1
|
Vodehnal S, Mohan C. Urinary biomarkers for active Lupus Nephritis that have survived independent validation across cohorts. Kidney Int 2024:S0085-2538(24)00696-3. [PMID: 39370040 DOI: 10.1016/j.kint.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/14/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Most reported biomarkers for lupus nephritis (LN) have not been independently validated across cohorts. Moreover, many of the documented biomarker candidates have been reported to be elevated in LN compared to healthy controls. However, biomarkers that distinguish patients with active LN (ALN) from inactive systemic lupus erythematosus (iSLE) hold significant clinical utility. Hence, our review attempts to identify urine protein biomarkers for LN that have been independently validated across two or more cohorts and exhibit good diagnostic potential for distinguishing ALN from iSLE. PubMed and OVID were screened for studies assessing the diagnostic value of urinary biomarkers in patients with ALN compared to iSLE. Forty peer-reviewed articles were evaluated, encompassing urine biomarker data from 3,411 distinct patients. Of the 32 candidate biomarkers identified, fourteen were repeatedly reported/tested in four or more papers each, namely ALCAM, CCL2 (MCP1), CD163, HAVCR1 (KIM-1), HPGDS, ICAM-1 (CD54), ICAM-2 (CD102), IGFBP-2, LCN2, NCAM-1 (CD56), SELE (E-Selectin), SELL (L-Selectin), TNFSF12 (TWEAK), and VCAM-1, with most exhibiting C-statistics of 0.80 or more across multiple studies when discriminating patients with ALN from iSLE. The 32 reproducibly elevated biomarkers for active LN mapped to nine functional categories. The urinary proteins reported here promise to serve as a liquid biopsy for ALN. Besides representing potential candidates for diagnostic, monitoring, predictive, and prognostic biomarkers in LN, they also provide a window into potential molecular processes within the kidney that may be driving LN. Thus, ongoing advances in proteomics, which offer wider proteome coverage at increased sensitivity, are likely to further reshape our perspective of urinary biomarkers for LN.
Collapse
Affiliation(s)
- Sonja Vodehnal
- Biomedical Engineering Department, University of Houston, Houston, Texas, USA
| | - Chandra Mohan
- Biomedical Engineering Department, University of Houston, Houston, Texas, USA.
| |
Collapse
|
2
|
Moldvai D, Sztankovics D, Dankó T, Vetlényi E, Petővári G, Márk Á, Patonai A, Végső G, Piros L, Hosszú Á, Pápay J, Krencz I, Sebestyén A. Tumorigenic role of tacrolimus through mTORC1/C2 activation in post-transplant renal cell carcinomas. Br J Cancer 2024; 130:1119-1130. [PMID: 38341510 PMCID: PMC10991560 DOI: 10.1038/s41416-024-02597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Kidney transplant recipients (KTRs) face an increased risk of renal cell carcinoma (RCC), in which the immunosuppressive regimen plays an important role. This study aimed to identify intracellular signalling alterations associated with post-transplant (post-tx) tumour formation. METHODS Expression of mTOR-related proteins were analysed in kidneys obtained from end-stage renal disease (ESRD) patients and RCCs developed in KTRs or non-transplant patients. The effects of tacrolimus (TAC) and rapamycin (RAPA) on mTOR activity, proliferation, and tumour growth were investigated through different in vitro and in vivo experiments. RESULTS Elevated mTORC1/C2 activity was observed in post-tx RCCs and in kidneys of TAC-treated ESRD patients. In vitro experiments demonstrated that TAC increases mTOR activity in a normal tubular epithelial cell line and in the investigated RCC cell lines, moreover, promotes the proliferation of some RCC cell line. In vivo, TAC elevated mTORC1/C2 activity in ischaemic kidneys of mice and enhanced tumour growth in xenograft model. CONCLUSIONS We observed significantly increased mTOR activity in ischaemic kidneys and post-tx RCCs, which highlights involvement of mTOR pathway both in the healing or fibrotic processes of kidney and in tumorigenesis. TAC-treatment further augmented the already elevated mTOR activity of injured kidney, potentially contributing to tumorigenesis during immunosuppression.
Collapse
Affiliation(s)
- Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Enikő Vetlényi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Ágnes Márk
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Attila Patonai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - Gyula Végső
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - László Piros
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői út 78., H-1082, Budapest, Hungary
| | - Ádám Hosszú
- Department of Paediatrics (Bókay street Unit), Semmelweis University, Üllői út. 26, H-1085, Budapest, Hungary
- MTA-SE Lendulet Diabetes Research Group, Bókay János utca 53-54., H-1083, Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., H-1085, Budapest, Hungary.
| |
Collapse
|
3
|
Rendell M. Lessons learned from early-stage clinical trials for diabetic nephropathy. Expert Opin Investig Drugs 2024; 33:287-301. [PMID: 38465470 DOI: 10.1080/13543784.2024.2326025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION The evolution of treatment for diabetic nephropathy illustrates how basic biochemistry and physiology have led to new agents such as SGLT2 inhibitors and mineralocorticoid blockers. Conversely, clinical studies performed with these agents have suggested new concepts for investigational drug development. We reviewed currently available treatments for diabetic nephropathy and then analyzed early clinical trials of new agents to assess the potential for future treatment modalities. AREAS COVERED We searched ClinicalTrials.gov for new agents under study for diabetic nephropathy in the past decade. Once we have identified investigation trials of new agents, we then used search engines and Pubmed.gov to find publications providing insight on these drugs. Current treatments have shown benefit in both cardiac and renal disease. In our review, we found 51 trials and 43 pharmaceuticals in a number of drug classes: mineralocorticoid blockers, anti-inflammatory, anti-fibrosis, nitric oxide stimulatory, and podocyte protection, and endothelin inhibitors. EXPERT OPINION It is difficult to predict which early phase treatments will advance to confirmatory clinical trials. Current agents are thought to improve hemodynamic function. However, the coincident benefit of both myocardial function and the glomerulus argues for primary effects at the subcellular level, and we follow the evolution of agents which modify fundamental cellular processes.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Newport Coast, CA, USA
- The Rose Salter Medical Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
4
|
Valencia LJ, Tseng M, Chu ML, Yu L, Adedeji AO, Kiyota T. Zoledronic acid and ibandronate-induced nephrotoxicity in 2D and 3D proximal tubule cells derived from human and rat. Toxicol Sci 2024; 198:86-100. [PMID: 38059598 DOI: 10.1093/toxsci/kfad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Drug-induced proximal tubule (PT) injury remains a serious safety concern throughout drug development. Traditional in vitro 2-dimensional (2D) and preclinical in vivo models often fail to predict drug-related injuries presented in clinical trials. Various 3-dimensional (3D) microphysiological systems (MPSs) have been developed to mimic physiologically relevant properties, enabling them to be more predictive toward nephrotoxicity. To explore the capabilities of an MPS across species, we compared cytotoxicity in hRPTEC/TERT1s and rat primary proximal tubular epithelial cells (rPPTECs) following exposure to zoledronic acid and ibandronate (62.5-500 µM), and antibiotic polymyxin B (PMB) (50 and 250 µM, respectively). For comparison, we investigated cytotoxicity using 2D cultured hRPTEC/TERT1s and rPPTECs following exposure to the same drugs, including overlapping concentrations, as their 3D counterparts. Regardless of the in vitro model, bisphosphonate-exposed rPPTECs exhibited cytotoxicity quicker than hRPTEC/TERT1s. PMB was less sensitive toward nephrotoxicity in rPPTECs than hRPTEC/TERT1s, demonstrating differences in species sensitivity within both 3D and 2D models. Generally, 2D cultured cells experienced faster drug-induced cytotoxicity compared to the MPSs, suggesting that MPSs can be advantageous for longer-term drug-exposure studies, if warranted. Furthermore, ibandronate-exposed hRPTEC/TERT1s and rPPTECs produced higher levels of inflammatory and kidney injury biomarkers compared to zoledronic acid, indicating that ibandronate induces acute kidney injury, but also a potential protective response since ibandronate is less toxic than zoledronic acid. Our study suggests that the MPS model can be used for preclinical screening of compounds prior to animal studies and human clinical trials.
Collapse
Affiliation(s)
- Leslie J Valencia
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Min Tseng
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Mei-Lan Chu
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Lanlan Yu
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Adeyemi O Adedeji
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Tomomi Kiyota
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| |
Collapse
|
5
|
Eritja À, Caus M, Belmonte T, de Gonzalo-Calvo D, García-Carrasco A, Martinez A, Martínez M, Bozic M. microRNA Expression Profile in Obesity-Induced Kidney Disease Driven by High-Fat Diet in Mice. Nutrients 2024; 16:691. [PMID: 38474819 DOI: 10.3390/nu16050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is one of the main causes of chronic kidney disease; however, the precise molecular mechanisms leading to the onset of kidney injury and dysfunction in obesity-associated nephropathy remain unclear. The present study aimed to unveil the kidney microRNA (miRNA) expression profile in a model of obesity-induced kidney disease in C57BL/6J mice using next-generation sequencing (NGS) analysis. High-fat diet (HFD)-induced obesity led to notable structural alterations in tubular and glomerular regions of the kidney, increased renal expression of proinflammatory and profibrotic genes, as well as an elevated renal expression of genes involved in cellular lipid metabolism. The miRNA sequencing analysis identified a set of nine miRNAs differentially expressed in the kidney upon HFD feeding, with miR-5099, miR-551b-3p, miR-223-3p, miR-146a-3p and miR-21a-3p showing the most significant differential expression between standard diet (STD) and HFD mice. A validation analysis showed that the expression levels of miR-5099, miR-551b-3p and miR-146a-3p were consistent with NGS results, while Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that these three validated miRNAs modulated target genes involved in metabolic and adipocytokine pathways, fatty acid and lipid metabolism, and inflammatory, senescence and profibrotic pathways. Our results suggest that differentially expressed miRNAs play pivotal roles in the intricate pathophysiology of obesity-associated kidney disease and could potentially create novel treatment strategies to counteract the deleterious effects of obesity on kidney function.
