1
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
2
|
Xerfan EMS, Facina AS, Tomimori J, Tufik S, Andersen ML. The influence of phototherapy on circadian melatonin and sleep regulation and potential benefits of these pathways in the management of vitiligo: a narrative review : Vitiligo, phototherapy, sleep and melatonin. Arch Dermatol Res 2024; 316:632. [PMID: 39305310 DOI: 10.1007/s00403-024-03363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 10/27/2024]
Abstract
Ultraviolet B narrow band (UVB-NB) phototherapy is the gold standard treatment for vitiligo, primarily due to its immunomodulatory effects. Additionally, it may influence circadian melatonin balance, that may indirectly induce sleep regulation, which in turn could potentially contribute to vitiligo improvement. The association between melatonin, vitiligo and phototherapy has been little investigated. The aim of this study was to evaluate the current evidence regarding the effects of circadian melatonin regulation and sleep, particularly during vitiligo treatment with phototherapy. We undertook a narrative review to synthetize the evidence on this association through the MEDLINE/PubMed database, using combined search terms: melatonin, vitiligo, phototherapy, and circadian rhythm (sleep). A total of 56 articles were included. There are few studies on this relationship, and conflicting findings. Some studies have suggested that UV exposure and phototherapy might benefit vitiligo by stimulating melanocytes, which have melatonin receptors, and this could potentially synchronize the circadian regulation of melatonin. This improved melatonin balance could result in better sleep quality further enhancing the antiinflammatory properties of melatonin and contributing to vitiligo improvement. Less is known about the possible effects of the use of topical melatonin, with or without phototherapy, to treat vitiligo lesions. In conclusion, there is some evidence that circadian melatonin regulation plays an important role in the course of vitiligo, both through sleep regulation and its anti-inflammatory properties. The evidence suggests that the systemic and physiological properties of melatonin, especially its circadian behavior regulated by phototherapy, may be more effective in respect of vitiligo improvement than the use of topical melatonin. However, the effects of the oral intake of melatonin are less clear. Phototherapy, as a potential modulator of circadian melatonin rhythm, that influences sleep and clinical improvement of vitiligo, needs further examination, as does the use of melatonin as an adjuvant treatment to UVB phototherapy in vitiligo.
Collapse
Affiliation(s)
- Ellen M S Xerfan
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Anamaria S Facina
- Departamento de Dermatologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Jane Tomimori
- Departamento de Dermatologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Sleep Institute, Napoleão de Barros, 925 Vila Clementino, São Paulo, SP, 04024-002, Brazil
| | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
- Sleep Institute, Napoleão de Barros, 925 Vila Clementino, São Paulo, SP, 04024-002, Brazil.
| |
Collapse
|
3
|
Qutob SS, Roesch SPM, Smiley S, Bellier P, Williams A, Cook KB, Meier MJ, Rowan-Carroll A, Yauk CL, McNamee JP. Transcriptome analysis in mouse skin after exposure to ultraviolet radiation from a canopy sunbed. Photochem Photobiol 2024; 100:1378-1398. [PMID: 38317517 DOI: 10.1111/php.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Exposure to ultraviolet radiation (UV-R), from both natural and artificial tanning, heightens the risk of skin cancer by inducing molecular changes in cells and tissues. Despite established transcriptional alterations at a molecular level due to UV-R exposure, uncertainties persist regarding UV radiation characterization and subsequent genomic changes. Our study aimed to mechanistically explore dose- and time-dependent gene expression changes, that may drive short-term (e.g., sunburn) and long-term actinic (e.g., skin cancer) consequences. Using C57BL/6N mouse skin, we analyzed transcriptomic expression following exposure to five erythemally weighted UV-R doses (0, 5, 10, 20, and 40 mJ/cm2) emitted by a UV-R tanning device. At 96 h post-exposure, 5 mJ/cm2 induced 116 statistically significant differentially expressed genes (DEGs) associated with structural changes from UV-R damage. The highest number of significant gene expression changes occurred at 6 and 48 h post-exposure in the 20 and 40 mJ/cm2 dose groups. Notably, at 40 mJ/cm2, 13 DEGs related to skin barrier homeostasis were consistently perturbed across all timepoints. UV-R exposure activated pathways involving oxidative stress, P53 signaling, inflammation, biotransformation, skin barrier maintenance, and innate immunity. This in vivo study's transcriptional data offers mechanistic insights into both short-term and potential non-threshold-dependent long-term health effects of UV-R tanning.
Collapse
Affiliation(s)
- Sami S Qutob
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Samantha P M Roesch
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sandy Smiley
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Pascale Bellier
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Kate B Cook
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - James P McNamee
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Lamnis L, Christofi C, Stark A, Palm H, Roemer K, Vogt T, Reichrath J. Differential Regulation of Circadian Clock Genes by UV-B Radiation and 1,25-Dihydroxyvitamin D: A Pilot Study during Different Stages of Skin Photocarcinogenesis. Nutrients 2024; 16:254. [PMID: 38257148 PMCID: PMC10820546 DOI: 10.3390/nu16020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Increasing evidence points at an important physiological role of the timekeeping system, known as the circadian clock (CC), regulating not only our sleep-awake rhythm but additionally many other cellular processes in peripheral tissues. It was shown in various cell types that environmental stressors, including ultraviolet B radiation (UV-B), modulate the expression of genes that regulate the CC (CCGs) and that these CCGs modulate susceptibility for UV-B-induced cellular damage. It was the aim of this pilot study to gain further insights into the CCs' putative role for UV-B-induced photocarcinogenesis of skin cancer. METHODS Applying RT-PCR, we analyzed the expression of two core CCGs (brain and muscle ARNT-like 1 (Bmal1) and Period-2 (Per2)) over several time points (0-60 h) in HaCaT cells with and without 1,25-dihydroxyvitamin D (D3) and/or UV-B and conducted a cosinor analysis to evaluate the effects of those conditions on the circadian rhythm and an extended mixed-effects linear modeling to account for both fixed effects of experimental conditions and random inter-individual variability. Next, we investigated the expression of these two genes in keratinocytes representing different stages of skin photocarcinogenesis, comparing normal (Normal Human Epidermal Keratinocytes-NHEK; p53 wild type), precancerous (HaCaT keratinocytes; mutated p53 status), and malignant (Squamous Cell Carcinoma SCL-1; p53 null status) keratinocytes after 12 h under the same conditions. RESULTS We demonstrated that in HaCaT cells, Bmal1 showed a robust circadian rhythm, while the evidence for Per2 was limited. Overall expression of both genes, but especially for Bmal1, was increased following UV-B treatment, while Per2 showed a suppressed overall expression following D3. Both UVB and 1,25(OH)2D3 suggested a significant phase shift for Bmal1 (p < 0.05 for the acrophase), while no specific effect on the amplitude could be evidenced. Differential effects on the expression of BMAL1 and Per2 were found when we compared different treatment modalities (UV-B and/or D3) or cell types (NHEK, HaCaT, and SCL-1 cells). CONCLUSIONS Comparing epidermal keratinocytes representing different stages of skin photocarcinogenesis, we provide further evidence for an independently operating timekeeping system in human skin, which is regulated by UV-B and disturbed during skin photocarcinogenesis. Our finding that this pattern of circadian rhythm was differentially altered by treatment with UV-B, as compared with treatment with D3, does not support the hypothesis that the expression of these CCGs may be regulated via UV-B-induced synthesis of vitamin D but might be introducing a novel photoprotective property of vitamin D through the circadian clock.
Collapse
Affiliation(s)
- Leandros Lamnis
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| | - Christoforos Christofi
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| | - Alexandra Stark
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| | - Heike Palm
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| | - Klaus Roemer
- José Carreras Center and Internal Medicine I, 66421 Homburg, Germany
| | - Thomas Vogt
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| | - Jörg Reichrath
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| |
Collapse
|
5
|
Aydin OE, Cicek K, Ceylan E, Tuzcu A, Pehlevan A, Demir N. Time-related variations in viability of random pattern skin flaps: An experimental study in rats. Chronobiol Int 2023; 40:1454-1466. [PMID: 37870174 DOI: 10.1080/07420528.2023.2270706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
Chronobiological variations are in the fabric of life. The first ideas regarding the possible effects of circadian rhythm on surgical outcomes were published in the early 2000s. Some studies support and oppose this idea. The lack of experimental evidence in a controlled setting has led to this study. This study aimed to explore the chronobiological implications of surgical outcomes. The rats were divided into four groups. A random pattern dorsal skin flaps were elevated in all groups at six h intervals. Flap necrosis rates and melatonin, oxidant, and antioxidant factors were studied. Flap survival was better in the 06:00 h group. The flap necrosis was higher in the 18:00 h group. Some of the biochemical parameters displayed circadian variations. As an independent variable, the time of surgical intervention changed the flap survival rates. It should be noted that the study was held in a nocturnal animal model thus the pattern of flap survival can be in reversed fashion in a clinical scenario. This study is the first experimental evidence for "Chronosurgery" in a controlled setting. Further studies in all aspects of surgical disciplines are required.
