1
|
Sangsuwan R, Thuamsang B, Pacifici N, Tachachartvanich P, Murphy D, Ram A, Albeck J, Lewis JS. Identification of signaling networks associated with lactate modulation of macrophages and dendritic cells. Heliyon 2025; 11:e42098. [PMID: 39975831 PMCID: PMC11835580 DOI: 10.1016/j.heliyon.2025.e42098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
The advancement in the understanding of cancer immune evasion has manifested the development of cancer immunotherapeutic approaches such as checkpoint inhibitors and interleukin agonists. Although cancer immunotherapy breakthroughs have demonstrated improved potency for cancer treatment, only a fraction of patients effectively respond to these treatments. Moreover, there is compelling evidence indicating that cancer cells develop a unique microenvironment through adaptive metabolic reprogramming, which aberrantly modulates host immunity to evade immunosurveillance. As part of the tumor cell adaptive metabolic switch, lactate is produced and released into the tumor environment. Recent studies have shown that lactate significantly modulates immune functions, especially in innate immune cells. Dendritic cells (DCs) and macrophages (MΦs) are specialized antigen-presenting cells serving as key players in innate immunity and anticancer-associated immune responses. Although most studies have shown that lactate affects immune phenotypes (e.g., surface protein expression and cytokine production), the cell signaling network mediated by lactate is not fully understood. In the present study, we identified the key signaling pathways in bone marrow-derived DCs and MΦs that were changed by cancer-relevant concentrations of lactate. First, transcriptome analysis was used to guide notable signaling pathways mediated by lactate. Subsequently, biomolecular techniques, including immunoblotting, flow cytometry, and immunofluorescence imaging were performed to corroborate the changes in these key signaling pathways at the protein level. The results indicated that lactate differentially impacted the biochemical networks of DCs and MΦs. While lactate mainly altered STAT3, ERK, and p38 MAPK signaling cascades in DCs, the STAT1 and GSK-3β signaling in MΦs were the major pathways significantly impacted by lactate. This study identifies key biochemical pathways in innate immune cells that are impacted by lactate, which advances our understanding of the interplay between the tumor microenvironment and innate immunity.
Collapse
Affiliation(s)
- Rapeepat Sangsuwan
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Bhasirie Thuamsang
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Noah Pacifici
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Phum Tachachartvanich
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Devan Murphy
- Department of Molecular and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Abhineet Ram
- Department of Molecular and Cell Biology, University of California, Davis, CA, 95616, USA
| | - John Albeck
- Department of Molecular and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, FL, 32611, USA
| |
Collapse
|
2
|
Peyneau M, Zeller M, Paulet V, Noël B, Damiens MH, Szely N, Natsch A, Pallardy M, Chollet-Martin S, de Chaisemartin L, Kerdine-Römer S. Quaternary ammoniums activate human dendritic cells and induce a specific T-cell response in vitro. Allergol Int 2025; 74:105-114. [PMID: 39237430 DOI: 10.1016/j.alit.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND In many countries, neuro-muscular blocking agents (NMBAs) are the first cause of perioperative anaphylaxis. Epidemiological studies identified pholcodine, a quaternary ammonium-containing opiate as one of the sensitization sources. However, NMBA anaphylaxis exists in countries where pholcodine was unavailable, prompting the hypothesis of other sensitizing molecules, most likely quaternary ammonium compounds (QACs). Indeed, QACs are commonly used as disinfectants, antiseptics, preservatives, and detergents. Occupational exposure to QACs has been reported as a risk factor for NMBA anaphylaxis, but little is known about the sensitization mechanism and the capacity of these molecules to elicit an immune response. We aimed to establish the immunogenicity of QACs representative of the main existing chemical structures. METHODS We measured the sensitization potential of seven QACs (two polyquaterniums, three alkyl-ammoniums and two aromatic ammoniums) by using two standard dendritic cells (DCs) models (THP-1 cell line and monocyte derived-dendritic cells). The allergenicity of the sensitizing compounds was further tested in heterologous and autologous T-cell-DC co-culture models. RESULTS Amongst the seven molecules tested, four could modulate activation markers on DCs, and thus can be classified as chemical sensitizers (polyquaterniums-7 and -10, ethylhexadecyldimethylammonium and benzethonium). This activation was accompanied by the secretion of pro-inflammatory and maturation cytokines. Furthermore, activation by polyquaternium-7 could induce T-cell proliferation in heterologous and autologous coculture models, demonstrating that this molecule can induce a specific CD4+ T cell response. CONCLUSIONS We provide evidence at the cellular level that some QACs can elicit an immune response, which could be in line with the hypothesis of these molecules' role in NMBA sensitization.
Collapse
Affiliation(s)
- Marine Peyneau
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France; AP-HP, Service d'Immunologie Biologique, DMU BIOGEM, Hôpital Bichat, Paris, France
| | - Mathilde Zeller
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Virginie Paulet
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Benoît Noël
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Marie-Hélène Damiens
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Natacha Szely
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | | | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Sylvie Chollet-Martin
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France; AP-HP, Service d'Immunologie Biologique, DMU BIOGEM, Hôpital Bichat, Paris, France
| | - Luc de Chaisemartin
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France; AP-HP, Service d'Immunologie Biologique, DMU BIOGEM, Hôpital Bichat, Paris, France
| | - Saadia Kerdine-Römer
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France.
| |
Collapse
|
3
|
Hölken JM, Wurz AL, Friedrich K, Böttcher P, Asskali D, Stark H, Breitkreutz J, Buhl T, Vierkotten L, Mewes KR, Teusch N. Incorporating immune cell surrogates into a full-thickness tissue equivalent of human skin to characterize dendritic cell activation. Sci Rep 2024; 14:30158. [PMID: 39627401 PMCID: PMC11615323 DOI: 10.1038/s41598-024-81014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
In the past decades studies investigating the dendritic cell (DC) activation have been conducted almost exclusively in animal models. However, due to species-specific differences in the DC subsets, there is an urgent need for alternative in vitro models allowing the investigation of Langerhans cell (LC) and dermal dendritic cell (DDC) activation in human tissue. We have engineered a full-thickness (FT) human skin tissue equivalent with incorporated LC surrogates derived from the human myeloid leukemia-derived cell line Mutz-3, and DDC surrogates generated from the human leukemia monocytic cell line THP-1. Topical treatment of the skin models encompassing Mutz-LCs only with nickel sulfate (NiSO4) or 1-chloro-2,4-dinitrobenzene (DNCB) for 24 h resulted in significant higher numbers of CD1a positive cells in the dermal compartment, suggesting a sensitizer-induced migration of LCs. Remarkably, exposure of the skin models encompassing both, LC and DDC surrogates, revealed an early sensitizer-induced response reflected by increased numbers of CD1a positive cells in the epidermis and dermis after 8 h of treatment. Our human skin tissue equivalent encompassing incorporated LC and DDC surrogates allows the investigation of DC activation, subsequent sensitizer identification and drug discovery according to the principles of 3R.
Collapse
Affiliation(s)
- Johanna Maria Hölken
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstr.1, 40225, Düsseldorf, Germany
| | - Anna-Lena Wurz
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstr.1, 40225, Düsseldorf, Germany
| | - Katja Friedrich
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstr.1, 40225, Düsseldorf, Germany
| | | | - Dounia Asskali
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstr.1, 40225, Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr.1, 40225, Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr.1, 40225, Düsseldorf, Germany
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37099, Göttingen, Germany
| | - Lars Vierkotten
- Henkel AG & Co. KGaA, Henkelstr. 67, 40589, Düsseldorf, Germany
| | | | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstr.1, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Hölken JM, Friedrich K, Merkel M, Blasius N, Engels U, Buhl T, Mewes KR, Vierkotten L, Teusch NE. A human 3D immune competent full-thickness skin model mimicking dermal dendritic cell activation. Front Immunol 2023; 14:1276151. [PMID: 38022577 PMCID: PMC10657825 DOI: 10.3389/fimmu.2023.1276151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
We have integrated dermal dendritic cell surrogates originally generated from the cell line THP-1 as central mediators of the immune reaction in a human full-thickness skin model. Accordingly, sensitizer treatment of THP-1-derived CD14-, CD11c+ immature dendritic cells (iDCs) resulted in the phosphorylation of p38 MAPK in the presence of 1-chloro-2,4-dinitrobenzene (DNCB) (2.6-fold) as well as in degradation of the inhibitor protein kappa B alpha (IκBα) upon incubation with NiSO4 (1.6-fold). Furthermore, NiSO4 led to an increase in mRNA levels of IL-6 (2.4-fold), TNF-α (2-fold) and of IL-8 (15-fold). These results were confirmed on the protein level, with even stronger effects on cytokine release in the presence of NiSO4: Cytokine secretion was significantly increased for IL-8 (147-fold), IL-6 (11.8-fold) and IL-1β (28.8-fold). Notably, DNCB treatment revealed an increase for IL-8 (28.6-fold) and IL-1β (5.6-fold). Importantly, NiSO4 treatment of isolated iDCs as well as of iDCs integrated as dermal dendritic cell surrogates into our full-thickness skin model (SM) induced the upregulation of the adhesion molecule clusters of differentiation (CD)54 (iDCs: 1.2-fold; SM: 1.3-fold) and the co-stimulatory molecule and DC maturation marker CD86 (iDCs ~1.4-fold; SM:~1.5-fold) surface marker expression. Noteworthy, the expression of CD54 and CD86 could be suppressed by dexamethasone treatment on isolated iDCs (CD54: 1.3-fold; CD86: 2.1-fold) as well as on the tissue-integrated iDCs (CD54: 1.4-fold; CD86: 1.6-fold). In conclusion, we were able to integrate THP-1-derived iDCs as functional dermal dendritic cell surrogates allowing the qualitative identification of potential sensitizers on the one hand, and drug candidates that potentially suppress sensitization on the other hand in a 3D human skin model corresponding to the 3R principles ("replace", "reduce" and "refine").