Collapse
Affiliation(s)
- Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Maite Caus
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alicia García-Carrasco
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Ana Martinez
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Montserrat Martínez
- Biostatistics Unit (Biostat), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| |
Collapse
|
6
|
Yoo KD, Yu MY, Kim KH, Lee S, Park E, Kang S, Lim DH, Lee Y, Song J, Kown S, Kim YC, Kim DK, Lee JS, Kim YS, Yang SH. Role of the CCL20/CCR6 axis in tubular epithelial cell injury: Kidney-specific translational insights from acute kidney injury to chronic kidney disease. FASEB J 2024; 38:e23407. [PMID: 38197598 DOI: 10.1096/fj.202301069rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/19/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
This study investigated the role of the axis involving chemokine receptor 6 (CCR6) and its ligand chemokine (C-C motif) ligand 20 (CCL20) in acute kidney disease (AKD) using an ischemia-reperfusion injury (IRI) model. The model was established by clamping the unilateral renal artery pedicle of C57BL/6 mice for 30 min, followed by evaluation of CCL20/CCR6 expression at 4 weeks post-IRI. In vitro studies were conducted to examine the effects of hypoxia and H2 O2 -induced oxidative stress on CCL20/CCR6 expression in kidney tissues of patients with AKD and chronic kidney disease (CKD). Tubular epithelial cell apoptosis was more severe in C57BL/6 mice than in CCL20 antibody-treated mice, and CCR6, NGAL mRNA, and IL-8 levels were higher under hypoxic conditions. CCL20 blockade ameliorated apoptotic damage in a dose-dependent manner under hypoxia and reactive oxygen species injury. CCR6 expression in IRI mice indicated that the disease severity was similar to that in patients with the AKD phenotype. Morphometry of CCL20/CCR6 expression revealed a higher likelihood of CCR6+ cell presence in CKD stage 3 patients than in stage 1-2 patients. Kidney tissues of patients with CKD frequently contained CCL20+ cells, which were positively correlated with interstitial inflammation. CCL20/CCR6 levels were increased in fibrotic kidneys at 4 and 8 weeks after 5/6 nephrectomy. These findings suggest that modulating the CCL20/CCR6 pathway is a potential therapeutic strategy for managing the progression of AKD to CKD.
Collapse
Affiliation(s)
- Kyung Don Yoo
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea
| | - Mi-Yeon Yu
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University, Seoul, Republic of Korea
| | - Kyu Hong Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seongmin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - EunHee Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
| | - Seongmin Kang
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
| | - Doo-Ho Lim
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
| | - Yeonhee Lee
- Department of Internal Medicine, Uijeongbu Euji Medical Center, Eulji University, Uijeongbu-si, Republic of Korea
| | - Jeongin Song
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soie Kown
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong Soo Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
7
|
Li XY, Yu JT, Dong YH, Shen XY, Hou R, Xie MM, Wei J, Hu XW, Dong ZH, Shan RR, Jin J, Shao W, Meng XM. Protein acetylation and related potential therapeutic strategies in kidney disease. Pharmacol Res 2023; 197:106950. [PMID: 37820854 DOI: 10.1016/j.phrs.2023.106950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.
Collapse
Affiliation(s)
- Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie Wei
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
8
|
Boi R, Ebefors K, Nyström J. The role of the mesangium in glomerular function. Acta Physiol (Oxf) 2023; 239:e14045. [PMID: 37658606 DOI: 10.1111/apha.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
When discussing glomerular function, one cell type is often left out, the mesangial cell (MC), probably since it is not a part of the filtration barrier per se. The MCs are instead found between the glomerular capillaries, embedded in their mesangial matrix. They are in direct contact with the endothelial cells and in close contact with the podocytes and together they form the glomerulus. The MCs can produce and react to a multitude of growth factors, cytokines, and other signaling molecules and are in the perfect position to be a central hub for crosstalk communication between the cells in the glomerulus. In certain glomerular diseases, for example, in diabetic kidney disease or IgA nephropathy, the MCs become activated resulting in mesangial expansion. The expansion is normally due to matrix expansion in combination with either proliferation or hypertrophy. With time, this expansion can lead to fibrosis and decreased glomerular function. In addition, signs of complement activation are often seen in biopsies from patients with glomerular disease affecting the mesangium. This review aims to give a better understanding of the MCs in health and disease and their role in glomerular crosstalk and inflammation.
Collapse
Affiliation(s)
- Roberto Boi
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Yin J, Mei Q, Prinz M, Abdullah Z, Panzer U, Li J, von Vietinghoff S, Kurts C. Fate mapping reveals compartment-specific clonal expansion of mononuclear phagocytes during kidney disease. Kidney Int 2023; 104:605-610. [PMID: 37290602 DOI: 10.1016/j.kint.2023.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Junping Yin
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, Hubei, China
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany; Signalling Research Centres, University of Freiburg, Freiburg, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III Medizinische Klinik, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Jian Li
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | | | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Guo XL, Gao YY, Yang YX, Zhu QF, Guan HY, He X, Zhang CL, Wang Y, Xu GB, Zou SH, Wei MC, Zhang J, Zhang JJ, Liao SG. Amelioration effects of α-viniferin on hyperuricemia and hyperuricemia-induced kidney injury in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154868. [PMID: 37209608 DOI: 10.1016/j.phymed.2023.154868] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND α-Viniferin, the major constituent of the roots of Caragana sinica (Buc'hoz) Rehder with a trimeric resveratrol oligostilbenoid skeleton, was demonstrated to possess a strong inhibitory effect on xanthine oxidase in vitro, suggesting it to be a potential anti-hyperuricemia agent. However, the in vivo anti-hyperuricemia effect and its underlying mechanism were still unknown. PURPOSE The current study aimed to evaluate the anti-hyperuricemia effect of α-viniferin in a mouse model and to assess its safety profile with emphasis on its protective effect on hyperuricemia-induced renal injury. METHODS The effects were assessed in a potassium oxonate (PO)- and hypoxanthine (HX)-induced hyperuricemia mice model by analyzing the levels of serum uric acid (SUA), urine uric acid (UUA), serum creatinine (SCRE), serum urea nitrogen (SBUN), and histological changes. Western blotting and transcriptomic analysis were used to identify the genes, proteins, and signaling pathways involved. RESULTS α-Viniferin treatment significantly reduced SUA levels and markedly mitigated hyperuricemia-induced kidney injury in the hyperuricemia mice. Besides, α-viniferin did not show any obvious toxicity in mice. Research into the mechanism of action of α-viniferin revealed that it not only inhibited uric acid formation by acting as an XOD inhibitor, but also reduced uric acid absorption by acting as a GLUT9 and URAT1 dual inhibitor as well as promoted uric acid excretion by acting as a ABCG2 and OAT1 dual activator. Then, 54 differentially expressed (log2 FPKM ≥ 1.5, p ≤ 0.01) genes (DEGs) repressed by the treatment of α-viniferin in the hyperuricemia mice were identified in the kidney. Finally, gene annotation results revealed that downregulation of S100A9 in the IL-17 pathway, of CCR5 and PIK3R5 in the chemokine signaling pathway, and of TLR2, ITGA4, and PIK3R5 in the PI3K-AKT signaling pathway were involved in the protective effect of α-viniferin on the hyperuricemia-induced renal injury. CONCLUSIONS α-Viniferin inhibited the production of uric acid through down-regulation of XOD in hyperuricemia mice. Besides, it also down-regulated the expressions of URAT1 and GLUT9 and up-regulated the expressions of ABCG2 and OAT1 to promote the excretion of uric acid. α-Viniferin could prevent hyperuricemia mice from renal damage by regulating the IL-17, chemokine, and PI3K-AKT signaling pathways. Collectively, α-viniferin was a promising antihyperuricemia agent with desirable safety profile. This is the first report of α-viniferin as an antihyperuricemia agent.
Collapse
Affiliation(s)
- Xiao-Li Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Yan-Yan Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Ya-Xin Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Huan-Yu Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Chun-Lei Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Ya Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, 550004, Guizhou, China
| | - Shu-Han Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Mao-Chen Wei
- Guiyang Xintian Pharmaceutical Co., Ltd, Guiyang, 550000, Guizhou, China
| | - Jian Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China; Medicinal Bioinformatics Center, Shanghai JiaoTong University School of Medicine, 2000000, Shanghai, China
| | - Jin-Juan Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou 550025, China.