Collapse
Affiliation(s)
- Osman Enver Aydin
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| | - Kadir Cicek
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| | - Ender Ceylan
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| | - Ayca Tuzcu
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| | - Anıl Pehlevan
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| | - Necati Demir
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| |
Collapse
|
6
|
Niu Y, Wang Y, Chen H, Liu X, Liu J. Overview of the Circadian Clock in the Hair Follicle Cycle. Biomolecules 2023; 13:1068. [PMID: 37509104 PMCID: PMC10377266 DOI: 10.3390/biom13071068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The circadian clock adapts to the light-dark cycle and autonomously generates physiological and metabolic rhythmicity. Its activity depends on the central suprachiasmatic pacemaker. However, it also has an independent function in peripheral tissues such as the liver, adipose tissue, and skin, which integrate environmental signals and energy homeostasis. Hair follicles (HFs) maintain homeostasis through the HF cycle, which depends heavily on HF stem cell self-renewal and the related metabolic reprogramming. Studies have shown that circadian clock dysregulation in HFs perturbs cell cycle progression. Moreover, there is increasing evidence that the circadian clock exerts a significant influence on glucose metabolism, feeding/fasting, stem cell differentiation, and senescence. This suggests that circadian metabolic crosstalk plays an essential role in regulating HF regeneration. An improved understanding of the role of the circadian clock in HFs may facilitate the discovery of new drug targets for hair loss. Therefore, the present review provides a discussion of the relationship between the circadian clock and HF regeneration, mainly from the perspective of HF metabolism, and summarizes the current understanding of the mechanisms by which HFs function.
Collapse
Affiliation(s)
- Ye Niu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yujie Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Hao Chen
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiaomei Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Sato R, Kanai M, Yoshida Y, Fukushima S, Nogami M, Yamaguchi T, Iijima N, Sutherland K, Haga S, Ozaki M, Hamada K, Hamada T. Analysis of the Anticipatory Behavior Formation Mechanism Induced by Methamphetamine Using a Single Hair. Cells 2023; 12:cells12040654. [PMID: 36831320 PMCID: PMC9954696 DOI: 10.3390/cells12040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
While the suprachiasmatic nucleus (SCN) coordinates many daily rhythms, some circadian patterns of expression are controlled by SCN-independent systems. These include responses to daily methamphetamine (MAP) injections. Scheduled daily injections of MAP resulted in anticipatory activity, with an increase in locomotor activity immediately prior to the time of injection. The MAP-induced anticipatory behavior is associated with the induction and a phase advance in the expression rhythm of the clock gene Period1 (Per1). However, this unique formation mechanism of MAP-induced anticipatory behavior is not well understood. We recently developed a micro-photomultiplier tube (micro-PMT) system to detect a small amount of Per1 expression. In the present study, we used this system to measure the formation kinetics of MAP-induced anticipatory activity in a single whisker hair to reveal the underlying mechanism. Our results suggest that whisker hairs respond to daily MAP administration, and that Per1 expression is affected. We also found that elevated Per1 expression in a single whisker hair is associated with the occurrence of anticipatory behavior rhythm. The present results suggest that elevated Per1 expression in hairs might be a marker of anticipatory behavior formation.
Collapse
Affiliation(s)
- Riku Sato
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Megumi Kanai
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Yukina Yoshida
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Shiori Fukushima
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Masahiro Nogami
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Takeshi Yamaguchi
- Center for Basic Medical Research, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Norio Iijima
- Center for Basic Medical Research, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Kenneth Sutherland
- Global Center for Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8012, Japan
| | - Sanae Haga
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kazuko Hamada
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Toshiyuki Hamada
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Hakujikai Institute of Gerontology, 5-11-1, Shikahama, Adachi Ward, Tokyo 123-0864, Japan
- Correspondence: ; Tel.: +81-287-24-3481
| |
Collapse
|
8
|
Stenger S, Grasshoff H, Hundt JE, Lange T. Potential effects of shift work on skin autoimmune diseases. Front Immunol 2023; 13:1000951. [PMID: 36865523 PMCID: PMC9972893 DOI: 10.3389/fimmu.2022.1000951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 02/16/2023] Open
Abstract
Shift work is associated with systemic chronic inflammation, impaired host and tumor defense and dysregulated immune responses to harmless antigens such as allergens or auto-antigens. Thus, shift workers are at higher risk to develop a systemic autoimmune disease and circadian disruption with sleep impairment seem to be the key underlying mechanisms. Presumably, disturbances of the sleep-wake cycle also drive skin-specific autoimmune diseases, but epidemiological and experimental evidence so far is scarce. This review summarizes the effects of shift work, circadian misalignment, poor sleep, and the effect of potential hormonal mediators such as stress mediators or melatonin on skin barrier functions and on innate and adaptive skin immunity. Human studies as well as animal models were considered. We will also address advantages and potential pitfalls in animal models of shift work, and possible confounders that could drive skin autoimmune diseases in shift workers such as adverse lifestyle habits and psychosocial influences. Finally, we will outline feasible countermeasures that may reduce the risk of systemic and skin autoimmunity in shift workers, as well as treatment options and highlight outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Sarah Stenger
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
del Olmo M, Spörl F, Korge S, Jürchott K, Felten M, Grudziecki A, de Zeeuw J, Nowozin C, Reuter H, Blatt T, Herzel H, Kunz D, Kramer A, Ananthasubramaniam B. Inter-layer and inter-subject variability of diurnal gene expression in human skin. NAR Genom Bioinform 2022; 4:lqac097. [PMID: 36601580 PMCID: PMC9803873 DOI: 10.1093/nargab/lqac097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/08/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023] Open
Abstract
The skin is the largest human organ with a circadian clock that regulates its function. Although circadian rhythms in specific functions are known, rhythms in the proximal clock output, gene expression, in human skin have not been thoroughly explored. This work reports 24 h gene expression rhythms in two skin layers, epidermis and dermis, in a cohort of young, healthy adults, who maintained natural, regular sleep-wake schedules. 10% of the expressed genes showed such diurnal rhythms at the population level, of which only a third differed between the two layers. Amplitude and phases of diurnal gene expression varied more across subjects than layers, with amplitude being more variable than phases. Expression amplitudes in the epidermis were larger and more subject-variable, while they were smaller and more consistent in the dermis. Core clock gene expression was similar across layers at the population-level, but were heterogeneous in their variability across subjects. We also identified small sets of biomarkers for internal clock phase in each layer, which consisted of layer-specific non-core clock genes. This work provides a valuable resource to advance our understanding of human skin and presents a novel methodology to quantify sources of variability in human circadian rhythms.
Collapse
Affiliation(s)
- Marta del Olmo
- Institute for Theoretical Biology – Laboratory of Theoretical Chronobiology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstraße 13, House 4, 10115 Berlin, Germany
| | - Florian Spörl
- Research and Development, Beiersdorf AG, 20245 Hamburg, Germany
| | - Sandra Korge
- Institute for Medical Immunology – Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Karsten Jürchott
- Institute for Medical Immunology – Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Berlin Institute of Health – Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Matthias Felten
- Department of Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Astrid Grudziecki
- Institute for Medical Immunology – Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan de Zeeuw
- Institute of Physiology – Sleep Research & Clinical Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Claudia Nowozin
- Institute of Physiology – Sleep Research & Clinical Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hendrik Reuter
- Research and Development, Beiersdorf AG, 20245 Hamburg, Germany
| | - Thomas Blatt
- Research and Development, Beiersdorf AG, 20245 Hamburg, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology – Laboratory of Theoretical Chronobiology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstraße 13, House 4, 10115 Berlin, Germany
| | - Dieter Kunz
- Institute of Physiology – Sleep Research & Clinical Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Achim Kramer
- Institute for Medical Immunology – Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | |
Collapse
|
10
|
Mahendra CK, Ser HL, Pusparajah P, Htar TT, Chuah LH, Yap WH, Tang YQ, Zengin G, Tang SY, Lee WL, Liew KB, Ming LC, Goh BH. Cosmeceutical Therapy: Engaging the Repercussions of UVR Photoaging on the Skin's Circadian Rhythm. Int J Mol Sci 2022; 23:2884. [PMID: 35270025 PMCID: PMC8911461 DOI: 10.3390/ijms23052884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sunlight is an important factor in regulating the central circadian rhythm, including the modulation of our sleep/wake cycles. Sunlight had also been discovered to have a prominent influence on our skin's circadian rhythm. Overexposure or prolonged exposure to the sun can cause skin photodamage, such as the formation of irregular pigmentation, collagen degradation, DNA damage, and even skin cancer. Hence, this review will be looking into the detrimental effects of sunlight on our skin, not only at the aspect of photoaging but also at its impact on the skin's circadian rhythm. The growing market trend of natural-product-based cosmeceuticals as also caused us to question their potential to modulate the skin's circadian rhythm. Questions about how the skin's circadian rhythm could counteract photodamage and how best to maximize its biopotential will be discussed in this article. These discoveries regarding the skin's circadian rhythm have opened up a completely new level of understanding of our skin's molecular mechanism and may very well aid cosmeceutical companies, in the near future, to develop better products that not only suppress photoaging but remain effective and relevant throughout the day.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; or
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Thet Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.H.Y.); (Y.-Q.T.)
