1
|
De Gregorio V, Barua M, Lennon R. Collagen formation, function and role in kidney disease. Nat Rev Nephrol 2024:10.1038/s41581-024-00902-5. [PMID: 39548215 DOI: 10.1038/s41581-024-00902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Highly abundant in mammals, collagens define the organization of tissues and participate in cell signalling. Most of the 28 vertebrate collagens, with the exception of collagens VI, VII, XXVI and XXVIII, can be categorized into five subgroups: fibrillar collagens, network-forming collagens, fibril-associated collagens with interrupted triple helices, membrane-associated collagens with interrupted triple helices and multiple triple-helix domains with interruptions. Collagen peptides are synthesized from the ribosome and enter the rough endoplasmic reticulum, where they undergo numerous post-translational modifications. The collagen chains form triple helices that can be secreted to form a diverse array of supramolecular structures in the extracellular matrix. Collagens are ubiquitously expressed and have been linked to a broad spectrum of disorders, including genetic disorders with kidney phenotypes. They also have an important role in kidney fibrosis and mass spectrometry-based proteomic studies have improved understanding of the composition of fibrosis in kidney disease. A wide range of therapeutics are in development for collagen and kidney disorders, including genetic approaches, chaperone therapies, protein degradation strategies and anti-fibrotic therapies. Improved understanding of collagens and their role in disease is needed to facilitate the development of more specific treatments for collagen and kidney disorders.
Collapse
Affiliation(s)
- Vanessa De Gregorio
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Moumita Barua
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, UK.
| |
Collapse
|
2
|
Langner E, Puapatanakul P, Pudlowski R, Alsabbagh DY, Miner JH, Horani A, Dutcher SK, Brody SL, Wang JT, Suleiman HY, Mahjoub MR. Ultrastructure expansion microscopy (U-ExM) of mouse and human kidneys for analysis of subcellular structures. Cytoskeleton (Hoboken) 2024; 81:618-638. [PMID: 38715433 PMCID: PMC11540979 DOI: 10.1002/cm.21870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and embedding conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both preclinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.
Collapse
Affiliation(s)
- Ewa Langner
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Pongpratch Puapatanakul
- Department of Medicine, Washington University, St. Louis, Missouri, USA
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rachel Pudlowski
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Jeffrey H Miner
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University, St. Louis, Missouri, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University, St. Louis, Missouri, USA
| | - Steven L Brody
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jennifer T Wang
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hani Y Suleiman
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Moe R Mahjoub
- Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Chen S, Zhang Y, He J, Yang D. Case report: A novel compound heterozygous variant in the COL4A3 gene was identified in a patient with autosomal recessive Alport syndrome. Front Genet 2024; 15:1426806. [PMID: 39071776 PMCID: PMC11272558 DOI: 10.3389/fgene.2024.1426806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Alport syndrome (AS), a hereditary kidney disease with a high risk for renal failure, is attributed to pathogenic variants in genes COL4A3, COL4A4, and COL4A5 that encode type IV collagen. Next-generation sequencing (NGS) is increasingly applied to the diagnosis of AS, but complex genotype-phenotype correlation, that is, identifying the significance of variants, is still a huge clinical challenge. In this study, we reported the case of a 27-year-old Chinese woman with a family history of hematuria and proteinuria. Notably, the proband is the only one in her family with renal insufficiency. NGS was performed in this family, and it was revealed that the proband was a compound heterozygote for two variants in the COL4A3 gene: c.2990G>A inherited from her father and c.4981C>T inherited from her mother. We modeled the spatial structure of the corresponding protein and assumed that structural abnormalities led to the breakdown of type IV collagen networks, a major component of the glomerular basement membrane. Thus, the proband was diagnosed with autosomal recessive AS, characterized by severe defects of the glomerular basement membrane. Hence, the proband showed a loss of renal function. This case presentation emphasizes the importance of NGS for AS diagnosis and introduces a novel genotype of AS.
Collapse
Affiliation(s)
- Sha Chen
- Department of Nephrology, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yufeng Zhang
- Department of Nephrology, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jinjin He
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Dingwei Yang
- Department of Nephrology, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Rekvig OP. SLE: a cognitive step forward-a synthesis of rethinking theories, causality, and ignored DNA structures. Front Immunol 2024; 15:1393814. [PMID: 38895113 PMCID: PMC11183320 DOI: 10.3389/fimmu.2024.1393814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is classified by instinctual classification criteria. A valid proclamation is that these formally accepted SLE classification criteria legitimate the syndrome as being difficult to explain and therefore enigmatic. SLE involves scientific problems linked to etiological factors and criteria. Our insufficient understanding of the clinical condition uniformly denoted SLE depends on the still open question of whether SLE is, according to classification criteria, a well-defined one disease entity or represents a variety of overlapping indistinct syndromes. Without rational hypotheses, these problems harm clear definition(s) of the syndrome. Why SLE is not anchored in logic, consequent, downstream interdependent and interactive inflammatory networks may rely on ignored predictive causality principles. Authoritative classification criteria do not reflect consequent causality criteria and do not unify characterization principles such as diagnostic criteria. We need now to reconcile legendary scientific achievements to concretize the delimitation of what SLE really is. Not all classified SLE syndromes are "genuine SLE"; many are theoretically "SLE-like non-SLE" syndromes. In this study, progressive theories imply imperative challenges to reconsider the fundamental impact of "the causality principle". This may offer us logic classification and diagnostic criteria aimed at identifying concise SLE syndromes as research objects. Can a systems science approach solve this problem?
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Huang Y, Yu M, Zheng J. Charge barriers in the kidney elimination of engineered nanoparticles. Proc Natl Acad Sci U S A 2024; 121:e2403131121. [PMID: 38805267 PMCID: PMC11161793 DOI: 10.1073/pnas.2403131121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/27/2024] [Indexed: 05/30/2024] Open
Abstract
The renal elimination pathway is increasingly harnessed to reduce nonspecific accumulation of engineered nanoparticles within the body and expedite their clinical applications. While the size of nanoparticles is recognized as crucial for their passive filtration through the glomerulus due to its limited pore size, the influence of nanoparticle charge on their transport and interactions within the kidneys remains largely elusive. Herein, we report that the proximal tubule and peritubular capillary, rather than the glomerulus, serve as primary charge barriers to the transport of charged nanoparticles within the kidney. Employing a series of ultrasmall, renal-clearable gold nanoparticles (AuNPs) with precisely engineered surface charge characteristics as multimodal imaging agents, we have tracked their distribution and retention across various kidney components following intravenous administration. Our results reveal that retention in the proximal tubules is governed not by the nanoparticle's zeta-potential, but by direct Coulombic interactions between the positively charged surface ligands of the AuNPs and the negatively charged microvilli of proximal tubules. However, further enhancing these interactions leads to increased binding of the positively charged AuNPs to the peritubular capillaries during the initial phase of elimination, subsequently facilitating their slow passage through the glomeruli and interaction with tubular components in a charge-selective manner. By identifying these two critical charge-dependent barriers in the renal transport of nanoparticles, our findings offer a fundamental insight for the design of renal nanomedicines tailored for selective targeting within the kidney, laying down a foundation for developing targeting renal nanomedicines for future kidney disease management in the clinics.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| |
Collapse
|
6
|
Huang Y, Ning X, Ahrari S, Cai Q, Rajora N, Saxena R, Yu M, Zheng J. Physiological principles underlying the kidney targeting of renal nanomedicines. Nat Rev Nephrol 2024; 20:354-370. [PMID: 38409369 DOI: 10.1038/s41581-024-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Kidney disease affects more than 10% of the global population and is associated with considerable morbidity and mortality, highlighting a need for new therapeutic options. Engineered nanoparticles for the treatment of kidney diseases (renal nanomedicines) represent one such option, enabling the delivery of targeted therapeutics to specific regions of the kidney. Although they are underdeveloped compared with nanomedicines for diseases such as cancer, findings from preclinical studies suggest that renal nanomedicines may hold promise. However, the physiological principles that govern the in vivo transport and interactions of renal nanomedicines differ from those of cancer nanomedicines, and thus a comprehensive understanding of these principles is needed to design nanomedicines that effectively and specifically target the kidney while ensuring biosafety in their future clinical translation. Herein, we summarize the current understanding of factors that influence the glomerular filtration, tubular uptake, tubular secretion and extrusion of nanoparticles, including size and charge dependency, and the role of specific transporters and processes such as endocytosis. We also describe how the transport and uptake of nanoparticles is altered by kidney disease and discuss strategic approaches by which nanoparticles may be harnessed for the detection and treatment of a variety of kidney diseases.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Samira Ahrari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Qi Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nilum Rajora
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ramesh Saxena
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Padhy B, Amir M, Xie J, Huang CL. Leucine-Rich Repeat in Polycystin-1 Suppresses Cystogenesis in a Zebrafish ( Danio rerio) Model of Autosomal-Dominant Polycystic Kidney Disease. Int J Mol Sci 2024; 25:2886. [PMID: 38474131 PMCID: PMC10932423 DOI: 10.3390/ijms25052886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Mutations of PKD1 coding for polycystin-1 (PC1) account for most cases of autosomal-dominant polycystic kidney disease (ADPKD). The extracellular region of PC1 contains many evolutionarily conserved domains for ligand interactions. Among these are the leucine-rich repeats (LRRs) in the far N-terminus of PC1. Using zebrafish (Danio rerio) as an in vivo model system, we explored the role of LRRs in the function of PC1. Zebrafish expresses two human PKD1 paralogs, pkd1a and pkd1b. Knockdown of both genes in zebrafish by morpholino antisense oligonucleotides produced phenotypes of dorsal-axis curvature and pronephric cyst formation. We found that overexpression of LRRs suppressed both phenotypes in pkd1-morphant zebrafish. Purified recombinant LRR domain inhibited proliferation of HEK cells in culture and interacted with the heterotrimeric basement membrane protein laminin-511 (α5β1γ1) in vitro. Mutations of amino acid residues in LRRs structurally predicted to bind laminin-511 disrupted LRR-laminin interaction in vitro and neutralized the ability of LRRs to inhibit cell proliferation and cystogenesis. Our data support the hypothesis that the extracellular region of PC1 plays a role in modulating PC1 interaction with the extracellular matrix and contributes to cystogenesis of PC1 deficiency.
Collapse
Affiliation(s)
| | | | | | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (J.X.)
| |
Collapse
|
8
|
Langner E, Puapatanakul P, Pudlowski R, Alsabbagh DY, Miner JH, Horani A, Dutcher SK, Brody SL, Wang JT, Suleiman HY, Mahjoub MR. Ultrastructure expansion microscopy (U-ExM) of mouse and human kidneys for analysis of subcellular structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580708. [PMID: 38405695 PMCID: PMC10889020 DOI: 10.1101/2024.02.16.580708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and storage conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both pre-clinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.