Collapse
Affiliation(s)
- Johanna Maria Hölken
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katja Friedrich
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marion Merkel
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Nelli Blasius
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Ursula Engels
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Karsten Rüdiger Mewes
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Lars Vierkotten
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Nicole Elisabeth Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Upadhaya P, Lamenza FF, Shrestha S, Roth P, Jagadeesha S, Pracha H, Horn NA, Oghumu S. Berry Extracts and Their Bioactive Compounds Mitigate LPS and DNFB-Mediated Dendritic Cell Activation and Induction of Antigen Specific T-Cell Effector Responses. Antioxidants (Basel) 2023; 12:1667. [PMID: 37759970 PMCID: PMC10525528 DOI: 10.3390/antiox12091667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Berries have gained widespread recognition for their abundant natural antioxidant, anti-inflammatory, and immunomodulatory properties. However, there has been limited research conducted thus far to investigate the role of the active constituents of berries in alleviating contact hypersensitivity (CHS), the most prevalent occupational dermatological disease. Our study involved an ex vivo investigation aimed at evaluating the impact of black raspberry extract (BRB-E) and various natural compounds found in berries, such as protocatechuic acid (PCA), proanthocyanidins (PANT), ellagic acid (EA), and kaempferol (KMP), on mitigating the pathogenicity of CHS. We examined the efficacy of these natural compounds on the activation of dendritic cells (DCs) triggered by 2,4-dinitrofluorobenzene (DNFB) and lipopolysaccharide (LPS). Specifically, we measured the expression of activation markers CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines, including Interleukin (IL)-12, IL-6, TNF-α, and IL-10, to gain further insights. Potential mechanisms through which these phytochemicals could alleviate CHS were also investigated by investigating the role of phospho-ERK. Subsequently, DCs were co-cultured with T-cells specific to the OVA323-339 peptide to examine the specific T-cell effector responses resulting from these interactions. Our findings demonstrated that BRB-E, PCA, PANT, and EA, but not KMP, inhibited phosphorylation of ERK in LPS-activated DCs. At higher doses, EA significantly reduced expression of all the activation markers studied in DNFB- and LPS-stimulated DCs. All compounds tested reduced the level of IL-6 in DNFB-stimulated DCs in Flt3L as well as in GM-CSF-derived DCs. However, levels of IL-12 were reduced by all the tested compounds in LPS-stimulated Flt3L-derived BMDCs. PCA, PANT, EA, and KMP inhibited the activated DC-mediated Interferon (IFN)-γ and IL-17 production by T-cells. Interestingly, PANT, EA, and KMP significantly reduced T-cell proliferation and the associated IL-2 production. Our study provides evidence for differential effects of berry extracts and natural compounds on DNFB and LPS-activated DCs revealing potential novel approaches for mitigating CHS.
Collapse
Affiliation(s)
- Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Sushmitha Jagadeesha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Natalie A. Horn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| |
Collapse
|
6
|
Hölken JM, Teusch N. The Monocytic Cell Line THP-1 as a Validated and Robust Surrogate Model for Human Dendritic Cells. Int J Mol Sci 2023; 24:1452. [PMID: 36674966 PMCID: PMC9866978 DOI: 10.3390/ijms24021452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
We have implemented an improved, cost-effective, and highly reproducible protocol for a simple and rapid differentiation of the human leukemia monocytic cell line THP-1 into surrogates for immature dendritic cells (iDCs) or mature dendritic cells (mDCs). The successful differentiation of THP-1 cells into iDCs was determined by high numbers of cells expressing the DC activation markers CD54 (88%) and CD86 (61%), and the absence of the maturation marker CD83. The THP-1-derived mDCs are characterized by high numbers of cells expressing CD54 (99%), CD86 (73%), and the phagocytosis marker CD11b (49%) and, in contrast to THP-1-derived iDCs, CD83 (35%) and the migration marker CXCR4 (70%). Treatment of iDCs with sensitizers, such as NiSO4 and DNCB, led to high expression of CD54 (97%/98%; GMFI, 3.0/3.2-fold induction) and CD86 (64%/96%; GMFI, 4.3/3.2-fold induction) compared to undifferentiated sensitizer-treated THP-1 (CD54, 98%/98%; CD86, 55%/96%). Thus, our iDCs are highly suitable for toxicological studies identifying potential sensitizing or inflammatory compounds. Furthermore, the expression of CD11b, CD83, and CXCR4 on our iDC and mDC surrogates could allow studies investigating the molecular mechanisms of dendritic cell maturation, phagocytosis, migration, and their use as therapeutic targets in various disorders, such as sensitization, inflammation, and cancer.
Collapse
Affiliation(s)
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Imai N, Takeyoshi M, Aizawa S, Tsurumaki M, Kurosawa M, Toyoda A, Sugiyama M, Kasahara K, Hirota M, Ogata S. Enhancing between-facility reproducibility of the SH test as an in vitro skin sensitization test by the improved test method. J Toxicol Sci 2021; 46:235-248. [PMID: 33952800 DOI: 10.2131/jts.46.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
There has been an increased demand to eliminate animal experiments and to replace the experiments with alternative tests for assessing the safety of cosmetics. The SH test is an in vitro skin sensitization test that evaluates the protein binding abilities of a test substance. Skin sensitization must be evaluated by multiple test methods. The SH test uses the same cell line and measuring instruments as the human Cell-Line Activation Test (h-CLAT), which is one of the test methods used to evaluate different key events and is listed in the OECD test guidelines. There are cost advantages to usher the SH test into facilities that are already running the h-CLAT. The SH test is conducted only at a facility that has developed the SH test because studies on the between-facility reproducibility and validity have not been performed. Therefore, to verify the transferability of the SH test and the between-facilities reproducibility, we evaluated the reproducibility of the SH test results at three facilities, including the development facility. After an initial round of testing, the protocol was refined as follows to improve reproducibility among the three facilities: i) determine the optimum pH range, ii) change the maximum applicable concentration of water-soluble substances, and iii) define the appropriate dispersion conditions for evaluating hydrophobic substances. These refinements markedly enhanced the between-facility reproducibility (from 76.0% to 96.0%) for the 25 substances evaluated in this study. This study confirmed that the SH test is an effective skin sensitization test method with high technical transferability and between-facility reproducibility.
Collapse
Affiliation(s)
- Noriyasu Imai
- Safety and Analytical Research Laboratories, KOSÉ Corporation.,Graduate School of Environment and Information Sciences, Yokohama National University
| | | | - Sakiko Aizawa
- Safety and Analytical Research Laboratories, KOSÉ Corporation
| | - Mika Tsurumaki
- Safety and Analytical Research Laboratories, KOSÉ Corporation
| | | | - Akemi Toyoda
- Frontier Research Center, POLA Chemical Industries, Inc
| | - Maki Sugiyama
- Frontier Research Center, POLA Chemical Industries, Inc
| | | | | | - Shinichi Ogata
- Graduate School of Environment and Information Sciences, Yokohama National University
| |
Collapse
|
8
|
Zhang L, Xia H, Xia K, Liu X, Zhang X, Dai J, Zeng Z, Jia Y. Selenium Regulation of the Immune Function of Dendritic Cells in Mice Through the ERK, Akt and RhoA/ROCK Pathways. Biol Trace Elem Res 2021; 199:3360-3370. [PMID: 33107016 DOI: 10.1007/s12011-020-02449-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
Selenium levels can regulate the function of T cells, macrophages, B cells, natural killer cells and other immune cells. However, the effect of selenium on the immune function of dendritic cells (DCs) isolated from selenium-supplemented mice is unknown. In this study, C57BL/6J mice were randomly divided into three groups and fed diets containing low (0.08 ppm), medium (0.25 ppm) or high (1 ppm) selenium levels for 8 weeks. Immature (imDCs) and mature (mDCs) dendritic cells were then isolated from the bone marrow. Next, the migration, phagocytic capacity and mixed lymphocyte reaction (MLR) for imDCs and mDCs were detected by transwell and flow cytometry. The levels of C-C chemokine receptor type 7 (CCR7), major histocompatibility complex II (MHCII) and reactive oxygen species (ROS) were assayed by flow cytometry. F-actin and superoxide dismutase (SOD) activity was detected by fluorescence microscopy and SOD assay kit, respectively. In addition, the extracellular signal-regulated kinase (ERK), Akt, Ras homolog gene family member A/Rho-associated protein kinase (RhoA/ROCK) signalling, selenoprotein K (SELENOK) and glutathione peroxidase 1 (GPX1) levels were measured by western blot analysis. The results indicated that selenium deficiency enhanced the migration of imDCs by ROS and SELENOK-mediated ERK, Akt and RhoA/ROCK pathways but impaired the antigen uptake of imDCs. Although a high selenium level inhibited the migration of imDCs, it had no effect on phagocytic capacity. For mDCs, low selenium levels impaired free migration, and high levels inhibited the chemotactic migration involved in F-actin and CCR7, respectively. Low and high selenium levels impaired the MLR by inhibiting MHCII surface localisation, which might be related to ROS- and SELENOK-mediated ERK, Akt and RhoA/ROCK signalling pathways. In summary, selenium may regulate the immune function of mouse DCs through the ROS- and SELENOK-mediated ERK, Akt and RhoA/ROCK signalling.
Collapse
Affiliation(s)
- Liangliang Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huan Xia
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaide Xia
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xianmei Liu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Dai
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhu Zeng
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Jia
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China.