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
11
|
Jo H, Choi BY, Jang G, Lee JP, Cho A, Kim B, Park JH, Lee J, Kim YH, Ryu J. Three-dimensional Bio-Printed Autologous Omentum Patch Ameliorates UUO-Induced Renal Fibrosis
. Tissue Eng Part C Methods 2022; 28:672-682. [DOI: 10.1089/ten.tec.2022.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hyunwoo Jo
- ROKIT Healthcare, Inc., R&D, Seoul, Korea (the Republic of),
- Korea University, 34973, Department of Biomicrosystem Technology, Seoul, Korea (the Republic of),
| | - Bo Young Choi
- ROKIT Healthcare, Inc., R&D, Seoul, Korea (the Republic of),
| | - Giup Jang
- ROKIT Genomics, Inc., R&D, Seoul, Korea (the Republic of),
| | - Jung Pyo Lee
- Seoul National University Seoul Metropolitan Government Boramae Medical Center, 65633, Department of Internal Medicine, Dongjak-gu, Seoul, Korea (the Republic of),
- Seoul National University College of Medicine, 37990, Department of Internal Medicine, Seoul, Korea (the Republic of),
- Seoul National University College of Medicine, 37990, Translational Medicine Major, Seoul, Korea (the Republic of),
| | - Ara Cho
- Seoul National University College of Medicine, 37990, Translational Medicine Major, Seoul, Korea (the Republic of),
| | - Boyun Kim
- ROKIT Healthcare, Inc., R&D, Seoul, Korea (the Republic of),
| | - Jeong Hwan Park
- Seoul National University Seoul Metropolitan Government Boramae Medical Center, 65633, Department of Pathology, Dongjak-gu, Seoul, Korea (the Republic of),
- Seoul National University College of Medicine, 37990, Department of Pathology, Seoul, Korea (the Republic of),
| | - Jeonghwan Lee
- Seoul National University Seoul Metropolitan Government Boramae Medical Center, 65633, Department of Internal Medicine, Dongjak-gu, Seoul, Korea (the Republic of),
- Seoul National University College of Medicine, 37990, Department of Internal Medicine, Seoul, Korea (the Republic of),
| | - Young Hoon Kim
- Asan Medical Center, 65526, Department of Surgery, Songpa-gu, Seoul, Korea (the Republic of),
| | - Jina Ryu
- ROKIT Healthcare, Inc., R&D, Seoul, Korea (the Republic of),
| |
Collapse
|
12
|
Li X, Liu J, Zhao Y, Xu N, Lv E, Ci C, Li X. 1,25-dihydroxyvitamin D3 ameliorates lupus nephritis through inhibiting the NF-κB and MAPK signalling pathways in MRL/lpr mice. BMC Nephrol 2022; 23:243. [PMID: 35804318 PMCID: PMC9264719 DOI: 10.1186/s12882-022-02870-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background Lupus nephritis (LN) is a common and serious complication of systemic lupus erythematosus (SLE). However, the aetiology and pathogenesis of LN remain unknown. 1,25-dihydroxyvitamin D3 [1,25-(OH)2-VitD3] is the active form of vitamin D, and it has been shown to perform important functions in inflammatory and immune-related diseases. In this study, we investigated the time-dependent effects of 1,25-dihydroxyvitamin D3 and explored the underlying mechanism in MRL/lpr mice, a well-studied animal model of LN. Methods Beginning at 8 weeks of age, 24-h urine samples were collected weekly to measure the levels of protein in the urine. We treated female MRL/lpr mice with 1,25-dihydroxyvitamin D3 (4 μg/kg) or 1% DMSO by intraperitoneal injection twice weekly for 3 weeks beginning at the age of 11 weeks. The mice were separately sacrificed, and serum and kidney samples were collected at the ages of 14, 16, 18, and 20 weeks to measure creatinine (Cr) levels, blood urea nitrogen (BUN) levels, histological damage, immunological marker (A-ds DNA, C1q, C3, IgG, IgM) levels, and inflammatory factor (TNF-α, IL-17, MCP-1) levels. Furthermore, the nuclear factor kappa B (NF-κB) and the mitogen-activated protein kinase (MAPK) signalling pathways were also assessed to elucidate the underlying mechanism. Results We found that MRL/lpr mice treated with 1,25-dihydroxyvitamin D3 displayed significantly attenuated LN. VitD3-treated mice exhibited significantly improved renal pathological damage and reduced proteinuria, BUN, SCr, A-ds DNA antibody and immune complex deposition levels (P < 0.05) compared with untreated MRL/lpr mice. Moreover, 1,25-dihydroxyvitamin D3 inhibited the complement cascade, inhibited the release of proinflammatory cytokines, such as TNF-α, IL-17, and MCP-1, and inhibited NF-κB and MAPK activation (P < 0.05). Conclusion 1,25-dihydroxyvitamin D3 exerts a protective effect against LN by inhibiting the NF-κB and MAPK signalling pathways, providing a potential treatment strategy for LN. Interestingly, the NF-κB and MAPK signalling pathways are time-dependent mediators of LN and may be associated with lupus activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02870-z.
Collapse
Affiliation(s)
- Xuewei Li
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jie Liu
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yingzhe Zhao
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Ning Xu
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - E Lv
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Chunzeng Ci
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
13
|
Jia P, Xu SJ, Wang X, Wu X, Ren T, Zou Z, Zeng Q, Shen B, Ding X. Chemokine CCL2 from proximal tubular epithelial cells contributes to sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 2022; 323:F107-F119. [PMID: 35658715 DOI: 10.1152/ajprenal.00037.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Damage-associated molecular patterns secreted from activated kidney cells initiate inflammatory response, a critical step in the development of sepsis-induced acute kidney injury (AKI). However, the underlying mechanism remains to be clarified. Here, we established a mouse model of sepsis-induced AKI through intraperitoneal injection of lipopolysaccharide (LPS), and demonstrated that LPS induced dramatical upregulation of C-C motif chemokine ligand 2 (CCL2) at both the mRNA and the protein levels in kidney, which was mainly expressed by tubular epithelial cells (TECs), especially by proximal TECs. Proximal tubule-specific ablation of CCL2 reduced LPS-induced macrophage infiltration, proinflammatory cytokine expression, and attenuated AKI. In vitro, using transwell migration assay, we found that deficiency of CCL2 in TECs decreased macrophage migration ability. However, myeloid-specific depletion of CCL2 could not protect the kidneys from the aforementioned effects. Mechanistically, LPS activated toll like receptor (TLR) 2 signaling in TECs, which induced activation of its downstream effector nuclear factor (NF)-κB. Blockade of TLR2 signaling or inhibition of NF-κB activation in TECs significantly suppressed LPS-induced CCL2 expression. Furthermore, ChIP analyses confirmed a direct binding of NF-κB p65 in the CCL2 promoter regein, and LPS increased the binding of NF-κB p65 to CCL2 promoter, suggesting that TLR2/NF-κB p65 regulates CCL2 expression in TECs. Together, these results demonstrate that endogenous CCL2 released from PTECs, not from myeloid cells was responsible for sepsis-induced kidney inflammation and AKI. Specificly targeting tubular TLR2/NF-κB/CCL2 signaling may be a potential therapeutic strategy for prevention or attenuation of septic AKI.
Collapse
Affiliation(s)
- Ping Jia
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Su-Juan Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Wang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoli Wu
- Traditional Chinese Medicine Pharmacology Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Ren
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouping Zou
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zeng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Kidney and Dialysis Institute of Shanghai, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
14
|
Antigen Cross-Presentation by Murine Proximal Tubular Epithelial Cells Induces Cytotoxic and Inflammatory CD8+ T Cells. Cells 2022; 11:cells11091510. [PMID: 35563816 PMCID: PMC9104549 DOI: 10.3390/cells11091510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated glomerular diseases are characterized by infiltration of T cells, which accumulate in the periglomerular space and tubulointerstitium in close contact to proximal and distal tubuli. Recent studies described proximal tubular epithelial cells (PTECs) as renal non-professional antigen-presenting cells that stimulate CD4+ T-cell activation. Whether PTECs have the potential to induce activation of CD8+ T cells is less clear. In this study, we aimed to investigate the capacity of PTECs for antigen cross-presentation thereby modulating CD8+ T-cell responses. We showed that PTECs expressed proteins associated with cross-presentation, internalized soluble antigen via mannose receptor-mediated endocytosis, and generated antigenic peptides by proteasomal degradation. PTECs induced an antigen-dependent CD8+ T-cell activation in the presence of soluble antigen in vitro. PTEC-activated CD8+ T cells expressed granzyme B, and exerted a cytotoxic function by killing target cells. In murine lupus nephritis, CD8+ T cells localized in close contact to proximal tubuli. We determined enhanced apoptosis in tubular cells and particularly PTECs up-regulated expression of cleaved caspase-3. Interestingly, induction of apoptosis in the inflamed kidney was reduced in the absence of CD8+ T cells. Thus, PTECs have the capacity for antigen cross-presentation thereby inducing cytotoxic CD8+ T cells in vitro, which may contribute to the pathology of immune-mediated glomerulonephritis.
Collapse
|
15
|
Tavener SK, Jewell DE, Panickar KS. The Increase in Circulating Levels of Pro-Inflammatory Chemokines, Cytokines, and Complement C5 in Canines with Impaired Kidney Function. Curr Issues Mol Biol 2022; 44:1664-1676. [PMID: 35723372 PMCID: PMC9164022 DOI: 10.3390/cimb44040114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic low-grade inflammation is a key contributor to the progression of kidney disease. The release of cytokines and other pro-inflammatory proteins may further contribute to detrimental kidney health by increasing interstitial edema and renal fibrosis. The aim of the present study was to investigate the inflammatory markers in canines who developed renal disease naturally and were diagnosed with renal disease either during life or following necropsy, as assessed by a veterinarian. RNA was isolated from canine blood obtained at necropsy and stored as bioarchived samples from ten canines with renal disease (9.6−14.7 yr) and ten controls (10.1−14.8 yr). At the time of death, the mean blood creatinine concentration and BUN were elevated in dogs with renal disease compared to control (both p < 0.01). Samples were assessed for changes in gene expression using the Canine cytokine RT2 Profiler PCR Array for inflammation. There was a significant increase in C-C Motif Chemokine Ligand 16 (CCL16), C-X-C Motif Chemokine Ligand 5 (CXCL5), Interleukin 16 (IL-16), and Complement Component 5 (C5) (all p < 0.05 vs. con). In addition, there was also a statistically non-significant increase in 49 genes and a down-regulation in 35 genes from a panel of total 84 genes. Pro-inflammatory genes including CCL16, CXCL5, IL-16, and C5 can all contribute to renal inflammation and fibrosis through different signaling pathways and may lead to a progressive impairment of kidney function. Blockade of their activation may be important in ameliorating the initiation and/or the progression of renal disease.