Collapse
|
9
|
Duan S, Sun L, Zhang C, Zeng M, Sun B, Yuan Y, Mao H, Xing C, Zhang B. The thickness of glomerular basement membrane predicts complete remission in primary membranous nephropathy. Ren Fail 2023; 45:2179335. [PMID: 36856323 PMCID: PMC9980401 DOI: 10.1080/0886022x.2023.2179335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Objective: Glomerular basement membrane (GBM) thickening is a typical and essential histopathological characteristic for the diagnosis of primary membranous nephropathy (PMN). The present study aimed to explore the relationship between GBM thickness and treatment response in PMN patients.Methods: A total of 128 patients with nephrotic syndrome concurrent with PMN were studied. The highest GBM thickness was measured from at least five glomerular capillary loops using an electron microscope, and the mean value was obtained. Patients were categorized into three groups according to the tertiles of GBM thickness as follows: Group 1 (GBM thickness ≤ 1100 nm, n = 48), Group 2 (1100 nm < GBM thickness ≤ 1300 nm, n = 40), Group 3 (GBM thickness >1300 nm, n = 40). Clinicopathological features and treatment response were compared among the three groups. The associations of GBM thickness with complete remission (CR) were assessed by Cox proportional hazard analyses and a cubic spline curve.Results: During a median follow-up period of 25.80 months, 69 (53.9%) patients achieved CR. Kaplan-Meier analysis showed that the non-CR probability was significantly higher in the highest tertile of GBM thickness (p˂0.001). Univariate Cox proportional hazard analysis indicated that GBM thickness was associated with CR (HR per SD 0.617, 95% CI [0.471-0.809], p˂0.001). After adjusting for age, duration of PMN, estimated glomerular filtration rate (eGFR), urinary protein excretion, grade of C3 deposition, and titer of serum anti-phospholipase A2 receptor (PLA2R) antibody, GBM thickness remained an independent predictor of CR (HR per SD 0.580, 95% CI [0.436-0.772], p˂0.001). Further multivariable-adjusted restricted cubic spline analysis confirmed a significant reverse linear association between GBM thickness and CR (p for nonlinear = 0.1261).Conclusions: GBM thickness is an independent risk factor of CR. PMN patients with an increased level of GBM thickening at diagnosis have a lower probability of achieving CR.
Collapse
Affiliation(s)
- Suyan Duan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| | - Lianqin Sun
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| | - Chengning Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| | - Ming Zeng
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| | - Bin Sun
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China,Changying Xing, Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P. R. China
| | - Bo Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, P.R. China,Department of Nephrology, Pukou Branch of JiangSu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, P.R. China,CONTACT Bo Zhang
| |
Collapse
|
10
|
Hirayama R, Toyohara K, Watanabe K, Otsuki T, Araoka T, Mae SI, Horinouchi T, Yamamura T, Okita K, Hotta A, Iijima K, Nozu K, Osafune K. iPSC-derived type IV collagen α5-expressing kidney organoids model Alport syndrome. Commun Biol 2023; 6:854. [PMID: 37770589 PMCID: PMC10539496 DOI: 10.1038/s42003-023-05203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/02/2023] [Indexed: 09/30/2023] Open
Abstract
Alport syndrome (AS) is a hereditary glomerulonephritis caused by COL4A3, COL4A4 or COL4A5 gene mutations and characterized by abnormalities of glomerular basement membranes (GBMs). Due to a lack of curative treatments, the condition proceeds to end-stage renal disease even in adolescents. Hampering drug discovery is the absence of effective in vitro methods for testing the restoration of normal GBMs. Here, we aimed to develop kidney organoid models from AS patient iPSCs for this purpose. We established iPSC-derived collagen α5(IV)-expressing kidney organoids and confirmed that kidney organoids from COL4A5 mutation-corrected iPSCs restore collagen α5(IV) protein expression. Importantly, our model recapitulates the differences in collagen composition between iPSC-derived kidney organoids from mild and severe AS cases. Furthermore, we demonstrate that a chemical chaperone, 4-phenyl butyric acid, has the potential to correct GBM abnormalities in kidney organoids showing mild AS phenotypes. This iPSC-derived kidney organoid model will contribute to drug discovery for AS.
Collapse
Affiliation(s)
- Ryuichiro Hirayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Taisho Pharmaceutical Co., Ltd., Saitama, 331-9530, Japan
| | - Kosuke Toyohara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kei Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Takeya Otsuki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
- Hyogo Prefectural Kobe Children's Hospital, Hyogo, 650-0047, Japan
- Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
11
|
Smith DW, Azadi A, Lee CJ, Gardiner BS. Spatial composition and turnover of the main molecules in the adult glomerular basement membrane. Tissue Barriers 2023; 11:2110798. [PMID: 35959954 PMCID: PMC10364650 DOI: 10.1080/21688370.2022.2110798] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022] Open
Abstract
The glomerular basement membrane (GBM) is an important tissue structure in kidney function. It is the membrane through which filtrate and solutes must pass to reach the nephron tubules. This review focuses on the spatial location of the main extracellular matrix components of the GBM. It also attempts to explain this organization in terms of their synthesis, transport, and loss. The picture that emerges is that the collagen IV and laminin content of GBM are in a very slow dynamic disequilibrium, leading to GBM thickening with age, and in contrast, some heparan sulfate proteoglycans are in a dynamic equilibrium with a very rapid turnover (i.e. half-life measured in ~hours) and flow direction against the flow of filtrate. The highly rapid heparan sulfate turnover may serve several roles, including an unclogging mechanism for the GBM, compressive stiffness of the GBM fiber network, and/or enabling podocycte-endothelial crosstalk against the flow of filtrate.
Collapse
Affiliation(s)
- David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Azin Azadi
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| | - Chang-Joon Lee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| | - Bruce S. Gardiner
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
12
|
Hagelaars MJ, Rijns L, Dankers PYW, Loerakker S, Bouten CVC. Engineering Strategies to Move from Understanding to Steering Renal Tubulogenesis. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:203-216. [PMID: 36173101 DOI: 10.1089/ten.teb.2022.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rebuilding the kidney in the context of tissue engineering offers a major challenge as the organ is structurally complex and has a high variety of specific functions. Recreation of kidney function is inherently connected to the formation of tubules since the functional subunit of the kidney, the nephron, is based on tubular structures. In vivo, tubulogenesis culminates in a perfectly shaped, patterned, and functional renal tubule via different morphogenic processes that depend on delicately orchestrated chemical, physical, and mechanical interactions between cells and between cells and their microenvironment. This review summarizes the current understanding of the role of the microenvironment in the morphogenic processes involved in in vivo renal tubulogenesis. We highlight the current state-of-the-art of renal tubular engineering and provide a view on the design elements that can be extracted from these studies. Next, we discuss how computational modeling can aid in specifying and identifying design parameters and provide directions on how these design parameters can be incorporated in biomaterials for the purpose of engineering renal tubulogenesis. Finally, we propose that a step-by-step reciprocal interaction between understanding and engineering is necessary to effectively guide renal tubulogenesis. Impact statement Tubular tissue engineering lies at the foundation of regenerating kidney tissue function, as the functional subunit of the kidney, the nephron, is based on tubular structures. Guiding renal tubulogenesis toward functional renal tubules requires in-depth knowledge of the developmental processes that lead to the formation of native tubules as well as engineering approaches to steer these processes. In this study, we review the role of the microenvironment in the developmental processes that lead to functional renal tubules and give directions how this knowledge can be harnessed for biomaterial-based tubular engineering using computational models.
Collapse
Affiliation(s)
- Maria J Hagelaars
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Laura Rijns
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| |
Collapse
|
13
|
Ma P, Wang S, Geng R, Gong Y, Li M, Xie D, Dong Y, Zheng T, Li B, Zhao T, Zheng Q. MiR-29a-deficiency causes thickening of the basilar membrane and age-related hearing loss by upregulating collagen IV and laminin. Front Cell Neurosci 2023; 17:1191740. [PMID: 37275774 PMCID: PMC10232818 DOI: 10.3389/fncel.2023.1191740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory degenerative disease and can significantly impact the quality of life in elderly people. A previous study using GeneChip miRNA microarray assays showed that the expression of miR-29a changes with age, however, its role in hearing loss is still unclear. In this study, we characterized the cochlear phenotype of miR-29a knockout (miR-29a-/-) mice and found that miR-29a-deficient mice had a rapid progressive elevation of the hearing threshold from 2 to 5 months of age compared with littermate controls as measured by the auditory brainstem response. Stereocilia degeneration, hair cell loss and abnormal stria vascularis (SV) were observed in miR-29a-/- mice at 4 months of age. Transcriptome sequencing results showed elevated extracellular matrix (ECM) gene expression in miR-29a-/- mice. Both Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the key differences were closely related to ECM. Further examination with a transmission electron microscope showed thickening of the basilar membrane in the cochlea of miR-29a-/- mice. Five Col4a genes (Col4a1-a5) and two laminin genes (Lamb2 and Lamc1) were validated as miR-29a direct targets by dual luciferase assays and miR-29a inhibition assays with a miR-29a inhibitor. Consistent with the target gene validation results, the expression of these genes was significantly increased in the cochlea of miR-29a-/- mice, as shown by RT-PCR and Western blot. These findings suggest that miR-29a plays an important role in maintaining cochlear structure and function by regulating the expression of collagen and laminin and that the disturbance of its expression could be a cause of progressive hearing loss.
Collapse
Affiliation(s)
- Peng Ma
- School of Basic Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yongfeng Gong
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Daoli Xie
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tong Zhao
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
14
|
Kulkarni K, Patel S, Ali R, Hussain T. Angiotensin II type 2 receptor activation preserves megalin in the kidney and prevents proteinuria in high salt diet fed rats. Sci Rep 2023; 13:4277. [PMID: 36922642 PMCID: PMC10017765 DOI: 10.1038/s41598-023-31454-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Proteinuria is a risk factor for and consequence of kidney injury. Angiotensin II type 2 receptor (AT2R) is an emerging reno-protective target and is anti-proteinuric under pathological conditions, including high salt-fed obese animals. However, the mechanisms remain unknown, particularly whether the anti-proteinuric activity of AT2R is independent of its anti-hypertensive and anti-inflammatory effects. In the present study, obese Zucker rats were fed high sodium (4%) diet (HSD) for 48 h, a time in which blood pressure does not change. HSD caused proteinuria without affecting glomerular slit diaphragm proteins (nephrin and podocin), glomerular filtration rate, inflammatory and fibrotic markers (TNFα, IL-6, and TGF-β), ruling out glomerular injury, inflammation and fibrosis but indicating tubular mechanisms of proteinuria. At cellular and molecular levels, we observed a glycogen synthase kinase (GSK)-3β-mediated megalin phosphorylation, and its subsequent endocytosis and lysosomal degradation in HSD-fed rat kidneys. Megalin is a major proximal tubular endocytic protein transporter. The AT2R agonist C21 (0.3 mg/kg/day, i.p.) administration prevented proteinuria and rescued megalin surface expression potentially by activating Akt-mediated phosphorylation and inactivation of GSK-3β in HSD-fed rat kidneys. Overall, AT2R has a direct anti-proteinuric activity, potentially via megalin regulation, and is suggested as a novel target to limit kidney injury.