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
9
|
Zaderer V, Posch W, Gstir R, Filipek PA, Bonn GK, Aramwit P, Huber LA, Wilflingseder D. P80 Natural Essence Exerts Efficient Anti-HIV-1- as Well as Adjuvant Effects in DCs. Vaccines (Basel) 2021; 9:976. [PMID: 34579213 PMCID: PMC8472994 DOI: 10.3390/vaccines9090976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs), as well as complement, play a major role during human immunodeficiency virus 1 (HIV-1) entry and infection at mucosal sites. Together, DCs and complement are key points for understanding host defence against HIV-1 infection and for studying the impact of new drugs on the regulation of innate host-pathogen interactions and adaptive immunity. For this, we evaluated the antiviral effect of the P80 natural essence (Longan extract) on interactions of non- and complement-opsonized HIV-1 with DCs. In viability assays, we first illustrated the effects of P80 natural essence on DC function. We found that P80 concentrations above 1.5% caused increased cell death, while at concentrations between 0.5% and 1% the compound exerted efficient antiviral effects in DCs and illustrated an adjuvant effect regarding DC activation. DC maturation, as well as co-stimulatory capacity, were significantly improved by P80 natural essence via p38 MAPK phosphorylation in presence of the viral challenge independent of the opsonization pattern. These findings might be exploited for future therapeutic options to target DC subsets directly at mucosal sites by P80 natural essence and to block entry of both, non- and complement-opsonized HIV-1.
Collapse
Affiliation(s)
- Viktoria Zaderer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (V.Z.); (W.P.)
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (V.Z.); (W.P.)
| | - Ronald Gstir
- ADSI—Austrian Drug Screening Institute GmbH, 6020 Innsbruck, Austria; (R.G.); (P.A.F.); (G.K.B.); (L.A.H.)
| | - Przemyslaw A. Filipek
- ADSI—Austrian Drug Screening Institute GmbH, 6020 Innsbruck, Austria; (R.G.); (P.A.F.); (G.K.B.); (L.A.H.)
| | - Günther K. Bonn
- ADSI—Austrian Drug Screening Institute GmbH, 6020 Innsbruck, Austria; (R.G.); (P.A.F.); (G.K.B.); (L.A.H.)
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Lukas A. Huber
- ADSI—Austrian Drug Screening Institute GmbH, 6020 Innsbruck, Austria; (R.G.); (P.A.F.); (G.K.B.); (L.A.H.)
- Institute of Cell Biology, Biocenter Innsbruck, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (V.Z.); (W.P.)
| |
Collapse
|
10
|
Cao X, Tian S, Fu M, Li Y, Sun Y, Liu J, Liu Y. Resveratrol protects human bronchial epithelial cells against nickel-induced toxicity via suppressing p38 MAPK, NF-κB signaling, and NLRP3 inflammasome activation. ENVIRONMENTAL TOXICOLOGY 2020; 35:609-618. [PMID: 31943712 DOI: 10.1002/tox.22896] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Nickel is a common environmental pollutant that can impair the lung, but the underlying mechanisms have not yet been fully elucidated. Furthermore, natural products are generally used to inhibit cell damage induced by heavy metal. Resveratrol possesses wide biological activities, including anti-inflammation and antioxidative stress. This study was conducted to explore the toxicity of nickel on human bronchial epithelial (BEAS-2B) cells and evaluate the protective effect of resveratrol. The results showed that nickel could induce cell apoptosis, increase oxidative stress, and promote the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-8, C-reaction protein. Western blot analysis showed that nickel activated p38 mitogen-activated protein kinase (MAPK), nuclear factor-kappa B, and nucleotide-binding oligomerization domain-like receptor pyrin-domain-containing protein 3 pathways, while resveratrol could reverse these effects. Our results suggested that resveratrol could protect BEAS-2B cells from nickel-induced cytotoxicity. Therefore, resveratrol is a potential chemopreventive agent against nickel-induced lung disease.
Collapse
Affiliation(s)
- Xiangyu Cao
- School of Life Science, Liaoning University, Shenyang, China
| | - Siqi Tian
- School of Life Science, Liaoning University, Shenyang, China
| | - Mingyang Fu
- School of Life Science, Liaoning University, Shenyang, China
| | - Yanmei Li
- Department of Mine, Metallurgy and Geology Engineering, University of Guanajuato, Guanajuato, Mexico
| | - Yueling Sun
- School hospital, Liaoning University, Shenyang, China
| | - Jianli Liu
- School of Life Science, Liaoning University, Shenyang, China
| | - Yue Liu
- School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
11
|
Yang L, Han X, Yuan J, Xing F, Hu Z, Huang F, Wu H, Shi H, Zhang T, Wu X. Early astragaloside IV administration attenuates experimental autoimmune encephalomyelitis in mice by suppressing the maturation and function of dendritic cells. Life Sci 2020; 249:117448. [PMID: 32087232 DOI: 10.1016/j.lfs.2020.117448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 02/02/2023]
Abstract
AIMS Dendritic cells (DCs) actively participate in the pathogenesis of multiple sclerosis (MS), an autoimmune disease. Astragaloside IV (ASI), an active monomer isolated from the Chinese medicine Astragalus membranaceus, has a wide range of pharmacological effects. We aimed to elucidate the effects of ASI on the development of DCs in the early stage of MS/EAE. MAIN METHODS The mice were administered with ASI (20 mg/kg) daily 3 days in advance of EAE induction and continuously until day 7 post-immunization. The effect of ASI on CD11c+ DC cells from bone marrow (BMDCs) or the spleen of EAE mice at day 7 post-immunization were investigated respectively by flow cytometry, ELISA, western blot, real-time PCR and immunofluorescence. KEY FINDINGS ASI administration in the early stage of EAE was demonstrated to delay the onset and alleviate the severity of the disease. ASI inhibited the maturation and the antigen presentation of DCs in spleen of EAE mice and LPS-stimulated BMDCs, as evidenced by decreased expressions of CD11c, CD86, CD40 and MHC II. Accordingly, DCs treated by ASI secreted less IL-6 and IL-12, and prevented the differentiation of CD4+ T cells into Th1 and Th17 cells, which was probably through inhibiting the activation of NFκB and MAPKs signaling pathways. SIGNIFICANCE Our results implicated the alleviative effect of early ASI administration on EAE might be mediated by suppressing the maturation and function of DCs. The novel findings may add to our knowledge of ASI in the potentially clinical treatment of MS.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Faping Xing
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhixing Hu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ting Zhang
- Classical Prescription Experimental Platform, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
12
|
Jiménez-Vidal L, Espitia-Pérez P, Torres-Ávila J, Ricardo-Caldera D, Salcedo-Arteaga S, Galeano-Páez C, Pastor-Sierra K, Espitia-Pérez L. Nuclear factor erythroid 2 - related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysis. BMC Pharmacol Toxicol 2019; 20:78. [PMID: 31852525 PMCID: PMC6921378 DOI: 10.1186/s40360-019-0360-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Nickel and nickel-containing compounds (NCC) are known human carcinogens. However, the precise molecular mechanisms of nickel-induced malignant transformation remain unknown. Proposed mechanisms suggest that nickel and NCC may participate in the dual activation/inactivation of enzymatic pathways involved in cell defenses against oxidative damage, where Nuclear factor-erythroid 2 related factor 2 (Nrf2) plays a central role. Methods For assessing the potential role of proteins involved in the Nrf2-mediated response to nickel and NCC exposure, we designed an interactome network using the STITCH search engine version 5.0 and the STRING software 10.0. The major NCC-protein interactome (NCPI) generated was analyzed using the MCODE plugin, version 1.5.1 for the detection of interaction modules or subnetworks. Main centralities of the NCPI were determined with the CentiScape 2.2 plugin of Cytoscape 3.4.0 and main biological processes associated with each cluster were assessed using the BiNGO plugin of Cytoscape 3.4.0. Results Water-soluble NiSO4 and insoluble Ni3S2 were the most connected to proteins involved in the NCPI network. Nfr2 was detected as one of the most relevant proteins in the network, participating in several multifunctional protein complexes in clusters 1, 2, 3 and 5. Ontological analysis of cluster 3 revealed several processes related to unfolded protein response (UPR) and response to endoplasmic reticulum (ER) stress. Conclusions Cellular response to NCC exposure was very comparable, particularly concerning oxidative stress response, inflammation, cell cycle/proliferation, and apoptosis. In this cellular response, Nfr2 was highly centralized and participated in several multifunctional protein complexes, including several related to ER-stress. These results add evidence on the possible Ni2+ induced – ER stress mainly associated with insoluble NCC. In this scenario, we also show how protein degradation mediated by ubiquitination seems to play key roles in cellular responses to Ni.
