycle progression in early G1 phase. This arrest results from a direct targeting of the CDC25A phosphatase by miR-483-3p, which can be impeded using an anti-miRNA against miR-483-3p or a protector that blocks the complex formation between miR-483-3p and the 3'-untranslated region (UTR) of CDC25A transcript. We show that the miRNA-induced silencing of CDC25A increases the tyrosine phosphorylation status of CDK4/6 cyclin-dependent kinases which, in turn, abolishes CDK4/6 capacity to associate with D-type cyclins. This prevents CDK4/6 kinases' activation, impairs downstream events such as cyclin E stimulation and sequesters cells in early G1. We propose this new regulatory process of cyclin-CDK association as a general mechanism coupling miRNA-mediated CDC25A invalidation to CDK post-transcriptional modifications and cell cycle control.
Collapse
Affiliation(s)
- T Bertero
- CNRS UMR 7275, IPMC, Physiological Genomics of the Eukaryotes, Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Boulter E, Estrach S, Errante A, Pons C, Cailleteau L, Tissot F, Meneguzzi G, Féral CC. CD98hc (SLC3A2) regulation of skin homeostasis wanes with age. ACTA ACUST UNITED AC 2013; 210:173-90. [PMID: 23296466 PMCID: PMC3549711 DOI: 10.1084/jem.20121651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Loss of CD98hc expression in young adult skin induces changes similar to those associated with aging, including improper skin homeostasis and epidermal wound healing. Skin aging is linked to reduced epidermal proliferation and general extracellular matrix atrophy. This involves factors such as the cell adhesion receptors integrins and amino acid transporters. CD98hc (SLC3A2), a heterodimeric amino acid transporter, modulates integrin signaling in vitro. We unravel CD98hc functions in vivo in skin. We report that CD98hc invalidation has no appreciable effect on cell adhesion, clearly showing that CD98hc disruption phenocopies neither CD98hc knockdown in cultured keratinocytes nor epidermal β1 integrin loss in vivo. Instead, we show that CD98hc deletion in murine epidermis results in improper skin homeostasis and epidermal wound healing. These defects resemble aged skin alterations and correlate with reduction of CD98hc expression observed in elderly mice. We also demonstrate that CD98hc absence in vivo induces defects as early as integrin-dependent Src activation. We decipher the molecular mechanisms involved in vivo by revealing a crucial role of the CD98hc/integrins/Rho guanine nucleotide exchange factor (GEF) leukemia-associated RhoGEF (LARG)/RhoA pathway in skin homeostasis. Finally, we demonstrate that the deregulation of RhoA activation in the absence of CD98hc is also a result of impaired CD98hc-dependent amino acid transports.
Collapse
Affiliation(s)
- Etienne Boulter
- Institute for Research on Cancer and Aging, Nice, AVENIR Team, University of Nice Sophia-Antipolis, Institut National de la Santé et de la Recherche Médicale U1081, Centre National de la Recherche Scientifique UMR 7284, Centre Antoine Lacassagne, Nice 06107, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shibata S, Tada Y, Asano Y, Hau CS, Kato T, Saeki H, Yamauchi T, Kubota N, Kadowaki T, Sato S. Adiponectin Regulates Cutaneous Wound Healing by Promoting Keratinocyte Proliferation and Migration via the ERK Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2012; 189:3231-41. [DOI: 10.4049/jimmunol.1101739] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|
18
|
Sanchis A, Alba L, Latorre V, Sevilla LM, Pérez P. Keratinocyte-targeted overexpression of the glucocorticoid receptor delays cutaneous wound healing. PLoS One 2012; 7:e29701. [PMID: 22235328 PMCID: PMC3250471 DOI: 10.1371/journal.pone.0029701] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/01/2011] [Indexed: 11/21/2022] Open
Abstract
Delayed wound healing is one of the most common secondary adverse effects associated to the therapeutic use of glucocorticoid (GC) analogs, which act through the ligand-dependent transcription factor GC-receptor (GR). GR function is exerted through DNA-binding-dependent and –independent mechanisms, classically referred to as transactivation (TA) and transrepression (TR). Currently both TA and TR are thought to contribute to the therapeutical effects mediated by GR; however their relative contribution to unwanted side effects such as delayed wound healing is unknown. We evaluated skin wound healing in transgenic mice with keratinocyte-restricted expression of either wild type GR or a mutant GR that is TA-defective but efficient in TR (K5-GR and K5-GR-TR mice, respectively). Our data show that at days (d) 4 and 8 following wounding, healing in K5-GR mice was delayed relative to WT, with reduced recruitment of granulocytes and macrophages and diminished TNF-α and IL-1β expression. TGF-β1 and Kgf expression was repressed in K5-GR skin whereas TGF-β3 was up-regulated. The re-epithelialization rate was reduced in K5-GR relative to WT, as was formation of granulation tissue. In contrast, K5-GR-TR mice showed delays in healing at d4 but re-established the skin breach at d8 concomitant with decreased repression of pro-inflammatory cytokines and growth factors relative to K5-GR mice. Keratinocytes from both transgenic mice closed in vitro wounds slower relative to WT, consistent with the in vivo defects in cell migration. Overall, the delay in the early stages of wound healing in both transgenic models is similar to that elicited by systemic treatment with dexamethasone. Wound responses in the transgenic keratinocytes correlated with reduced ERK activity both in vivo and in vitro. We conclude that the TR function of GR is sufficient for negatively regulating early stages of wound closure, while TA by GR is required for delaying later stages of healing.
Collapse
Affiliation(s)
- Ana Sanchis
- Department of Pathology and Cell and Molecular Therapy, Instituto de Biomedicina de Valencia (IBV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lorena Alba
- Department of Pathology and Cell and Molecular Therapy, Instituto de Biomedicina de Valencia (IBV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Víctor Latorre
- Department of Pathology and Cell and Molecular Therapy, Instituto de Biomedicina de Valencia (IBV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lisa M. Sevilla
- Department of Pathology and Cell and Molecular Therapy, Instituto de Biomedicina de Valencia (IBV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Paloma Pérez
- Department of Pathology and Cell and Molecular Therapy, Instituto de Biomedicina de Valencia (IBV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- * E-mail:
| |
Collapse
|
19
|
Scherzed A, Hackenberg S, Froelich K, Radeloff A, Technau A, Kessler M, Hagen R, Rak K, Koehler C, Kleinsasser N. The Effect of Wound Fluid on Adipose-Derived Stem Cells In Vitro: A Study in Human Cell Materials. Tissue Eng Part C Methods 2011; 17:809-17. [DOI: 10.1089/ten.tec.2010.0257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Agmal Scherzed
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Katrin Froelich
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Andreas Radeloff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Antje Technau
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Michael Kessler
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Christian Koehler
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Norbert Kleinsasser
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian-University Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Bertero T, Gastaldi C, Bourget-Ponzio I, Imbert V, Loubat A, Selva E, Busca R, Mari B, Hofman P, Barbry P, Meneguzzi G, Ponzio G, Rezzonico R. miR-483-3p controls proliferation in wounded epithelial cells. FASEB J 2011; 25:3092-105. [PMID: 21676945 DOI: 10.1096/fj.10-168401] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanisms that regulate keratinocyte migration and proliferation in wound healing remain largely unraveled, notably regarding possible involvements of microRNAs (miRNAs). Here we disclose up-regulation of miR-483-3p in 2 distinct models of wound healing: scratch-injured cultures of human keratinocytes and wounded skin in mice. miR-483-3p accumulation peaks at the final stage of the wound closure process, consistent with a role in the arrest of "healing" progression. Using an in vitro wound-healing model, videomicroscopy, and 5-bromo-2'-uridine incorporation, we observed that overexpression of miR-483-3p inhibits keratinocyte migration and proliferation, whereas delivery of anti-miR-483-3p oligonucleotides sustains keratinocyte proliferation beyond the closure of the wound, compared with irrelevant anti-miR treatment. Expression profiling of keratinocytes transfected with miR-483-3p identified 39 transcripts that were both predicted targets of miR-483-3p and down-regulated after miR-483-3p overexpression. Luciferase reporter assays, Western blot analyses, and silencing by specific siRNAs finally established that kinase MK2, cell proliferation marker MKI67, and transcription factor YAP1 are direct targets of miR-483-3p that control keratinocyte proliferation. miR-483-3p-mediated down-regulation of MK2, MKI67, and YAP1 thus represents a novel mechanism controlling keratinocyte growth arrest at the final steps of reepithelialization.