Collapse
Affiliation(s)
- Kalyani Kulkarni
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Sanket Patel
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Riyasat Ali
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA.
| |
Collapse
|
15
|
Wang D, Sant S, Lawless C, Ferrell N. A kidney proximal tubule model to evaluate effects of basement membrane stiffening on renal tubular epithelial cells. Integr Biol (Camb) 2022; 14:171-183. [PMID: 36573280 DOI: 10.1093/intbio/zyac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/21/2022] [Accepted: 11/06/2022] [Indexed: 12/28/2022]
Abstract
The kidney tubule consists of a single layer of epithelial cells supported by the tubular basement membrane (TBM), a thin layer of specialized extracellular matrix (ECM). The mechanical properties of the ECM are important for regulating a wide range of cell functions including proliferation, differentiation and cell survival. Increased ECM stiffness plays a role in promoting multiple pathological conditions including cancer, fibrosis and heart disease. How changes in TBM mechanics regulate tubular epithelial cell behavior is not fully understood. Here we introduce a cell culture system that utilizes in vivo-derived TBM to investigate cell-matrix interactions in kidney proximal tubule cells. Basement membrane mechanics was controlled using genipin, a biocompatibility crosslinker. Genipin modification resulted in a dose-dependent increase in matrix stiffness. Crosslinking had a marginal but statistically significant impact on the diffusive molecular transport properties of the TBM, likely due to a reduction in pore size. Both native and genipin-modified TBM substrates supported tubular epithelial cell growth. Cells were able to attach and proliferate to form confluent monolayers. Tubular epithelial cells polarized and assembled organized cell-cell junctions. Genipin modification had minimal impact on cell viability and proliferation. Genipin stiffened TBM increased gene expression of pro-fibrotic cytokines and altered gene expression for N-cadherin, a proximal tubular epithelial specific cell-cell junction marker. This work introduces a new cell culture model for cell-basement membrane mechanobiology studies that utilizes in vivo-derived basement membrane. We also demonstrate that TBM stiffening affects tubular epithelial cell function through altered gene expression of cell-specific differentiation markers and induced increased expression of pro-fibrotic growth factors.
Collapse
Affiliation(s)
- Dan Wang
- Department of Internal Medicine, Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Snehal Sant
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Nicholas Ferrell
- Department of Internal Medicine, Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
16
|
Preston R, Meng QJ, Lennon R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol 2022; 114:138-155. [PMID: 35569693 DOI: 10.1016/j.matbio.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
The circadian clock network in mammals is responsible for the temporal coordination of numerous physiological processes that are necessary for homeostasis. Peripheral tissues demonstrate circadian rhythmicity and dysfunction of core clock components has been implicated in the pathogenesis of diseases that are characterized by abnormal extracellular matrix, such as fibrosis (too much disorganized matrix) and tissue breakdown (too little matrix). Kidney disease is characterized by proteinuria, which along with the rate of filtration, displays robust circadian oscillation. Clinical observation and mouse studies suggest the presence of 24 h kidney clocks responsible for circadian oscillation in kidney function. Recent experimental evidence has also revealed that cell-matrix interactions and the biomechanical properties of extracellular matrix have key roles in regulating peripheral circadian clocks and this mechanism appears to be cell- and tissue-type specific. Thus, establishing a temporally resolved kidney matrisome may provide a useful tool for studying the two-way interactions between the extracellular matrix and the intracellular time-keeping mechanisms in this critical niche tissue. This review summarizes the latest genetic and biochemical evidence linking kidney physiology and disease to the circadian system with a particular focus on the extracellular matrix. We also review the experimental approaches and methodologies required to dissect the roles of circadian pathways in specific tissues and outline the translational aspects of circadian biology, including how circadian medicine could be used for the treatment of kidney disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| |
Collapse
|
17
|
Khattab A, Torkamani A. Nidogen-1 could play a role in diabetic kidney disease development in type 2 diabetes: a genome-wide association meta-analysis. Hum Genomics 2022; 16:47. [PMID: 36271454 PMCID: PMC9587571 DOI: 10.1186/s40246-022-00422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) affects about 40% of patients with diabetes. It is incurable and usually leads to end-stage renal disease (ESRD). The pathogenesis of DKD is still not fully understood, and the genetics of DKD have not yet been extensively studied. In this study, we investigate the genetic basis of DKD in type 2 diabetes (T2D) to provide more insights into the pathogenesis of the disease. RESULTS Using the data provided by the UK Biobank (UKBB), we performed a DKD genome-wide association study (GWAS) in 13,123 individuals with T2D as well as two creatinine estimated glomerular filtration rate (eGFR) GWA studies: one in 26,786 individuals with T2D and the other in 339,080 non-diabetic individuals. We also conducted a DKD GWAS meta-analysis combining our results with those published by the surrogate markers for micro- and macro-vascular hard endpoints for Innovative diabetes Tools (SUMMIT) consortium. We confirm two loci previously reported to be associated with chronic kidney disease (CKD) and eGFR in T2D. The UMOD-PDILT locus is associated with DKD (P = 1.17E-09) as well as creatinine eGFR in both people with T2D (P = 1.31E-15) and people without diabetes (P = 3.95E-73). The PRKAG2 locus is associated with creatinine eGFR in people with (P = 2.78E-10) and without (P = 5.65E-72) T2D. Our meta-analysis reveals a novel association between DKD and variant rs72763500 (chr1:236116561) which is a splicing quantitative trait locus (sQTL) for nidogen-1 (NID1) gene. CONCLUSION Our data confirm two loci previously reported in association with CKD and creatinine eGFR in T2D. It also suggests that NID1, a major component of the renal tubular basement membrane, could play a role in DKD development in T2D. While our NID1 finding remains to be replicated, it is a step toward a more comprehensive understanding of DKD pathogenesis.
Collapse
Affiliation(s)
- Ahmed Khattab
- Integrative Structural and Computational Biology, Scripps Research, 3344 North Torrey Pines Court, Suite 300, La Jolla, CA, 92037, USA.,Scripps Research Translational Institute, La Jolla, CA, 92037, USA
| | - Ali Torkamani
- Integrative Structural and Computational Biology, Scripps Research, 3344 North Torrey Pines Court, Suite 300, La Jolla, CA, 92037, USA. .,Scripps Research Translational Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Wang D, Gust M, Ferrell N. Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration. SENSORS (BASEL, SWITZERLAND) 2022; 22:6889. [PMID: 36146238 PMCID: PMC9503911 DOI: 10.3390/s22186889] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Bioengineered in vitro models of the kidney offer unprecedented opportunities to better mimic the in vivo microenvironment. Kidney-on-a-chip technology reproduces 2D or 3D features which can replicate features of the tissue architecture, composition, and dynamic mechanical forces experienced by cells in vivo. Kidney cells are exposed to mechanical stimuli such as substrate stiffness, shear stress, compression, and stretch, which regulate multiple cellular functions. Incorporating mechanical stimuli in kidney-on-a-chip is critically important for recapitulating the physiological or pathological microenvironment. This review will explore approaches to applying mechanical stimuli to different cell types using kidney-on-a-chip models and how these systems are used to study kidney physiology, model disease, and screen for drug toxicity. We further discuss sensor integration into kidney-on-a-chip for monitoring cellular responses to mechanical or other pathological stimuli. We discuss the advantages, limitations, and challenges associated with incorporating mechanical stimuli in kidney-on-a-chip models for a variety of applications. Overall, this review aims to highlight the importance of mechanical stimuli and sensor integration in the design and implementation of kidney-on-a-chip devices.
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Matthew Gust
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Statistics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Ferrell
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Park SJ, Kim Y, Li C, Suh J, Sivapackiam J, Goncalves TM, Jarad G, Zhao G, Urano F, Sharma V, Chen YM. Blocking CHOP-dependent TXNIP shuttling to mitochondria attenuates albuminuria and mitigates kidney injury in nephrotic syndrome. Proc Natl Acad Sci U S A 2022; 119:e2116505119. [PMID: 35994650 PMCID: PMC9436335 DOI: 10.1073/pnas.2116505119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Albuminuria is a hallmark of glomerular disease of various etiologies. It is not only a symptom of glomerular disease but also a cause leading to glomerulosclerosis, interstitial fibrosis, and eventually, a decline in kidney function. The molecular mechanism underlying albuminuria-induced kidney injury remains poorly defined. In our genetic model of nephrotic syndrome (NS), we have identified CHOP (C/EBP homologous protein)-TXNIP (thioredoxin-interacting protein) as critical molecular linkers between albuminuria-induced ER dysfunction and mitochondria dyshomeostasis. TXNIP is a ubiquitously expressed redox protein that binds to and inhibits antioxidant enzyme, cytosolic thioredoxin 1 (Trx1), and mitochondrial Trx2. However, very little is known about the regulation and function of TXNIP in NS. By utilizing Chop-/- and Txnip-/- mice as well as 68Ga-Galuminox, our molecular imaging probe for detection of mitochondrial reactive oxygen species (ROS) in vivo, we demonstrate that CHOP up-regulation induced by albuminuria drives TXNIP shuttling from nucleus to mitochondria, where it is required for the induction of mitochondrial ROS. The increased ROS accumulation in mitochondria oxidizes Trx2, thus liberating TXNIP to associate with mitochondrial nod-like receptor protein 3 (NLRP3) to activate inflammasome, as well as releasing mitochondrial apoptosis signal-regulating kinase 1 (ASK1) to induce mitochondria-dependent apoptosis. Importantly, inhibition of TXNIP translocation and mitochondrial ROS overproduction by CHOP deletion suppresses NLRP3 inflammasome activation and p-ASK1-dependent mitochondria apoptosis in NS. Thus, targeting TXNIP represents a promising therapeutic strategy for the treatment of NS.