Collapse
Affiliation(s)
- Luisa Jiménez-Vidal
- Facultad de Ciencias de la Salud, Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Calle 38 Cra 1W, Barrio Juan XXIII, Montería, Córdoba, Colombia
| | - Pedro Espitia-Pérez
- Facultad de Ciencias de la Salud, Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Calle 38 Cra 1W, Barrio Juan XXIII, Montería, Córdoba, Colombia
| | - José Torres-Ávila
- Unit for Development and Innovation in Genetics and Molecular Biology, Universidad Simón Bolívar, Barranquilla, Atlántico, Colombia
| | - Dina Ricardo-Caldera
- Facultad de Ciencias de la Salud, Grupo de Investigación en Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Shirley Salcedo-Arteaga
- Facultad de Ciencias de la Salud, Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Calle 38 Cra 1W, Barrio Juan XXIII, Montería, Córdoba, Colombia
| | - Claudia Galeano-Páez
- Facultad de Ciencias de la Salud, Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Calle 38 Cra 1W, Barrio Juan XXIII, Montería, Córdoba, Colombia
| | - Karina Pastor-Sierra
- Facultad de Ciencias de la Salud, Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Calle 38 Cra 1W, Barrio Juan XXIII, Montería, Córdoba, Colombia
| | - Lyda Espitia-Pérez
- Facultad de Ciencias de la Salud, Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Calle 38 Cra 1W, Barrio Juan XXIII, Montería, Córdoba, Colombia.
| |
Collapse
|
13
|
Mitachi T, Kouzui M, Maruyama R, Yamashita K, Ogata S, Kojima H, Itagaki H. Some non-sensitizers upregulate CD54 expression by activation of the NLRP3 inflammasome in THP-1 cells. J Toxicol Sci 2019; 44:213-224. [DOI: 10.2131/jts.44.213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Takafumi Mitachi
- Department of Chemical and Energy Engineering, Yokohama National University
- Corporate Research Center, Daicel Corporation
| | - Mai Kouzui
- Department of Chemical and Energy Engineering, Yokohama National University
| | - Ryo Maruyama
- Department of Chemical and Energy Engineering, Yokohama National University
| | | | - Shinichi Ogata
- Department of Environment and Information Science, Yokohama National University
| | - Hajime Kojima
- Division of Risk Assessment, National Institute of Health Sciences
| | - Hiroshi Itagaki
- Department of Chemical and Energy Engineering, Yokohama National University
| |
Collapse
|
14
|
Han A, Zou L, Gan X, Li Y, Liu F, Chang X, Zhang X, Tian M, Li S, Su L, Sun Y. ROS generation and MAPKs activation contribute to the Ni-induced testosterone synthesis disturbance in rat Leydig cells. Toxicol Lett 2018; 290:36-45. [PMID: 29567110 DOI: 10.1016/j.toxlet.2018.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 01/23/2023]
Abstract
Nickel (Ni) can disorder testosterone synthesis in rat Leydig cells, whereas the mechanisms remain unclear. The aim of this study was to investigate the role of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) in Ni-induced disturbance of testosterone synthesis in rat Leydig cells. The testosterone production and ROS levels were detected in Leydig cells. The mRNA and protein levels of testosterone synthetase, including StAR, CYP11A1, 3β-HSD, CYP17A1 and 17β-HSD, were determined. Effects of Ni on the ERK1/2, p38 and JNK MAPKs were also investigated. The results showed that Ni triggered ROS generation, consequently resulted in the decrease of testosterone synthetase expression and testosterone production in Leydig cells, which were then attenuated by ROS scavengers of N-acetylcysteine (NAC) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), indicating that ROS are involved in the Ni-induced testosterone biosynthesis disturbance. Meanwhile Ni activated the ERK1/2, p38 and JNK MAPKs. Furthermore, Ni-inhibited testosterone synthetase expression levels and testosterone secretion were all alleviated by co-treatment with MAPK specific inhibitors (U0126 and SB203580, respectively), implying that Ni inhibited testosterone synthesis through activating ERK1/2 and p38 MAPK signal pathways in Leydig cells. In conclusion, these findings suggest that Ni causes testosterone synthesis disorder, partly, via ROS and MAPK signal pathways.
Collapse
Affiliation(s)
- Aijie Han
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Lingyue Zou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqin Gan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's hospital, Xi'an 710068, China
| | - Fangfang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaotian Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Minmin Tian
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Li Su
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
15
|
Ferreira I, Silva A, Martins JD, Neves BM, Cruz MT. Nature and kinetics of redox imbalance triggered by respiratory and skin chemical sensitizers on the human monocytic cell line THP-1. Redox Biol 2018; 16:75-86. [PMID: 29477863 PMCID: PMC5842329 DOI: 10.1016/j.redox.2018.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 11/16/2022] Open
Abstract
Low molecular weight reactive chemicals causing skin and respiratory allergies are known to activate dendritic cells (DC), an event considered to be a key step in both pathologies. Although generation of reactive oxygen species (ROS) is considered a major danger signal responsible for DC maturation, the mechanisms leading to cellular redox imbalance remain poorly understood. Therefore, the aim of this study was to unveil the origin and kinetics of redox imbalance elicited by 1-fluoro-2,4-dinitrobenzene (DNFB) and trimellitic anhydride chloride (TMAC), two golden standards of skin and chemical respiratory allergy, respectively. To track this goal, we addressed the time course modifications of ROS production and cellular antioxidant defenses as well as the modulation of MAPKs signaling pathways and transcription of pathophysiological relevant genes in THP-1 cells. Our data shows that the thiol-reactive sensitizer DNFB directly reacts with cytoplasmic glutathione (GSH) causing its rapid and marked depletion which results in a general increase in ROS accumulation. In turn, TMAC, which preferentially reacts with amine groups, induces a delayed GSH depletion as a consequence of increased mitochondrial ROS production. These divergences in ROS production seem to be correlated with the different extension of intracellular signaling pathways activation and, by consequence, with distinct transcription kinetics of genes such as HMOX1, IL8, IL1B and CD86. Ultimately, our observations may help explain the distinct DC phenotype and T-cell polarizing profile triggered by skin and respiratory sensitizers. Distinctive ROS origin and kinetics elicited by skin and respiratory sensitizers. ROS production elicited by DNFB results primarily from direct GSH haptenation. Distinct expression of genes involved in DC maturation and T-cell polarizing capacity.
Collapse
Affiliation(s)
- Isabel Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000- 548 Coimbra, Portugal.
| | - Ana Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000- 548 Coimbra, Portugal
| | - João Demétrio Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000- 548 Coimbra, Portugal
| | - Bruno Miguel Neves
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000- 548 Coimbra, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000- 548 Coimbra, Portugal.
| |
Collapse
|
16
|
Mitachi T, Mezaki M, Yamashita K, Itagaki H. Acidic conditions induce the suppression of CD86 and CD54 expression in THP-1 cells. J Toxicol Sci 2018; 43:299-309. [DOI: 10.2131/jts.43.299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Takafumi Mitachi
- Department of Chemical and Energy Engineering, Yokohama National University
| | - Minori Mezaki
- Department of Chemical and Energy Engineering, Yokohama National University
| | | | - Hiroshi Itagaki
- Department of Chemical and Energy Engineering, Yokohama National University
| |
Collapse
|
17
|
Höper T, Mussotter F, Haase A, Luch A, Tralau T. Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicol Res (Camb) 2017; 6:595-610. [PMID: 30090528 PMCID: PMC6062186 DOI: 10.1039/c7tx00058h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022] Open
Abstract
Allergic contact dermatitis (ACD) is a widespread hypersensitivity reaction of the skin. The cellular mechanisms underlying its development are complex and involve close interaction of different cell types of the immune system. It is this very complexity which has long prevented straightforward replacement of the corresponding regulatory in vivo tests. Recent efforts have already resulted in the development of several in vitro testing alternatives that address key steps of ACD. Yet identification of suitable biomarkers is still a subject of intense research. Search strategies for the latter encompass transcriptomics, proteomics as well as metabolomics approaches. The scope of this review shall be the application and use of proteomics in the context of ACD. This includes highlighting relevant aspects of the molecular and cellular mechanisms underlying ACD, the exploitation of these mechanisms for testing and biomarkers (e.g., in the context of the OECD's adverse outcome pathway initiative) as well as an outlook on emerging proteome targets, for example during the allergen-induced activation of dendritic cells (DCs).
Collapse
Affiliation(s)
- Tessa Höper
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Franz Mussotter
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Andrea Haase
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Andreas Luch
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Tewes Tralau
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| |
Collapse
|
18
|
Narita K, Vo PTH, Yamamoto K, Kojima H, Itagaki H. Preventing false-negatives in the in vitro skin sensitization testing of acid anhydrides using interleukin-8 release assays. Toxicol In Vitro 2017; 42:69-75. [DOI: 10.1016/j.tiv.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
|
19
|
Nickel Sulfate Promotes IL-17A Producing CD4+ T Cells by an IL-23-Dependent Mechanism Regulated by TLR4 and Jak-STAT Pathways. J Invest Dermatol 2017. [PMID: 28634033 DOI: 10.1016/j.jid.2017.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Allergic contact dermatitis, caused by nickel, is a delayed-type hypersensitivity reaction, and 14.5% of the general population may be affected in Europe. Among a wide range of cytokines, the IL-12 family has unique structural and immunological characteristics. Whereas IL-12p70 promotes T helper (Th) 1 cell polarization, IL-23 promotes Th17 cell development and both have been isolated from nickel-allergic patients. In this work, we were interested in understanding the mechanism behind nickel-induced Th17 cell development. We showed that nickel induced an early production of IL-23 in human monocyte-derived dendritic cells along with an increase in the expression of il-23p19 and il-12p40 mRNA. However, the production of a significant level of IL-12p70 required an additional signal such as IFN-γ. Moreover, nickel-treated monocyte-derived dendritic cells induced an increase in the percentage of IL-17A+ CD4+ T cells, an effect reduced by IL-23 neutralization. We then investigated the molecular mechanism of IL-23 production. Our results showed that toll-like receptor 4, p38 mitogen-activated protein kinase, and NF-κB were involved in IL-23 production induced by nickel. However, Jak-signal transducer and activator of transcription activation seems to maintain the IL-23/IL-12p70 balance by limiting IL-23 production and promoting Th1 polarization. These results indicate that nickel-induced Th17 cell development is dependent on the production of IL-23 by human monocyte-derived dendritic cells via toll-like receptor 4, p38 mitogen-activated protein kinase, NF-κB, and Jak-signal transducer and activator of transcription pathways.