Collapse
|
21
|
Dusio GF, Cardani D, Zanobbio L, Mantovani M, Luchini P, Battini L, Galli V, Diana A, Balsari A, Rumio C. Stimulation of TLRs by LMW-HA induces self-defense mechanisms in vaginal epithelium. Immunol Cell Biol 2010; 89:630-9. [PMID: 21102537 DOI: 10.1038/icb.2010.140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The innate immune system is present throughout the female reproductive tract and functions in synchrony with the adaptive immune system to provide protection in a way that enhances the chances for fetal survival, while protecting against potential pathogens. Recent data show that activation of Toll-like receptor (TLR)2 and 4 by low-molecular weight hyaluronic acid (LMW-HA) in the epidermis induces secretion of the antimicrobial peptide β-defensin 2. In the present work, we show that LMW-HA induces vaginal epithelial cells to release different antimicrobial peptides, via activation of TLR2 and TLR4. Further, we found that LMW-HA favors repair of vaginal epithelial injury, involving TLR2 and TLR4, and independently from its classical receptor CD44. This wound-healing activity of LMW-HA is dependent from an Akt/phosphatidylinositol 3 kinase pathway. Therefore, these findings suggest that the vaginal epithelium is more than a simple physical barrier to protect against invading pathogens: on the contrary, this surface acts as efficient player of innate host defense, which may modulate its antimicrobial properties and injury restitution activity, following LMW-HA stimulation; this activity may furnish an additional protective activity to this body compartment, highly and constantly exposed to microbiota, ameliorating the self-defense of the vaginal epithelium in both basal and pathological conditions.
Collapse
Affiliation(s)
- Giuseppina F Dusio
- iMIL, italian Mucosal Immunity Laboratory, Dipartimento di Morfologia Umana e Scienze Biomediche Città Studi, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dayem MA, Moreilhon C, Turchi L, Magnone V, Christen R, Ponzio G, Barbry P. Early gene expression in wounded human keratinocytes revealed by DNA microarray analysis. Comp Funct Genomics 2010; 4:47-55. [PMID: 18629100 PMCID: PMC2447387 DOI: 10.1002/cfg.239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Accepted: 11/21/2002] [Indexed: 11/12/2022] Open
Abstract
Wound healing involves several steps: spreading of the cells, migration and proliferation.
We have profiled gene expression during the early events of wound healing in
normal human keratinocytes with a home-made DNA microarray containing about
1000 relevant human probes. An original wounding machine was used, that allows the
wounding of up to 40% of the surface of a confluent monolayer of cultured cells grown
on a Petri dish (compared with 5% with a classical ‘scratch’ method). The two aims
of the present study were: (a) to validate a limited number of genes by comparing
the expression levels obtained with this technique with those found in the literature;
(b) to combine the use of the wounding machine with DNA microarray analysis for
large-scale detection of the molecular events triggered during the early stages of the
wound-healing process. The time-courses of RNA expression observed at 0.5, 1.5, 3,
6 and 15 h after wounding for genes such as c-Fos, c-Jun, Egr1, the plasminogen
activator PLAU (uPA) and the signal transducer and transcription activator STAT3,
were consistent with previously published data. This suggests that our methodologies
are able to perform quantitative measurement of gene expression. Transcripts encoding
two zinc finger proteins, ZFP36 and ZNF161, and the tumour necrosis factor
α-induced protein TNFAIP3, were also overexpressed after wounding. The role of
the p38 mitogen-activated protein kinase (p38MAPK) in wound healing was shown
after the inhibition of p38 by SB203580, but our results also suggest the existence of
surrogate activating pathways.
Collapse
Affiliation(s)
- Manal A Dayem
- Laboratoire de Physiologie Génomique des Eucaryotes, CNRS/UNSA UMR 6097, IPMC F-06560 Sophia Antipolis, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Hacker C, Valchanova R, Adams S, Munz B. ZFP36L1 is regulated by growth factors and cytokines in keratinocytes and influences their VEGF production. Growth Factors 2010; 28:178-90. [PMID: 20166898 DOI: 10.3109/08977190903578660] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Keratinocyte-derived growth factors and cytokines play an important role in epidermal homeostasis and particularly in cutaneous wound repair. Thus, we analyzed a potential role of the ZFP36/tristetraprolin family of zinc finger proteins, which are targets of these factors, but also regulate their production, in keratinocytes. We show that expression of ZFP36, ZFP36L1, and ZFP36L2 is induced by a broad variety of growth factors and cytokines, and by scratch wounding. Since ZFP36L1 is a modulator of vascular endothelium growth factor (VEGF) mRNA stability, we subsequently used siRNA technology to inhibit ZFP36L1 gene expression. Notably, this treatment resulted in prolonged maintenance of elevated VEGF levels in HaCaT keratinocytes upon epidermal growth factor stimulation of these cells. Taken together, our results suggest an important role of ZFP36L1 in wound healing.
Collapse
Affiliation(s)
- Christine Hacker
- Institute of Physiology, Charité - University Medicine Berlin, Arnimallee 22, D-14195, Berlin, Germany
| | | | | | | |
Collapse
|
24
|
Kioka N, Ito T, Yamashita H, Uekawa N, Umemoto T, Motoyoshi S, Imai H, Takahashi K, Watanabe H, Yamada M, Ueda K. Crucial role of vinexin for keratinocyte migration in vitro and epidermal wound healing in vivo. Exp Cell Res 2010; 316:1728-38. [PMID: 20361963 DOI: 10.1016/j.yexcr.2010.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 02/03/2023]
Abstract
In the process of tissue injury and repair, epithelial cells rapidly migrate and form epithelial sheets. Vinexin is a cytoplasmic molecule of the integrin-containing cell adhesion complex localized at focal contacts in vitro. Here, we investigated the roles of vinexin in keratinocyte migration in vitro and wound healing in vivo. Vinexin knockdown using siRNA delayed migration of both HaCaT human keratinocytes and A431 epidermoid carcinoma cells in scratch assay but did not affect cell proliferation. Induction of cell migration by scratching the confluent monolayer culture of these cells activated both EGFR and ERK, and their inhibitors AG1478 and U0126 substantially suppressed scratch-induced keratinocyte migration. Vinexin knockdown in these cells inhibited the scratch-induced activation of EGFR, but not that of ERK, suggesting that vinexin promotes cell migration via activation of EGFR. We further generated vinexin (-/-) mice and isolated their keratinocytes. They similarly showed slow migration in scratch assay. Furthermore, vinexin (-/-) mice exhibited a delay in cutaneous wound healing in both the back skin and tail without affecting the proliferation of keratinocytes. Together, these results strongly suggest a crucial role of vinexin in keratinocyte migration in vitro and cutaneous wound healing in vivo.