- Centre of Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Yin-Quan Tang
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.H.Y.); (Y.-Q.T.)
- Centre of Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya 63000, Malaysia;
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
11
|
DIURNAL PREFERENCE CONTRIBUTES TO MAXIMAL ULTRAVIOLET RADIATION B SENSITIVITY BY THE HOUR OF THE DAY IN HUMAN SKIN IN VIVO. J Invest Dermatol 2022; 142:2289-2291.e5. [PMID: 35143821 DOI: 10.1016/j.jid.2022.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 11/23/2022]
|
12
|
Goodenow D, Greer AJ, Cone SJ, Gaddameedhi S. Circadian effects on UV-induced damage and mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108413. [PMID: 35690416 PMCID: PMC9188652 DOI: 10.1016/j.mrrev.2022.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Skin cancer is the most diagnosed type of cancer in the United States, and while most of these malignancies are highly treatable, treatment costs still exceed $8 billion annually. Over the last 50 years, the annual incidence of skin cancer has steadily grown; therefore, understanding the environmental factors driving these types of cancer is a prominent research-focus. A causality between ultraviolet radiation (UVR) exposure and skin cancer is well-established, but exposure to UVR alone is not necessarily sufficient to induce carcinogenesis. The emerging field of circadian biology intersects strongly with the physiological systems of the mammalian body and introduces a unique opportunity for analyzing mechanisms of homeostatic disruption. The circadian clock refers to the approximate 24-hour cycle, in which protein levels of specific clock-controlled genes (CCGs) fluctuate based on the time of day. Though these CCGs are tissue specific, the skin has been observed to have a robust circadian clock that plays a role in its response to UVR exposure. This in-depth review will detail the mechanisms of the circadian clock and its role in cellular homeostasis. Next, the skin's response to UVR exposure and its induction of DNA damage and mutations will be covered - with an additional focus placed on how the circadian clock influences this response through nucleotide excision repair. Lastly, this review will discuss current models for studying UVR-induced skin lesions and perturbations of the circadian clock, as well as the impact of these factors on human health.
Collapse
Affiliation(s)
- Donna Goodenow
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Adam J Greer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Sean J Cone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Shobhan Gaddameedhi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
13
|
Katayoshi T, Nakajo T, Tsuji-Naito K. Restoring NAD + by NAMPT is essential for the SIRT1/p53-mediated survival of UVA- and UVB-irradiated epidermal keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112238. [PMID: 34130091 DOI: 10.1016/j.jphotobiol.2021.112238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a crucial coenzyme in energy production. The imbalance of NAD+ synthesis has been found to trigger age-related diseases, such as metabolic disorders, cancer, and neurodegenerative diseases. Also, UV irradiation induces NAD+ depletion in the skin. In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway and essential for NAD+ homeostasis. However, but few studies have focused on the role of NAMPT in response to UV irradiation. Here, we show that NAMPT prevents NAD+ depletion in epidermal keratinocytes to protect against the mild-dose UVA and UVB (UVA/B)-induced proliferation defects. We showed that poly(ADP-ribose) polymerase (PARP) inhibitor rescued the NAD+ depletion in UVA/B-irradiated human keratinocytes, confirming that PAPR transiently exhausts cellular NAD+ to repair DNA damage. Notably, the treatment with a NAMPT inhibitor exacerbated the UVA/B-induced loss of energy production and cell viability. Moreover, the NAMPT inhibitor abrogated the sirtuin-1 (SIRT1)-mediated deacetylation of p53 and significantly inhibited the proliferation of UVA/B-irradiated cells, suggesting that the NAMPT-NAD+-SIRT1 axis regulates p53 functions upon UVA/B stress. The supplementation with NAD+ intermediates, nicotinamide mononucleotide and nicotinamide riboside, rescued the UVA/B-induced phenotypes in the absence of NAMPT activity. Therefore, NAD+ homeostasis is likely essential for the protection of keratinocytes from UV stress in mild doses. Since the skin is continuously exposed to UVA/B irradiation, understanding the protective role of NAMPT in UV stress will help prevent and treat skin photoaging.
Collapse
Affiliation(s)
- Takeshi Katayoshi
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025, Japan.
| | - Takahisa Nakajo
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025, Japan
| | - Kentaro Tsuji-Naito
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025, Japan
| |
Collapse
|
14
|
de Assis LVM, Mendes D, Silva MM, Kinker GS, Pereira-Lima I, Moraes MN, Menck CFM, Castrucci AMDL. Melanopsin mediates UVA-dependent modulation of proliferation, pigmentation, apoptosis, and molecular clock in normal and malignant melanocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118789. [PMID: 32645331 DOI: 10.1016/j.bbamcr.2020.118789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
Cutaneous melanocytes and melanoma cells express several opsins, of which melanopsin (OPN4) detects temperature and UVA radiation. To evaluate the interaction between OPN4 and UVA radiation, normal and malignant Opn4WT and Opn4KO melanocytes were exposed to three daily low doses (total 13.2 kJ/m2) of UVA radiation. UVA radiation led to a reduction of proliferation in both Opn4WT cell lines; however, only in melanoma cells this effect was associated with increased cell death by apoptosis. Daily UVA stimuli induced persistent pigment darkening (PPD) in both Opn4WT cell lines. Upon Opn4 knockout, all UVA-induced effects were lost in three independent clones of Opn4KO melanocytes and melanoma cells. Per1 bioluminescence was reduced after 1st and 2nd UVA radiations in Opn4WT cells. In Opn4KO melanocytes and melanoma cells, an acute increase of Per1 expression was seen immediately after each stimulus. We also found that OPN4 expression is downregulated in human melanoma compared to normal skin, and it decreases with disease progression. Interestingly, metastatic melanomas with low expression of OPN4 present increased expression of BMAL1 and longer overall survival. Collectively, our findings reinforce the functionality of the photosensitive system of melanocytes that may subsidize advancements in the understanding of skin related diseases, including cancer.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Davi Mendes
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Matheus Molina Silva
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Gabriela Sarti Kinker
- Laboratory of Neuroimmunoendocrinology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Isabella Pereira-Lima
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Hettwer S, Besic Gyenge E, Obermayer B. Influence of cosmetic formulations on the skin's circadian clock. Int J Cosmet Sci 2020; 42:313-319. [PMID: 32277494 PMCID: PMC7496414 DOI: 10.1111/ics.12623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The circadian rhythm was set into focus by awarding the Nobel Price of Physiology/Medicine to Jeffrey Hall, Michael Rosbash and Michael Young in late 2017. Numerous publications elucidated the molecular mechanisms driving the circadian biorhythms of our body, peripheral organs and each single cell. However, there is minor knowledge on the circadian rhythm of the skin, which has its own peripheral circadian clock in contact with cosmetic formulations. The skin's epidermal clock is excessively influenced by environmental factors like UV radiation or modern lifestyle, which may induce epidermal jetlag. Here, we give an overview on the current knowledge about the epidermal circadian clock and provide a cosmetic solution to protect and preserve the biorhythm of the skin. METHODS Quantitative RT-PCR to analyse the gene expression of circadian clock genes and the downstream DNA repair gene OGG1 in keratinocytes irradiated with UV-B. In vivo study to determine skin parameters dependent on the circadian cycle and interference of cosmetic formulations to them by assessment of morning and evening values at each measurement day after 28, 56 and 84 days of the study. RESULTS UV-B irradiation leads to a pronounced delay in circadian clock and downstream gene expression which interferes in the proper function of epidermal stem cells and as thus skin function. The use of a cosmetic active ingredient prevents cyclobutane pyrimidine dimer formation, protects epidermal stem cells and resets the circadian gene expression. It preserves the circadian changes in skin hydration, reduces daily fluctuations of skin redness and strengthens the skin barrier. CONCLUSION The skin has its own circadian biorhythm to gain full functionality. Interruption of this oscillation will lead to functional impairments. Here we show a cosmetic solution to protect and preserve the skin's circadian rhythm. DNA protection, ROS elimination and stimulation of circadian gene expression seem to be crucial to keep the skin in balance.