Collapse
Affiliation(s)
- Sun-Ji Park
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yeawon Kim
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Chuang Li
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Junwoo Suh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tassia M. Goncalves
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - George Jarad
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, MO 63105
| | - Ying Maggie Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
20
|
Valverde MG, Mille LS, Figler KP, Cervantes E, Li VY, Bonventre JV, Masereeuw R, Zhang YS. Biomimetic models of the glomerulus. Nat Rev Nephrol 2022; 18:241-257. [PMID: 35064233 PMCID: PMC9949601 DOI: 10.1038/s41581-021-00528-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/17/2022]
Abstract
The use of biomimetic models of the glomerulus has the potential to improve our understanding of the pathogenesis of kidney diseases and to enable progress in therapeutics. Current in vitro models comprise organ-on-a-chip, scaffold-based and organoid approaches. Glomerulus-on-a-chip designs mimic components of glomerular microfluidic flow but lack the inherent complexity of the glomerular filtration barrier. Scaffold-based 3D culture systems and organoids provide greater microenvironmental complexity but do not replicate fluid flows and dynamic responses to fluidic stimuli. As the available models do not accurately model the structure or filtration function of the glomerulus, their applications are limited. An optimal approach to glomerular modelling is yet to be developed, but the field will probably benefit from advances in biofabrication techniques. In particular, 3D bioprinting technologies could enable the fabrication of constructs that recapitulate the complex structure of the glomerulus and the glomerular filtration barrier. The next generation of in vitro glomerular models must be suitable for high(er)-content or/and high(er)-throughput screening to enable continuous and systematic monitoring. Moreover, coupling of glomerular or kidney models with those of other organs is a promising approach to enable modelling of partial or full-body responses to drugs and prediction of therapeutic outcomes.
Collapse
Affiliation(s)
- Marta G Valverde
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Luis S Mille
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Kianti P Figler
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Ernesto Cervantes
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Vanessa Y Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Joseph V Bonventre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
21
|
Doi K, Kimura H, Matsunaga YT, Fujii T, Nangaku M. Glomerulus-on-a-Chip: Current Insights and Future Potential Towards Recapitulating Selectively Permeable Filtration Systems. Int J Nephrol Renovasc Dis 2022; 15:85-101. [PMID: 35299832 PMCID: PMC8922329 DOI: 10.2147/ijnrd.s344725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Glomerulopathy, characterized by a dysfunctional glomerular capillary wall, results in proteinuria, leading to end-stage renal failure and poor clinical outcomes, including renal death and increased overall mortality. Conventional glomerulopathy research, including drug discovery, has mostly relied on animal experiments because in-vitro glomerulus models, capable of evaluating functional selective permeability, was unavailable in conventional in-vitro cell culture systems. However, animal experiments have limitations, including time- and cost-consuming, multi-organ effects, unstable reproducibility, inter-species reliability, and the social situation in the EU and US, where animal experiments have been discouraged. Glomerulus-on-a-chip, a new in-vitro organ model, has recently been developed in the field of organ-on-a-chip research based on microfluidic device technology. In the glomerulus-on-a-chip, the podocytes and endothelial cells are co-cultured in a microfluidic device with physical stimuli that mimic the physiological environment to enhance cell function to construct a functional filtration barrier, which can be assessed by permeability assays using fluorescently labeled molecules including inulin and albumin. A combination of this glomerulus-on-a chip technology with the culture technology to induce podocytes and endothelial cells from the human pluripotent stem cells could provide an alternative organ model and solve the issue of animal experiments. Additionally, previous experiments have verified the difference in the leakage of albumin using differentiated podocytes derived from patients with Alport syndrome, such that it could be applied to intractable hereditary glomerulopathy models. In this review, we provide an overview of the features of the existing glomerulus-on-a-chip systems, focusing on how they can address selective permeability verification tests, and the challenges they involved. We finally discuss the future approaches that should be developed for solving those challenges and allow further improvement of glomerulus-on-a-chip technologies.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | | | | | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Abdollahzadeh F, Khoshdel-Rad N, Moghadasali R. Kidney development and function: ECM cannot be ignored. Differentiation 2022; 124:28-42. [DOI: 10.1016/j.diff.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 11/03/2022]
|
23
|
Bioinspired Sandcastle Worm-Derived Peptide-Based Hybrid Hydrogel for Promoting the Formation of Liver Spheroids. Gels 2022; 8:gels8030149. [PMID: 35323262 PMCID: PMC8950079 DOI: 10.3390/gels8030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The generation of hepatic spheroids is beneficial for a variety of potential applications, including drug development, disease modeling, transplantation, and regenerative medicine. Natural hydrogels are obtained from tissues and have been widely used to promote the growth, differentiation, and retention of specific functionalities of hepatocytes. However, relying on natural hydrogels for the generation of hepatic spheroids, which have batch to batch variations, may in turn limit the previously mentioned potential applications. For this reason, we researched a way to establish a three-dimensional (3D) culture system that more closely mimics the interaction between hepatocytes and their surrounding microenvironments, thereby potentially offering a more promising and suitable system for drug development, disease modeling, transplantation, and regenerative medicine. Here, we developed self-assembling and bioactive hybrid hydrogels to support the generation and growth of hepatic spheroids. Our hybrid hydrogels (PC4/Cultrex) inspired by the sandcastle worm, an Arg-Gly-Asp (RGD) cell adhesion sequence, and bioactive molecules derived from Cultrex BME (Basement Membrane Extract). By performing optimizations to the design, the PC4/Cultrex hybrid hydrogels can enhance HepG2 cells to form spheroids and express their molecular signatures (e.g., Cyp3A4, Cyp7a1, A1at, Afp, Ck7, Ck1, and E-cad). Our study demonstrated that this hybrid hydrogel system offers potential advantages for hepatocytes in proliferating, differentiating, and self-organizing to form hepatic spheroids in a more controllable and reproducible manner. In addition, it is a versatile and cost-effective method for 3D tissue cultures in mass quantities. Importantly, we demonstrate that it is feasible to adapt a bioinspired approach to design biomaterials for 3D culture systems, which accelerates the design of novel peptide structures and broadens our research choices on peptide-based hydrogels.
Collapse
|
24
|
Morais MRPT, Tian P, Lawless C, Murtuza-Baker S, Hopkinson L, Woods S, Mironov A, Long DA, Gale DP, Zorn TMT, Kimber SJ, Zent R, Lennon R. Kidney organoids recapitulate human basement membrane assembly in health and disease. eLife 2022; 11:e73486. [PMID: 35076391 PMCID: PMC8849328 DOI: 10.7554/elife.73486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
Basement membranes (BMs) are complex macromolecular networks underlying all continuous layers of cells. Essential components include collagen IV and laminins, which are affected by human genetic variants leading to a range of debilitating conditions including kidney, muscle, and cerebrovascular phenotypes. We investigated the dynamics of BM assembly in human pluripotent stem cell-derived kidney organoids. We resolved their global BM composition and discovered a conserved temporal sequence in BM assembly that paralleled mammalian fetal kidneys. We identified the emergence of key BM isoforms, which were altered by a pathogenic variant in COL4A5. Integrating organoid, fetal, and adult kidney proteomes, we found dynamic regulation of BM composition through development to adulthood, and with single-cell transcriptomic analysis we mapped the cellular origins of BM components. Overall, we define the complex and dynamic nature of kidney organoid BM assembly and provide a platform for understanding its wider relevance in human development and disease.
Collapse
Affiliation(s)
- Mychel RPT Morais
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Pinyuan Tian
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Syed Murtuza-Baker
- Division of Informatics, Imaging and Data Sciences, University of ManchesterManchesterUnited Kingdom
| | - Louise Hopkinson
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, University of ManchesterManchesterUnited Kingdom
| | - Aleksandr Mironov
- Electron Microscopy Core Facility, University of ManchesterManchesterUnited Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, University College LondonLondonUnited Kingdom
| | - Daniel P Gale
- Department of Renal Medicine, University College LondonLondonUnited Kingdom
| | - Telma MT Zorn
- Department of Cell and Developmental Biology, University of São PauloSão PauloBrazil
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, University of ManchesterManchesterUnited Kingdom
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals NHS Foundation TrustManchesterUnited Kingdom
| |
Collapse
|
25
|
Expression of collagen type IV in human kidney during prenatal development. VOJNOSANIT PREGL 2022. [DOI: 10.2298/vsp200927111p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background/Aim. Type IV collagen belongs to the group of nonfibrillar collagens and is an important component of the basement membranes, where it accounts for approximately 50% of its structural elements. The aim of the study was to describe the expression and distribution of collagen type IV in the embryonic and fetal metanephric kidney and to determine the volume density of collagen type IV in kidney tissue in each trimester of development. Methods. The material consisted of 19 human embryos/fetuses, in the gestational age from 8th to 37th week. Kidney tissue specimens were routinely processed to paraffin molds, stained immunohistochemically using polyclonal anti-collagen IV antibody and counterstained with Mayer hematoxylin and eosin. Stained slides were examined using a light microscope, and images of the selected areas under different lens magnification were captured with a digital camera. Volume density of collagen type IV was determined using ImageJ 1.48v and a plugin of the software, which inserted a grid system with 336 points. For the data comparison, the One-Way Analysis of Variance (ANOVA) was used. Results. Strong collagen IV immunopositivity was seen in all specimens, with a distribution in the basement membranes of urinary bud, parietal leaf of Bowman?s capsule, glomerular basement membrane, basement membrane of interstitial blood vessels, and basement membranes of nephron tubules and collecting ducts. No statistically significant difference in the volume density of type IV collagen was found among the different trimesters of the embryonic and fetal development. Conclusion. The synthesis and secretion of collagen type IV simultaneously follow the development of nephron structures, collecting system and blood vessels. The volume density of collagen type IV remains constant throughout all the trimesters of metanephric kidney development, indicating that it plays a crucial role in the normal development of nephron and collecting system structures, as well as in maintaining the normal kidney function.