Collapse
Affiliation(s)
- Selena K. Tavener
- Science & Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS 66617, USA;
| | - Dennis E. Jewell
- Department of Grain Science & Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Kiran S. Panickar
- Science & Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS 66617, USA;
- Correspondence: ; Tel.: 1-(785)-286-8002
| |
Collapse
|
16
|
Zhou X, Wang N, Zhang Y, Yu P. Expression of CCL2, FOS, and JUN May Help to Distinguish Patients With IgA Nephropathy From Healthy Controls. Front Physiol 2022; 13:840890. [PMID: 35464092 PMCID: PMC9021889 DOI: 10.3389/fphys.2022.840890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background IgA nephropathy (IgAN), the most common type of glomerulonephritis worldwide, can only be diagnosed mainly by renal biopsy owing to lack of effective biomarkers. It is urgent to explore and identify the potential diagnostic biomarkers through assessing the gene expression profiles of patients with IgAN. Methods Two datasets were obtained from the Gene Expression Omnibus (GEO) database, including GSE115857 (55 IgAN, 7 living healthy donors) and GSE35487 (25 IgAN, 6 living healthy donors), then underwent differentially expressed genes (DEGs) and function enrichment analyses utilizing R packages. The common gene list was screened out between DEGs and immune-associated genes by Venn diagram, then performed gene-gene interaction, protein-protein interaction (PPI) and function enrichment analyses. Top three immune-associated hub genes were selected by Maximal Clique Centrality (MCC) method, then the expression and diagnostic value of these hub genes were determined. Consensus clustering algorithm was applied to conduct the unsupervised cluster analysis of the immune-associated hub gene list in IgAN. Finally, the Nephroseq V5 tool was applied to identify the expression level of CCL2, FOS, JUN in kidney diseases, as well as the correlation between CCL2, FOS, JUN expression and renal function in the patients with IgAN. Results A total of 129 DEGs were obtained through comparing IgAN with healthy controls via the GSE115857 and GSE35487 datasets. Then, we screened out 24 immune-associated IgAN DEGs. CCL2, JUN, and FOS were identified as the top three hub genes, and they were all remarkably downregulated in IgAN. More importantly, CCL2, JUN, and FOS had a high accuracy [area under the curve (AUC) reached almost 1] in predicting IgAN, which could easily distinguish between IgAN patients and healthy individuals. Three distinct subgroups of IgAN were determined based on 24 immune-associated DEGs, with significant differences in the expression of CCL2, JUN, and FOS genes. Finally, CCL2, FOS, JUN were manifested a meaningful association with proteinuria, glomerular filtration rate (GFR), and serum creatinine level. Conclusion In summary, our study comprehensively uncovers that CCL2, JUN, and FOS may function as promising biomarkers for diagnosis of IgAN.
Collapse
Affiliation(s)
- Xue Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, China
| | - Ning Wang
- Tianjin Third Central Hospital, Tianjin, China
| | - Yuefeng Zhang
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
- *Correspondence: Pei Yu,
| |
Collapse
|
17
|
Chemokine CCL9 Is Upregulated Early in Chronic Kidney Disease and Counteracts Kidney Inflammation and Fibrosis. Biomedicines 2022; 10:biomedicines10020420. [PMID: 35203629 PMCID: PMC8962359 DOI: 10.3390/biomedicines10020420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation and fibrosis play an important pathophysiological role in chronic kidney disease (CKD), with pro-inflammatory mediators and leukocytes promoting organ damage with subsequent fibrosis. Since chemokines are the main regulators of leukocyte chemotaxis and tissue inflammation, we performed systemic chemokine profiling in early CKD in mice. This revealed (C-C motif) ligands 6 and 9 (CCL6 and CCL9) as the most upregulated chemokines, with significantly higher levels of both chemokines in blood (CCL6: 3–4 fold; CCL9: 3–5 fold) as well as kidney as confirmed by Enzyme-linked Immunosorbent Assay (ELISA) in two additional CKD models. Chemokine treatment in a mouse model of early adenine-induced CKD almost completely abolished the CKD-induced infiltration of macrophages and myeloid cells in the kidney without impact on circulating leukocyte numbers. The other way around, especially CCL9-blockade aggravated monocyte and macrophage accumulation in kidney during CKD development, without impact on the ratio of M1-to-M2 macrophages. In parallel, CCL9-blockade raised serum creatinine and urea levels as readouts of kidney dysfunction. It also exacerbated CKD-induced expression of collagen (3.2-fold) and the pro-inflammatory chemokines CCL2 (1.8-fold) and CCL3 (2.1-fold) in kidney. Altogether, this study reveals for the first time that chemokines CCL6 and CCL9 are upregulated early in experimental CKD, with CCL9-blockade during CKD initiation enhancing kidney inflammation and fibrosis.
Collapse
|
18
|
Cao Q, Huang C, Yi H, Gill AJ, Chou A, Foley M, Hosking CG, Lim KK, Triffon CF, Shi Y, Chen XM, Pollock CA. A single domain i-body (AD-114) attenuates renal fibrosis through blockade of CXCR4. JCI Insight 2022; 7:143018. [PMID: 35015734 PMCID: PMC8876455 DOI: 10.1172/jci.insight.143018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
The G protein–coupled CXC chemokine receptor 4 (CXCR4) is a candidate therapeutic target for tissue fibrosis. A fully human single-domain antibody-like scaffold i-body AD-114-PA600 (AD-114) with specific high binding affinity to CXCR4 has been developed. To define its renoprotective role, AD-114 was administrated in a mouse model of renal fibrosis induced by folic acid (FA). Increased extracellular matrix (ECM) accumulation, macrophage infiltration, inflammatory response, TGF-β1 expression, and fibroblast activation were observed in kidneys of mice with FA-induced nephropathy. These markers were normalized or partially reversed by AD-114 treatment. In vitro studies demonstrated AD-114 blocked TGF-β1–induced upregulated expression of ECM, matrix metalloproteinase-2, and downstream p38 mitogen-activated protein kinase (p38 MAPK) and PI3K/AKT/mTOR signaling pathways in a renal proximal tubular cell line. Additionally, these renoprotective effects were validated in a second model of unilateral ureteral obstruction using a second generation of AD-114 (Fc-fused AD-114, also named AD-214). Collectively, these results suggest a renoprotective role of AD-114 as it inhibited the chemotactic function of CXCR4 as well as blocked CXCR4 downstream p38 MAPK and PI3K/AKT/mTOR signaling, which establish a therapeutic strategy for AD-114 targeting CXCR4 to limit renal fibrosis.
Collapse
Affiliation(s)
- Qinghua Cao
- Renal Medicine, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Chunling Huang
- Renal Medicine, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Hao Yi
- Renal Medicine, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Anthony J Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia
| | - Angela Chou
- Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia
| | - Michael Foley
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Chris G Hosking
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Kevin K Lim
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Cristina F Triffon
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Ying Shi
- Renal Medicine, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Xin-Ming Chen
- Renal Medicine, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Carol A Pollock
- Renal Medicine, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
20
|
Doke T, Huang S, Qiu C, Liu H, Guan Y, Hu H, Ma Z, Wu J, Miao Z, Sheng X, Zhou J, Cao A, Li J, Kaufman L, Hung A, Brown CD, Pestell R, Susztak K. Transcriptome-wide association analysis identifies DACH1 as a kidney disease risk gene that contributes to fibrosis. J Clin Invest 2021; 131:141801. [PMID: 33998598 PMCID: PMC8121513 DOI: 10.1172/jci141801] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWAS) for kidney function identified hundreds of risk regions; however, the causal variants, target genes, cell types, and disease mechanisms remain poorly understood. Here, we performed transcriptome-wide association studies (TWAS), summary Mendelian randomization, and MetaXcan to identify genes whose expression mediates the genotype effect on the phenotype. Our analyses identified Dachshund homolog 1 (DACH1), a cell-fate determination factor. GWAS risk variant was associated with lower DACH1 expression in human kidney tubules. Human and mouse kidney single-cell open chromatin data (snATAC-Seq) prioritized estimated glomerular filtration rate (eGFR) GWAS variants located on an intronic regulatory region in distal convoluted tubule cells. CRISPR-Cas9-mediated gene editing confirmed the role of risk variants in regulating DACH1 expression. Mice with tubule-specific Dach1 deletion developed more severe renal fibrosis both in folic acid and diabetic kidney injury models. Mice with tubule-specific Dach1 overexpression were protected from folic acid nephropathy. Single-cell RNA sequencing, chromatin immunoprecipitation, and functional analysis indicated that DACH1 controls the expression of cell cycle and myeloid chemotactic factors, contributing to macrophage infiltration and fibrosis development. In summary, integration of GWAS, TWAS, single-cell epigenome, expression analyses, gene editing, and functional validation in different mouse kidney disease models identified DACH1 as a kidney disease risk gene.