Collapse
Affiliation(s)
- Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lan R, Geng H, Hwang Y, Mishra P, Skloss WL, Sprague EA, Saikumar P, Venkatachalam M. A novel wounding device suitable for quantitative biochemical analysis of wound healing and regeneration of cultured epithelium. Wound Repair Regen 2010; 18:159-67. [PMID: 20230600 DOI: 10.1111/j.1524-475x.2010.00576.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We describe the fabrication and use of an in vitro wounding device that denudes cultured epithelium in patterns designed to leave behind strips or islands of cells sufficiently narrow or small to ensure that all the remaining cells become rapidly activated and then migrate, dedifferentiate, and proliferate in near synchrony. The design ensures that signals specific to regenerating cells do not become diluted by quiescent differentiated cells that are not affected by wound-induced activation. The device consists of a flat circular disk of rubber, engraved to produce alternating ridges and grooves in patterns of concentric circles or parallel lines. The disk is mounted at the end of a pneumatically controlled piston assembly. Application of controlled pressure and circular or linear movement of the disk on cultures produced highly reproducible wounding patterns. The near-synchronous regenerative activity of cell bands or islands allowed the collection of samples large enough for biochemical studies to sensitively detect alterations involving mRNA for several early response genes and protein phosphorylation in major signaling pathways. The method is versatile, easy to use and reproducible, and should facilitate biochemical, proteomic, and genomic studies of wound-induced regeneration of cultured epithelium.
Collapse
Affiliation(s)
- Rongpei Lan
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Diez FR, Garrido AA, Sharma A, Luke CT, Stone JC, Dower NA, Cline JM, Lorenzo PS. RasGRP1 transgenic mice develop cutaneous squamous cell carcinomas in response to skin wounding: potential role of granulocyte colony-stimulating factor. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:392-9. [PMID: 19497993 DOI: 10.2353/ajpath.2009.090036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Models of epidermal carcinogenesis have demonstrated that Ras is a critical molecule involved in tumor initiation and progression. Previously, we have shown that RasGRP1 increases the susceptibility of mice to skin tumorigenesis when overexpressed in the epidermis by a transgenic approach, related to its ability to activate Ras. Moreover, RasGRP1 transgenic mice develop spontaneous papillomas and cutaneous squamous cell carcinomas, some of which appear to originate in sites of injury, suggesting that RasGRP1 may be responding to signals generated during the wound-healing process. In this study, we examined the response of the RasGRP1 transgenic animals to full-thickness incision wounding of the skin, and demonstrated that they respond by developing tumors along the wounded site. The tumors did not present mutations in the H-ras gene, but Rasgrp1 transgene dosage correlated with tumor susceptibility and size. Analysis of serum cytokines showed increased levels of granulocyte colony-stimulating factor in transgenic animals after wounding. Furthermore, in vitro experiments with primary keratinocytes showed that granulocyte colony-stimulating factor stimulated Ras activation, although RasGRP1 was dispensable for this effect. Since granulocyte colony-stimulating factor has been recently associated with proliferation of skin cancer cells, our results may help in the elucidation of pathways that activate Ras in the epidermis during tumorigenesis in the absence of oncogenic ras mutations.
Collapse
Affiliation(s)
- Federico R Diez
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lan CCE, Wu CS, Kuo HY, Huang SM, Chen GS. Hyperglycaemic conditions hamper keratinocyte locomotion via sequential inhibition of distinct pathways: new insights on poor wound closure in patients with diabetes. Br J Dermatol 2009; 160:1206-14. [PMID: 19298270 DOI: 10.1111/j.1365-2133.2009.09089.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is characterized by impaired insulin signalling, elevated plasma glucose, and predisposition towards complications involving several organs. A major complication of DM is impairment of wound healing. In the re-epithelialization process during wound healing, migration of keratinocytes is a crucial step. Our previous report demonstrated that keratinocytes cultured in hyperglycaemic media showed decreased cell mobility. OBJECTIVES The current study aimed to explore the effects of high glucose on keratinocyte migration after different treatment durations. METHODS Keratinocytes were cultivated for indicated time periods under various concentrations of glucose. Relevant assays including Transwell migration and in vitro wound scratch assays, flow cytometric analysis, matrix metalloproteinase-1 (MMP-1) activity assay, determination of mRNA expression and Western blotting were performed. RESULTS We demonstrated that (i) keratinocyte motility progressively and significantly decreased; (ii) the keratinocyte activation marker K16 was significantly suppressed; (iii) expression of alpha2beta1 integrin and MMP-1, both crucial for keratinocyte locomotion on collagen type I, was significantly downregulated; and (iv) expression of the phosphorylated signal transducer and activator of transcription-1 significantly decreased after hyperglycaemic treatment. More specifically, different pathways become involved after prolonged duration of high glucose cultivation to reduce keratinocyte locomotion further. CONCLUSIONS We have demonstrated that high glucose treatment results in progressive suppression of keratinocyte locomotion and elucidated the molecular mechanisms involved. These results provide a reasonable explanation for the poor wound healing seen in patients with DM.
Collapse
Affiliation(s)
- C-C E Lan
- Department of Dermatology, Chung-Ho Memorial Hospital and College of Medicine, Kaohsiung Medical University, Taiwan
| | | | | | | | | |
Collapse
|
28
|
An in vitro analysis of mechanical wounding-induced ligand-independent KGFR activation. J Dermatol Sci 2009; 53:182-91. [DOI: 10.1016/j.jdermsci.2008.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 10/01/2008] [Accepted: 10/14/2008] [Indexed: 11/20/2022]
|
29
|
Satoh Y, Saitoh D, Takeuchi A, Ojima K, Kouzu K, Kawakami S, Ito M, Ishihara M, Sato S, Takishima K. ERK2 dependent signaling contributes to wound healing after a partial-thickness burn. Biochem Biophys Res Commun 2009; 381:118-22. [PMID: 19232324 DOI: 10.1016/j.bbrc.2009.02.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Burn healing is a complex physiological process involving multiple cell activities, such as cell proliferation, migration and differentiation. Although extracellular signal-regulated kinases (ERK) have a pivotal role in regulating a variety of cellular responses, little is known about the individual functions of ERK isoform for healing in vivo. This study investigated the role of ERK2 in burn healing. To assess this, Erk2(+/-) mice generated by gene targeting were used. The resultant mice exhibited significant delay in re-epithelization of partial-thickness burns in the skin in comparison to wild-type. An in vitro proliferation assay revealed that keratinocytes from Erk2(+/-) mice grew significantly slower than those prepared from wild-type. These results highlight the importance of ERK2 in the process of burn healing.
Collapse
Affiliation(s)
- Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Baroni A, Perfetto B, Canozo N, Braca A, Farina E, Melito A, De Maria S, Cartenì M. Bombesin: a possible role in wound repair. Peptides 2008; 29:1157-66. [PMID: 18455266 DOI: 10.1016/j.peptides.2008.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/03/2008] [Accepted: 03/05/2008] [Indexed: 12/31/2022]
Abstract
During tissue regeneration and wound healing of the skin, migration, proliferation and differentiation of keratinocytes are important processes. Here we assessed the effect of a neuropeptide, bombesin, on keratinocytes during regeneration from scratch wounding. Bombesin purified from amphibian skin, is homologous of mammalian gastrin-releasing peptide and is active in mammals. Its pharmacological effects mediate various physiological activities: hypertensive action, stimulating action on gastric secretion, hyperglycemic effect or increased insulin secretion. In vitro it shows a hyperproliferative effect on different experimental models and is involved in skin repair. The aim of this study was to elucidate the effect of Bombesin in an in vitro experimental model on a mechanically injured human keratinocyte monolayer. We evaluated different mediators involved in wound repair such as IL-8, TGFbeta, IL-1, COX-2, VEGF and Toll-like receptors 2 and 4 (TLR2 and TLR4). We also studied the effects of bombesin on cell proliferation and motility and its direct effect on wound repair by observing the wound closure after mechanical injury. The involvement of the bombesin receptors neuromedin receptor (NMBR) and gastrin-releasing peptide receptor (GRP-R) was also evaluated. Our data suggest that bombesin may have an important role in skin repair by regulating the expression of healing markers. It enhanced the expression of IL-8, TGFbeta, COX-2 and VEGF. It also enhanced the expression of TLR2, while TLR4 was not expressed. Bombesin also increased cell growth and migration. In addition, we showed that NMBR was more involved in our experimental model compared to GRP-R.