Collapse
|
26
|
Sobolev VE, Sokolova MO, Jenkins RO, Goncharov NV. Nephrotoxic Effects of Paraoxon in Three Rat Models of Acute Intoxication. Int J Mol Sci 2021; 22:13625. [PMID: 34948422 PMCID: PMC8709234 DOI: 10.3390/ijms222413625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
The delayed effects of acute intoxication by organophosphates (OPs) are poorly understood, and the various experimental animal models often do not take into account species characteristics. The principal biochemical feature of rodents is the presence of carboxylesterase in blood plasma, which is a target for OPs and can greatly distort their specific effects. The present study was designed to investigate the nephrotoxic effects of paraoxon (O,O-diethyl O-(4-nitrophenyl) phosphate, POX) using three models of acute poisoning in outbred Wistar rats. In the first model (M1, POX2x group), POX was administered twice at doses 110 µg/kg and 130 µg/kg subcutaneously, with an interval of 1 h. In the second model (M2, CBPOX group), 1 h prior to POX poisoning at a dose of 130 µg/kg subcutaneously, carboxylesterase activity was pre-inhibited by administration of specific inhibitor cresylbenzodioxaphosphorin oxide (CBDP, 3.3 mg/kg intraperitoneally). In the third model (M3), POX was administered subcutaneously just once at doses of LD16 (241 µg/kg), LD50 (250 µg/kg), and LD84 (259 µg/kg). Animal observation and sampling were performed 1, 3, and 7 days after the exposure. Endogenous creatinine clearance (ECC) decreased in 24 h in the POX2x group (p = 0.011). Glucosuria was observed in rats 24 h after exposure to POX in both M1 and M2 models. After 3 days, an increase in urinary excretion of chondroitin sulfate (CS, p = 0.024) and calbindin (p = 0.006) was observed in rats of the CBPOX group. Morphometric analysis revealed a number of differences most significant for rats in the CBPOX group. Furthermore, there was an increase in the area of the renal corpuscles (p = 0.0006), an increase in the diameter of the lumen of the proximal convoluted tubules (PCT, p = 0.0006), and narrowing of the diameter of the distal tubules (p = 0.001). After 7 days, the diameter of the PCT lumen was still increased in the nephrons of the CBPOX group (p = 0.0009). In the M3 model, histopathological and ultrastructural changes in the kidneys were revealed after the exposure to POX at doses of LD50 and LD84. Over a period from 24 h to 3 days, a significant (p = 0.018) expansion of Bowman's capsule was observed in the kidneys of rats of both the LD50 and LD84 groups. In the epithelium of the proximal tubules, stretching of the basal labyrinth, pycnotic nuclei, and desquamation of microvilli on the apical surface were revealed. In the epithelium of the distal tubules, partial swelling and destruction of mitochondria and pycnotic nuclei was observed, and nuclei were displaced towards the apical surface of cells. After 7 days of the exposure to POX, an increase in the thickness of the glomerular basement membrane (GBM) was observed in the LD50 and LD84 groups (p = 0.019 and 0.026, respectively). Moreover, signs of damage to tubular epithelial cells persisted with blockage of the tubule lumen by cellular detritus and local destruction of the surface of apical cells. Comparison of results from the three models demonstrates that the nephrotoxic effects of POX, evaluated at 1 and 3 days, appear regardless of prior inhibition of carboxylesterase activity.
Collapse
Affiliation(s)
- Vladislav E. Sobolev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia; (V.E.S.); (M.O.S.)
| | - Margarita O. Sokolova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia; (V.E.S.); (M.O.S.)
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia; (V.E.S.); (M.O.S.)
| |
Collapse
|
27
|
Englezakis A, Gozalpour E, Kamran M, Fenner K, Mele E, Coopman K. Development of a hollow fibre-based renal module for active transport studies. J Artif Organs 2021; 24:473-484. [PMID: 33751266 PMCID: PMC8571221 DOI: 10.1007/s10047-021-01260-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
Understanding the active transport of substrates by the kidney in the renal proximal convoluted tubule is crucial for drug development and for studying kidney diseases. Currently, cell-based assays are applied for this this purpose, however, differences between assays and the body are common, indicating the importance of in vitro-in vivo discrepancies. Several studies have suggested that 3D cell cultures expose cells to a more physiological environments, thus, providing more accurate cell function results. To mimic the renal proximal tubule, we have developed a custom-made renal module (RM), containing a single polypropylene hollow fibre (Plasmaphan P1LX, 3M) that serves as a porous scaffold and compared to conventional Transwell cell-based bidirectional transport studies. In addition, a constant flow of media, exposed cells to a physiological shear stress of 0.2 dyne/cm2. MDCK-Mdr1a cells, overexpressing the rat Mdr1a (P-gp) transporter, were seeded onto the HF membrane surface coated with the basement membrane matrix Geltrex which facilitated cell adhesion and tight junction formation. Cells were then seeded into the HF lumen where attachment and tight junction formation were evaluated by fluorescence microscopy while epithelial barrier integrity under shear stress was shown to be achieved by day 7. qPCR results have shown significant changes in gene expression compared to cells grown on Transwells. Kidney injury marker such as KIM-1 and the hypoxia marker CA9 have been downregulated, while the CD133 (Prominin-1) microvilli marker has shown a fivefold upregulation. Furthermore, the renal transporter P-gp expression has been downregulated by 50%. Finally, bidirectional assays have shown that cells grown in the RM were able to reabsorb albumin with a higher efficiency compared to Transwell cell cultures while efflux of the P-gp-specific substrates Hoechst and Rhodamine 123 was decreased. These results further support the effect of the microenvironment and fluidic shear stress on cell function and gene expression. This can serve as the basis for the development of a microphysiological renal model for drug transport studies.
Collapse
Affiliation(s)
- Alexandros Englezakis
- Centre of Biological Engineering, Department of Chemical Engineering, Loughborough University, Loughborough, UK.
| | - Elnaz Gozalpour
- Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, UK
| | - Mohammed Kamran
- Centre of Biological Engineering, Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Katherine Fenner
- Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, UK
| | - Elisa Mele
- Department of Materials, Loughborough University, Loughborough, UK
| | - Karen Coopman
- Centre of Biological Engineering, Department of Chemical Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
28
|
Shahraki S, Bideskan AE, Aslzare M, Tavakkoli M, Bahrami AR, Hosseinian S, Matin MM, Rad AK. Renal bioengineering with scaffolds prepared from discarded human kidneys by human mesenchymal stem cells. Life Sci 2021; 295:120167. [PMID: 34822795 DOI: 10.1016/j.lfs.2021.120167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
AIMS Regeneration of discarded human kidneys has been considered as an ideal approach to overcome organ shortage for the end-stage renal diseases (ESRDs). The aim of this study was to develop an effective method for preparation of kidney scaffolds that retain the matrix structure required for proliferation and importantly, differentiation of human adipose-derived mesenchymal stem cells (hAd-MSCs) into renal cells. MAIN METHODS we first compared two different methods using triton X-100 and sodium dodecyl sulfate (SDS) for human kidney decellularization; and characterized developed human renal extracellular matrix (ECM) scaffolds. Then, hAd-MSCs were seeded on human decellularized kidney scaffolds and cultured for up to 3 weeks. Next, viability, proliferation, and migration of seeded hAd-MSCs within the scaffolds, underwent histological and scanning electron microscopy (SEM) assessments. Moreover, differentiation of hAd-MSCs into kidney-specific cell types was examined using immunohistochemistry (IHC) staining and qRT-PCR. KEY FINDINGS Our results indicated that triton X-100 was a more effective detergent for decellularization of human kidneys compared with SDS. Moreover, attachment and proliferation of hAd-MSCs within the recellularized human kidney scaffolds, were confirmed. Seeded cells expressed epithelial and endothelial differentiation markers, and qRT-PCR results indicated increased expression of platelet and endothelial cell adhesion Molecule 1 (PECAM-1), paired box 2 (PAX2), and e-cadherine (E-CDH) as factors required for differentiation of hAd-MSCs into epithelial and endothelial cells. SIGNIFICANCE These observations indicate effectiveness of decellularization by triton X-100 to generate suitable human ECM renal scaffolds, which supported adhesion and proliferation of hAd-MSCs and could induce their differentiation towards a renal lineage.
Collapse
Affiliation(s)
- Samira Shahraki
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Aslzare
- Urology and Nephrology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Tavakkoli
- Department of Urology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| | - Abolfazl Khajavi Rad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Park JS, Jung IA, Choi HS, Kim DH, Choi HI, Bae EH, Ma SK, Kim SW. Anti-fibrotic effect of 6-bromo-indirubin-3'-oxime (6-BIO) via regulation of activator protein-1 (AP-1) and specificity protein-1 (SP-1) transcription factors in kidney cells. Biomed Pharmacother 2021; 145:112402. [PMID: 34773763 DOI: 10.1016/j.biopha.2021.112402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
PAI-1 and CTGF are overexpressed in kidney diseases and cause fibrosis of the lungs, liver, and kidneys. We used a rat model of unilateral ureteral obstruction (UUO) to investigate whether 6-BIO, a glycogen synthase kinase-3β inhibitor, attenuated fibrosis by inhibiting PAI-1 and CTGF in vivo. Additionally, TGFβ-induced cellular fibrosis was observed in vitro using the human kidney proximal tubular epithelial cells (HK-2), and rat interstitial fibroblasts (NRK49F). Expression of fibrosis-related proteins and signaling molecules such as PAI-1, CTGF, TGFβ, αSMA, SMAD, and MAPK were determined in HK-2 and NRK49F cells using immunoblotting. To identify the transcription factors that regulate the expression of PAI-1 and CTGF the promoter activities of AP-1 and SP-1 were analyzed using luciferase assays. Confocal microscopy was used to observe the co-localization of AP-1 and SP-1 to PAI-1 and CTGF. Expression of PAI-1, CTGF, TGFβ, and α-SMA increased in UUO model as well as in TGFβ-treated HK-2 and NRK49F cells. Furthermore, UUO and TGFβ treatment induced the activation of P-SMAD2/3, SMAD4, P-ERK 1/2, P-P38, and P-JNK MAPK signaling pathways. PAI-1, CTGF, AP-1 and SP-1 promoter activity increased in response to TGFβ treatment. However, treatment with 6-BIO decreased the expression of proteins and signaling pathways associated with fibrosis in UUO model as well as in TGFβ-treated HK-2 and NRK49F cells. Moreover, 6-BIO treatment attenuated the expression of PAI-1 and CTGF as well as the promoter activities of AP-1 and SP-1, thereby regulating the SMAD and MAPK signaling pathways, and subsequently exerting anti-fibrotic effects on kidney cells.
Collapse
Affiliation(s)
- Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - In Ae Jung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hoon In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea.
| |
Collapse
|
30
|
Vermue IJM, Begum R, Castilho M, Rookmaaker MB, Masereeuw R, Bouten CVC, Verhaar MC, Cheng C. Renal Biology Driven Macro- and Microscale Design Strategies for Creating an Artificial Proximal Tubule Using Fiber-Based Technologies. ACS Biomater Sci Eng 2021; 7:4679-4693. [PMID: 34490771 PMCID: PMC8512683 DOI: 10.1021/acsbiomaterials.1c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Chronic kidney disease
affects one in six people worldwide. Due
to the scarcity of donor kidneys and the complications associated
with hemodialysis (HD), a cell-based bioartificial kidney (BAK) device
is desired. One of the shortcomings of HD is the lack of active transport
of solutes that would normally be performed by membrane transporters
in kidney epithelial cells. Specifically, proximal tubule (PT) epithelial
cells play a major role in the active transport of metabolic waste
products. Therefore, a BAK containing an artificial PT to actively
transport solutes between the blood and the filtrate could provide
major therapeutic advances. Creating such an artificial PT requires
a biocompatible tubular structure which supports the adhesion and
function of PT-specific epithelial cells. Ideally, this scaffold should
structurally replicate the natural PT basement membrane which consists
mainly of collagen fibers. Fiber-based technologies such as electrospinning
are therefore especially promising for PT scaffold manufacturing.