Collapse
Affiliation(s)
- Tomohito Doke
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shizheng Huang
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chengxiang Qiu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hongbo Liu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yuting Guan
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hailong Hu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ziyuan Ma
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Junnan Wu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zhen Miao
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xin Sheng
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jianfu Zhou
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Aili Cao
- Division of Nephrology, Icahn School of Medicine, New York, New York, USA
| | - Jianhua Li
- Division of Nephrology, Icahn School of Medicine, New York, New York, USA
| | - Lewis Kaufman
- Division of Nephrology, Icahn School of Medicine, New York, New York, USA
| | - Adriana Hung
- Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA
| | - Christopher D. Brown
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, Pennsylvania, USA
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute of Diabetes, Obesity and Metabolism and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Hsu YH, Zheng CM, Chou CL, Chen YJ, Lee YH, Lin YF, Chiu HW. Therapeutic Effect of Endothelin-Converting Enzyme Inhibitor on Chronic Kidney Disease through the Inhibition of Endoplasmic Reticulum Stress and the NLRP3 Inflammasome. Biomedicines 2021; 9:biomedicines9040398. [PMID: 33917140 PMCID: PMC8067871 DOI: 10.3390/biomedicines9040398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic inflammation and oxidative stress significantly contribute to the development and progression of chronic kidney disease (CKD). The NOD-like receptor family pyrin containing domain-3 (NLRP3) inflammasome plays a key role in the inflammatory response. The renal endothelin (ET) system is activated in all cases of CKD. Furthermore, ET-1 promotes renal cellular injury, inflammation, fibrosis and proteinuria. Endothelin-converting enzymes (ECEs) facilitate the final processing step of ET synthesis. However, the roles of ECEs in CKD are not clear. In this study, we investigated the effects of ETs and ECEs on kidney cells. We found that ET-1 and ET-2 expression was significantly upregulated in the renal tissues of CKD patients. ET-1 and ET-2 showed no cytotoxicity on human kidney tubular epithelial cells. However, ET-1 and ET-2 caused endoplasmic reticulum (ER) stress and NLRP3 inflammasome activation in tubular epithelial cells. The ECE inhibitor phosphoramidon induced autophagy. Furthermore, phosphoramidon inhibited ER stress and the NLRP3 inflammasome in tubular epithelial cells. In an adenine diet-induced CKD mouse model, phosphoramidon attenuated the progression of CKD by regulating autophagy, the NLRP3 inflammasome and ER stress. In summary, these findings showed a new strategy to delay CKD progression by inhibiting ECEs through autophagy activation and restraining ER stress and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yung-Ho Hsu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.H.); (C.-M.Z.); (C.-L.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City 320001, Taiwan
| | - Cai-Mei Zheng
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.H.); (C.-M.Z.); (C.-L.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chu-Lin Chou
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.H.); (C.-M.Z.); (C.-L.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City 320001, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yi-Jie Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan;
| | - Yuh-Feng Lin
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Internal Medicine, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (Y.-F.L.); (H.-W.C.); Tel.: +886-2-22490088 (Y.-F.L. & H.-W.C.)
| | - Hui-Wen Chiu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (Y.-F.L.); (H.-W.C.); Tel.: +886-2-22490088 (Y.-F.L. & H.-W.C.)
| |
Collapse
|
22
|
Chou LF, Chen TW, Yang HY, Tian YC, Chang MY, Hung CC, Hsu SH, Tsai CY, Ko YC, Yang CW. Transcriptomic signatures of exacerbated progression in leptospirosis subclinical chronic kidney disease with secondary nephrotoxic injury. Am J Physiol Renal Physiol 2021; 320:F1001-F1018. [PMID: 33779314 DOI: 10.1152/ajprenal.00640.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
High-incidence regions of leptospirosis caused by Leptospira spp. coincide with chronic kidney disease. This study investigated whether asymptomatic leptospirosis is an emerging culprit that predisposes to progressive chronic kidney disease when superimposed on secondary nephrotoxic injury. Kidney histology/function and whole transcriptomic profiles were evaluated for Leptospira-infected C57/BL6 mice with adenine-induced kidney injury. The extent of tubulointerstitial kidney lesions and expression of inflammation/fibrosis genes in infected mice with low-dose (0.1%) adenine, particularly in high-dose (0.2%) adenine-fed superimposed on Leptospira-infected mice, were significantly increased compared with mice following infection or adenine diet alone, and the findings are consistent with renal transcriptome analysis. Pathway enrichment findings showed that integrin-β- and fibronectin-encoding genes had distinct expression within the integrin-linked kinase-signaling pathway, which were upregulated in 0.2% adenine-fed Leptospira-infected mice but not in 0.2% adenine-fed mice, indicating that background subclinical Leptospiral infection indeed enhanced subsequent secondary nephrotoxic kidney injury and potential pathogenic molecules associated with secondary nephrotoxic leptospirosis. Comparative analysis of gene expression patterns with unilateral ureteric obstruction-induced mouse renal fibrosis and patients with chronic kidney disease showed that differentially expressed orthologous genes such as hemoglobin-α2, PDZ-binding kinase, and DNA topoisomerase II-α were identified in infected mice fed with low-dose and high-dose adenine, respectively, revealing differentially expressed signatures identical to those found in the datasets and may serve as markers of aggravated kidney progression. This study indicates that background subclinical leptospirosis, when subjected to various degrees of subsequent secondary nephrotoxic injury, may predispose to exacerbated fibrosis, mimicking the pathophysiological process of progressive chronic kidney disease.NEW & NOTEWORTHY Leptospira-infected mice followed by secondary nephrotoxic injury exacerbated immune/inflammatory responses and renal fibrosis. Comparison with the murine model revealed candidates involved in the progression of renal fibrosis in chronic kidney disease (CKD). Comparative transcriptome study suggests that secondary nephrotoxic injury in Leptospira-infected mice recapitulates the gene expression signatures found in CKD patients. This study indicates that secondary nephrotoxic injury may exacerbate CKD in chronic Leptospira infection implicating in the progression of CKD of unknown etiology.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
23
|
Abstract
Interstitial fibrosis with tubule atrophy (IF/TA) is the response to virtually any sustained kidney injury and correlates inversely with kidney function and allograft survival. IF/TA is driven by various pathways that include hypoxia, renin-angiotensin-aldosterone system, transforming growth factor (TGF)-β signaling, cellular rejection, inflammation and others. In this review we will focus on key pathways in the progress of renal fibrosis, diagnosis and therapy of allograft fibrosis. This review discusses the role and origin of myofibroblasts as matrix producing cells and therapeutic targets in renal fibrosis with a particular focus on renal allografts. We summarize current trends to use multi-omic approaches to identify new biomarkers for IF/TA detection and to predict allograft survival. Furthermore, we review current imaging strategies that might help to identify and follow-up IF/TA complementary or as alternative to invasive biopsies. We further discuss current clinical trials and therapeutic strategies to treat kidney fibrosis.Supplemental Visual Abstract; http://links.lww.com/TP/C141.
Collapse
|
24
|
Dao L, Ragoonanan D, Yi S, Swinford R, Petropoulos D, Mahadeo KM, Li S. The Organ Trail: A Review of Biomarkers of Organ Failure. Front Oncol 2020; 10:579219. [PMID: 33262945 PMCID: PMC7686565 DOI: 10.3389/fonc.2020.579219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Pediatric organ failure and transplant populations face significant risks of morbidity and mortality. The risk of organ failure itself may be disproportionately higher among pediatric oncology patients, as cancer may originate within and/or metastasize to organs and adversely affect their function. Additionally, cancer directed therapies are frequently toxic to organs and may contribute to failure. Recent reports suggest that nearly half of providers find it difficult to provide prognostic information regarding organ failure due to unknown disease trajectories. Unfortunately, there is a lack of uniform methodology in detecting the early symptoms of organ failure, which may delay diagnosis, initiation of treatment and hinder prognostic planning. There remains a wide array of outstanding scientific questions regarding organ failure in pediatrics but emerging data may change the landscape of prognostication. Liquid biopsy, in which disease biomarkers are detected in bodily fluids, offers a noninvasive alternative to tissue biopsy and may improve prompt detection of organ failure and prognostication. Here, we review potential liquid biopsy biomarkers for organ failure, which may be particularly useful among pediatric oncology patients. We synthesized information from publications obtained on PubMed, Google Scholar, clinicaltrials.gov, and Web of Science and categorized our findings based on the type of biomarker used to detect organ failure. We highlight the advantages and disadvantages specific to each type of organ failure biomarker. While much work needs to be done to advance this field and validate its applicability to pediatric cancer patients facing critical care complications, herein, we highlight promising areas for future discovery.
Collapse
Affiliation(s)
- Long Dao
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dristhi Ragoonanan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sofia Yi
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rita Swinford
- Division of Pediatric Nephrology, University of Texas Health Science Center Houston, Houston, TX, United States
| | - Demetrios Petropoulos
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kris M Mahadeo
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
25
|
Beck KF, Pfeilschifter J. Gasotransmitter synthesis and signalling in the renal glomerulus. Implications for glomerular diseases. Cell Signal 2020; 77:109823. [PMID: 33152441 DOI: 10.1016/j.cellsig.2020.109823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023]
Abstract
Glomerular injury is a hallmark of kidney diseases such as diabetic nephropathy, IgA nephropathy or other forms of glomerulonephritis. Glomerular endothelial cells, mesangial cells, glomerular epithelial cells (podocytes) and, in an inflammatory context, infiltrating immune cells crosstalk to mediate signalling processes in the glomerulus. Under physiological conditions, mesangial cells act by the control of extracellular matrix production and degradation, by the synthesis of growth factors and by preserving a well-defined crosstalk with glomerular podocytes and endothelial cells to regulate glomerular structure and function. It is well known that mesangial cells are able to amplify an inflammatory process by the formation of cytokines, reactive oxygen species (ROS) and nitric oxide (NO). This exaggerated reaction may result in a vicious cycle with subsequent damage of neighboured podocytes and endothelial cells, loss of the filtration barrier and, finally destruction of the whole glomerulus. Unfortunately, all efforts to develop new therapies for the treatment of glomerular diseases by controlling unbridled ROS or NO production directly had so far no success. However, on-going research on ROS and NO defined these autacoids more as important signalling molecules than as endogenously produced cytotoxic compounds. New findings on signalling activities of ROS, NO but also hydrogen sulfide (H2S) and carbon monoxide (CO) supported this paradigm shift. Because of their similar chemical properties and their similar signal transduction capacities, NO, H2S and CO are meanwhile designated as the group of gasotransmitters. In this review, we describe the current knowledge of the signalling properties of gasotransmitters with a focus on glomerular cells and their role in glomerular diseases.