Collapse
Affiliation(s)
- A Baroni
- Department of Dermatology, Faculty of Medicine and Surgery, Second University of Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
SERPINE1 (PAI-1) is deposited into keratinocyte migration "trails" and required for optimal monolayer wound repair. Arch Dermatol Res 2008; 300:303-10. [PMID: 18386027 DOI: 10.1007/s00403-008-0845-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/27/2007] [Accepted: 03/05/2008] [Indexed: 01/12/2023]
Abstract
Cutaneous tissue injury, both in vivo and in vitro, initiates activation of a "wound repair" transcriptional program. One such highly induced gene encodes plasminogen activator inhibitor type-1 (PAI-1, SERPINE1). PAI-1-GFP, expressed as a fusion protein under inducible control of +800 bp of the wound-activated PAI-1 promoter, prominently "marked" keratinocyte migration trails during the real-time of monolayer scrape-injury repair. Addition of active recombinant PAI-1 to wounded wild-type keratinocyte monolayers as well as to PAI-1(-/-) MEFs and PAI-1(-/-) keratinocytes significantly stimulated directional motility above basal levels in all cell types. PAI-1 expression knockdown or antibody-mediated functional inhibition, in contrast, effectively attenuated injury repair. The defect in wound-associated migratory activity as a consequence of antisense-mediated PAI-1 down-regulation was effectively reversed by addition of recombinant PAI-1 immediately after scrape injury. One possible mechanism underlying the PAI-1-dependent motile response may involve fine control of the keratinocyte substrate detachment/re-attachment process. Exogenous PAI-1 significantly enhanced keratinocyte spread cell "footprint" area while PAI-1 neutralizing antibodies, but not control non-immune IgG, effectively inhibited spreading with apoptotic hallmarks evident within 24 h. Importantly, PAI-1 not only stimulated keratinocyte adhesion and wound-initiated planar migration but also rescued keratinocytes from plasminogen-induced substrate detachment/anoikis. The early transcriptional response of the PAI-1 gene to monolayer trauma and its prominence in the injury repair genetic signature are consistent with its function as both a survival factor and regulator of the time course of epithelial migration as part of the cutaneous injury response program.
Collapse
|
32
|
Storesund T, Hayashi K, Kolltveit KM, Bryne M, Schenck K. Salivary trefoil factor 3 enhances migration of oral keratinocytes. Eur J Oral Sci 2008; 116:135-40. [PMID: 18353006 DOI: 10.1111/j.1600-0722.2007.00516.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trefoil factor 3 (TFF3) is a member of the mammalian TFF family. Trefoil factors are secreted onto mucosal surfaces of the entire body and exert different effects according to tissue location. Trefoil factors may enhance mucosal healing by modulating motogenic activity, inhibiting apoptosis, and promoting angiogenesis. Trefoil factor 3 is secreted from the submandibular gland and is present in whole saliva. The aim of this study was to assess the migratory and proliferative effects of TFF3 on primary oral human keratinocytes and oral cancer cell lines. The addition of TFF3 increased the migration of both normal oral keratinocytes and the cancer cell line D12, as evaluated by a two-dimensional scratch assay. By contrast, no increase in proliferation or energy metabolism was observed after stimulation with TFF3. Trefoil factor 3-enhanced migration was found to be driven partly by the extracellular signal-related kinase (Erk1/2) pathway, as shown by addition of the mitogen-activated protein kinase (MAPK) inhibitor PD 98059. Previous functional studies on trefoil peptides have all been based on cells from monolayered epithelium like the intestinal mucosa; this is the first report to show that normal and cancerous keratinocytes from stratified epithelium respond to TFF stimuli. Taken together, salivary TFF3 is likely to contribute to oral wound healing.
Collapse
Affiliation(s)
- Trond Storesund
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
33
|
Hara-Chikuma M, Verkman AS. Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med (Berl) 2007; 86:221-31. [PMID: 17968524 DOI: 10.1007/s00109-007-0272-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/17/2007] [Accepted: 09/21/2007] [Indexed: 12/18/2022]
Abstract
Healing of skin wounds is a multi-step process involving the migration and proliferation of basal keratinocytes in epidermis, which strongly express the water/glycerol-transporting protein aquaporin-3 (AQP3). In this study, we show impaired skin wound healing in AQP3-deficient mice, which results from distinct defects in epidermal cell migration and proliferation. In vivo wound healing was approximately 80% complete in wild-type mice at 5 days vs approximately 50% complete in AQP3 null mice, with remarkably fewer proliferating, BrdU-positive keratinocytes. After AQP3 knock-down in keratinocyte cell cultures, which reduced cell membrane water and glycerol permeabilities, cell migration was slowed by more than twofold, with reduced lamellipodia formation at the leading edge of migrating cells. Proliferation of AQP3 knock-down keratinocytes was significantly impaired during wound repair. Mitogen-induced cell proliferation was also impaired in AQP3 deficient keratinocytes, with greatly reduced p38 MAPK activity. In mice, oral glycerol supplementation largely corrected defective wound healing and epidermal cell proliferation. Our results provide evidence for involvement of AQP3-facilitated water transport in epidermal cell migration and for AQP3-facilitated glycerol transport in epidermal cell proliferation.
Collapse
Affiliation(s)
- Mariko Hara-Chikuma
- Department of Medicine, Cardiovascular Research Institute, University of California, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA
| | | |
Collapse
|
34
|
Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P. Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci U S A 2007; 104:15988-93. [PMID: 17905871 PMCID: PMC2042149 DOI: 10.1073/pnas.0705062104] [Citation(s) in RCA: 596] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Indexed: 01/17/2023] Open
Abstract
Using an original microfabrication-based technique, we experimentally study situations in which a virgin surface is presented to a confluent epithelium with no damage made to the cells. Although inspired by wound-healing experiments, the situation is markedly different from classical scratch wounding because it focuses on the influence of the free surface and uncouples it from the other possible contributions such as cell damage and/or permeabilization. Dealing with Madin-Darby canine kidney cells on various surfaces, we found that a sudden release of the available surface is sufficient to trigger collective motility. This migration is independent of the proliferation of the cells that mainly takes place on the fraction of the surface initially covered. We find that this motility is characterized by a duality between collective and individual behaviors. On the one hand, the velocity fields within the monolayer are very long range and involve many cells in a coordinated way. On the other hand, we have identified very active "leader cells" that precede a small cohort and destabilize the border by a fingering instability. The sides of the fingers reveal a pluricellular actin "belt" that may be at the origin of a mechanical signaling between the leader and the followers. Experiments performed with autocrine cells constitutively expressing hepatocyte growth factor (HGF) or in the presence of exogenous HGF show a higher average velocity of the border and no leader.