Collapse
|
20
|
Pallardy M, Bechara R. Chemical or Drug Hypersensitivity: Is the Immune System Clearing the Danger? Toxicol Sci 2017; 158:14-22. [DOI: 10.1093/toxsci/kfx084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
21
|
Jakob A, Mussotter F, Ohnesorge S, Dietz L, Pardo J, Haidl ID, Thierse HJ. Immunoproteomic identification and characterization of Ni 2+-regulated proteins implicates Ni 2+ in the induction of monocyte cell death. Cell Death Dis 2017; 8:e2684. [PMID: 28300831 PMCID: PMC5386519 DOI: 10.1038/cddis.2017.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
Nickel allergy is the most common cause of allergic reactions worldwide, with cutaneous and systemic effects potentially affecting multiple organs. Monocytes are precursors of not only macrophages but also dendritic cells, the most potent activators of nickel hypersensitivity. Monocytes are themselves important antigen-presenting cells, capable of nickel-specific T-cell activation in vivo and in vitro, in addition to being important for immediate innate immune inflammation. To elucidate early Ni2+-dependent inflammatory molecular mechanisms in human monocytes, a Ni2+-specific proteomic approach was applied. Quantitative two-dimensional (2D) differential gel electrophoresis and Delta2D software analyses coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) revealed that Ni2+ significantly regulated 56 protein species, of which 36 were analyzed by MALDI-MS. Bioinformatics analyses of all identified proteins resulted in Ni2+-associated functional annotation clusters, such as cell death, metal ion binding, and cytoskeletal remodeling. The involvement of Ni2+ in the induction of monocyte cell death, but not T-cell death, was observed at Ni2+ concentrations at or above 250 μM. Examination of caspase activity during Ni2+-mediated cell death revealed monocytic cell death independent of caspase-3 and -7 activity. However, confocal microscopy analysis demonstrated Ni2+-triggered cytoskeletal remodeling and nuclear condensation, characteristic of cellular apoptosis. Thus, Ni2+-specific peripheral blood mononuclear cell stimulation suggests monocytic cell death at Ni2+ concentrations at or above 250 μM, and monocytic effects on immune regulation at lower Ni2+ concentrations.
Collapse
Affiliation(s)
- Annika Jakob
- Laboratory for Immunology and Proteomics, Department of Dermatology and University Medical Center Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Franz Mussotter
- German Federal Institute for Risk Assessment, Chemicals and Product Safety, Berlin 10589, Germany
| | - Stefanie Ohnesorge
- Laboratory for Immunology and Proteomics, Department of Dermatology and University Medical Center Mannheim, University of Heidelberg, Mannheim 68167, Germany.,Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Lisa Dietz
- Laboratory for Immunology and Proteomics, Department of Dermatology and University Medical Center Mannheim, University of Heidelberg, Mannheim 68167, Germany.,Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Julian Pardo
- Aragón I+D Foundation (ARAID), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza/IIS Aragón, Zaragoza, Spain.,Biomedical Research Center of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - Ian D Haidl
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Hermann-Josef Thierse
- Laboratory for Immunology and Proteomics, Department of Dermatology and University Medical Center Mannheim, University of Heidelberg, Mannheim 68167, Germany.,German Federal Institute for Risk Assessment, Chemicals and Product Safety, Berlin 10589, Germany.,Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
22
|
Kersh AE, Sasaki M, Cooper LA, Kissick HT, Pollack BP. Understanding the Impact of ErbB Activating Events and Signal Transduction on Antigen Processing and Presentation: MHC Expression as a Model. Front Pharmacol 2016; 7:327. [PMID: 27729860 PMCID: PMC5052536 DOI: 10.3389/fphar.2016.00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022] Open
Abstract
Advances in molecular pathology have changed the landscape of oncology. The ability to interrogate tissue samples for oncogene amplification, driver mutations, and other molecular alterations provides clinicians with an enormous level of detail about their patient's cancer. In some cases, this information informs treatment decisions, especially those related to targeted anti-cancer therapies. However, in terms of immune-based therapies, it is less clear how to use such information. Likewise, despite studies demonstrating the pivotal role of neoantigens in predicting responsiveness to immune checkpoint blockade, it is not known if the expression of neoantigens impacts the response to targeted therapies despite a growing recognition of their diverse effects on immunity. To realize the promise of 'personalized medicine', it will be important to develop a more integrated understanding of the relationships between oncogenic events and processes governing anti-tumor immunity. One area of investigation to explore such relationships centers on defining how ErbB/HER activation and signal transduction influences antigen processing and presentation.
Collapse
Affiliation(s)
- Anna E Kersh
- Medical Scientist Training Program, Emory University School of Medicine Atlanta, GA, USA
| | | | - Lee A Cooper
- Department of Biomedical Informatics, Emory University School of MedicineAtlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of TechnologyAtlanta, GA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine Atlanta, GA, USA
| | - Brian P Pollack
- Atlanta VA Medical CenterDecatur, GA, USA; Department of Dermatology, Emory University School of MedicineAtlanta, GA, USA
| |
Collapse
|
23
|
Guedes S, Neves B, Vitorino R, Domingues R, Cruz MT, Domingues P. Contact dermatitis: in pursuit of sensitizer's molecular targets through proteomics. Arch Toxicol 2016; 91:811-825. [PMID: 27129696 DOI: 10.1007/s00204-016-1714-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Protein haptenation, i.e., the modification of proteins by small reactive chemicals, is the key step in the sensitization phase of allergic contact dermatitis (ACD). Despite the research effort in past decades, the identification of immunogenic hapten-protein complexes that trigger a relevant pathogenic immune response in ACD, as well as the haptenation reaction molecular site, and the elements of a potentially conditioning environment during each of these stages, remain poorly understood. These questions led us to employ a proteomics-based approach to identify modified proteins in the dendritic-like cell line THP-1 sensitized with fluorescein isothiocyanate (FITC), through a combination of 2D-gel electrophoresis, nano-LC and mass spectrometry. A specific set of 39 targeted proteins was identified and comprised proteins from various cellular locations and biological functions. One of FITC targets was identified as MLK, a member of the mixed-lineage kinase family known to act as a mitogen-activated protein kinase kinase kinase and to control the activity of specific mitogen-activated protein kinase pathways, namely p38 and JNK pathways. Haptenated in the vicinity of its active site, our results point to MLK being a relevant target due to a consistent non-activation at early time points of these pathways upon FITC sensitization in THP-1 cells. Moreover, FITC pre-treatment significantly decrease phospho-p38 and phospho-JNK levels induced upon exposure to a classical activator such as lipopolysaccharide or to the sensitizer 2,4-dinitrofluorobenzene. Overall, our data point to specific amino acid residues haptenation within critical proteins as the key step in the subsequent signaling pathways modulation responsible for DC activation and maturation events.
Collapse
Affiliation(s)
- Sofia Guedes
- Department of Chemistry, Mass Spectrometry Center, QOPNA, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
| | - Bruno Neves
- Department of Chemistry, Mass Spectrometry Center, QOPNA, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rosário Domingues
- Department of Chemistry, Mass Spectrometry Center, QOPNA, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Pedro Domingues
- Department of Chemistry, Mass Spectrometry Center, QOPNA, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
24
|
Betalactam antibiotics affect human dendritic cells maturation through MAPK/NF-kB systems. Role in allergic reactions to drugs. Toxicol Appl Pharmacol 2015; 288:289-99. [DOI: 10.1016/j.taap.2015.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 01/31/2023]
|
25
|
Reporter cell lines for skin sensitization testing. Arch Toxicol 2015; 89:1645-68. [DOI: 10.1007/s00204-015-1555-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
|
26
|
Turbica I, Gallais Y, Gueguen C, Tharinger H, Al Sabbagh C, Gorges R, Gary-Gouy H, Kerdine-Ro¨mer S, Pallardy M, Mascarell L, Gleizes A, Chollet-Martin S. Ectosomes from neutrophil-like cells down-regulate nickel-induced dendritic cell maturation and promote Th2 polarization. J Leukoc Biol 2015; 97:737-49. [DOI: 10.1189/jlb.3a0314-132rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
27
|
Li L, Huang Z, Gillespie M, Mroz PM, Maier LA. p38 Mitogen-Activated Protein Kinase in beryllium-induced dendritic cell activation. Hum Immunol 2014; 75:1155-62. [PMID: 25454621 PMCID: PMC4258464 DOI: 10.1016/j.humimm.2014.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 06/05/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023]
Abstract
Dendritic cells (DC) play a role in the regulation of immune responses to haptens, which in turn impact DC maturation. Whether beryllium (Be) is able to induce DC maturation and if this occurs via the MAPK pathway is not known. Primary monocyte-derived DCs (moDCs) models were generated from Be non-exposed healthy volunteers as a non-sensitized cell model, while PBMCs from BeS (Be sensitized) and CBD (chronic beryllium disease) were used as disease models. The response of these cells to Be was evaluated. The expression of CD40 was increased significantly (p<0.05) on HLA-DP Glu69+ moDCs after 100 μM BeSO₄-stimulation. BeSO₄ induced p38MAPK phosphorylation, while IκB-α was degraded in Be-stimulated moDCs. The p38 MAPK inhibitor SB203580 blocked Be-induced NF-κB activation in moDCs, suggesting that p38MAPK and NF-κB are dependently activated by BeSO₄. Furthermore, in BeS and CBD subjects, SB203580 downregulated Be-stimulated proliferation in a dose-dependent manner, and decreased Be-stimulated TNF-α and IFNγ cytokine production. Taken together, this study suggests that Be-induces non-sensitized Glu69+ DCs maturation, and that p38MAPK signaling is important in the Be-stimulated DCs activation as well as subsequent T cell proliferation and cytokine production in BeS and CBD. In total, the MAPK pathway may serve as a potential therapeutic target for human granulomatous lung diseases.