Collapse
Affiliation(s)
- Karl-Friedrich Beck
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Germany.
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Sears SM, Sharp CN, Krueger A, Oropilla GB, Saforo D, Doll MA, Megyesi J, Beverly LJ, Siskind LJ. C57BL/6 mice require a higher dose of cisplatin to induce renal fibrosis and CCL2 correlates with cisplatin-induced kidney injury. Am J Physiol Renal Physiol 2020; 319:F674-F685. [PMID: 32830540 DOI: 10.1152/ajprenal.00196.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
C57BL/6 mice are one of the most commonly used mouse strains in research, especially in kidney injury studies. However, C57BL/6 mice are resistant to chronic kidney disease-associated pathologies, particularly the development of glomerulosclerosis and interstitial fibrosis. Our laboratory and others developed a more clinically relevant dosing regimen of cisplatin (7 mg/kg cisplatin once a week for 4 wk and mice euthanized at day 24) that leads to the development of progressive kidney fibrosis in FVB/n mice. However, we found that treating C57BL/6 mice with this same dosing regimen does not result in kidney fibrosis. In this study, we demonstrated that increasing the dose of cisplatin to 9 mg/kg once a week for 4 wk is sufficient to consistently induce fibrosis in C57BL/6 mice while maintaining animal survival. In addition, we present that cohorts of C57BL/6 mice purchased from Jackson 1 yr apart and mice bred in-house display variability in renal outcomes following repeated low-dose cisplatin treatment. Indepth analyses of this intra-animal variability revealed C-C motif chemokine ligand 2 as a marker of cisplatin-induced kidney injury through correlation studies. In addition, significant immune cell infiltration was observed in the kidney after four doses of 9 mg/kg cisplatin, contrary to what has been previously reported. These results indicate that multiple strains of mice can be used with our repeated low-dose cisplatin model with dose optimization. Results also indicate that littermate control mice should be used with this model to account for population variability.
Collapse
Affiliation(s)
- Sophia M Sears
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Cierra N Sharp
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Austin Krueger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Gabrielle B Oropilla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Douglas Saforo
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Judit Megyesi
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Levi J Beverly
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky.,Department of Medicine, University of Louisville, Louisville, Kentucky.,James Graham Brown Cancer Center, Louisville, Kentucky
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky.,James Graham Brown Cancer Center, Louisville, Kentucky
| |
Collapse
|
27
|
Parthenolide ameliorates tweak-induced podocytes injury. Mol Biol Rep 2020; 47:5165-5173. [PMID: 32572732 DOI: 10.1007/s11033-020-05591-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/16/2020] [Indexed: 11/27/2022]
Abstract
Parthenolide (PTL) is a natural product from the shoots of Tanacetum parthenium, which has immunomodulatory effects in multiply type of diseases. This study aimed to explore the effect and the underlying mechanism of PTL on the anti-apoptotic and anti- inflammatory ability of tweak-induced podocytes. Conditionally immortalized mouse podocytes were incubated with Tumor necrosis factor-like weak inducer of apoptosis (Tweak, 100 ng/ml), PTL(10 µM) or Tweak + PTL for 12 h, 24 and 48 h, respectively. Podocytes viability was detected by CCK-8 assay. Tweak and Cxcl16 expression were evaluated by western blot and immunofluorescence assay. Dil-oxLDL stain was detected by immunofluorescence analysis. Intracellular Total Cholesterol (TC) content was measured through TC detection Kit. These results demonstrated that the podocytes cells viability was gradually decreased after treatment with different concentrations of Tweak (0, 50, 100, 150). Tweak and Cxcl16 protein expression in mouse podocytes treated with tweak were remarkably elevated and were found to have higher intracellular lipid accumulation compared with the control group, whereas co-administration with PTL, tweak and Cxcl16 expression as well as the intracellular lipid accumulation were notablely decreased in tweak-induced podocytes. Therefore, our conclusion was that tweak and Cxcl16 were involved in the regulation of tweak-induced podocytes injury. Meanwhile, the anti-apoptotic and anti-inflammatory effect of PTL may be correlated with the tweak and Cxcl16 expression decreased.
Collapse
|
28
|
Let-7c-5p Is Involved in Chronic Kidney Disease by Targeting TGF- β Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6960941. [PMID: 32626757 PMCID: PMC7306863 DOI: 10.1155/2020/6960941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023]
Abstract
The purpose of the present study was to investigate the expressions of hsa-let-7c-5p and TGF-β signaling-related molecules and their correlations with clinical characteristics in chronic kidney disease (CKD). Twenty-three biopsy specimens of CKD patients and 20 negative control tissues were selected. Quantitative real-time PCR (qPCR) was used for the detection of hsa-let-7c-5p, transforming growth factor β (TGF-β) and TGF-β receptor type 1 (TGF-βR1) expression levels. Target gene of hsa-let-7c-5p was verified by dual-luciferase reporter assay. A significant decrease of hsa-let-7c-5p expression in CKD tissue was found, compared with that of normal renal tissues (p < 0.01). Expression levels of TGF-β in CKD were increased, compared with that of normal kidney tissue (p < 0.001). The difference in the expression of TGF-β R1 between CKD tissues and normal renal tissues was not significant (p > 0.05). A negative correlation was found between the expression of TGF-β and renal tissue hsa-let-7c-5p levels. Furthermore, hsa-let-7c-5p was identified to regulate TGF- β1 by directly binding with the 167-173 site in the 3′ untranslated region. Decreased hsa-let-7c-5p levels in CKD patients was found to be associated with disease severity, which shows a negative correlation with proteinuria and creatinine levels, and a positive correlation with estimated glomerular filtration rate (eGFR), while relative TGF-β1 expression had a positive correlation with creatinine level. In summary, changes in hsa-let-7c-5p expression and its target gene TGF-β are associated with the disease status of CKD. Let-7c-5p may contribute to the pathogenesis of renal fibrosis through TGF-β signaling, a potential diagnostic and therapeutic target of the disease.
Collapse
|
29
|
Yoo KD, Cha R, Lee S, Kim JE, Kim KH, Lee JS, Kim DK, Kim YS, Yang SH. Chemokine receptor 5 blockade modulates macrophage trafficking in renal ischaemic-reperfusion injury. J Cell Mol Med 2020; 24:5515-5527. [PMID: 32227583 PMCID: PMC7214177 DOI: 10.1111/jcmm.15207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/01/2020] [Accepted: 03/06/2020] [Indexed: 01/19/2023] Open
Abstract
Chemokine receptor 5 (CCR5) is a pivotal regulator of macrophage trafficking in the kidneys in response to an inflammatory cascade. We investigated the role of CCR5 in experimental ischaemic-reperfusion injury (IRI) pathogenesis. To establish IRI, we clamped the bilateral renal artery pedicle for 30 min and then reperfused the kidney. We performed adoptive transfer of lipopolysaccharide (LPS)-treated RAW 264.7 macrophages following macrophage depletion in mice. B6.CCR5-/- mice showed less severe IRI based on tubular epithelial cell apoptosis than did wild-type mice. CXCR3 expression in CD11b+ cells and inducible nitric oxide synthase levels were more attenuated in B6.CCR5-/- mice. B6.CCR5-/- mice showed increased arginase-1 and CD206 expression. Macrophage-depleted wild-type mice showed more injury than B6.CCR5-/- mice after M1 macrophage transfer. Adoptive transfer of LPS-treated RAW 264.7 macrophages reversed the protection against IRI in wild-type, but not B6.CCR5-/- mice. Upon knocking out CCR5 in macrophages, migration of bone marrow-derived macrophages from wild-type mice towards primary tubular epithelial cells with recombinant CCR5 increased. Phospho-CCR5 expression in renal tissues of patients with acute tubular necrosis was increased, showing a positive correlation with tubular inflammation. In conclusion, CCR5 deficiency favours M2 macrophage activation, and blocking CCR5 might aid in treating acute kidney injury.