Collapse
Affiliation(s)
- S Hettwer
- RAHN AG, Dörflistrasse 120, Zürich, 8050, Switzerland
| | | | - B Obermayer
- RAHN AG, Dörflistrasse 120, Zürich, 8050, Switzerland
| |
Collapse
|
16
|
de Assis LVM, Moraes MN, Castrucci AMDL. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell Mol Life Sci 2019; 76:3801-3826. [PMID: 31222374 PMCID: PMC11105295 DOI: 10.1007/s00018-019-03183-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
- School of Health Science, University Anhembi Morumbi, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil.
| |
Collapse
|
17
|
Sherratt MJ, Hopkinson L, Naven M, Hibbert SA, Ozols M, Eckersley A, Newton VL, Bell M, Meng QJ. Circadian rhythms in skin and other elastic tissues. Matrix Biol 2019; 84:97-110. [PMID: 31422155 DOI: 10.1016/j.matbio.2019.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
Circadian rhythms are daily oscillations that, in mammals, are driven by both a master clock, located in the brain, and peripheral clocks in cells and tissues. Approximately 10% of the transcriptome, including extracellular matrix components, is estimated to be under circadian control. Whilst it has been established that certain collagens and extracellular matrix proteases are diurnally regulated (for example in tendon, cartilage and intervertebral disc) the role played by circadian rhythms in mediating elastic fiber homeostasis is poorly understood. Skin, arteries and lungs are dynamic, resilient, elastic fiber-rich organs and tissues. In skin, circadian rhythms influence cell migration and proliferation, wound healing and susceptibility of the tissues to damage (from protease activity, oxidative stress and ultraviolet radiation). In the cardiovascular system, blood pressure and heart rate also follow age-dependent circadian rhythms whilst the lungs exhibit diurnal variations in immune response. In order to better understand these processes it will be necessary to characterise diurnal changes in extracellular matrix biology. In particular, given the sensitivity of peripheral clocks to external factors, the timed delivery of interventions (chronotherapy) has the potential to significantly improve the efficacy of treatments designed to repair and regenerate damaged cutaneous, vascular and pulmonary tissues.
Collapse
Affiliation(s)
- Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK.
| | - Louise Hopkinson
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK; Centre for Doctoral Training in Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, UK; Wellcome Trust Centre for Cell-Matrix Research, UK
| | - Mark Naven
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK; Wellcome Trust Centre for Cell-Matrix Research, UK
| | - Sarah A Hibbert
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK
| | - Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK
| | | | - Mike Bell
- Walgreens Boots Alliance, Thane Rd, Nottingham, England, UK
| | - Qing-Jun Meng
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, UK; Wellcome Trust Centre for Cell-Matrix Research, UK
| |
Collapse
|
18
|
Park S, Lee ES, Park NH, Hwang K, Cho EG. Circadian Expression of TIMP3 Is Disrupted by UVB Irradiation and Recovered by Green Tea Extracts. Int J Mol Sci 2019; 20:ijms20040862. [PMID: 30781538 PMCID: PMC6412890 DOI: 10.3390/ijms20040862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
The human skin is the outermost physical barrier and has its own circadian machinery that works either cooperatively with the central clock, or autonomously. Circadian rhythms have been observed in many functions related to epidermal homeostasis including hydration and inflammation, and this functional oscillation is disturbed by ultraviolet radiation (UVR), which is a strong environmental cue. Among the genes estimated to show circadian expression in the skin, metalloproteinase inhibitor 3 (TIMP3), has a rhythmic expression in synchronized human keratinocytes similar to that of the core clock gene PER1 and an epidermal circadian regulatory gene, aquaporin 3 (AQP3) but was antiphase to the core clock gene BMAL1. Tumor necrosis factor-α (TNF-α), the regulatory target of TIMP3 via a disintegrin and metalloproteinase domain 17 (ADAM17), was inversely regulated when TIMP3 expression was downregulated by ultraviolet B (UVB) treatment. When synthetic TIMP3 peptides were applied to the cells, the secretion of TNF-α did not increase following the UVB treatment. Similar to TIMP3 peptides, Camellia sinensis leaf-derived extracts showed a distinguishing efficacy in recovering TIMP3 expression, downregulated by UVB treatment. Together, our results suggest that TIMP3 reversely mediates UVR-induced inflammation by being highly expressed during the daytime; therefore, recovering the circadian expression of TIMP3 using synthetic TIMP3 peptides or bioactive natural ingredients could at least in part inhibit the UVR-induced cellular phenomena.
Collapse
Affiliation(s)
- Sunyoung Park
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| | - Eun-Soo Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| | - Nok-Hyun Park
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| | - Kyeonghwan Hwang
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| | - Eun-Gyung Cho
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| |
Collapse
|
19
|
Nikkola V, Miettinen ME, Karisola P, Grönroos M, Ylianttila L, Alenius H, Snellman E, Partonen T. Ultraviolet B radiation modifies circadian time in epidermal skin and in subcutaneous adipose tissue. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 35:157-163. [PMID: 30472764 DOI: 10.1111/phpp.12440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent findings suggest that circadian time regulates cellular functions in the skin and may affect protection against ultraviolet radiation (UVR). It is not known, however, whether UVR through skin directly affects the expression of circadian genes. We investigated the effect of ultraviolet B (UVB) exposure on cryptochrome circadian clock 1 (CRY1), cryptochrome circadian clock 2 (CRY2), and circadian associated repressor of transcription (CIART) genes. METHODS Healthy volunteers (n = 12) were exposed to narrow-band UVB radiation of four standard erythemal dose (SED). Epidermal/dermal and subcutaneous adipose tissue samples were obtained by punch biopsies from irradiated and non-irradiated skin 10 cm away from the irradiated site 24 hours after UVB exposure. Gene expression of CRY1, CRY2, and CIART was measured using RT-PCR (TaqMan). RESULTS Ultraviolet B radiation affected mRNA expression in the epidermal/dermal skin and in the subcutaneous adipose tissue. It down-regulated expression of CRY2 gene in the epidermal/dermal skin, whereas it up-regulated expression of CRY1 and CIART genes in the subcutaneous adipose tissue. CONCLUSION We showed for the first time that UVB radiation affects expression of circadian genes in the subcutaneous adipose tissue. Further studies are warranted to understand the mechanisms in detail.
Collapse
Affiliation(s)
- Veera Nikkola
- Department of Dermatology and Venereology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland.,Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Maija E Miettinen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Piia Karisola
- Department of Bacteriology and Immunology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Mari Grönroos
- Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Lasse Ylianttila
- STUK - Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Harri Alenius
- Department of Bacteriology and Immunology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erna Snellman
- Department of Dermatology and Venereology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland
| | - Timo Partonen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
20
|
Sun Y, Wang P, Li H, Dai J. BMAL1 and CLOCK proteins in regulating UVB-induced apoptosis and DNA damage responses in human keratinocytes. J Cell Physiol 2018; 233:9563-9574. [PMID: 29943823 PMCID: PMC6185778 DOI: 10.1002/jcp.26859] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
| | - Peiling Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI 53705 USA
| | - Hongyu Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
| | - Jun Dai
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI 53705 USA
| |
Collapse
|
21
|
Martínez-García EA, Zavala-Cerna MG, Lujano-Benítez AV, Sánchez-Hernández PE, Martín-Márquez BT, Sandoval-García F, Vázquez-Del Mercado M. Potential Chronotherapeutic Optimization of Antimalarials in Systemic Lupus Erythematosus: Is Toll-Like Receptor 9 Expression Dependent on the Circadian Cycle in Humans? Front Immunol 2018; 9:1497. [PMID: 30034390 PMCID: PMC6043638 DOI: 10.3389/fimmu.2018.01497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 9 (TLR9) belongs to the group of endosomal receptors of the innate immune system with the ability to recognize hypomethylated CpG sequences from DNA. There is scarce information about TLR9 expression and its association with the circadian cycle (CC). Different patterns of TLR9 expression are regulated by the CC in mice, with an elevated expression at Zeitgeber time 19 (1:00 a.m.); nevertheless, we still need to corroborate this in humans. In systemic lupus erythematosus (SLE), the inhibitory effect of chloroquine (CQ) on TLR9 is limited. TLR9 activation has been associated with the presence of some autoantibodies: anti-Sm/RNP, anti-histone, anti-Ro, anti-La, and anti-double-stranded DNA. Treatment with CQ for SLE has been proven to be useful, in part by interfering with HLA-antigen coupling and with TLR9 ligand recognition. Studies have shown that TLR9 inhibitors such as antimalarial drugs are able to mask TLR9-binding sites on nucleic acids. The data presented here provide the basic information that could be useful for other clinical researchers to design studies that will have an impact in achieving a chronotherapeutic effect by defining the ideal time for CQ administration in SLE patients, consequently reducing the pathological effects that follow the activation of TLR9.