Collapse
Affiliation(s)
- L Li
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, United States; Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, Denver, CO, United States.
| | - Z Huang
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - M Gillespie
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - P M Mroz
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - L A Maier
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, United States; Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, Denver, CO, United States; Environmental Occupational Health Department, Colorado School of Public Health, University of Colorado, Denver, CO, United States
| |
Collapse
|
28
|
ASK1 promotes the contact hypersensitivity response through IL-17 production. Sci Rep 2014; 4:4714. [PMID: 24736726 PMCID: PMC3988482 DOI: 10.1038/srep04714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022] Open
Abstract
Contact hypersensitivity (CHS) is a form of delayed-type hypersensitivity triggered by the response to reactive haptens (sensitization) and subsequent challenge (elicitation). Here, we show that ASK1 promotes CHS and that suppression of ASK1 during the elicitation phase is sufficient to attenuate CHS. ASK1 knockout (KO) mice exhibited impaired 2,4-dinitrofluorobenzene (DNFB)-induced CHS. The suppression of ASK1 activity during the elicitation phase through a chemical genetic approach or a specific inhibitory compound significantly reduced the CHS response to a level similar to that observed in ASK1 KO mice. The reduced response was concomitant with the strong inhibition of production of IL-17, a cytokine that plays an important role in CHS and other inflammatory diseases, from sensitized lymph node cells. These results suggest that ASK1 is relevant to the overall CHS response during the elicitation phase and that ASK1 may be a promising therapeutic target for allergic contact dermatitis and other IL-17-related inflammatory diseases.
Collapse
|
29
|
Spiewak R, Pietowska J, Curzytek K. Nickel: a unique allergen – from molecular structure to European legislation. Expert Rev Clin Immunol 2014; 3:851-9. [DOI: 10.1586/1744666x.3.6.851] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Basketter D, Maxwell G. Identification and characterization of allergens:in vitroapproaches. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2.4.471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Franks HA, Wang Q, Lax SJ, Collins MK, Escors D, Patel PM, Jackson AM. Novel function for the p38-MK2 signaling pathway in circulating CD1c+ (BDCA-1+) myeloid dendritic cells from healthy donors and advanced cancer patients; inhibition of p38 enhances IL-12 whilst suppressing IL-10. Int J Cancer 2013; 134:575-86. [PMID: 23901045 PMCID: PMC4298783 DOI: 10.1002/ijc.28398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/12/2013] [Accepted: 07/09/2013] [Indexed: 12/19/2022]
Abstract
There is growing interest in myeloid (my) dendritic cells (DC) as an alternative to monocyte-derived DC (moDC) for immunotherapy. However, in contrast to moDC, little is known regarding the effect of malignancy on the function, abundance or use of intracellular signaling pathways in myDC. Understanding the molecular detail of circulating myDC is therefore important for future use in advanced cancer. Advanced cancer patients had similar numbers of circulating myDC to cancer-free patients and healthy individuals, and secreted similar levels of IL-1β, IL-6, IL-10, IL-12 and IL-23. However, myDC from some patients failed to secrete the Th1-cytokine IL-12. Surprisingly, inhibiting p38 (p38i) signaling (using BIRB0796 or SB203580) markedly increased IL-12 secretion by myDC. This is in complete contrast to what is established for moDC where inhibiting p38 ablates IL-12. Interestingly, this was specific to IL-12, since IL-10 was suppressed by p38i in both DC types. The opposing effect of p38i on IL-12 was evident at the transcriptional level and in both DC types was mediated through the p38-MK2 pathway but did not involve differential phosphorylation of the distal Rsk kinase. Importantly, where patient myDC did not secrete IL-12 (or after treatment with suppressive melanoma lysate), p38i restored IL-12 to normal levels. In contrast to p38, inhibiting the other MAPK pathways had similar consequences in both DC types. We show for the first time the differential use of a major intracellular signaling pathway by myDC. Importantly, there are sufficient circulating myDC in advanced cancer patients to consider development of adoptive immunotherapy.
Collapse
Affiliation(s)
- Hester A Franks
- Host:Tumour Interactions Group, Academic Unit of Clinical Oncology University of Nottingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Al-Huseini LMA, Aw Yeang HX, Sethu S, Alhumeed N, Hamdam JM, Tingle Y, Djouhri L, Kitteringham N, Park BK, Goldring CE, Sathish JG. Nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2) modulates dendritic cell immune function through regulation of p38 MAPK-cAMP-responsive element binding protein/activating transcription factor 1 signaling. J Biol Chem 2013; 288:22281-8. [PMID: 23775080 PMCID: PMC3829319 DOI: 10.1074/jbc.m113.483420] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nrf2 is a redox-responsive transcription factor that has been implicated in the regulation of DC immune function. Loss of Nrf2 results in increased co-stimulatory molecule expression, enhanced T cell stimulatory capacity, and increased reactive oxygen species (ROS) levels in murine immature DCs (iDCs). It is unknown whether altered immune function of Nrf2-deficient DCs (Nrf2−/− iDCs) is due to elevated ROS levels. Furthermore, it is unclear which intracellular signaling pathways are involved in Nrf2-mediated regulation of DC function. Using antioxidant vitamins to reset ROS levels in Nrf2−/− iDCs, we show that elevated ROS is not responsible for the altered phenotype and function of these DCs. Pharmacological inhibitors were used to explore the role of key MAPKs in mediating the altered phenotype and function in Nrf2−/− iDCs. We demonstrate that the increased co-stimulatory molecule expression (MHC II and CD86) and antigen-specific T cell activation capacity observed in Nrf2−/− iDCs was reversed by inhibition of p38 MAPK but not JNK. Importantly, we provide evidence for increased phosphorylation of cAMP-responsive element binding protein (CREB) and activating transcription factor 1 (ATF1), transcription factors that are downstream of p38 MAPK. The increased phosphorylation of CREB/ATF1 in Nrf2−/− iDCs was sensitive to p38 MAPK inhibition. We also show data to implicate heme oxygenase-1 as a potential molecular link between Nrf2 and CREB/ATF1. These results indicate that dysregulation of p38 MAPK-CREB/ATF1 signaling axis underlies the altered function and phenotype in Nrf2-deficient DCs. Our findings provide new insights into the mechanisms by which Nrf2 mediates regulation of DC function.
Collapse
Affiliation(s)
- Laith M A Al-Huseini
- Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sohn EH, Jang SA, Lee CH, Jang KH, Kang SC, Park HJ, Pyo S. Effects of korean red ginseng extract for the treatment of atopic dermatitis-like skin lesions in mice. J Ginseng Res 2013; 35:479-86. [PMID: 23717095 PMCID: PMC3659561 DOI: 10.5142/jgr.2011.35.4.479] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 01/20/2023] Open
Abstract
Atopic dermatitis (AD) is an allergic, inflammatory skin disease characterized by chronic eczema and mechanical injury to the skin, caused by scratching. Korean red ginseng (RG) has diverse biological activities, but the molecular effects of RG on allergic diseases, like AD, are unclear. The present study was designed to investigate whether RG inhibits 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD in a mouse model. DNCB was applied topically on the dorsal surface of Balb/c mice to induce AD-like skin lesions. We observed the scratching behavior and examined the serum IgE level and interleukin (IL)-4 and IL-10 in splenocytes compared with dexamethasone. We also evaluated the DNCB-induced mitogen-activated protein kinases (MAPKs), NF-κB, and Ikaros activities after RG treatment using reverse transcriptase-polymerase chain reaction, Western blotting, and ELISA. Our data showed that the topical application of RG significantly improved the AD-like skin lesions and scratching behavior. RG decreased not only the mRNA expression of IL-4 and IL-10, but also the secretion of IL-4 protein and serum IgE in mice. Additionally, RG treatment decreased the DNCB-induced MAPKs activity and subsequent Ikaros translocation irrespective of NF-κB. We suggest that RG may be useful as a therapeutic nutrition for the treatment of AD.
Collapse
Affiliation(s)
- Eun-Hwa Sohn
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 245-907, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Yu Y, Li J, Wan Y, Lu J, Gao J, Huang C. GADD45α induction by nickel negatively regulates JNKs/p38 activation via promoting PP2Cα expression. PLoS One 2013; 8:e57185. [PMID: 23536762 PMCID: PMC3594291 DOI: 10.1371/journal.pone.0057185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 01/15/2013] [Indexed: 12/20/2022] Open
Abstract
Growth arrest and DNA damage (GADD) 45α is a member of GADD inducible gene family, and is inducible in cell response to oxidative stress. GADD45α upregulation induces MKK4/JNK activation in some published experimental systems. However, we found here that the depletion of GADD45α (GADD45α−/−) in mouse embryonic fibroblasts (MEFs) resulted in an increase in the phosphorylation of MKK4/7, MKK3/6 and consequently specific up-regulated the activation of JNK/p38 and their downstream transcription factors, such as c-Jun and ATF2, in comparison to those in GADD45α+/+ MEFs cell following nickel exposure. This up-regulation of MKK-JNK/p38 pathway in GADD45α−/− cell could be rescued by the reconstitutional expression of HA-GADD45α in GADD45α−/− MEFs, GADD45α−/−(HA-GADD45α). Subsequent studies indicated that GADD45α deletion repressed expression of PP2Cα, the phosphotase of MKK3/6 and MKK4/7, whereas ectopic expression of HA-PP2Cα in GADD45α−/− cells attenuated activation of MKK3/6-p38 and MKK4/7-JNK pathways. Collectively, our results demonstrate a novel function and mechanism responsible for GADD45α regulation of MKK/MAPK pathway, further provides insight into understanding the big picture of GADD45α in the regulation of cellular responses to oxidative stress and environmental carcinogens.