This review discusses the use of electrospinning technologies to generate
an artificial PT scaffold for ex vivo/in
vivo cellularization. We offer a comparison of currently
available electrospinning technologies and outline the desired scaffold
properties required to serve as a PT scaffold. Discussed also are
the potential technologies that may converge in the future, enabling
the effective and biomimetic incorporation of synthetic PTs in to
BAK devices and beyond.
Collapse
Affiliation(s)
- IJsbrand M Vermue
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Runa Begum
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, 3508 GA Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Regenerative Medicine Center Utrecht, 3508 GA Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thorax Center, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
31
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
32
|
Clotet-Freixas S, Konvalinka A. Too Little or Too Much? Extracellular Matrix Remodeling in Kidney Health and Disease. J Am Soc Nephrol 2021; 32:1541-1543. [PMID: 34135080 PMCID: PMC8425646 DOI: 10.1681/asn.2021050654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- Sergi Clotet-Freixas
- Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Renal Transplant Program, Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Renal Transplant Program, Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Sobreiro‐Almeida R, Quinteira R, Neves NM. Renal Regeneration: The Role of Extracellular Matrix and Current ECM-Based Tissue Engineered Strategies. Adv Healthc Mater 2021; 10:e2100160. [PMID: 34137210 DOI: 10.1002/adhm.202100160] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECM) are currently being studied as an alternative source for organ transplantation or as new solutions to treat kidney injuries, which can evolve to end-stage renal disease, a life devastating condition. This paper provides an overview on the current knowledge in kidney ECM and its usefulness on future investigations. The composition and structure of kidney ECM is herein associated with its intrinsic capacity of remodeling and repair after insult. Moreover, it provides a deeper insight on altered ECM components during disease. The use of decellularized kidney matrices is discussed in the second part of the review, with emphasis on how these matrices contribute to tissue-specific differentiation of embryonic, pluripotent, and other stem cells. The evolution on the field toward different uses of xenogeneic ECM as a biological scaffold material is discussed, namely the major outcomes on whole kidney recellularization and its in vivo implantation. At last, the recent literature on the use of processed kidney decellularized ECM to produce diverse biomaterial substrates, such as hydrogels, membranes, and bioinks are reviewed, with emphasis on future perspectives of its translation into the clinic.
Collapse
Affiliation(s)
- Rita Sobreiro‐Almeida
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rita Quinteira
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
34
|
Randles MJ, Lausecker F, Kong Q, Suleiman H, Reid G, Kolatsi-Joannou M, Davenport B, Tian P, Falcone S, Potter P, Van Agtmael T, Norman JT, Long DA, Humphries MJ, Miner JH, Lennon R. Identification of an Altered Matrix Signature in Kidney Aging and Disease. J Am Soc Nephrol 2021; 32:1713-1732. [PMID: 34049963 PMCID: PMC8425653 DOI: 10.1681/asn.2020101442] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Accumulation of extracellular matrix in organs and tissues is a feature of both aging and disease. In the kidney, glomerulosclerosis and tubulointerstitial fibrosis accompany the decline in function, which current therapies cannot address, leading to organ failure. Although histologic and ultrastructural patterns of excess matrix form the basis of human disease classifications, a comprehensive molecular resolution of abnormal matrix is lacking. METHODS Using mass spectrometry-based proteomics, we resolved matrix composition over age in mouse models of kidney disease. We compared the changes in mice with a global characterization of human kidneymatrix during aging and to existing kidney disease datasets to identify common molecular features. RESULTS Ultrastructural changes in basement membranes are associated with altered cell adhesion and metabolic processes and with distinct matrix proteomes during aging and kidney disease progression in mice. Within the altered matrix, basement membrane components (laminins, type IV collagen, type XVIII collagen) were reduced and interstitial matrix proteins (collagens I, III, VI, and XV; fibrinogens; and nephronectin) were increased, a pattern also seen in human kidney aging. Indeed, this signature of matrix proteins was consistently modulated across all age and disease comparisons, and the increase in interstitial matrix was also observed in human kidney disease datasets. CONCLUSIONS This study provides deep molecular resolution of matrix accumulation in kidney aging and disease, and identifies a common signature of proteins that provides insight into mechanisms of response to kidney injury and repair.
Collapse
Affiliation(s)
- Michael J. Randles
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Qingyang Kong
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Hani Suleiman
- Renal Division, Washington University School of Medicine, Saint Louis, Missouri
| | - Graeme Reid
- Department of Histopathology, Manchester Royal Infirmary, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, Great Ormond Institute of Child Health, University College London, London, United Kingdom
| | - Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sara Falcone
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Paul Potter
- Department Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jill T. Norman
- Department of Renal Medicine, University College London, London, United Kingdom
| | - David A. Long
- Developmental Biology and Cancer Programme, Great Ormond Institute of Child Health, University College London, London, United Kingdom
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jeffrey H. Miner
- Renal Division, Washington University School of Medicine, Saint Louis, Missouri
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
35
|
Rajagopalan A, Venkatesh I, Aslam R, Kirchenbuechler D, Khanna S, Cimbaluk D, Kordower JH, Gupta V. SeqStain is an efficient method for multiplexed, spatialomic profiling of human and murine tissues. CELL REPORTS METHODS 2021; 1:100006. [PMID: 34766102 PMCID: PMC8579778 DOI: 10.1016/j.crmeth.2021.100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 01/16/2023]
Abstract
Spatial organization of molecules and cells in complex tissue microenvironments provides essential organizational cues in health and disease. A significant need exists for improved visualization of these spatial relationships. Here, we describe a multiplex immunofluorescence imaging method, termed SeqStain, that uses fluorescent-DNA-labeled antibodies for immunofluorescent staining and nuclease treatment for de-staining that allows selective enzymatic removal of the fluorescent signal. SeqStain can be used with primary antibodies, secondary antibodies, and antibody fragments to efficiently analyze complex cells and tissues. Additionally, incorporation of specific endonuclease restriction sites in antibody labels allows for selective removal of fluorescent signals while retaining other signals that can serve as marks for subsequent analyses. The application of SeqStain on human kidney tissue provided a spatialomic profile of the organization of >25 markers in the kidney, highlighting it as a versatile, easy-to-use, and gentle new technique for spatialomic analyses of complex microenvironments.
Collapse
Affiliation(s)
- Anugraha Rajagopalan
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ishwarya Venkatesh
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rabail Aslam
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - David Kirchenbuechler
- Center for Advanced Microscopy, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shreyaa Khanna
- University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - David Cimbaluk
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Hematology, Oncology and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
36
|
Giandalia A, Giuffrida AE, Gembillo G, Cucinotta D, Squadrito G, Santoro D, Russo GT. Gender Differences in Diabetic Kidney Disease: Focus on Hormonal, Genetic and Clinical Factors. Int J Mol Sci 2021; 22:5808. [PMID: 34071671 PMCID: PMC8198374 DOI: 10.3390/ijms22115808] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most serious complications of both type 1 (T1DM) and type 2 diabetes mellitus (T2DM). Current guidelines recommend a personalized approach in order to reduce the burden of DM and its complications. Recognizing sex and gender- differences in medicine is considered one of the first steps toward personalized medicine, but the gender issue in DM has been scarcely explored so far. Gender differences have been reported in the incidence and the prevalence of DKD, in its phenotypes and clinical manifestations, as well as in several risk factors, with a different impact in the two genders. Hormonal factors, especially estrogen loss, play a significant role in explaining these differences. Additionally, the impact of sex chromosomes as well as the influence of gene-sex interactions with several susceptibility genes for DKD have been investigated. In spite of the increasing evidence that sex and gender should be included in the evaluation of DKD, several open issues remain uncovered, including the potentially different effects of newly recommended drugs, such as SGLT2i and GLP1Ras. This narrative review explored current evidence on sex/gender differences in DKD, taking into account hormonal, genetic and clinical factors.
Collapse
Affiliation(s)
- Annalisa Giandalia
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| | - Alfio Edoardo Giuffrida
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (G.G.); (D.S.)
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (G.G.); (D.S.)
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Domenico Cucinotta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (G.G.); (D.S.)
| | - Giuseppina T. Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| |
Collapse
|
37
|
Myram S, Venzac B, Lapin B, Battistella A, Cayrac F, Cinquin B, Cavaniol C, Gropplero G, Bonnet I, Demolombe S, Descroix S, Coscoy S. A Multitubular Kidney-on-Chip to Decipher Pathophysiological Mechanisms in Renal Cystic Diseases. Front Bioeng Biotechnol 2021; 9:624553. [PMID: 34124016 PMCID: PMC8188354 DOI: 10.3389/fbioe.2021.624553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major renal pathology provoked by the deletion of PKD1 or PKD2 genes leading to local renal tubule dilation followed by the formation of numerous cysts, ending up with renal failure in adulthood. In vivo, renal tubules are tightly packed, so that dilating tubules and expanding cysts may have mechanical influence on adjacent tubules. To decipher the role of this coupling between adjacent tubules, we developed a kidney-on-chip reproducing parallel networks of tightly packed tubes. This original microdevice is composed of cylindrical hollow tubes of physiological dimensions, parallel and closely packed with 100-200 μm spacing, embedded in a collagen I matrix. These multitubular systems were properly colonized by different types of renal cells with long-term survival, up to 2 months. While no significant tube dilation over time was observed with Madin-Darby Canine Kidney (MDCK) cells, wild-type mouse proximal tubule (PCT) cells, or with PCT Pkd1 +/- cells (with only one functional Pkd1 allele), we observed a typical 1.5-fold increase in tube diameter with isogenic PCT Pkd1 -/- cells, an ADPKD cellular model. This tube dilation was associated with an increased cell proliferation, as well as a decrease in F-actin stress fibers density along the tube axis. With this kidney-on-chip model, we also observed that for larger tube spacing, PCT Pkd1 -/- tube deformations were not spatially correlated with adjacent tubes whereas for shorter spacing, tube deformations were increased between adjacent tubes. Our device reveals the interplay between tightly packed renal tubes, constituting a pioneering tool well-adapted to further study kidney pathophysiology.