Collapse
Affiliation(s)
- Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Maria Guadalupe Zavala-Cerna
- Immunology Research Laboratory, Programa Internacional de Medicina, Universidad Autonoma de Guadalajara, Guadalajara, Mexico
| | - Andrea Verónica Lujano-Benítez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Pedro Ernesto Sánchez-Hernández
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Laboratorio de Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Flavio Sandoval-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG CA-701, Inmunometabolismo en Enfermedades Emergentes (GIIEE), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mónica Vázquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Hospital Civil de Guadalajara “Juan I. Menchaca”, Servicio de Reumatología, Programa Nacional de Posgrados de Calidad (PNPC), Consejo Nacional de Ciencia y Tecnología (CONACYT), Guadalajara, Mexico
| |
Collapse
|
22
|
de Assis LVM, Moraes MN, Castrucci AMDL. Heat shock antagonizes UVA-induced responses in murine melanocytes and melanoma cells: an unexpected interaction. Photochem Photobiol Sci 2018; 16:633-648. [PMID: 28203671 DOI: 10.1039/c6pp00330c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The skin is under the influence of oscillatory factors such as light and temperature. This organ possesses a local system that controls several aspects in a time-dependent manner; moreover, the skin has a well-known set of opsins whose function is still unknown. We demonstrate that heat shock reduces Opn2 expression in normal Melan-a melanocytes, while the opposite effect is found in malignant B16-F10 cells. In both cell lines, UVA radiation increases the expression of Opn4 and melanin content. Clock genes and Xpa, a DNA repair gene, of malignant melanocytes are more responsive to UVA radiation when compared to normal cells. Most UVA-induced effects are antagonized by heat shock, a phenomenon shown for the first time. Based on our data, the heat produced during UV experiments should be carefully monitored since temperature represents, according to our results, an important confounding factor, and therefore it should, when possible, be dissociated from UV radiation. The responses displayed by murine melanoma cells, if proven to also take place in human melanoma, may represent an important step in cancer development and progression.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
23
|
Yeom M, Lee H, Shin S, Park D, Jung E. PER, a Circadian Clock Component, Mediates the Suppression of MMP-1 Expression in HaCaT Keratinocytes by cAMP. Molecules 2018; 23:molecules23040745. [PMID: 29570674 PMCID: PMC6017963 DOI: 10.3390/molecules23040745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1) and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE) increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer.
Collapse
Affiliation(s)
- Miji Yeom
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - HansongI Lee
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - Seoungwoo Shin
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - Deokhoon Park
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - Eunsun Jung
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| |
Collapse
|
24
|
Park S, Kim K, Bae IH, Lee SH, Jung J, Lee TR, Cho EG. TIMP3 is a CLOCK-dependent diurnal gene that inhibits the expression of UVB-induced inflammatory cytokines in human keratinocytes. FASEB J 2018; 32:1510-1523. [PMID: 29180440 PMCID: PMC5892724 DOI: 10.1096/fj.201700693r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As the outermost physical barrier of an organism, the skin is diurnally exposed to UV radiation (UVR). Recent studies have revealed that the skin exhibits a circadian rhythm in various functions, and this oscillation is disturbed and reset via a strong environmental cue, the UVR. However, a molecular link between circadian perturbation by UVR and UVR-induced cellular responses has not been investigated. We identified tissue inhibitor of metalloproteinase (TIMP)-3 as a novel circadian locomotor output cycles kaput (CLOCK)–dependent diurnal gene by using a CLOCK-knockdown strategy in human keratinocytes. Among dozens of identified transcripts down-regulated by CLOCK knockdown, TIMP3 displayed a rhythmic expression in a CLOCK-dependent manner, in which the expression of matrix metalloproteinase (MMP)-1 and inflammatory cytokines, such as TNF-α, chemokine (C-X-C motif) ligand (CXCL)-1, and IL-8, were inversely regulated. Upon UVB exposure, the expression of CLOCK and TIMP3 was down-regulated, which led to an up-regulation of secretion of MMP1 and TNF-α proteins and in the transcription of CXCL1 and IL-8via CCAAT-enhancer binding protein (C/EBP)-α. UVB-induced TNF-α secretion increased further or decreased by knockdown or overexpression of TIMP3, respectively, as well as by CLOCK. As a novel CLOCK-dependent diurnal gene, TIMP3 inhibits the expression of inflammatory cytokines that are up-regulated by UV irradiation in human keratinocytes. Thus, our work suggests a molecular link between circadian perturbation by UVR and UVR-induced inflammation.—Park, S., Kim, K., Bae, I.-H., Lee, S. H., Jung, J., Lee, T. R., Cho, E.-G. TIMP3 is a CLOCK-dependent diurnal gene that inhibits the expression of UVB-induced inflammatory cytokines in human keratinocytes.
Collapse
Affiliation(s)
- Sunyoung Park
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, South Korea
| | - Kyuhan Kim
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, South Korea
| | - Il-Hong Bae
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, South Korea
| | - Sung Hoon Lee
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, South Korea
| | - Jiyong Jung
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, South Korea
| | - Tae Ryong Lee
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, South Korea
| | - Eun-Gyung Cho
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, South Korea
| |
Collapse
|
25
|
An MJ, Kim CH, Nam GY, Kim DH, Rhee S, Cho SJ, Kim JW. Transcriptome analysis for UVB-induced phototoxicity in mouse retina. ENVIRONMENTAL TOXICOLOGY 2018; 33:52-62. [PMID: 29044990 DOI: 10.1002/tox.22494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Throughout life, the human eye is continuously exposed to sunlight and artificial lighting. Ambient light exposure can lead to visual impairment and transient or permanent blindness. To mimic benign light stress conditions, Mus musculus eyes were exposed to low-energy UVB radiation, ensuring no severe morphological changes in the retinal structure post-exposure. We performed RNA-seq analysis to reveal the early transcriptional changes and key molecular pathways involved before the activation of the canonical cell death pathway. RNA-seq analysis identified 537 genes that were differentially modulated, out of which 126 were clearly up regulated (>2-fold, P < .01) and 51 were significantly down regulated (<2-fold, P < .01) in response to UVB irradiation in the mouse retina. Gene ontology analysis revealed that UVB exposure affected pathways for cellular stress and signaling (eg, Creb3, Ddrgk1, Grin1, Map7, Uqcc2, Uqcrb), regulation of chromatin and gene expression (eg, Chd5, Jarid2, Kat6a, Smarcc2, Sumo1, Zfp84), transcription factors (eg, Asxl2, Atf7, Per1, Phox2a, Rxra), RNA processing, and neuronal genes (eg, B4gal2, Drd1, Grm5, Rnf40, Rnps1, Usp39, Wbp4). The differentially expressed genes from the RNA-seq analysis were validated by quantitative PCR. Both analyses yielded similar gene expression patterns. The genes and pathways identified here improve the understanding of early transcriptional responses to UVB irradiation. They may also help in elucidating the genes responsible for the inherent susceptibility of humans to UVB-induced retinal diseases.
Collapse
Affiliation(s)
- Mi-Jin An
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chul-Hong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Gyu-You Nam
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dae-Hyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung-Jin Cho
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
26
|
Joo JH, Hong IK, Kim NK, Choi E. Trichosanthes kirilowii extract enhances repair of UVB radiation‑induced DNA damage by regulating BMAL1 and miR‑142‑3p in human keratinocytes. Mol Med Rep 2017; 17:877-883. [PMID: 29115465 PMCID: PMC5780168 DOI: 10.3892/mmr.2017.7932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/19/2017] [Indexed: 12/31/2022] Open
Abstract
Ultraviolet B (UVB) radiation induces DNA damage, oxidative stress and inflammation, and suppresses the immune system in the skin, which collectively contribute to skin aging and carcinogenesis. The DNA damage response, including DNA repair, can be regulated by the circadian clock and microRNA (miRNA) expression. The aim of the present study was to evaluate the reparative action of Trichosanthes kirilowii extract (TKE) against UVB irradiation-induced DNA damage in human keratinocytes. TKE demonstrated low cytotoxicity in normal HaCaT keratinocytes at low doses (up to 100 µg/ml). The results of a comet assay revealed that TKE enhanced the repair of UVB-induced DNA damage. TKE significantly upregulated the expression of the core clock protein, brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 (BMAL1), and downregulated the expression of miRNA (miR)-142-3p, as demonstrated using western blotting and the reverse transcription-quantitative polymerase chain reaction. Furthermore, the suppression of miR-142-3p by a specific inhibitor positively correlated with the repair activity. Overall, the data obtained demonstrated that TKE enhanced the repair of UVB-induced DNA damage by regulating the expression of BMAL1 and miR-142-3p. Consequently, TKE can be considered a potential candidate for the treatment of skin diseases associated with UVB-induced damage.
Collapse
Affiliation(s)
- Ji-Hye Joo
- Research and Development Center, Greensolutions Co., Ltd., Chuncheon, Gangwon 24232, Republic of Korea
| | - In-Kee Hong
- Research and Development Center, Radiant Co., Ltd., Chuncheon, Gangwon 24398, Republic of Korea
| | - Nam Kyoung Kim
- Research and Development Center, Greensolutions Co., Ltd., Chuncheon, Gangwon 24232, Republic of Korea
| | - Eunmi Choi
- Research and Development Center, Greensolutions Co., Ltd., Chuncheon, Gangwon 24232, Republic of Korea
| |
Collapse
|
27
|
Weger M, Diotel N, Dorsemans AC, Dickmeis T, Weger BD. Stem cells and the circadian clock. Dev Biol 2017; 431:111-123. [DOI: 10.1016/j.ydbio.2017.09.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/11/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
|
28
|
Biological Rhythms in the Skin. Int J Mol Sci 2016; 17:ijms17060801. [PMID: 27231897 PMCID: PMC4926335 DOI: 10.3390/ijms17060801] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/29/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which directs an organism's rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional-translational autoregulatory loops. This master clock, following environmental cues, regulates an organism's sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period) cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin.