Collapse
Affiliation(s)
- Kyung Don Yoo
- Department of Internal MedicineUlsan University HospitalUniversity of Ulsan College of MedicineUlsanKorea
| | - Ran‐hui Cha
- Department of Internal MedicineNational Medical CenterSeoulKorea
| | - Sunhwa Lee
- Department of Internal MedicineKangwon National University HospitalChuncheonKorea
- Department of Biomedical SciencesCollege of MedicineSeoul National UniversitySeoulKorea
| | - Ji Eun Kim
- Department of Internal MedicineKorea University Guro HospitalSeoulKorea
| | - Kyu Hong Kim
- Department of Biomedical SciencesCollege of MedicineSeoul National UniversitySeoulKorea
| | - Jong Soo Lee
- Department of Internal MedicineUlsan University HospitalUniversity of Ulsan College of MedicineUlsanKorea
| | - Dong Ki Kim
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
- Kidney Research InstituteSeoul National UniversitySeoulKorea
| | - Yon Su Kim
- Department of Biomedical SciencesCollege of MedicineSeoul National UniversitySeoulKorea
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
- Kidney Research InstituteSeoul National UniversitySeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
| | - Seung Hee Yang
- Kidney Research InstituteSeoul National UniversitySeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
| |
Collapse
|
30
|
Iwakura T, Zhao Z, Marschner JA, Devarapu SK, Yasuda H, Anders HJ. Dipeptidyl peptidase-4 inhibitor teneligliptin accelerates recovery from cisplatin-induced acute kidney injury by attenuating inflammation and promoting tubular regeneration. Nephrol Dial Transplant 2020; 34:1669-1680. [PMID: 30624740 DOI: 10.1093/ndt/gfy397] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cisplatin is an effective chemotherapeutic agent. However, acute kidney injury (AKI) and subsequent kidney function decline limits its use. Dipeptidyl peptidase-4 (DPP-4) inhibitor has been reported to attenuate kidney injury in some in vivo models, but the mechanisms-of-action in tubule recovery upon AKI remain speculative. We hypothesized that DPP-4 inhibitor teneligliptin (TG) can facilitate kidney recovery after cisplatin-induced AKI. METHODS In in vivo experiment, AKI was induced in rats by injecting 5 mg/kg of cisplatin intravenously. Oral administration of 10 mg/kg of TG, once a day, was started just before injecting cisplatin or from Day 5 after cisplatin injection. In an in vitro experiment, proliferation of isolated murine tubular cells was evaluated with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis and cell counting. Cell viability was analysed by MTT assay or lactate dehydrogenase (LDH) assay. RESULTS In in vivo experiments, we found that TG attenuates cisplatin-induced AKI and accelerates kidney recovery after the injury by promoting the proliferation of surviving epithelial cells of the proximal tubule. TG also suppressed intrarenal tumour necrosis factor-α expression, and induced macrophage polarization towards the anti-inflammatory M2 phenotype, both indirectly endorsing tubule recovery upon cisplatin injury. In in vitro experiments, TG directly accelerated the proliferation of primary tubular epithelial cells. Systematic screening of the DPP-4 substrate chemokines in vitro identified CXC chemokine ligand (CXCL)-12 as a promoted mitogenic factor. CXCL12 not only accelerated proliferation but also inhibited cell death of primary tubular epithelial cells after cisplatin exposure. CXC chemokine receptor (CXCR)-4 antagonism abolished the proliferative effect of TG. CONCLUSIONS The DPP-4 inhibitor TG can accelerate tubule regeneration and functional recovery from toxic AKI via an anti-inflammatory effect and probably via inhibition of CXCL12 breakdown. Hence, DPP-4 inhibitors may limit cisplatin-induced nephrotoxicity and improve kidney function in cancer patients.
Collapse
Affiliation(s)
- Takamasa Iwakura
- Department of Medicine IV, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany.,Internal Medicine I, Division of Nephrology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Zhibo Zhao
- Department of Medicine IV, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julian A Marschner
- Department of Medicine IV, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
| | - Satish Kumar Devarapu
- Department of Medicine IV, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hideo Yasuda
- Internal Medicine I, Division of Nephrology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hans Joachim Anders
- Department of Medicine IV, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
31
|
Chen X, Sun M. Identification of key genes, pathways and potential therapeutic agents for IgA nephropathy using an integrated bioinformatics analysis. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320919635. [PMID: 32370650 PMCID: PMC7227159 DOI: 10.1177/1470320320919635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/29/2020] [Indexed: 12/01/2022] Open
Abstract
PURPOSE This study aims to identify immunoglobulin-A-nephropathy-related genes based on microarray data and to investigate novel potential gene targets for immunoglobulin-A-nephropathy treatment. METHODS Immunoglobulin-A-nephropathy chip data was obtained from the Gene Expression Omnibus database, which included 10 immunoglobulin-A-nephropathy and 22 normal samples. We used the limma package of R software to screen differentially expressed genes in immunoglobulin-A-nephropathy and normal glomerular compartment tissues. Functional enrichment (including cellular components, molecular functions, biological processes) and signal pathways were performed for the differentially expressed genes. The online analysis database (STRING) was used to construct the protein-protein interaction networks of differentially expressed genes, and Cytoscape software was used to identify the hub genes of the signal pathway. In addition, we used the Connectivity Map database to predict possible drugs for the treatment of immunoglobulin-A-nephropathy. RESULTS A total of 348 differentially expressed genes were screened including 107 up-regulated and 241 down-regulated genes. Functional analysis showed that up-regulated differentially expressed genes were mainly concentrated on leukocyte migration, and the down-regulated differentially expressed genes were significantly enriched in alpha-amino acid metabolic process. A total of six hub genes were obtained: JUN, C3AR1, FN1, AGT, FOS, and SUCNR1. The small-molecule drugs thapsigargin, ciclopirox and ikarugamycin were predicted therapeutic targets against immunoglobulin-A-nephropathy. CONCLUSION Differentially expressed genes and hub genes can contribute to understanding the molecular mechanism of immunoglobulin-A-nephropathy and providing potential therapeutic targets and drugs for the diagnosis and treatment of immunoglobulin-A-nephropathy.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Nephropathy, The First Hospital of Jilin University, China
| | - Mindan Sun
- Department of Nephropathy, The First Hospital of Jilin University, China
| |
Collapse
|
32
|
Kidney allograft fibrosis: what we learned from latest translational research studies. J Nephrol 2020; 33:1201-1211. [PMID: 32193834 DOI: 10.1007/s40620-020-00726-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
To add new molecular and pathogenetic insights into the biological machinery associated to kidney allograft fibrosis is a major research target in nephrology and organ transplant translational medicine. Interstitial fibrosis associated to tubular atrophy (IF/TA) is, in fact, an inevitable and progressive process that occurs in almost every type of chronic allograft injury (particularly in grafts from expanded criteria donors) characterized by profound remodeling and excessive production/deposition of fibrillar extracellular matrix (ECM) with a great clinical impact. IF/TA is detectable in more than 50% of kidney allografts at 2 years. However, although well studied, the complete cellular/biological network associated with IF/TA is only partially evaluated. In the last few years, then, thanks to the introduction of new biomolecular technologies, inflammation in scarred/fibrotic parenchyma areas (recently acknowledged by the BANFF classification) has been recognized as a pivotal element able to accelerate the onset and development of the allograft chronic damage. Therefore, in this review, we focused on some new pathogenetic elements involved in graft fibrosis (including epithelial/endothelial to mesenchymal transition, oxidative stress, activation of Wnt and Hedgehog signaling pathways, fatty acids oxidation and cellular senescence) that, in our opinion, could become in future good candidates as potential biomarkers and therapeutic targets.
Collapse
|
33
|
Mocker A, Hilgers KF, Cordasic N, Wachtveitl R, Menendez-Castro C, Woelfle J, Hartner A, Fahlbusch FB. Renal Chemerin Expression is Induced in Models of Hypertensive Nephropathy and Glomerulonephritis and Correlates with Markers of Inflammation and Fibrosis. Int J Mol Sci 2019; 20:ijms20246240. [PMID: 31835675 PMCID: PMC6941130 DOI: 10.3390/ijms20246240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Chemerin and its receptor, chemokine-like receptor 1 (CmklR1), are associated with chemotaxis, inflammation, and endothelial function, especially in metabolic syndrome, coronary heart disease, and hypertension. In humans, circulating chemerin levels and renal function show an inverse relation. So far, little is known about the potential role of chemerin in hypertensive nephropathy and renal inflammation. Therefore, we determined systemic and renal chemerin levels in 2-kidney-1-clip (2k1c) hypertensive and Thy1.1 nephritic rats, respectively, to explore the correlation between chemerin and markers of renal inflammation and fibrosis. Immunohistochemistry revealed a model-specific induction of chemerin expression at the corresponding site of renal damage (tubular vs. glomerular). In both models, renal expression of chemerin (RT-PCR, Western blot) was increased and correlated positively with markers of inflammation and fibrosis. In contrast, circulating chemerin levels remained unchanged. Taken together, these findings demonstrate that renal chemerin expression is associated with processes of inflammation and fibrosis-related to renal damage. However, its use as circulating biomarker of renal inflammation seems to be limited in our rat models.
Collapse
Affiliation(s)
- Alexander Mocker
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, 91054 Erlangen, Germany; (A.M.); (C.M.-C.); (J.W.); (A.H.)
| | - Karl F. Hilgers
- Department of Nephrology and Hypertension, University Hospital of Erlangen, 91054 Erlangen, Germany; (K.F.H.); (N.C.); (R.W.)
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University Hospital of Erlangen, 91054 Erlangen, Germany; (K.F.H.); (N.C.); (R.W.)
| | - Rainer Wachtveitl
- Department of Nephrology and Hypertension, University Hospital of Erlangen, 91054 Erlangen, Germany; (K.F.H.); (N.C.); (R.W.)
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, 91054 Erlangen, Germany; (A.M.); (C.M.-C.); (J.W.); (A.H.)
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, 91054 Erlangen, Germany; (A.M.); (C.M.-C.); (J.W.); (A.H.)
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, 91054 Erlangen, Germany; (A.M.); (C.M.-C.); (J.W.); (A.H.)
| | - Fabian B. Fahlbusch
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, 91054 Erlangen, Germany; (A.M.); (C.M.-C.); (J.W.); (A.H.)