Collapse
Affiliation(s)
- M. Poujade
- *Laboratoire Physico-Chimie Curie (Unité Mixte de Recherche 168), Institut Curie, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, F-75248 Paris, France
| | - E. Grasland-Mongrain
- *Laboratoire Physico-Chimie Curie (Unité Mixte de Recherche 168), Institut Curie, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, F-75248 Paris, France
| | - A. Hertzog
- Laboratoire Compartimentation et Dynamique Cellulaires (Unité Mixte de Recherche 144), Institut Curie, Centre National de la Recherche Scientifique, F-75248 Paris, France; and
| | - J. Jouanneau
- Laboratoire Compartimentation et Dynamique Cellulaires (Unité Mixte de Recherche 144), Institut Curie, Centre National de la Recherche Scientifique, F-75248 Paris, France; and
| | - P. Chavrier
- Laboratoire Compartimentation et Dynamique Cellulaires (Unité Mixte de Recherche 144), Institut Curie, Centre National de la Recherche Scientifique, F-75248 Paris, France; and
| | - B. Ladoux
- Laboratoire Matière et Systèmes Complexes (Unité Mixte de Recherche 7057), Université Paris 7, Centre National de la Recherche Scientifique, F-75251 Paris, France
| | - A. Buguin
- *Laboratoire Physico-Chimie Curie (Unité Mixte de Recherche 168), Institut Curie, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, F-75248 Paris, France
| | - P. Silberzan
- *Laboratoire Physico-Chimie Curie (Unité Mixte de Recherche 168), Institut Curie, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, F-75248 Paris, France
| |
Collapse
|
35
|
Neub A, Houdek P, Ohnemus U, Moll I, Brandner JM. Biphasic regulation of AP-1 subunits during human epidermal wound healing. J Invest Dermatol 2007; 127:2453-62. [PMID: 17495958 DOI: 10.1038/sj.jid.5700864] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cutaneous wound healing is a well-coordinated process that includes inflammation, proliferation, and differentiation. Activator protein 1 (AP-1) subunits have been implicated in the regulation of genes important for these processes and have been shown to be involved in wound healing. However, investigation of human healing and non-healing wounds in vivo and ex vivo, and the comparative analysis of several members of the Jun and Fos families are still missing. Here, we show that normal human epidermal wound healing is biphasic. In the first phase all AP-1 subunits investigated, that is c-Jun, Jun B, Jun D, c-Fos, and Fos B are absent from the nuclei at the wound margins/leading edges. This downregulation coincides with that of the gap junction protein connexin 43. Later on, c-Jun, Jun B, Jun D, and c-Fos reappear in the nuclei of the leading edges in a time-dependent manner. In non-healing wounds, a more intensive staining of keratinocytes at the wound margins is often observed. Our findings suggest that coordinated down- and upregulation of the various AP-1 subunits in the course of epidermal wound healing is important for its undisturbed progress, putatively by influencing inflammation and cell-cell communication.
Collapse
Affiliation(s)
- Angela Neub
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Chassot AA, Turchi L, Virolle T, Fitsialos G, Batoz M, Deckert M, Dulic V, Meneguzzi G, Buscà R, Ponzio G. Id3 is a novel regulator of p27kip1 mRNA in early G1 phase and is required for cell-cycle progression. Oncogene 2007; 26:5772-83. [PMID: 17404577 DOI: 10.1038/sj.onc.1210386] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
P27kip is a key inhibitory protein of the cell-cycle progression, which is rapidly downregulated in early G1 phase by a post-translational mechanism involving the proteosomal degradation. In this study, using a wounding model that induces cell-cycle entry of human dermal fibroblasts, we demonstrate that p27mRNA is downregulated when cells progress into the G1 phase, and then it returns to its basal level when cells approach the S phase. By using a quantitative polymerase chain reaction screening we identified inhibitors of differentiation (Id3), a bHLH transcriptional repressor, as a candidate mediator accounting for p27 mRNA decrease. Id3 silencing, using an small interfering RNA approach, reversed the injury mediated p27 downregulation demonstrating that Id3 is involved in the transcriptional repression of p27. Reporter gene experiments and a chromatin immunoprecipitation assay showed that Id3 likely exerts its repressive action through ELK1 inhibition. By inhibiting early p27 downregulation, Id3 depletion blocked (i) the G1-phase progression as assessed by the inhibition of pRb phosphorylation and p130 degradation and (ii) the G1/S transition as observed by the inhibition of cyclin A induction, demonstrating that p27 mRNA decrease is required for cell proliferation. Apart from its effect on the early p27 diminution, Id3 appears also involved in the control of the steady-state level of p27 at the G1/S boundary. In conclusion, this study identifies a novel mechanism of p27 regulation which besides p27 protein degradation also implicates a transcriptional mechanism mediated by Id3.
Collapse
Affiliation(s)
- A-A Chassot
- INSERM U634; Faculté de Médecine, Université Nice Sophia Antipolis, Nice cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fitsialos G, Chassot AA, Turchi L, Dayem MA, LeBrigand K, Moreilhon C, Meneguzzi G, Buscà R, Mari B, Barbry P, Ponzio G. Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding reveals selective roles for ERK1/2, p38, and phosphatidylinositol 3-kinase signaling pathways. J Biol Chem 2007; 282:15090-102. [PMID: 17363378 DOI: 10.1074/jbc.m606094200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Covering denuded dermal surfaces after injury requires migration, proliferation, and differentiation of skin keratinocytes. To clarify the major traits controlling these intermingled biological events, we surveyed the genomic modifications occurring during the course of a scratch wound closure of cultured human keratinocytes. Using a DNA microarray approach, we report the identification of 161 new markers of epidermal repair. Expression data, combined with functional analysis performed with specific inhibitors of ERK, p38(MAPK) and phosphatidylinositol 3-kinase (PI3K), demonstrate that kinase pathways exert very selective functions by precisely controlling the expression of specific genes. Inhibition of the ERK pathway totally blocks the wound closure and inactivates many early transcription factors and EGF-type growth factors. p38(MAPK) inhibition only delays "healing," probably in line with the control of genes involved in the propagation of injury-initiated signaling. In contrast, PI3K inhibition accelerates the scratch closure and potentiates the scratch-dependent stimulation of three genes related to epithelial cell transformation, namely HAS3, HBEGF, and ETS1. Our results define in vitro human keratinocyte wound closure as a repair process resulting from a fine balance between positive signals controlled by ERK and p38(MAPK) and negative ones triggered by PI3K. The perturbation of any of these pathways might lead to dysfunction in the healing process, similar to those observed in pathological wounding phenotypes, such as hypertrophic scars or keloids.
Collapse
|
38
|
Matsumoto R, Sugimoto M. Dermal matrix proteins initiate re-epithelialization but are not sufficient for coordinated epidermal outgrowth in a new fish skin culture model. Cell Tissue Res 2006; 327:249-65. [PMID: 17043792 DOI: 10.1007/s00441-006-0310-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/17/2006] [Indexed: 12/18/2022]
Abstract
We have established a new culture system to study re-epithelialization during fish epidermal wound healing. In this culture system, fetal bovine serum (FBS) stimulates the epidermal outgrowth of multi-cellular layers from scale skin mounted on a coverslip, even when cell proliferation is blocked. The rate of outgrowth is about 0.4 mm/h, and at 3 h after incubation, the area occupied by the epidermal sheet is nine times larger than the area of the original scale skin. Cells at the bottom of the outgrowth show a migratory phenotype with lamellipodia, and "purse string"-like actin bundles have been found over the leading-edge cells with polarized lamellipodia. In the superficial cells, re-development of adherens junctions and microridges has been detected, together with the appearance and translocation of phosphorylated p38 MAPK into nuclear areas. Thus, this culture system provides an excellent model to study the mechanisms of epidermal outgrowth accompanied by migration and re-differentiation. We have also examined the role of extracellular matrix proteins in the outgrowth. Type I collagen or fibronectin stimulates moderate outgrowth in the absence of FBS, but development of microridges and the distribution of phosphorylated p38 MAPK are attenuated in the superficial cells. In addition, the leading-edge cells do not have apparent "purse string"-like actin bundles. The outgrowth stimulated by FBS is inhibited by laminin. These results suggest that dermal substrates such as type I collagen and fibronectin are able to initiate epidermal outgrowth but require other factors to enhance such outgrowth, together with coordinated alterations in cellular phenotype.