Collapse
Affiliation(s)
- Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
- Oversea Laboratory, Center for Medical Research, Wuhan University, Wuhan, Hubei, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Yu Wan
- Oversea Laboratory, Center for Medical Research, Wuhan University, Wuhan, Hubei, China
| | - Jianyi Lu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
- * E-mail: (JG); (CH)
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
- * E-mail: (JG); (CH)
| |
Collapse
|
35
|
Neves BM, Rosa SC, Martins JD, Silva A, Gonçalo M, Lopes MC, Cruz MT. Development of an in Vitro Dendritic Cell-Based Test for Skin Sensitizer Identification. Chem Res Toxicol 2013; 26:368-78. [DOI: 10.1021/tx300472d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bruno Miguel Neves
- Department of Chemistry, Mass
Spectrometry Center, QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
| | - Susana Carvalho Rosa
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
| | - João Demétrio Martins
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, 3000-548
Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
| | - Margarida Gonçalo
- Faculty
of Medicine, Dermatology
Unit, University Hospital of Coimbra, 3000-075
Coimbra, Portugal
| | - Maria Celeste Lopes
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, 3000-548
Coimbra, Portugal
| | - Maria Teresa Cruz
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, 3000-548
Coimbra, Portugal
| |
Collapse
|
36
|
Abstract
The immune response in drug hypersensitivity is normally explained by the hapten hypothesis. It postulates that drugs with a molecular weight of less than 1000 D are too small to cause an immune response per se. However, if a chemically reactive drug or drug metabolite binds covalently to a protein and thus forms a so-called hapten-carrier complex, this modified protein can induce an immune response. This concept has recently been supplemented by the p-i concept (or pharmacological interaction with immune receptors), which postulates that some drugs that lack hapten characteristics can bind directly and reversibly (noncovalently) to immune receptors and thereby stimulate the cells. For example, a certain drug may bind to a particular T-cell receptor, and this binding suffices to stimulate the T cell to secrete cytokines, to proliferate, and to exert cytotoxicity. The p-i concept has major implications for our understanding of drug interaction with the specific immune system and for drug hypersensitivity reactions. It is based on extensive investigations of T-cell clones reacting with the drug and recently of hybridoma cells transfected with the drug-specific T-cell receptor for antigen (TCR). It is a highly specific interaction dependent on the expression of a TCR into which the drug can bind with sufficient affinity to cause signaling. Small modification of the drug structure may already abrogate reactivity. Stimulation of T cells occurs within minutes as revealed by rapid Ca influx after drug addition to drug-specific T-cell clones or hybridoma cells, thus, before metabolism and processing can occur. As the immune system can only react in an immunologic way, the symptoms arising after drug stimulation of immune receptors imitate an immune response after recognition of a peptide antigen, although it is actually a pharmacological stimulation of some T cells via their TCRs. Clinically, the p-i concept could explain the sometimes rapid appearance of symptoms without previous sensitizations and the sometimes chaotic immune reaction of drug hypersensitivity with participation of different immune mechanisms while normal immune reactions to antigens are highly coordinated. Nevertheless, because the reactions lead to expansion of drug-reactive cells, many features such as skin test reactivity and stronger reactivity upon reexposure are identical to real immune reactions.
Collapse
|
37
|
Takenouchi O, Miyazawa M, Saito K, Ashikaga T, Sakaguchi H. Predictive performance of the human Cell Line Activation Test (h-CLAT) for lipophilic chemicals with high octanol-water partition coefficients. J Toxicol Sci 2013; 38:599-609. [DOI: 10.2131/jts.38.599] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Gennari A, Ban M, Braun A, Casati S, Corsini E, Dastych J, Descotes J, Hartung T, Hooghe-Peters R, House R, Pallardy M, Pieters R, Reid L, Tryphonas H, Tschirhart E, Tuschl H, Vandebriel R, Gribaldo L. The Use of In Vitro Systems for Evaluating Immunotoxicity: The Report and Recommendations of an ECVAM Workshop. J Immunotoxicol 2012; 2:61-83. [PMID: 18958661 DOI: 10.1080/15476910590965832] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This is the report of a workshop organised by the European Centre for the Validation of Alternative Methods (ECVAM). ECVAM's main goal, as defined in 1993 by its Scientific Advisory Committee, is to promote the scientific and regulatory acceptance of alternative methods that are of importance to the biosciences and which replace, reduce or refine the use of laboratory animals. One of the first priorities set by ECVAM was the implementation of procedures that would enable it to become well informed about the state-of-the-art of non-animal test development and validation, and the potential for the possible incorporation of alternative tests into regulatory procedures. It was decided that this would be best achieved by the organization of ECVAM workshops on specific topics, at which small groups of invited experts would review the current status of various types of in vitro tests and their potential uses, and make recommendations about the best ways forward (Anonymous, 1994). The workshop on "The use of in vitro systems for evaluating Immunotoxicity" was held at ECVAM (Ispra), Italy, on 24th-26th November 2003. The participants represented academia, national organizations, international regulatory bodies and industry. The aim of the workshop was to review the state-of-the-art in the field of in vitro immunotoxicology, and to develop strategies towards the replacement of in vivo testing. At the end of this report are listed the recommendations that should be considered for prevalidation and validation of relevant and reliable procedures, that could replace the use of animals in chemical and cosmetics toxicity testing.
Collapse
|
39
|
Development and validation of a new in vitro assay designed to measure contact allergen-triggered oxidative stress in dendritic cells. J Dermatol Sci 2012; 68:73-81. [PMID: 22974541 DOI: 10.1016/j.jdermsci.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Selected contact allergens are known to induce phenotypic and functional maturation of dendritic cells (DCs). Such changes occurring in DCs have been employed as assay readouts to predict skin-sensitizing potentials of small chemicals. OBJECTIVE To respond to the urgent needs for reliable in vitro tests to identify contact allergens, we sought to develop a DC-based assay designed to detect early change(s) induced by sensitizers. METHODS Signature gene expression profiles of skin sensitization were determined by GeneChip and quantitative RT-PCR analyses of RNA samples harvested from mouse skin and XS106 DC line after exposure to dinitrofluorobenzene (DNFB). Production of reactive oxygen species (ROS) was examined indirectly by measuring the level of oxidative stress-XS106 DCs were labeled with a fluorescent dye, CM-H(2)DCFDA, exposed to test chemicals, and then examined for fluorescence signals by flow cytometer. RESULTS DNFB induced abundant mRNA expression of several redox regulatory genes in both mouse skin and XS106DCs. Expression of these genes was inducible by hydrogen peroxide and blocked by a ROS inhibitor, diphenyleneiodonium. Rapid and significant ROS production was induced by 25 of the 28 tested skin sensitizers, but only by 3 of the 21 tested skin irritants. CONCLUSIONS Our small-scale validation study demonstrates the practical utility of our DC-based ROS production assay to detect structurally diverse contact allergens with varying sensitizing potencies. It is tempting to speculate that ROS production in DCs may represent an early event during the sensitization phase.
Collapse
|
40
|
Mehling A, Eriksson T, Eltze T, Kolle S, Ramirez T, Teubner W, van Ravenzwaay B, Landsiedel R. Non-animal test methods for predicting skin sensitization potentials. Arch Toxicol 2012; 86:1273-95. [PMID: 22707154 DOI: 10.1007/s00204-012-0867-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/09/2012] [Indexed: 12/01/2022]
Abstract
Contact allergies are complex diseases, and it is estimated that 15-20 % of the general population suffers from contact allergy, with increasing prevalence. Evaluation of the sensitization potential of a substance is usually carried out in animal models. Nowadays, there is much interest in reducing and ultimately replacing current animal tests. Furthermore, as of 2013, the EU has posed a ban on animal testing of cosmetic ingredients that includes skin sensitization. Therefore, predictive and robust in vitro tests are urgently needed. In order to establish alternatives to animal testing, the in vitro tests must mimic the very complex interactions between the sensitizing chemical and the different parts of the immune system. This review article summarizes recent efforts to develop in vitro tests for predicting skin sensitizers. Cell-based assays, in chemico methods and, to a lesser extent, in silico methods are presented together with a discussion of their current status. With considerable progress having been achieved during the last years, the rationale today is that data from different non-animal test methods will have to be combined in order to obtain reliable hazard and potency information on potential skin sensitizers.
Collapse
|
41
|
|
42
|
Yeang HXA, Hamdam JM, Al-Huseini LMA, Sethu S, Djouhri L, Walsh J, Kitteringham N, Park BK, Goldring CE, Sathish JG. Loss of transcription factor nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2) leads to dysregulation of immune functions, redox homeostasis, and intracellular signaling in dendritic cells. J Biol Chem 2012; 287:10556-10564. [PMID: 22311972 PMCID: PMC3322986 DOI: 10.1074/jbc.m111.322420] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DCs) are critical mediators of immunity and immune tolerance by orchestrating multiple aspects of T cell activation and function. Immature DCs (iDCs) expressing low levels of co-stimulatory receptors are highly efficient at antigen capture but are poor activators of T cells. Maturation of DCs is associated with increased expression of co-stimulatory molecules. Co-stimulatory receptor gene expression is regulated by intracellular redox, NF-κB, and MAPK pathways and by histone deacetylase (HDAC) activity. The transcription factor, Nrf2, is important for maintaining intracellular glutathione (GSH) levels and redox homeostasis and has been implicated in modulating DC co-stimulatory receptor expression. It is unclear whether Nrf2 mediates this effect by GSH-dependent mechanisms and whether it influences DC signaling pathways. Using bone marrow-derived iDCs from Nrf2+/+ and Nrf2−/− mice, we demonstrate that Nrf2−/− iDCs have lower basal GSH levels, enhanced co-stimulatory receptor expression, impaired phagocytic functions, and increased antigen-specific CD8 T cell stimulation capacity. Interestingly, lowering GSH levels in Nrf2+/+ iDCs did not recapitulate the Nrf2−/− iDC phenotype. Loss of Nrf2 resulted in elevated basal levels of reactive oxygen species but did not affect basal NF-κB activity or p38 MAPK phosphorylation. Using pharmacological inhibitors, we demonstrate that enhanced co-stimulatory receptor phenotype of Nrf2−/− iDC does not require ERK activity but is dependent on HDAC activity, indicating a potential interaction between Nrf2 function and HDAC. These results suggest that Nrf2 activity is required to counter rises in intracellular reactive oxygen species and to regulate pathways that control DC co-stimulatory receptor expression.