Collapse
Affiliation(s)
- Sarah Myram
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Bastien Venzac
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Brice Lapin
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Aude Battistella
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Fanny Cayrac
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Bertrand Cinquin
- Institut Pierre-Gilles de Gennes, IPGG Technology Platform, UMS 3750 CNRS, Paris, France
| | - Charles Cavaniol
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
- Fluigent SA, France
| | - Giacomo Gropplero
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Isabelle Bonnet
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sophie Demolombe
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Stéphanie Descroix
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sylvie Coscoy
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| |
Collapse
|
38
|
Genetic Adaptations in Mudskipper and Tetrapod Give Insights into Their Convergent Water-to-Land Transition. Animals (Basel) 2021; 11:ani11020584. [PMID: 33672418 PMCID: PMC7926366 DOI: 10.3390/ani11020584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 11/17/2022] Open
Abstract
Water-to-land transition has been independently evolved in multiple vertebrate lineages including the most recent common ancestor of tetrapod and multiple fish clades, and among them, mudskippers uniquely adapted to the mudflat. Even though physiological and morphological adaptation of mudskippers is thought to resemble that of the ancestral tetrapod, it is unclear if they share genome-wide evolutionary signatures. To detect potential signatures of positive selection in mudskipper and tetrapods, we analyzed 4118 singleton orthologues of terrestrial tetrapods, coelacanth, mudskipper, and fully aquatic fishes. Among positively selected genes identified in mudskipper and tetrapod lineages, genes involved in immune responses, mitochondrial oxidative phosphorylation, and kidney development were detected. On the other hand, tetrapod-specific and mudskipper-specific positively selected genes were functionally enriched for DNA repair processes, which could be associated with higher exposure to UV light. We also performed gene family analysis and discovered convergent contraction of eight gene families, including βγ-crystallin coding genes in both tetrapod and mudskipper lineages. Findings of this study suggest the similar genetic adaptation against environmental constraints between the ancient tetrapod and mudskippers for their land adaptation.
Collapse
|
39
|
van Gaal RC, Vrehen AF, van Sprang JF, Fransen PPKH, van Turnhout MC, Dankers PYW. Biomaterial screening of protein coatings and peptide additives: towards a simple synthetic mimic of a complex natural coating for a bio-artificial kidney. Biomater Sci 2021; 9:2209-2220. [PMID: 33506836 DOI: 10.1039/d0bm01930e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bio-artificial kidneys require conveniently synthesized membranes providing signals that regulate renal epithelial cell function. Therefore, we aimed to find synthetic analogues for natural extracellular matrix (ECM) protein coatings traditionally used for epithelial cell culturing. Two biomaterial libraries, based on natural ECM-coatings and on synthetic supramolecular small molecule additives, were developed. The base material consisted of a bisurea (BU) containing polymer, providing supramolecular BU-additives to be incorporated via specific hydrogen bonding interactions. This system allows for a modular approach and therefore easy fractional factorial based screening. A natural coating on the BU-polymer material with basement membrane proteins, laminin and collagen IV, combined with catechols was shown to induce renal epithelial monolayer formation. Modification of the BU-polymer material with synthetic BU-modified ECM peptide additives did not result in monolayer formation. Unexpectedly, simple BU-catechol additives induced monolayer formation and presented similar levels of epithelial markers and apical transporter function as on the laminin, collagen IV and catechol natural coating. Importantly, when this BU-polymer material was processed into fibrous e-spun membranes the natural coating and the BU-catechol additive were shown to perfectly function. This study clearly indicates that complex natural ECM-coatings can be replaced by simple synthetic additives, and displays the potency of material libraries based on design of experiments in combination with modular, supramolecular chemistry.
Collapse
Affiliation(s)
- Ronald C van Gaal
- Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
An extremely mild clinical course in a case with LAMB2-associated nephritis diagnosed with next-generation sequencing. CEN Case Rep 2021; 10:359-363. [PMID: 33476040 DOI: 10.1007/s13730-021-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022] Open
Abstract
Biallelic pathogenic variants in the laminin β2 (LAMB2) gene, which encodes laminin β2, are associated with Pierson syndrome characterized by a congenital nephrotic syndrome that rapidly progresses to end-stage renal disease, distinct ocular maldevelopment with bilateral microcoria, and neurodevelopmental deficits. However, the phenotypic spectrum of LAMB2-associated disorder is broader than expected, and cases with milder phenotypes such as isolated congenital or infantile nephrotic syndrome have also been reported. We report a patient with LAMB2-associated renal disorder showing an extremely mild phenotype. A 5-year-old girl presented with asymptomatic proteinuria and hematuria detected by urinalysis screening. She had been previously healthy without any additional renal symptoms. The serum albumin and creatinine levels were normal. Renal biopsy revealed minor glomerular abnormalities with occasional focal mesangial proliferation. Electron microscopy showed no structural changes in the glomerular basement membrane. Targeted sequencing of podocyte-related genes using next-generation sequencing was performed. As a result, previously reported biallelic pathogenic variants of the truncating variant (c.5073_5076dupCCAG) and a splice site variant (c.3797 + 5G > A) in the LAMB2 gene were detected, and the patient was diagnosed with LAMB2-associated renal disorder. Interestingly, a previously reported case with this splicing variant also showed an atypically mild phenotype. We suggest that clinicians should consider LAMB2-associated nephritis as an important differential diagnosis in children with asymptomatic proteinuria and microscopic hematuria if there is no structural change in the glomerular basement membrane. A comprehensive gene-screening system using next-generation sequencing is useful for diagnosing these atypical cases with isolated urine abnormalities.
Collapse
|
41
|
Adelfio M, Szymkowiak S, Kaplan DL. Matrigel-Free Laminin-Entactin Matrix to Induce Human Renal Proximal Tubule Structure Formation In Vitro. ACS Biomater Sci Eng 2020; 6:6618-6625. [PMID: 33320630 DOI: 10.1021/acsbiomaterials.0c01385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A successful in vitro tissue model must recapitulate the native tissue features while also being reproducible. Currently, Matrigel is the principal biomaterial used to induce the formation of proximal convoluted tubules (PCTs) in vitro, because of its similar composition and structure with the kidney tubular basement membrane and the presence of critical growth factors. However, Matrigel is not well-defined, and batch-to-batch variability is a significant issue. Here, we define a Matrigel-free method, using a laminin-entactin (L-E) matrix to support the formation of proximal tubular-like structures in vitro using immortalized human renal epithelial cells (RPTEC/TERT1) cocultured with murine fibroblast stromal cells (FOXD1lacZ+). The matrix supports the presence of specific components of the tubular basement membrane (laminin, entactin/nidogen, and heparan sulfate proteoglycan) in addition to fibroblast growth factor 8a (FGF-8a). The matrix also induces tubulogenesis, leading to the formation of PCTs based on several key markers, including E-cadherin, aquaporin-1, and Na+/K+ ATPase. Moreover, these PCT structures displayed cell polarity and a well-defined lumen after 18 days in culture. This laminin-entactin (L-E) matrix constitutes a defined and consistent biomaterial that can be used in kidney tissue engineering for understanding in vitro proximal tubule development and for nephrotoxicity studies.
Collapse
Affiliation(s)
- M Adelfio
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - S Szymkowiak
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - D L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
42
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
43
|
Ouyang M, Qian Z, Bu B, Jin Y, Wang J, Zhu Y, Liu L, Pan Y, Deng L. Sensing Traction Force on the Matrix Induces Cell-Cell Distant Mechanical Communications for Self-Assembly. ACS Biomater Sci Eng 2020; 6:5833-5848. [PMID: 33320570 DOI: 10.1021/acsbiomaterials.0c01035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The long-range biomechanical force propagating across a large scale may reserve the capability to trigger coordinative responses within cell population such as during angiogenesis, epithelial tubulogenesis, and cancer metastasis. How cells communicate in a distant manner within the group for self-assembly remains largely unknown. Here, we found that airway smooth muscle cells (ASMCs) rapidly self-assembled into a well-constructed network on 3D Matrigel containing type I collagen (COL), which relied on long-range biomechanical force across the matrix to direct cell-cell distant interactions. Similar results happened by HUVEC cells to mimic angiogenesis. Interestingly, single ASMCs initiated multiple extended protrusions precisely pointing to neighboring cells in distance (100-300 μm away or 5-10 folds of the diameter of a round single cell), depending on traction force sensing. Individual ASMCs mechanosensed each other to move directionally on both nonfibrous Matrigel only and Matrigel containing fibrous COL but lost mutual sensing on the cross-linked gel or coated glass due to no long-range force transmission. The bead tracking assay demonstrated distant transmission of traction force (up to 400 μm) during the matrix deformation, and finite element method modeling confirmed the consistency between maximum strain distribution on the matrix and cell directional movements in experiments. Furthermore, ASMCs recruited COL from the hydrogel to build a fibrous network to mechanically stabilize the cell network. Our results revealed principally that cells can sense traction force transmitted through the matrix to initiate cell-cell distant mechanical communications, resulting in cell directional migration and coordinated cell and COL self-assembly with active matrix remodeling. As an interesting phenomenon, cells seem to be able to "make a phone call" via long-range biomechanics, which implicates physiological importance such as for tissue pattern formation.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Zhili Qian
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Bing Bu
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Yang Jin
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Jiajia Wang
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Yiming Zhu
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Lei Liu
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Yan Pan
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| |
Collapse
|
44
|
Uchio-Yamada K, Yasuda K, Monobe Y, Akagi KI, Suzuki O, Manabe N. Tensin2 is important for podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier. Am J Physiol Renal Physiol 2020; 318:F1520-F1530. [PMID: 32390516 DOI: 10.1152/ajprenal.00055.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tensin2 (Tns2), an integrin-linked protein, is enriched in podocytes within the glomerulus. Previous studies have revealed that Tns2-deficient mice exhibit defects of the glomerular basement membrane (GBM) soon after birth in a strain-dependent manner. However, the mechanisms for the onset of defects caused by Tns2 deficiency remains unidentified. Here, we aimed to determine the role of Tns2 using newborn Tns2-deficient mice and murine primary podocytes. Ultrastructural analysis revealed that developing glomeruli during postnatal nephrogenesis exhibited abnormal GBM processing due to ectopic laminin-α2 accumulation followed by GBM thickening. In addition, analysis of primary podocytes revealed that Tns2 deficiency led to impaired podocyte-GBM interaction and massive expression of laminin-α2 in podocytes. Our study suggests that weakened podocyte-GBM interaction due to Tns2 deficiency causes increased mechanical stress on podocytes by continuous daily filtration after birth, resulting in stressed podocytes ectopically producing laminin-α2, which interrupts GBM processing. We conclude that Tns2 plays important roles in the podocyte-GBM interaction and maintenance of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Kozue Uchio-Yamada
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Keiko Yasuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoko Monobe
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Ken-Ichi Akagi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Osamu Suzuki
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Noboru Manabe
- Department of Human Sciences, Osaka International University, Moriguchi, Osaka, Japan
| |
Collapse
|
45
|
Rein JL, Heja S, Flores D, Carrisoza-Gaytán R, Lin NYC, Homan KA, Lewis JA, Satlin LM. Effect of luminal flow on doming of mpkCCD cells in a 3D perfusable kidney cortical collecting duct model. Am J Physiol Cell Physiol 2020; 319:C136-C147. [PMID: 32401606 DOI: 10.1152/ajpcell.00405.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cortical collecting duct (CCD) of the mammalian kidney plays a major role in the maintenance of total body electrolyte, acid/base, and fluid homeostasis by tubular reabsorption and excretion. The mammalian CCD is heterogeneous, composed of Na+-absorbing principal cells (PCs) and acid-base-transporting intercalated cells (ICs). Perturbations in luminal flow rate alter hydrodynamic forces to which these cells in the cylindrical tubules are exposed. However, most studies of tubular ion transport have been performed in cell monolayers grown on or epithelial sheets affixed to a flat support, since analysis of transepithelial transport in native tubules by in vitro microperfusion requires considerable expertise. Here, we report on the generation and characterization of an in vitro, perfusable three-dimensional kidney CCD model (3D CCD), in which immortalized mouse PC-like mpkCCD cells are seeded within a cylindrical channel embedded within an engineered extracellular matrix and subjected to luminal fluid flow. We find that a tight epithelial barrier composed of differentiated and polarized PCs forms within 1 wk. Immunofluorescence microscopy reveals the apical epithelial Na+ channel ENaC and basolateral Na+/K+-ATPase. On cessation of luminal flow, benzamil-inhibitable cell doming is observed within these 3D CCDs consistent with the presence of ENaC-mediated Na+ absorption. Our 3D CCD provides a geometrically and microphysiologically relevant platform for studying the development and physiology of renal tubule segments.