Collapse
Affiliation(s)
- Reiko Matsumoto
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, Japan
| | | |
Collapse
|
39
|
Pullar CE, Rizzo A, Isseroff RR. β-Adrenergic Receptor Antagonists Accelerate Skin Wound Healing. J Biol Chem 2006; 281:21225-21235. [PMID: 16714291 DOI: 10.1074/jbc.m601007200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The skin is our primary defense against noxious environmental agents. Upon injury, keratinocytes migrate directionally into the wound bed to initiate re-epithelialization, essential for wound repair and restoration of barrier integrity. Keratinocytes express a high level of beta2-adrenergic receptors (beta2-ARs) that appear to play a role in cutaneous homeostasis as aberrations in either keratinocyte beta2-AR function or density are associated with various skin diseases. Here we report the novel finding that beta-AR antagonists promote wound re-epithelialization in a "chronic" human skin wound-healing model. beta-AR antagonists increase ERK phosphorylation, the rate of keratinocyte migration, electric field-directed migration, and ultimately accelerate human skin wound re-epithelialization. We demonstrate that keratinocytes express two key enzymes required for catecholamine (beta-AR agonist) synthesis, tyrosine hydroxylase and phenylethanolamine-N-methyl transferase, both localized within keratinocyte cytoplasmic vesicles. Finally, we confirm the synthesis of epinephrine by measuring the endogenously synthesized catecholamine in keratinocyte extracts. Previously, we have demonstrated that beta-AR agonists delay wound re-epithelialization. Here we report that the mechanism for the beta-AR antagonist-mediated augmentation of wound repair is due to beta2-AR blockade, preventing the binding of endogenously synthesized epinephrine. Our work describes an endogenous beta-AR mediator network in the skin that can temporally regulate skin wound repair. Further investigation of this network will improve our understanding of both the skin repair process and the multiple modes of action of one of the most frequently prescribed class of drugs, hopefully resulting in a new treatment for chronic wounds.
Collapse
Affiliation(s)
- Christine E Pullar
- Department of Dermatology, School of Medicine, University of California, Davis, California 95616.
| | - Amilcar Rizzo
- Department of Dermatology, School of Medicine, University of California, Davis, California 95616
| | - R Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California, Davis, California 95616; Dermatology Service, Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655
| |
Collapse
|
40
|
Abstract
Keratinocytes migrate directionally into the wound bed to initiate re-epithelialization, necessary for wound closure and restoration of barrier function. They solely express the beta2-adrenergic receptor (beta2-AR) subtype of beta-ARs and can also synthesize beta-AR agonists generating a hormonal mediator network in the skin. Emerging studies from our laboratory demonstrate that beta-AR agonists decrease keratinocyte migration via a protein phosphatase (PP) 2A-dependent mechanism. Here we have extended our investigations to observe the effects of beta2-AR activation on keratinocyte polarization, migration, and ERK phosphorylation at the wound edge, cytoskeletal organization, phospho-ERK intracellular localization, proliferation, human skin wound re-epithelialization, wound-induced ERK phosphorylation, and murine skin wound healing. We demonstrate that in keratinocytes, beta2-AR activation is anti-motogenic and anti-mitogenic with both mechanisms being PP2A dependent. beta2-AR activation dramatically alters the organization of the actin cytoskeleton and prevents localization of phospho-ERK to the lamellipodial edge and its colocalization with vinculin. Finally, we demonstrate a beta2-AR-mediated delay in re-epithelialization and decrease in wound-induced epidermal ERK phosphorylation in human skin wounds and a delay in re-epithelialization in murine tail-clip wounds. Our work uncovers novel keratinocyte biology and a previously unrecognized role for the adrenergic hormonal mediator network in the wound repair process.
Collapse
Affiliation(s)
- Christine E Pullar
- Department of Dermatology, University of California Davis, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
41
|
Schnackenberg BJ, Jones SM, Pate C, Shank B, Sessions L, Pittman LM, Cornett LE, Kurten RC. The beta-agonist isoproterenol attenuates EGF-stimulated wound closure in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2005; 290:L485-91. [PMID: 16227322 DOI: 10.1152/ajplung.00233.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Asthma is a disease characterized by reversible airway obstruction. An additional hallmark of chronic asthma is altered wound healing that leads to airway remodeling. Although beta-agonists are effective in treating the bronchospasm associated with asthma, their effects on airway wound healing, which are related to airway remodeling, are unknown. It has been demonstrated that beta-agonists can alter the signaling of epidermal growth factor (EGF) receptors, which are important in timely wound healing. Therefore, we hypothesized that the beta-agonist isoproterenol would affect wound healing. Using an in vitro scrape wound assay, we demonstrated that isoproterenol attenuates EGF-stimulated wound healing in 16HBE airway epithelial cell cultures. Through experiments with forskolin and cells overexpressing beta2-adrenergic receptor-yellow fluorescent protein, we show that attenuation is due to the accumulation of cAMP and the involvement of at least one additional pathway. Furthermore, attenuation is not due to a direct effect on the EGF receptor or to an alteration of the ERK/MAPK signaling cascade. Based on these results, we propose that isoproterenol may exert its effects through other MAPK signaling pathways (JNK and/or p38) or through parallel mechanisms. These results also demonstrate a problem of potential therapeutic relevance in which a commonly prescribed medication may alter wound healing and contribute to the remodeling of asthmatic airways.
Collapse
Affiliation(s)
- Bradley J Schnackenberg
- Dept. of Pediatrics, Univ. of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, 1120 Marshall St., Slot 512-13, Little Rock, AR 72202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schwartz JR, Marsh RG, Draelos ZD. Zinc and skin health: overview of physiology and pharmacology. Dermatol Surg 2005; 31:837-47; discussion 847. [PMID: 16029676 DOI: 10.1111/j.1524-4725.2005.31729] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Zinc is known to have a critical role in overall human physiology, which likely explains many of its therapeutic uses for the last several thousand years. The specific roles zinc plays in skin health and function are less widely known yet are likely just as critical based on the manifestations of dietary zinc deprivation, which include moderate to severe dermatitis. OBJECTIVE To provide a critical review of the scientific literature as to the physiologic importance of zinc to skin, the biochemical basis for these effects, and pharmacologic aspects of zinc therapeutics. RESULTS AND CONCLUSIONS Skin is in a continual state of renewal, placing a high demand on zinc-based enzymes and proteins that direct this process. The importance of zinc physiologically is especially evident in studies of wound healing and inflammation reduction. During these processes, the high needs for zinc can be supplemented externally, generally increasing the rates of the natural processes. Topical zinc delivery involves the pharmacologic optimization of zinc delivery, often mediated by the solubility of the zinc material and interactions within the product matrix.
Collapse
Affiliation(s)
- James R Schwartz
- Beauty Care Product Development, The Procter & Gamble Company, Cincinnati, Ohio 45251, USA.
| | | | | |
Collapse
|
43
|
Kanda N, Watanabe S. 17beta-estradiol enhances heparin-binding epidermal growth factor-like growth factor production in human keratinocytes. Am J Physiol Cell Physiol 2005; 288:C813-23. [PMID: 15761212 DOI: 10.1152/ajpcell.00483.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) enhances reepithelialization in wounds. Estrogen is known to promote cutaneous wound repair. We examined the in vitro effects of 17beta-estradiol (E2) on HB-EGF production by human keratinocytes. E2 or membrane-impermeable BSA-conjugated E2 (E2-BSA) increased HB-EGF secretion, mRNA level, and promoter activity in keratinocytes. E2 or E2-BSA enhanced in vitro wound closure in keratinocytes, and the closure was suppressed by anti-HB-EGF antibody. Activator protein-1 (AP-1) and specificity protein 1 (Sp1) sites on HB-EGF promoter were responsible for the E2- or E2-BSA-induced transactivation. Antisense oligonucleotides against c-Fos, c-Jun, and Sp1 blocked E2- or E2-BSA-induced HB-EGF transactivation. E2 or E2-BSA enhanced DNA binding and transcriptional activity of AP-1 and generated c-Fos/c-Jun heterodimers by inducing c-Fos expression. E2 or E2-BSA enhanced DNA binding and transcriptional activity of Sp1 in parallel with the enhancement of Sp1 phosphorylation. These effects of E2 or E2-BSA were not blocked by the nuclear estrogen receptor antagonist ICI-182,780 or anti-estrogen receptor-alpha or -beta antibodies but were blocked by inhibitors of G protein, phosphatidylinositol-specific PLC, PKC-alpha, and MEK1. These results suggest that E2 or E2-BSA may enhance HB-EGF production via activation of AP-1 and Sp1. These effects of E2 or E2-BSA may be dependent on membrane G protein-coupled receptors different from nuclear estrogen receptors and on the receptor-mediated activities of phosphatidylinositol-specific PLC, PKC-alpha, and MEK1. E2 may enhance wound reepithelialization by promoting HB-EGF production in keratinocytes.