Collapse
|
29
|
Gutierrez D, Arbesman J. Circadian Dysrhythmias, Physiological Aberrations, and the Link to Skin Cancer. Int J Mol Sci 2016; 17:ijms17050621. [PMID: 27128901 PMCID: PMC4881447 DOI: 10.3390/ijms17050621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022] Open
Abstract
Circadian rhythms are core regulators of a variety of mammalian physiologic processes and oscillate in a 24-h pattern. Many peripheral organs possess endogenous rhythmicity that is then modulated by a master clock; the skin is one of these peripheral organs. The dysregulation of rhythms is associated with decreased ability to ameliorate cellular stressors at a local and global level, which then increases the propensity for the development of neoplastic growths. In this article, we review the implications of altered circadian rhythms on DNA repair as well as modified gene expression of core clock proteins with particular focus on skin models. These findings are then correlated with epidemiologic data regarding skin cancer to showcase the effects of circadian disruption on this phenomenon.
Collapse
Affiliation(s)
- Daniel Gutierrez
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Joshua Arbesman
- Department of Dermatology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
30
|
Hamilton N, Diaz-de-Cerio N, Whitmore D. Impaired light detection of the circadian clock in a zebrafish melanoma model. Cell Cycle 2016; 14:1232-41. [PMID: 25832911 PMCID: PMC4615116 DOI: 10.1080/15384101.2015.1014146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development.
Collapse
Affiliation(s)
- Noémie Hamilton
- a Center for Cell and Molecular Dynamics; Department of Cell and Development Biology ; University College London ; London , UK
| | | | | |
Collapse
|
31
|
Plikus MV, Van Spyk EN, Pham K, Geyfman M, Kumar V, Takahashi JS, Andersen B. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity. J Biol Rhythms 2015; 30:163-82. [PMID: 25589491 DOI: 10.1177/0748730414563537] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Historically, work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as the liver, fat, and muscle. In recent years, skin has emerged as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging, and carcinogenesis. Morphologically, skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable, and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration: the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell type-specific circadian mutants. Also, due to the accessibility of skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar ultraviolet (UV) radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it also represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. Skin also provides opportunities to interrogate the clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model for investigating the role of the clock in seasonal organismal behaviors.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA Center for Complex Biological Systems, University of California, Irvine, Irvine, CA
| | - Elyse N Van Spyk
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA Department of Biological Chemistry, University of California, Irvine, Irvine, CA Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA
| | - Kim Pham
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | | | - Vivek Kumar
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bogi Andersen
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA Department of Biological Chemistry, University of California, Irvine, Irvine, CA Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA
| |
Collapse
|
32
|
Avitabile D, Genovese L, Ponti D, Ranieri D, Raffa S, Calogero A, Torrisi MR. Nucleolar localization and circadian regulation of Per2S, a novel splicing variant of the Period 2 gene. Cell Mol Life Sci 2014; 71:2547-59. [PMID: 24202686 PMCID: PMC11113094 DOI: 10.1007/s00018-013-1503-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/26/2013] [Accepted: 10/17/2013] [Indexed: 12/14/2022]
Abstract
In this work, we show for the first time that a second splicing variant of the core clock gene Period 2 (Per2), Per2S, is expressed at both the mRNA and protein levels in human keratinocytes and that it localizes in the nucleoli. Moreover, we show that a reversible perturbation of the nucleolar structure acts as a resetting stimulus for the cellular clock. Per2S expression and periodic oscillation upon dexamethasone treatment were assessed by qRT-PCR using specific primers. Western blot (WB) analysis using an antibody against the recombinant human PER2 (abRc) displayed an intense band at a molecular weight of ~55 kDa, close to the predicted size of Per2S, and a weaker band at the expected size of Per2 (~140 kDa). The antibody raised against PER2 pS662 (abS662), an epitope absent in PER2S, detected only the higher band. Immunolocalization studies with abRc revealed a peculiar nucleolar signal colocalizing with the nucleolar marker nucleophosmin, whereas with abS662 the signal was predominantly diffuse all over the nucleus and partially colocalized with abRc in the nucleolus. The analysis of cell fractions by WB confirmed the enrichment of PER2S and the presence of PER2 in the nucleolar compartment. Finally, a pulse (1 h) of actinomycin D (0.01 μg/ml) induced reversible nucleolar disruption, PER2S de-localization and circadian synchronization of clock and Per2S genes. Our work represents the first evidence that the Per2S splicing isoform is a clock component expressed in human cells localizing in the nucleolus. These results suggest a critical role for the nucleolus in the process of circadian synchronization in human keratinocytes.
Collapse
Affiliation(s)
- Daniele Avitabile
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Via di Grottarossa 1035, 00189, Rome, Italy,
| | | | | | | | | | | | | |
Collapse
|
33
|
Markova-Car EP, Jurišić D, Ilić N, Kraljević Pavelić S. Running for time: circadian rhythms and melanoma. Tumour Biol 2014; 35:8359-68. [PMID: 24729125 DOI: 10.1007/s13277-014-1904-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/27/2014] [Indexed: 12/22/2022] Open
Abstract
Circadian timing system includes an input pathway transmitting environmental signals to a core oscillator that generates circadian signals responsible for the peripheral physiological or behavioural events. Circadian 24-h rhythms regulate diverse physiologic processes. Deregulation of these rhythms is associated with a number of pathogenic conditions including depression, diabetes, metabolic syndrome and cancer. Melanoma is a less common type of skin cancer yet more aggressive often with a lethal ending. However, little is known about circadian control in melanoma and exact functional associations between core clock genes and development of melanoma skin cancer. This paper, therefore, comprehensively analyses current literature data on the involvement of circadian clock components in melanoma development. In particular, the role of circadian rhythm deregulation is discussed in the context of DNA repair mechanisms and influence of UV radiation and artificial light exposure on cancer development. The role of arylalkylamine N-acetyltransferase (AANAT) enzyme and impact of melatonin, as a major output factor of circadian rhythm, and its protective role in melanoma are discussed in details. We hypothesise that further understanding of clock genes' involvement and circadian regulation might foster discoveries in the field of melanoma diagnostics and treatment.
Collapse
Affiliation(s)
- Elitza P Markova-Car
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia,
| | | | | | | |
Collapse
|
34
|
Al-Nuaimi Y, Hardman JA, Bíró T, Haslam IS, Philpott MP, Tóth BI, Farjo N, Farjo B, Baier G, Watson REB, Grimaldi B, Kloepper JE, Paus R. A meeting of two chronobiological systems: circadian proteins Period1 and BMAL1 modulate the human hair cycle clock. J Invest Dermatol 2014; 134:610-619. [PMID: 24005054 DOI: 10.1038/jid.2013.366] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/01/2013] [Accepted: 08/18/2013] [Indexed: 12/28/2022]
Abstract
The hair follicle (HF) is a continuously remodeled mini organ that cycles between growth (anagen), regression (catagen), and relative quiescence (telogen). As the anagen-to-catagen transformation of microdissected human scalp HFs can be observed in organ culture, it permits the study of the unknown controls of autonomous, rhythmic tissue remodeling of the HF, which intersects developmental, chronobiological, and growth-regulatory mechanisms. The hypothesis that the peripheral clock system is involved in hair cycle control, i.e., the anagen-to-catagen transformation, was tested. Here we show that in the absence of central clock influences, isolated, organ-cultured human HFs show circadian changes in the gene and protein expression of core clock genes (CLOCK, BMAL1, and Period1) and clock-controlled genes (c-Myc, NR1D1, and CDKN1A), with Period1 expression being hair cycle dependent. Knockdown of either BMAL1 or Period1 in human anagen HFs significantly prolonged anagen. This provides evidence that peripheral core clock genes modulate human HF cycling and are an integral component of the human hair cycle clock. Specifically, our study identifies BMAL1 and Period1 as potential therapeutic targets for modulating human hair growth.
Collapse
Affiliation(s)
- Yusur Al-Nuaimi
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jonathan A Hardman
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Doctoral Training Centre in Integrative Systems Biology, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Tamás Bíró
- DE-MTA ''Lendulet'' Cell Physiology Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Iain S Haslam
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael P Philpott
- Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Balázs I Tóth
- DE-MTA ''Lendulet'' Cell Physiology Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | | | | | - Gerold Baier
- Faculty of Life Sciences, Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, UK
| | - Rachel E B Watson
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | | | - Ralf Paus
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Department of Dermatology, University of Luebeck, Luebeck, Germany.
| |
Collapse
|
35
|
Lengyel Z, Battyáni Z, Szekeres G, Csernus V, Nagy AD. Circadian clocks and tumor biology: what is to learn from human skin biopsies? Gen Comp Endocrinol 2013; 188:67-74. [PMID: 23608545 DOI: 10.1016/j.ygcen.2013.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 01/27/2023]
Abstract
Some of the components of the circadian molecular clock have been shown to link directly to tumor suppression. Most studies on human tumorous biopsies with consistently down-regulated clock gene expression suggested a protective role for these genes against cancer formation. To highlight some limitations of this hypothesis we review these data in light of recent evidences from animal research, epidemiologic studies, and clinical data on skin tumors. We emphasize the role of circadian rhythmic orchestration in cellular metabolism with a potential in cancer development.