Collapse
Affiliation(s)
- Han Xian Aw Yeang
- Department of Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Junnat M Hamdam
- Department of Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Laith M A Al-Huseini
- Department of Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Swaminathan Sethu
- Department of Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Laiche Djouhri
- Department of Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Joanne Walsh
- Department of Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Neil Kitteringham
- Department of Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - B Kevin Park
- Department of Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Christopher E Goldring
- Department of Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | - Jean G Sathish
- Department of Pharmacology, Medical Research Council Centre for Drug Safety Science, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom.
| |
Collapse
|
43
|
Frankart A, Coquette A, Schroeder KR, Poumay Y. Studies of cell signaling in a reconstructed human epidermis exposed to sensitizers: IL-8 synthesis and release depend on EGFR activation. Arch Dermatol Res 2012; 304:289-303. [DOI: 10.1007/s00403-012-1209-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 01/03/2012] [Accepted: 01/09/2012] [Indexed: 12/13/2022]
|
44
|
Van Den Heuvel RL, Lambrechts N, Verstraelen S, Nelissen IC, Schoeters GER. Chemical sensitization and allergotoxicology. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:289-314. [PMID: 22945573 DOI: 10.1007/978-3-7643-8340-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Chemical sensitization remains an important environmental and occupational health issue. A wide range of substances have been shown to possess the ability to induce skin sensitization or respiratory sensitization. As a consequence, there is a need to have appropriate methods to identify sensitizing agents. Although a considerable investment has been made in exploring opportunities to develop methods for hazard identification and characterization, there are, as yet, no validated nonanimal methods available. A state of the art of the different in vitro approaches to identify contact and respiratory capacity of chemicals is covered in this chapter.
Collapse
Affiliation(s)
- Rosette L Van Den Heuvel
- Environmental Risk and Health Unit-Toxicology, Flemish Institute for Technological Research (VITO N.V.), Centre for Advanced R&D on Alternative Methods (CARDAM), Boeretang 200, 2400, Mol, Belgium,
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Takahashi T, Kimura Y, Saito R, Nakajima Y, Ohmiya Y, Yamasaki K, Aiba S. An in vitro test to screen skin sensitizers using a stable THP-1-derived IL-8 reporter cell line, THP-G8. Toxicol Sci 2011; 124:359-69. [PMID: 21920952 DOI: 10.1093/toxsci/kfr237] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several studies have suggested that interleukin (IL)-8 can serve as a biomarker for discrimination of skin sensitizers from nonsensitizers. We established a stable THP-1-derived IL-8 reporter cell line, THP-G8, which harbors SLO and SLR luciferase genes under the control of IL-8 and glyceraldehyde 3-phosphate dehydrogenase promoters, respectively. After 6 h treatment with chemicals, normalized SLO luciferase activity (nSLO-LA) was calculated by dividing SLO-LA by SLR-LA, and the fold induction of nSLO-LA (FInSLO-LA) was calculated by dividing nSLO-LA of chemically treated cells by that of nontreated cells. The nSLO-LA of THP-G8 cells increased in response to lipopolysaccharide (LPS) and several sensitizers. The FInSLO-LA in THP-G8 cells induced by LPS or sensitizers positively correlated with their induction of IL-8 messenger RNA in THP-1 cells. The nSLO-LA value of THP-G8 cells was significantly increased (FInSLO-LA ≥ 1.4) by 13 of the 15 sensitizers as well as by 5 of the 7 nonsensitizers. Interestingly, pretreatment with N-acetylcysteine suppressed the increase in FInSLO-LA induced by all sensitizers (inhibition index (II) ≤ 0.8) but did not suppress that induced by most of the nonsensitizers. We then evaluated the performance of this assay using values of FInSLO-LA ≥ 1.4 and II ≤ 0.8 in at least two of three independent experiments as the criteria of a sensitizer, which resulted in test accuracies of 82% for the 22 chemicals used and of 88% for the chemicals proposed by European Center for the Validation of Alternative Methods. This newly developed assay is a candidate replacement for animal tests of skin sensitization because of its accuracy, convenience, and high throughput performance.
Collapse
Affiliation(s)
- Toshiya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Saito R, Hirakawa S, Ohara H, Yasuda M, Yamazaki T, Nishii S, Aiba S. Nickel differentially regulates NFAT and NF-κB activation in T cell signaling. Toxicol Appl Pharmacol 2011; 254:245-55. [DOI: 10.1016/j.taap.2011.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/18/2011] [Accepted: 04/26/2011] [Indexed: 01/07/2023]
|
48
|
Cao YP, Ma PC, Liu WD, Zhou WQ, Tao Y, Zhang ML, Li LJ, Chen ZY. Evaluation of the skin sensitization potential of chemicals in THP-1/keratinocyte co-cultures. Immunopharmacol Immunotoxicol 2011; 34:196-204. [PMID: 21721923 DOI: 10.3109/08923973.2011.591800] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Many attempts have been made to develop in vitro sensitization tests that employ dendritic cells (DCs), DC-like cell lines or keratinocytes. The aim of the present investigation was to establish a co-culture of THP-1 cells and keratinocytes for evaluation of skin sensitization potential of chemicals. Co-cultures were constructed by THP-1 cells cultured in lower compartments and keratinocytes cultured in upper compartments of cell culture inserts. After 24 h exposure to sensitizers (2, 4-dinitrochlorobenzene, p-phenylenediamine, formaldehyde, nickel sulfate, isoeugenol and eugenol) and non-sensitizers (sodium lauryl sulfate, benzalkonium chloride and lactic acid), the expression of CD86 and CD54 on THP-1 cells were evaluated by flow cytometry, and cell viabilities were determined. The sensitizers induced the augmentation of CD86 and CD54 expression, but the non-sensitizers had no significant effect. Compared with mono-cultures of THP-1 cells, the augmentation of CD86 and CD54 could be detected even at a non-toxic concentration of sensitizers in THP-1 cell/keratinocyte co-cultures. Moreover, isoeugenol was distinguished as a sensitizer in co-cultures, but failed to be identified in mono-cultures. These results revealed that the co-cultures of THP-1 cells and keratinocytes were successfully established and suitable for identifying sensitizers using CD86 and CD54 expression as identification markers.
Collapse
Affiliation(s)
- Yu-Ping Cao
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Li CY, Chao LK, Wang SC, Chang HZ, Tsai ML, Fang SH, Liao PC, Ho CL, Chen ST, Cheng WC, Chiang CS, Kuo YH, Hua KF, Hsu IC. Honokiol inhibits LPS-induced maturation and inflammatory response of human monocyte-derived dendritic cells. J Cell Physiol 2011; 226:2338-49. [DOI: 10.1002/jcp.22576] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Hirota M, Motoyama A, Suzuki M, Yanagi M, Kitagaki M, Kouzuki H, Hagino S, Itagaki H, Sasa H, Kagatani S, Aiba S. Changes of cell-surface thiols and intracellular signaling in human monocytic cell line THP-1 treated with diphenylcyclopropenone. J Toxicol Sci 2011; 35:871-9. [PMID: 21139337 DOI: 10.2131/jts.35.871] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Changes of cell-surface thiols induced by chemical treatment may affect the conformations of membrane proteins and intracellular signaling mechanisms. In our previous study, we found that a non-toxic dose of diphenylcyclopropene (DPCP), which is a potent skin sensitizer, induced an increase of cell-surface thiols in cells of a human monocytic cell line, THP-1. Here, we examined the influence of DPCP on intracellular signaling. First, we confirmed that DPCP induced an increase of cell-surface thiols not only in THP-1 cells, but also in primary monocytes. The intracellular reduced-form glutathione/oxidized-form glutathione ratio (GSH/GSSG ratio) was not affected by DPCP treatment. By means of labeling with a membrane-impermeable thiol-reactive compound, Alexa Fluor 488 C5 maleimide (AFM), followed by two-dimensional gel electrophoresis and analysis by liquid chromatography coupled with electrospray tandem mass spectrometry (LC/MS/MS), we identified several proteins whose thiol contents were modified in response to DPCP. These proteins included cell membrane components, such as actin and β-tubulin, molecular chaperones, such as heat shock protein 27A and 70, and endoplasmic reticulum (ER) stress-inducible proteins. Next, we confirmed the expression in DPCP-treated cells of spliced XBP1, a known marker of ER stress. We also detected the phosphorylation of SAPK/JNK and p38 MAPK, which are downstream signaling molecules in the IRE1α-ASK1 pathway, which is activated by ER stress. These data suggested that increase of cell-surface thiols might be associated with activation of ER stress-mediated signaling.
Collapse
|