Collapse
Affiliation(s)
- Naoko Kanda
- Dept. of Dermatology, Teikyo Univ., School of Medicine, 11-1, Kaga-2, Itabashi-Ku, Tokyo 173-8605, Japan
| | | |
Collapse
|
44
|
Kansra S, Stoll SW, Johnson JL, Elder JT. Src family kinase inhibitors block amphiregulin-mediated autocrine ErbB signaling in normal human keratinocytes. Mol Pharmacol 2004; 67:1145-57. [PMID: 15615697 DOI: 10.1124/mol.104.004689] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
c-Src potentiates proliferation, survival, and invasiveness in response to epidermal growth factor (EGF) in human mammary carcinoma cells. Tyrosine (Tyr) 845 of ErbB1 is phosphorylated by Src and has been implicated in control of malignant behavior. Although several lines of evidence also suggest important interactions of ErbB and Src family kinase signaling in normal epithelial cells, little is known about the mechanism of this interaction. Studying normal human keratinocytes (NHKs), here we demonstrate strong expression of the Src family kinases Src, Yes, and Fyn; Src family kinase-dependent stimulation of Tyr 845 by EGF; and potent inhibition of NHK proliferation and migration by two Src family kinase inhibitors PP1 and PD173952. EGF-stimulated extracellular signal-regulated kinase (ERK) phosphorylation occurred at much lower concentrations of EGF than required to phosphorylate Tyr 845. Moreover, the effect of Src family kinase inhibitors on EGF-stimulated ERK phosphorylation was transient, prompting a search for other targets of Src family kinase action. By enzyme-linked immunosorbent assay analysis, we found that three different Src family kinase inhibitors [6-(2,6-dichlorophenyl)-8-methyl-2-(4-morpholin-4-ylphenylamino)-8H-pyrido[2,3-d]pyrimidin-7-one (PD173952), 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1), and 2-oxo-3-(4,5,6,7-tetrahydro-1H-indol-2-ylmethylene)-2,3-dihydro-1H-indole-5-sulfonic acid dimethylamide (SU6656)] markedly inhibited elaboration of soluble amphiregulin by NHKs. The ErbB inhibitor PD158780 and the mitogen-activated protein kinase kinase inhibitor U0126 also markedly inhibited NHK proliferation, migration, and amphiregulin production. Together, these observations demonstrate that one or more Src family kinases act upstream as well as downstream of ErbB1 to promote amphiregulin-dependent autocrine stimulation of NHKs and suggest that autocrine NHK proliferation is more dependent upon ERK activation than upon Tyr 845 phosphorylation.
Collapse
Affiliation(s)
- Sanjay Kansra
- Department of Dermatology, University of Michigan Medical Center, 3312 CCGC, Box 0932, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0932, USA
| | | | | | | |
Collapse
|
45
|
Brest P, Turchi L, Le'Negrate G, Berto F, Moreilhon C, Mari B, Ponzio G, Hofman P. Escherichia coli cytotoxic necrotizing factor 1 inhibits intestinal epithelial wound healing in vitro after mechanical injury. Infect Immun 2004; 72:5733-40. [PMID: 15385472 PMCID: PMC517525 DOI: 10.1128/iai.72.10.5733-5740.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 03/26/2004] [Accepted: 06/30/2004] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic necrotizing factor type 1 (CNF1) from Escherichia coli activates the small GTP-binding proteins of the Rho family (Rho, Rac, and Cdc42) by catalyzing their deamidation at a specific glutamine residue. Since RhoA, Rac, and Cdc42 play a pivotal role in cell migration during the early phase of wound repair, we investigated whether CNF1 was able to interfere with wound healing in intestinal epithelial monolayers (T84 cells). After mechanical injury, we found that CNF1 blocks epithelial wound repair within 48 h. This effect was characterized by cell elongation and filopodium formation on the leading edge, in association with permanent phosphorylation of the focal adhesion kinase (FAK) via Rho activation. Moreover, inhibition of Rho kinase with Y-27632 decreased CNF1-mediated permanent FAK phosphorylation, leading to complete restitution of wound repair within 24 h. In addition, we found that CNF1 induced upregulation of mitogen-activated protein kinases (MAPK) activation. Moreover, activation of Rac and MAPK by CNF1 increased matrix metalloproteinase 9 expression in wounded T84 monolayers. Taken together, these results provide evidence that CNF1 strongly impairs intestinal epithelial wound healing.
Collapse
Affiliation(s)
- Patrick Brest
- Equipe INSERM 0215, Faculté de Médecine, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Providence KM, Higgins PJ. PAI-1 expression is required for epithelial cell migration in two distinct phases of in vitro wound repair. J Cell Physiol 2004; 200:297-308. [PMID: 15174100 DOI: 10.1002/jcp.20016] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several proteases and their specific inhibitors modulate the interdependent processes of cell migration and matrix proteolysis as part of the global program of trauma repair. Expression of plasminogen activator inhibitor type-1 (PAI-1), a serine protease inhibitor (SERPIN) important in the control of barrier proteolysis and cell-to-matrix adhesion, for example, is spatially-temporally regulated following epithelial denudation injury in vitro as well as in vivo. PAI-1 mRNA/protein synthesis was induced early after epidermal monolayer scraping and restricted to keratinocytes comprising the motile cohort closely recapitulating, thereby, similar events during cutaneous healing. The time course of PAI-1 promoter-driven PAI-1-GFP fusion "reporter" expression in wound-juxtaposed cells approximated that of the endogenous PAI-1 gene confirming the location-specificity of gene regulation in this model. ERK activation was evident within 5 min after injury and particularly prominent in cells residing at the scrape-edge (suggesting a possible role in PAI-1 induction and/or the motile response) as was myosin light chain (MLC) phosphorylation. Indeed, MEK blockade with PD98059 or U0126 attenuated keratinocyte migration (by > or =60%), as did transient transfection of a dominant-negative ERK1 construct (40% decrease in monolayer repair), and completely inhibited PAI-1 transcript expression. Anti-sense down-regulation of PAI-1 synthesis (by 80-85%), or addition of PAI-1 neutralizing antibodies also inhibited injury site closure over a 24 h period establishing that PAI-1 was required for efficient long-term planar motility in this system. PAI-1 anti-sense transfection or actinomycin D transcriptional blockade, in contrast, did not affect the initial migratory response suggesting that residual PAI-1 protein levels (at least in transfectant cells and actinomycin D-treated cultures) may be sufficient to support early cell movement. Pharmacologic inhibition of keratinocyte MEK signaling effectively ablated scrape-induced PAI-1 mRNA expression but failed to attenuate wound-associated increases in cellular PAI-1 protein levels soon after monolayer injury. Collectively, these data suggest that basal PAI-1 transcripts may be mobilized for initial PAI-1 synthesis and, perhaps, the early motile response while maintenance of the normal rate of migration requires the prolonged PAI-1 expression that typically accompanies the repair response. To assess this possibility, scrape site closure studies were designed using keratinocytes isolated from PAI-1-/- mice. PAI-1-/- keratinocytes, in fact, had a significant wound healing defect evident even within the first 6 h following monolayer denudation injury. Addition of active PAI-1 protein to PAI-/- keratinocytes rescued the migratory phenotype that that approximating wild-type cells. These findings validate use of the present keratinocyte model to investigate injury-related controls on PAI-1 gene regulation and, collectively, implicate participation of PAI-1 in two distinct phases of epidermal wound repair.