Collapse
Affiliation(s)
- Zsuzsanna Lengyel
- Department of Dermatology, Medical School, University of Pécs, H-7624 Pécs, Kodály Z.u. 20, Hungary.
| | | | | | | | | |
Collapse
|
36
|
Hellmann-Regen J, Heuser I, Regen F. UV-A emission from fluorescent energy-saving light bulbs alters local retinoic acid homeostasis. Photochem Photobiol Sci 2013; 12:2177-85. [DOI: 10.1039/c3pp50206f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Abstract
Biologically, light including ultraviolet (UV) radiation is vital for life. However, UV exposure does not come without risk, as it is a major factor in the development of skin cancer. Natural protections against UV damage may have been affected by lifestyle changes over the past century, including changes in our sun exposure due to working environments, and the use of sunscreens. In addition, extended "day time" through the use of artificial light may contribute to the disruption of our circadian rhythms; the daily cycles of changes in critical bio-factors including gene expression. Circadian disruption has been implicated in many health conditions, including cardiovascular, metabolic and psychiatric diseases, as well as many cancers. Interestingly, the pineal hormone melatonin plays a role in both circadian regulation as well as protection from UV skin damage, and is therefore an important factor to consider when studying the impact of UV light. This review discusses the beneficial and deleterious effects of solar exposure, including UV skin damage, Vitamin D production, circadian rhythm disruption and the impact of melatonin. Understanding these benefits and risks is critical for the development of protective strategies against solar radiation.
Collapse
Affiliation(s)
| | | | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|
38
|
Rhee JS, Kim BM, Choi BS, Lee JS. Expression pattern analysis of DNA repair-related and DNA damage response genes revealed by 55K oligomicroarray upon UV-B irradiation in the intertidal copepod, Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:359-68. [PMID: 22051804 DOI: 10.1016/j.cbpc.2011.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 12/23/2022]
Abstract
Ultraviolet-B (UV-B) radiation affects the genome stability of aquatic organisms by absorption of certain wavelength at the molecular level. Recently, extensive gene information has been identified from the intertidal copepod, Tigriopus japonicus. Here, we developed a 55K (54,254 genes) oligomicroarray and tested its usefulness to identify the effect of single dose of UV-B irradiation (12 kJ/m(2)) on transcriptomes of the copepod T. japonicus. A total of 35,361 spots were identified to be significantly modulated on the 55K oligomicroarray by hierarchical clustering after exposure to UV-B irradiation over 48 h (6, 12, 24, and 48 h). Of them, 1300 and 588 genes were observed to be up-regulated and down-regulated at all time points, respectively. Particularly, it was observed that several genes involved in DNA repair mechanism were significantly modulated in the UV-B-exposed T. japonicus by microarray and quantitative real-time RT-PCR analysis. In detail, UV-B irradiation specifically up-regulated some genes in non-homologous end-joining (NHEJ), homologous recombination (HR), base excision repair (BER), and mismatch repair (MMR) pathways. On the other hand, a majority of down-regulated genes were representatives for the nucleotide excision repair (NER) mechanism. These results demonstrated that DNA damage would be induced by UV-B irradiation in this species, resulting in reliable induction or repression of various DNA repair mechanism on UV-B-induced DNA damage. In this report, we suggest that a high density microarray-based approach for risk assessment of UV-B irradiation would be useful to elucidate the mechanistic analysis in a non-model organism. This study could also provide a better understanding of molecular mechanisms of cellular protection against UV-B-induced stress.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | |
Collapse
|
39
|
Wondimu A, Weir L, Robertson D, Mezentsev A, Kalachikov S, Panteleyev AA. Loss of Arnt (Hif1β) in mouse epidermis triggers dermal angiogenesis, blood vessel dilation and clotting defects. J Transl Med 2012; 92:110-24. [PMID: 21946855 DOI: 10.1038/labinvest.2011.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Targeted ablation of Aryl hydrocarbon receptor nuclear translocator (Arnt) in the mouse epidermis results in severe abnormalities in dermal vasculature reminiscent of petechia induced in human skin by anticoagulants or certain genetic disorders. Lack of Arnt leads to downregulation of Egln3/Phd3 hydroxylase and concomitant hypoxia-independent stabilization of hypoxia-induced factor 1α (Hif1α) along with compensatory induction of Arnt2. Ectopic induction of Arnt2 results in its heterodimerization with stabilized Hif1α and is associated with activation of genes coding for secreted proteins implicated in control of angiogenesis, coagulation, vasodilation and blood vessel permeability such as S100a8/S100a9, S100a10, Serpine1, Defb3, Socs3, Cxcl1 and Thbd. Since ARNT and ARNT2 heterodimers with HIF1α are known to have different (yet overlapping) downstream targets our findings suggest that loss of Arnt in the epidermis activates an aberrant paracrine regulatory pathway responsible for dermal vascular phenotype in K14-Arnt KO mice. This assumption is supported by a significant decline of von Willebrand factor in dermal vasculature of these mice where Arnt level remains normal. Given the essential role of ARNT in the adaptive response to environmental stress and striking similarity between skin vascular phenotype in K14-Arnt KO mice and specific vascular features of tumour stroma and psoriatic skin, we believe that further characterization of Arnt-dependent epidermal-dermal signalling may provide insight into the role of macro- and micro-environmental factors in control of skin vasculature and in pathogenesis of environmentally modulated skin disorders.
Collapse
Affiliation(s)
- Assefa Wondimu
- Department of Dermatology, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
40
|
Al-Nuaimi Y, Baier G, Watson REB, Chuong CM, Paus R. The cycling hair follicle as an ideal systems biology research model. Exp Dermatol 2010; 19:707-13. [PMID: 20590819 PMCID: PMC4383261 DOI: 10.1111/j.1600-0625.2010.01114.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the postgenomic era, systems biology has rapidly emerged as an exciting field predicted to enhance the molecular understanding of complex biological systems by the use of quantitative experimental and mathematical approaches. Systems biology studies how the components of a biological system (e.g. genes, transcripts, proteins, metabolites) interact to bring about defined biological function or dysfunction. Living systems may be divided into five dimensions of complexity: (i) molecular; (ii) structural; (iii) temporal; (iv) abstraction and emergence; and (v) algorithmic. Understanding the details of these dimensions in living systems is the challenge that systems biology aims to address. Here, we argue that the hair follicle (HF), one of the signature features of mammals, is a perfect and clinically relevant model for systems biology research. The HF represents a stem cell-rich, essentially autonomous mini-organ, whose cyclic transformations follow a hypothetical intrafollicular "hair cycle clock" (HCC). This prototypic neuroectodermal-mesodermal interaction system, at the cross-roads of systems and chronobiology, encompasses various levels of complexity as it is subject to both intrafollicular and extrafollicular inputs (e.g. intracutaneous timing mechanisms with neural and systemic stimuli). Exploring how the cycling HF addresses the five dimensions of living systems, we argue that a systems biology approach to the study of hair growth and cycling, in man and mice, has great translational medicine potential. Namely, the easily accessible human HF invites preclinical and clinical testing of novel hypotheses generated with this approach.
Collapse
Affiliation(s)
- Yusur Al-Nuaimi
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
- Epithelial Sciences, School of Translational Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Gerold Baier
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | - Rachel E. B. Watson
- Epithelial Sciences, School of Translational Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Ralf Paus
- Epithelial Sciences, School of Translational Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
41
|
Lin KK, Kumar V, Geyfman M, Chudova D, Ihler AT, Smyth P, Paus R, Takahashi JS, Andersen B. Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genet 2009; 5:e1000573. [PMID: 19629164 PMCID: PMC2705795 DOI: 10.1371/journal.pgen.1000573] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 06/23/2009] [Indexed: 11/18/2022] Open
Abstract
Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK-regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.
Collapse
Affiliation(s)
- Kevin K. Lin
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - Vivek Kumar
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mikhail Geyfman
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
| | - Darya Chudova
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
- Department of Computer Science, University of California Irvine, Irvine, California, United States of America
| | - Alexander T. Ihler
- Department of Computer Science, University of California Irvine, Irvine, California, United States of America
| | - Padhraic Smyth
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
- Department of Computer Science, University of California Irvine, Irvine, California, United States of America
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- School of Translational Medicine, University of Manchester, Manchester, United Kingdom
| | - Joseph S. Takahashi
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Bogi Andersen
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
42
|
Abstract
Clock genes in the skin exhibit day-night changes in expression; however, whether these changes are brought by external light or intrinsic mechanisms is unclear. In this study, we demonstrated that expression of the clock and clock-controlled genes showed robust rhythms in mouse skin under constant dark conditions, whereas these rhythms were completely lost in Cry1/Cry2 knockout mice lacking a molecular clock. At the cellular level, the main oscillatory protein in the mammalian molecular clock, PER2, was expressed in the nuclei of keratinocytes in the epidermis and hair follicles, with expression peaking at CT16 (subjective dusk), 4-8 hours after expression of its mRNA. These expression patterns in the skin stopped after the ablation of the central clock in the suprachiasmatic nucleus (SCN), which was not recovered even in animals housed in 12 hour-light/12 hour-dark conditions. These findings demonstrate that the intrinsic oscillating molecular clock exists in the epidermis, and that signaling from the SCN is essential for the maintenance of the epidermal clock, and cannot be compensated by external light.