Collapse
Affiliation(s)
- Joshua L Rein
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Szilvia Heja
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Flores
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rolando Carrisoza-Gaytán
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Neil Y C Lin
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Kimberly A Homan
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Jennifer A Lewis
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Lisa M Satlin
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
46
|
Chan GC, Eng DG, Miner JH, Alpers CE, Hudkins K, Chang A, Pippin JW, Shankland SJ. Differential expression of parietal epithelial cell and podocyte extracellular matrix proteins in focal segmental glomerulosclerosis and diabetic nephropathy. Am J Physiol Renal Physiol 2019; 317:F1680-F1694. [PMID: 31630546 PMCID: PMC6962515 DOI: 10.1152/ajprenal.00266.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/03/2023] Open
Abstract
In healthy glomeruli, parietal epithelial cell (PEC)-derived extracellular matrix (ECM) proteins include laminin-β1, perlecan, and collagen type IV-α2 and podocyte-specific ECM proteins include laminin-β2, agrin, and collagen type IV-α4. This study aimed to define individual ECM protein isoform expression by PECs in both experimental and human focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy (DN) and to determine if changes were CD44 dependent. In experimental FSGS induced with a cytotoxic podocyte antibody and in the BTBR ob/ob mouse model of DN, PEC-derived protein staining was significantly increased in PECs. Dual staining also showed de novo expression of the podocyte-specific ECM proteins laminin-β2 and agrin in PECs. Similar findings were observed in biopsies from patients with FSGS and DN. Increases in individual ECM proteins colocalized with CD44 in PECs in disease. To determine the role of CD44, FSGS was induced in CD44-/- and CD44+/+ mice. PEC staining for perlecan, collagen type IV-α2, laminin-β2, and agrin were significantly lower in diseased CD44-/- mice compared with diseased CD44+/+ mice. These results show that in experimental and human FSGS and DN, PECs typically in an activated state, produce both PEC-derived and podocyte-specific ECM protein isoforms, and that the majority of these changes were dependent on CD44.
Collapse
Affiliation(s)
- Gek Cher Chan
- Division of Nephrology, University of Washington, Seattle, Washington
- Division of Nephrology, National University Hospital, Singapore
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Charles E Alpers
- Department of Pathology, University of Washington, Seattle, Washington
| | - Kelly Hudkins
- Department of Pathology, University of Washington, Seattle, Washington
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | | |
Collapse
|
47
|
Sobolev VE, Korf EA, Goncharov NV. The Rat (Rattus norvegicus) as a Model Object for Acute Organophosphate Poisoning. 5. Morphofunctional Alterations in Kidneys. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019040069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
van Gaal RC, Buskermolen ABC, Ippel BD, Fransen PPKH, Zaccaria S, Bouten CVC, Dankers PYW. Functional peptide presentation on different hydrogen bonding biomaterials using supramolecular additives. Biomaterials 2019; 224:119466. [PMID: 31542516 DOI: 10.1016/j.biomaterials.2019.119466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 01/20/2023]
Abstract
Supramolecular biomaterials based on hydrogen bonding units can be conveniently functionalized in a mix-and-match approach using supramolecular additives. The presentation of bioactive additives has been sparsely investigated in supramolecular-based elastomeric biomaterials. Here it was investigated how cell adhesive peptides are presented and affect the surface in supramolecular biomaterials based either on ureido-pyrimidinone (UPy) or bisurea (BU) moieties. Polycaprolactone modified with UPy or BU moieties served as the base material. RGD or cyclic (c)RGD were conjugated to complementary supramolecular motifs, and were mixed with the corresponding base materials as supramolecular additives. Biomaterial surface morphology changed upon bioactivation, resulting in the formation of random aggregates on UPy-based materials, and fibrous aggregates on BU-materials. Moreover, peptide type affected aggregation morphology, in which RGD led to larger cluster formation than cRGD. Increased cRGD concentrations led to reduced focal adhesion size and cell migration velocity, and increased focal adhesion numbers in both systems, yet most prominent on functionalized BU-biomaterials. In conclusion, both systems exhibited distinct peptide presenting properties, of which the BU-system most strongly affected cellular adhesive behavior on the biomaterial. This research provided deeper insights in the differences between supramolecular elastomeric platforms, and the level of peptide introduction for biomaterial applications.
Collapse
Affiliation(s)
- Ronald C van Gaal
- Laboratory for Cell and Tissue Engineering, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Antonetta B C Buskermolen
- Laboratory for Cell and Tissue Engineering, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Bastiaan D Ippel
- Laboratory for Cell and Tissue Engineering, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Peter-Paul K H Fransen
- Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Sabrina Zaccaria
- Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Carlijn V C Bouten
- Laboratory for Cell and Tissue Engineering, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Patricia Y W Dankers
- Laboratory for Cell and Tissue Engineering, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands.
| |
Collapse
|
49
|
Eissa L, Ismail HI, Elhassan MMO, Ali HA. Basement membranes in the kidney of the dromedary camel (Camelus dromedarius): An immunohistochemical and ultrastructural study. Acta Histochem 2019; 121:419-429. [PMID: 30904316 DOI: 10.1016/j.acthis.2019.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022]
Abstract
Basement membranes consist of various proteins, the major ones being laminin and collagen type IV. Primary defects in these two proteins have been extensively associated with kidney pathologies. This study aimed to establish baseline information on the immunohistochemical distribution of laminin and collagen type IV, and to corelate these with the ultrastructure of basal laminae in the uriniferous tubules of the dromedary camel. Tissue samples were taken from the kidneys of eight adult female camels, and processed for immunohistochemical and ultrastructural investigations. Strong intensity of collagen type IV was observed within the basement membranes of Bowman's capsule. The thickness of the basal lamina of the parietal layer of Bowman's capsule varied extensively depending on the region of the renal corpuscle; the thicker areas were always associated with cuboidal epithelial cells. The glomerular basement membrane revealed strong immunostaining of laminin, whereas the mesangial matrix was strongly immunoreactive to collagen type IV. Abundant amount of laminin was found in the basement membranes of proximal convoluted tubules, thin limbs of the loop of Henle, and collecting ducts. Dense immunostainings of laminin and collagen type IV were observed in the medullary regions of uriniferous tubule, in which numerous projections extended from the basal laminae into the subjacent connective tissue. Overall, the present study revealed marked variations in the distribution of the basement membrane markers laminin and collagen type IV in the uriniferous tubules of camel kidney. The results have also shown difference in the thickness of basal laminae. This variation in thickness, however, was unlikely to be influenced by the amount of laminin and collagen type IV.
Collapse
Affiliation(s)
- Lemiaa Eissa
- Department of Anatomy, College of Veterinary Medicine, University of Bahri, Khartoum, Sudan
| | - Haider I Ismail
- Department of Anatomy, College of Veterinary Medicine, University of Bahri, Khartoum, Sudan
| | - Mortada M O Elhassan
- Department of Anatomy, College of Veterinary Medicine, University of Bahri, Khartoum, Sudan.
| | - Hassan A Ali
- Department of Biomedical Sciences, College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan
| |
Collapse
|
50
|
Chang CJ, Wang PC, Huang TC, Taniguchi A. Change in Renal Glomerular Collagens and Glomerular Filtration Barrier-Related Proteins in a Dextran Sulfate Sodium-Induced Colitis Mouse Model. Int J Mol Sci 2019; 20:E1458. [PMID: 30909435 PMCID: PMC6471354 DOI: 10.3390/ijms20061458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 01/05/2023] Open
Abstract
Renal disease is not rare among patients with inflammatory bowel disease (IBD) and is gaining interest as a target of research. However, related changes in glomerular structural have rarely been investigated. This study was aimed at clarifying the changes in collagens and glomerular filtration barrier (GFB)-related proteins of glomeruli in a dextran sulfate sodium (DSS)-induced colitis mouse model. Acute colitis was induced by administering 3.5% DSS in Slc:ICR strain mice for eight days. Histological changes to glomeruli were examined by periodic acid-Schiff (PAS) and Masson's trichrome staining. Expressions of glomerular collagens and GFB-related proteins were analyzed by immunofluorescent staining and Western blot analysis. DSS-colitis mice showed an elevated disease activity index (DAI), colon shortening, massive cellular infiltration and colon damage, confirming that DSS-colitis mice can be used as an IBD animal model. DSS-colitis mice showed increased glycoprotein and collagen deposition in glomeruli. Interestingly, we observed significant changes in glomerular collagens, including a decrease in type IV collagen, and an increment in type I and type V collagens. Moreover, declined GFB-related proteins expressions were detected, including synaptopodin, podocalyxin, nephrin and VE-cadherin. These results suggest that renal disease in DSS-colitis mice might be associated with changes in glomerular collagens and GFB-related proteins. These findings are important for further elucidation of the clinical pathological mechanisms underlying IBD-associated renal disease.
Collapse
Affiliation(s)
- Chia-Jung Chang
- Cellular Functional Nanobiomaterials Group, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Pi-Chao Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Tzou-Chi Huang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung 912-01, Taiwan.
| | - Akiyoshi Taniguchi
- Cellular Functional Nanobiomaterials Group, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|