Collapse
Affiliation(s)
- Kirwin M Providence
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
47
|
Geer DJ, Swartz DD, Andreadis ST. In Vivo Model of Wound Healing Based on Transplanted Tissue-Engineered Skin. ACTA ACUST UNITED AC 2004; 10:1006-17. [PMID: 15363158 DOI: 10.1089/ten.2004.10.1006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Advances in understanding the complex process of wound healing and development of novel growth factor and gene therapies would benefit from models that mimic closely the physiology of human wounds. To this end, we developed a hybrid wound-healing model based on human tissue-engineered skin transplanted onto athymic mice. Grafted tissues were infiltrated with mouse mesenchymal cells as native and foreign dermal regions fused together. Immunohistochemical staining for human involucrin revealed that the transplanted epithelium maintained its human origin, whereas the dermis was infiltrated by numerous mouse fibroblasts and blood vessels. Grafted tissues were wounded with a 4-mm punch to create full-thickness excisional wounds. At 1 and 2 weeks, the tissues were excised and assessed for reepithelialization, differentiation, and neovascularization. Interestingly, the average rate of keratinocyte migration (120 microm/day) was similar to migration rates observed in human subjects and significantly lower than migration in mouse epidermis. Immunohistochemical staining for keratin 10, laminin, and involucrin revealed a normal pattern of differentiation in the neoepidermis. Neovascularization was significantly elevated in the granulation tissue at 1 week and subsided to the level of unwounded tissue at 2 weeks postwounding. Our data suggest that skin equivalents grafted to a mouse model may serve as a realistic model of human wound regeneration. Because skin equivalents can be prepared with patient cells and genetically modified to stimulate or suppress gene expression, this model may be ideal for addressing mechanistic questions and evaluating the efficacy of biomaterials and gene therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- David J Geer
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, State University of New York at Buffalo, Amherst, New York 14260, USA
| | | | | |
Collapse
|
48
|
Hyde C, Hollier B, Anderson A, Harkin D, Upton Z. Insulin-like growth factors (IGF) and IGF-binding proteins bound to vitronectin enhance keratinocyte protein synthesis and migration. J Invest Dermatol 2004; 122:1198-206. [PMID: 15140223 DOI: 10.1111/j.0022-202x.2004.22527.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The insulin-like growth factor (IGF) system plays an important role in a number of disease states, such as cancer and psoriasis, through its ability to modulate cell proliferation, attachment, and migration. The type-1 IGF and type-2 IGF receptors, as well as six IGF-binding proteins (IGFBP-1-6), have well-established roles in mediating IGF activity. Additionally, it's been demonstrated that IGF-II binds directly to the extracellular matrix protein vitronectin (VN), whereas IGF-I does not. IGFBP-5, however, has been recently demonstrated to facilitate the binding of IGF-I to VN. The aim of this study was to determine whether the interaction between IGF, IGFBP, and VN modulates human keratinocyte function. Functional assays demonstrated that both the IGF-II:VN and IGF-I:IGFBP-5:VN complexes resulted in significantly enhanced protein synthesis and cell migration through 12 microm pore Transwells in skin keratinocytes (HaCAT). Furthermore, the IGF-II:VN complex significantly enhanced human corneal epithelial (HCE) cell protein synthesis. Interestingly, the IGF-II:VN complex did not effect either HCE cell migration or attachment. This is the first study to demonstrate a functional role for the interaction between IGF and VN in human keratinocytes. Moreover, these results suggest that IGF-II:VN and IGF-I:IGFBP-5:VN complexes may be useful in situations where enhanced keratinocyte cell migration and proliferation is required, such as in wound healing and skin regeneration.
Collapse
Affiliation(s)
- Carolyn Hyde
- Tissue BioRegeneration and Integration Program, Science Research Center, School of Life Sciences, Queensland University of Technology, Brisbane, Qld 4000, Australia.
| | | | | | | | | |
Collapse
|
49
|
Gangnuss S, Cowin AJ, Daehn IS, Hatzirodos N, Rothnagel JA, Varelias A, Rayner TE. Regulation of MAPK Activation, AP-1 Transcription Factor Expression and Keratinocyte Differentiation in Wounded Fetal Skin. J Invest Dermatol 2004; 122:791-804. [PMID: 15086567 DOI: 10.1111/j.0022-202x.2004.22319.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fetal epithelium retains the ability to re-epithelialize a wound in organotypic culture in a manner not dependent on the presence of underlying dermal substrata. This capacity is lost late in the third trimester of gestation or after embryonic day 17 (E(17)) in the rat such that embryonic day 19 (E(19)) wounds do not re-epithelialize. Moreover, wounds created in E(17) fetuses in utero heal in a regenerative, scar-free fashion. To investigate the molecular events regulating re-epithelialization in fetal skin, the wound-induced expression profile and tissue localization of activator protein 1 (AP-1) transcription factors c-Fos and c-Jun was characterised in E(17) and E(19) skin using organotypic fetal cultures. The involvement of mitogen-activated protein kinase (MAPK) signaling in mediating wound-induced transcription factor expression and wound re-epithelialization was assessed, with the effect of wounding on the expression of keratinocyte differentiation markers determined. Our results show that expression of AP-1 transcription factors was induced immediately by wounding and localized predominantly to the epidermis in E(17) and E(19) skin. c-fos and c-jun induction was transient in E(17) skin with MAPK-dependent c-fos expression necessary for the re-epithelialization of an excisional wound in organotypic culture. In E(19) skin, AP-1 expression persisted beyond 12 h post-wounding, and marked upregulation of the keratinocyte differentiation markers keratin 10 and loricrin was observed. No such changes in the expression of keratin 10 or loricrin occurred in E(17) skin. These findings indicate that re-epithelialization in fetal skin is regulated by wound-induced AP-1 transcription factor expression via MAPK and the differentiation status of keratinocytes.
Collapse
Affiliation(s)
- Samantha Gangnuss
- Wound Healing and Injury Research Centre, The University of Adelaide Department of Surgery, The Queen Elizabeth Hospital, Woodville, South Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Turchi L, Chassot AA, Bourget I, Baldescchi C, Ortonne JP, Meneguzzi G, Lemichez E, Ponzio G. Cross-talk between RhoGTPases and stress activated kinases for matrix metalloproteinase-9 induction in response to keratinocytes injury. J Invest Dermatol 2004; 121:1291-300. [PMID: 14675172 DOI: 10.1111/j.1523-1747.2003.12627.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell migration and extracellular matrix remodeling are two essential processes of wound healing, regulated by extracellular metalloproteinases such as matrix metalloproteinase-2 (Gelatinase A) and matrix metalloproteinase-9 (Gelatinase B). Expression of matrix metalloproteinase-9 is deregulated in numerous wound healing pathologies. To date the mechanisms regulating matrix metalloproteinase-9 during normal wound healing are poorly documented. Using both primary cultures of normal human keratinocytes and a wounding device especially designed to dissect the molecular events during the healing process in vitro, we show that matrix metalloproteinase-9 is stimulated by injury in normal human keratinocytes. This upregulation results from the mechanical stress created by injury and not from a soluble factor, secreted by wounded normal human keratinocytes. We also demonstrate that the Rho family of small GTPases, p38[MAPK] and JNK together play a key part in the signaling pathways controlling the stimulation of matrix metalloproteinase-9 in wounded cells. We provide lines of evidence indicating that in wounded keratinocytes, upregulation of matrix metalloproteinase-9 depends on two distinct pathways. The first involves Rac1 and/or Cdc42 that control the activation of p38[MAPK]. The second depends on RhoA activation that is required for stimulation of JNK.
Collapse
|