Collapse
|
43
|
Fischer TW, Slominski A, Zmijewski MA, Reiter RJ, Paus R. Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol 2008; 17:713-30. [DOI: 10.1111/j.1600-0625.2008.00767.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Haus E. Chronobiology in the endocrine system. Adv Drug Deliv Rev 2007; 59:985-1014. [PMID: 17804113 DOI: 10.1016/j.addr.2007.01.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 01/15/2007] [Indexed: 12/13/2022]
Abstract
Biological signaling occurs in a complex web with participation and interaction of the central nervous system, the autonomous nervous system, the endocrine glands, peripheral endocrine tissues including the intestinal tract and adipose tissue, and the immune system. All of these show an intricate time structure with rhythms and pulsatile variations in multiple frequencies. Circadian (about 24-hour) and circannual (about 1-year) rhythms are kept in step with the cyclic environmental surrounding by the timing and length of the daily light span. Rhythmicity of many endocrine variables is essential for their efficacy and, even in some instances, for the qualitative nature of their effects. Indeed, the continuous administration of certain hormones and their synthetic analogues may show substantially different effects than expected. In the design of drug-delivery systems and treatment schedules involving directly or indirectly the endocrine system, consideration of the human time organization is essential. A large amount of information on the endocrine time structure has accumulated, some of which is discussed in this review.
Collapse
Affiliation(s)
- Erhard Haus
- Department of Laboratory Medicine and Pathology, University of Minnesota, Health Partners Medical Group, Regions Hospital, 640 Jackson Street, St. Paul, Minnesota 55101, USA.
| |
Collapse
|
45
|
Abstract
The Period (Per) genes are key circadian rhythm regulators in mammals. Expression of the mouse Per (mPer) genes have diurnal pattern in the suprachiamstic nuclei and in peripheral tissues. Genetic ablation mPER1 and mPER2 function results in a complete loss of circadian rhythm control based on wheel running activity in mice. In addition, these animals also display apparent premature aging and significant increase in neoplastic and hyperplastic phenotypes. When challenged by gamma-radiation, mPer2 deficient mice response by rapid hair graying, are deficient in p53-mediated apoptosis in thymocytes and have robust tumor occurrences. Our studies have demonstrated that the circadian clock function is very important for cell cycle, DNA damage response and tumor suppression in vivo. Temporal expression of genes involved in cell cycle regulation and tumor suppression, such as c-Myc, Cyclin D1, Cyclin A, Mdm-2 and Gadd45alpha is deregulated in mPer2 mutant mice. In addition, genetic studies have demonstrated that many key regulators of cell cycle and growth control are also important circadian clock regulators confirming the critical role of circadian function in organismal homeostasis. Recently studies of human breast and endometrial cancers revealed that the loss and deregulation of PERIOD proteins is common in the tumor cells.
Collapse
Affiliation(s)
- Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Mehling A, Fluhr JW. Chronobiology: biological clocks and rhythms of the skin. Skin Pharmacol Physiol 2006; 19:182-9. [PMID: 16679820 DOI: 10.1159/000093113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 11/17/2005] [Indexed: 11/19/2022]
Abstract
The cyclicity of time affects virtually all aspects of our being and is the basis of the underlying rhythmicity which is typical of our lives. To 'tell time', most living organisms use internal timing mechanisms known as 'biological clocks'. These 'clocks' coordinate our physiological and behavioral functions and interactions with our environment. One of the strongest influences on rhythmicity is the solar day. The study of these temporal rhythms in biological systems has been coined chronobiology. With the present article we aim to give an overview on chronobiology. Examples of chronobiological effects on skin will be described. Particular emphasis will be placed on circadian rhythms (including rhythms that take place within a 24-hour period, including so-called infradian and/or diurnal rhythms) but also on seasonal variations (circaannual rhythms).
Collapse
Affiliation(s)
- A Mehling
- Cognis Deutschland GmbH and Co. KG, Dusseldorf, Germany
| | | |
Collapse
|
47
|
Lucas RM, Ponsonby AL. Considering the potential benefits as well as adverse effects of sun exposure: can all the potential benefits be provided by oral vitamin D supplementation? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2006; 92:140-9. [PMID: 16616326 DOI: 10.1016/j.pbiomolbio.2006.02.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to ultraviolet radiation (UVR) is associated with both adverse and beneficial health effects. While many of the adverse effects of excessive exposure are well known, the adverse effects of insufficient UVR exposure are less clear-cut, but may include a heightened risk of several cancers and autoimmune disorders as well as of bone diseases such as rickets, osteomalacia and osteoporosis. Although some of the postulated beneficial effects of UVR exposure may occur through the maintenance of adequate levels of vitamin D, it is not clear that this can account for all of these effects. We briefly review the epidemiological literature with respect to vitamin D, UVR exposure and autoimmune diseases. We further outline alternative pathways, whereby UVR could alter the risk of development of some cancers and autoimmune disorders, independent of effects on vitamin D synthesis. Recognition of the beneficial effects of UVR exposure has led to a reconsideration of sun avoidance policies. It is important to recognize that all of the beneficial effects of UVR exposure may not occur only through UVR-induced vitamin D synthesis. Thus maintaining current sun avoidance policies while supplementing food with vitamin D may not be sufficient to avoid the risks of insufficient exposure to UVR.
Collapse
Affiliation(s)
- Robyn M Lucas
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra 0200, Australia.
| | | |
Collapse
|
48
|
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that has been intensively studied with respect to the toxicity of xenobiotics. However, its function in response to light has never been summarized. Here, we provide an overview of AhR activation by light with a focus on the role of tryptophan in light-induced AhR activation. We discuss the involvement of the AhR in different biological rhythms and speculate on the possible role of the AhR in UV-induced responses in skin. Furthermore, this review points out future research needs in this field.
Collapse
Affiliation(s)
- Agneta Rannug
- Karolinska Institute, Institute of Environmental Medicine, P.O. Box 210, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
49
|
Abstract
Period (Per) genes are key circadian rhythm regulators in mammals. Expression of mouse Per (mPer) genes has a diurnal pattern in the suprachiasmatic nucleus and in peripheral tissues. Genetic ablation mPER1 and mPER2 function results in a complete loss of circadian rhythm control based on wheel-running activity in mice. In addition, these animals also display apparent premature aging and a significant increase in neoplastic and hyperplastic phenotypes. When challenged by gamma radiation, mPer2-deficient mice respond by rapid hair graying, are deficient in p53-mediated apoptosis in thymocytes, and have robust tumor occurrences. Studies have demonstrated that the circadian clock function is very important for cell cycle, DNA damage response, and tumor suppression in vivo. The temporal expression of genes involved in cell cycle regulation and tumor suppression, such as c-Myc, Cyclin D1, Cyclin A, Mdm-2, and Gadd45alpha, is deregulated in mPer2 mutant mice. Genetic studies have demonstrated that many key regulators of cell cycle and growth control are also important circadian clock regulators, confirming the critical role of circadian function in organismal homeostasis.
Collapse
Affiliation(s)
- Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
50
|
Howell BG, Wang B, Freed I, Mamelak AJ, Watanabe H, Sauder DN. Microarray analysis of UVB-regulated genes in keratinocytes: downregulation of angiogenesis inhibitor thrombospondin-1. J Dermatol Sci 2004; 34:185-94. [PMID: 15113588 DOI: 10.1016/j.jdermsci.2004.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 01/13/2004] [Accepted: 01/15/2004] [Indexed: 11/21/2022]
Abstract
BACKGROUND Ultraviolet (UV) B light is an environmental mutagen that induces changes in cutaneous gene expression leading to immune suppression and carcinogenesis. Keratinocytes are a primary target for UVB. OBJECTIVE To further delineate UVB-induced gene expression changes in keratinocytes. METHODS cDNA microarray technology was utilized to examine gene expression in normal human KC (NHKC) following 20 mJcm(-2) UVB irradiation. Data was confirmed by semi-quantitative RT-PCR. RESULTS Microarray analysis revealed 57 genes were upregulated, and 27 genes were downregulated, by at least two-fold following UVB. One downregulated gene was the endogenous angiogenesis inhibitor thrombospondin-1 (TSP-1). Semi-quantitative RT-PCR confirmed persistent downregulation of TSP-1 up to 18h following UVB. Microarray analysis also revealed upregulation of platelet-derived endothelial cell growth factor (PD-ECGF)--an angiogenesis activator. CONCLUSION Our results suggest a gene expression mechanism by which UVB induces an angiogenic switch in keratinocytes. This may represent an important early event promoting neovascularization and growth of cutaneous neoplasms.
Collapse
Affiliation(s)
- B G Howell
- Department of Dermatology, Johns Hopkins Outpatient Center, Johns Hopkins University, 601 N. Caroline Street, Room 6068, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|