- Correspondence: ; Tel.: +49-9131-8533-118; Fax: +49-9131-8533-714
| |
Collapse
|
34
|
Hirono K, Imaizumi T, Aizawa T, Watanabe S, Tsugawa K, Shiratori T, Kawaguchi S, Seya K, Matsumiya T, Ito E, Tanaka H. Endothelial expression of fractalkine (CX3CL1) is induced by Toll-like receptor 3 signaling in cultured human glomerular endothelial cells. Mod Rheumatol 2019; 30:1074-1081. [PMID: 31625434 DOI: 10.1080/14397595.2019.1682768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Endothelial expression of membrane-bound fractalkine/CX3CL1 (Fkn) reportedly acts as a strong mediator of inflammation. Toll-like receptor 3 (TLR3) axes are thought to play some roles in the development of chronic glomerulonephritis (CGN) including lupus nephritis (LN). However, detailed mechanism of TLR3-mediated Fkn expression in glomerular endothelial cells (GECs) remains to be elucidated.Methods: We examined the effect of polyinosinic-polycytidylic acid (poly IC) on Fkn expression in cultured human GECs. Fkn mRNA and protein levels were quantified by real-time PCR and enzyme-linked immunosorbent assay, respectively. To further elucidate the effects of poly IC on this signaling pathway, we used small-interfering RNA (siRNA) to knockdown expression of TLR3, nuclear factor (NF)-κB p65, interferon (IFN)-β, and IFN regulatory factor 3 (IRF3). We then analyzed whether pretreatment of chloroquine or dexamethasone (DEX) inhibits poly IC-induced Fkn expression.Results: We found that poly IC-induced Fkn expression in GECs, and that this involved NF-κB, IFN-β, and IRF3. Pretreating cells with chloroquine, but not DEX attenuated poly IC-induced Fkn expression in GECs.Conclusion: Since the activation of TLR3/NF-κB/IFN-β/Fkn and TLR3/IRF3/Fkn axes is involved in inflammatory reactions in GECs, intervention of glomerular TLR3 signaling may be a suitable therapeutic strategy for treating CGN especially LN.
Collapse
Affiliation(s)
- Koji Hirono
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Shojiro Watanabe
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | | | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan.,Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
35
|
Lee CP, Nithiyanantham S, Hsu HT, Yeh KT, Kuo TM, Ko YC. ALPK1 regulates streptozotocin-induced nephropathy through CCL2 and CCL5 expressions. J Cell Mol Med 2019; 23:7699-7708. [PMID: 31557402 PMCID: PMC6815771 DOI: 10.1111/jcmm.14643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
ALPK1 is associated with chronic kidney disease, gout and type 2 diabetes mellitus. Raised renal ALPK1 level in patients with diabetes was reported. Accelerated fibrotic nephropathies were observed in hyperglycaemic mice with up-regulated ALPK1. The aim of this study was to identify the mediators contributing to ALPK1 effect involving in nephropathies induction. The haematoxylin and eosin staining, Masson's trichrome and immunohistochemical analysis of ALPK1, NFkB, CCL2 and CCL5 were performed in the mice kidney. Cytokine antibody array analysis was performed in streptozotocin-treated wild-type mice (WT-STZ) and streptozotocin-treated ALPK1 transgenic mice (TG-STZ). The ALPK1 levels were measured in mice kidney and in cultured cells. We found that the higher levels of renal CCL2/MCP-1, CCL5/Rantes and G-CSF expression in TG-STZ compared with the WT-STZ. Glucose increased ALPK1 expressions in monocytic THP1 and human kidney-2 cells. The protein expression of ALPK1, NFkB and lectin was up-regulated in glucose-treated HK-2 cells. Knockdown of ALPK1 reduced CCL2 and CCL5 mRNA levels, whereas overexpressed ALPK1 increased CCL2 and CCL5 in cultured kidney cells. Taken together, these results show that high glucose increases ALPK1 and chemokine levels in the kidney. Elevated ALPK1 expression enhances renal CCL2 and CCL5 expressions in vivo and in vitro. ALPK1 is a mediator for CCL2 and CCL5 chemokine up-regulation involving in diabetic nephropathies induction.
Collapse
Affiliation(s)
- Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Srinivasan Nithiyanantham
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hui-Ting Hsu
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tzer-Min Kuo
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
36
|
Xiao X, Li K, Ma X, Liu B, He X, Yang S, Wang W, Jiang B, Cai J. Mucosal-Associated Invariant T Cells Expressing the TRAV1-TRAJ33 Chain Are Present in Pigs. Front Immunol 2019; 10:2070. [PMID: 31552029 PMCID: PMC6735250 DOI: 10.3389/fimmu.2019.02070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of evolutionarily conserved innate-like T lymphocytes bearing invariant or semi-invariant TCRα chains paired with a biased usage of TCRβ chains and restricted by highly conserved monomorphic MHC class I-like molecule, MR1. Consistent with their phylogenetically conserved characteristics, MAIT cells have been implicated in host immune responses to microbial infections and non-infectious diseases, such as tuberculosis, typhoid fever, and multiple sclerosis. To date, MAIT cells have been identified in humans, mice, cows, sheep, and several non-human primates, but not in pigs. Here, we cloned porcine MAIT (pMAIT) TCRα sequences from PBMC cDNA, and then analyzed the TCRβ usage of pMAIT cells expressing the TRAV1-TRAJ33 chain, finding that pMAIT cells use a limited array of TCRβ chains (predominantly TRBV20S and TRBV29S). We estimated the frequency of TRAV1-TRAJ33 transcripts in peripheral blood and tissues, demonstrating that TRAV1-TRAJ33 transcripts are expressed in all tested tissues. Analysis of the expression of TRAV1-TRAJ33 transcripts in three T-cell subpopulations from peripheral blood and tissues showed that TRAV1-TRAJ33 transcripts can be expressed by CD4+CD8−, CD8+CD4−, and CD4−CD8− T cells. Using a single-cell PCR assay, we demonstrated that pMAIT cells with the TRAV1-TRAJ33 chain express cell surface markers IL-18Rα, IL-7Rα, CCR9, CCR5, and/or CXCR6, and transcription factors PLZF, and T-bet and/or RORγt. In conclusion, pMAIT cells expressing the TRAV1-TRAJ33 chain have characteristics similar to human and mouse MAIT cells, further supporting the idea that the pig is an animal model for investigating MAIT cell functions in human disease.
Collapse
Affiliation(s)
- Xingxing Xiao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xueyang He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wenqing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Baoyu Jiang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
37
|
The antioxidant and DNA-repair enzyme apurinic/apyrimidinic endonuclease 1 limits the development of tubulointerstitial fibrosis partly by modulating the immune system. Sci Rep 2019; 9:7823. [PMID: 31127150 PMCID: PMC6534557 DOI: 10.1038/s41598-019-44241-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein that controls the cellular response to oxidative stress and possesses DNA-repair functions. It has important roles in the progression and outcomes of various diseases; however, its function and therapeutic prospects with respect to kidney injury are unknown. To study this, we activated APE1 during kidney injury by constructing an expression vector (pCAG-APE1), using an EGFP expression plasmid (pCAG-EGFP) as a control. We performed unilateral ureteral obstruction (UUO) as a model of tubulointerstitial fibrosis on ICR mice before each vector was administrated via retrograde renal vein injection. In this model, pCAG-APE1 injection did not produce any adverse effects and significantly reduced histological end points including fibrosis, inflammation, tubular injury, and oxidative stress, as compared to those parameters after pCAG-EGFP injection. qPCR analysis showed significantly lower expression of Casp3 and inflammation-related genes in pCAG-APE1-injected animals compared to those in pCAG-EGFP-injected UUO kidneys. RNA-Seq analyses showed that the major transcriptional changes in pCAG-APE1-injected UUO kidneys were related to immune system processes, metabolic processes, catalytic activity, and apoptosis, leading to normal kidney repair. Therefore, APE1 suppressed renal fibrosis, not only via antioxidant and DNA-repair functions, but also partly by modulating the immune system through multiple pathways including Il6, Tnf, and chemokine families. Thus, therapeutic APE1 modulation might be beneficial for the treatment of renal diseases.
Collapse
|
38
|
Breda PC, Wiech T, Meyer-Schwesinger C, Grahammer F, Huber T, Panzer U, Tiegs G, Neumann K. Renal proximal tubular epithelial cells exert immunomodulatory function by driving inflammatory CD4 + T cell responses. Am J Physiol Renal Physiol 2019; 317:F77-F89. [PMID: 31017008 DOI: 10.1152/ajprenal.00427.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In immune-mediated glomerular diseases like crescentic glomerulonephritis (cGN), inflammatory CD4+ T cells accumulate within the tubulointerstitial compartment in close contact to proximal and distal tubular epithelial cells and drive renal inflammation and tissue damage. However, whether renal epithelial cell populations play a role in the pathogenesis of cGN by modulating CD4+ T cell responses is less clear. In the present study, we aimed to investigate the potential of renal epithelial cells to function as antigen-presenting cells, thereby stimulating CD4+ T cell responses. Using a FACS-based protocol that allowed comparative analysis of cortical epithelial cell populations, we showed that particularly proximal tubular epithelial cells (PTECs) express molecules linked with antigen-presenting cell function, including major histocompatibility complex class II (MHCII), CD74, CD80, and CD86 in homeostasis and nephrotoxic nephritis, a murine model of cGN. Protein expression was visualized at the PTEC single cell level by imaging flow cytometry. Interestingly, we found inflammation-dependent regulation of epithelium-expressed CD74, CD80, and CD86, whereas MHCII expression was not altered. Antigen-specific stimulation of CD4+ T cells by PTECs in vitro supported CD4+ T cell survival and induced CD4+ T cell activation, proliferation, and inflammatory cytokine production. In patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis, MHCII and CD74 were expressed by both proximal and distal tubules, whereas CD86 was predominantly expressed by proximal tubules. Thus, particularly PTECs have the potential to induce an inflammatory phenotype in CD4+ T cells in vitro, which might also play a role in the pathology of immune-mediated kidney disease.
Collapse
Affiliation(s)
- Philippe Christophe Breda
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Thorsten Wiech
- Institute of Pathology, University Hospital Eppendorf , Hamburg , Germany
| | | | - Florian Grahammer
- III, Medical Clinic University Hospital Eppendorf , Hamburg , Germany
| | - Tobias Huber
- III, Medical Clinic University Hospital Eppendorf , Hamburg , Germany
| | - Ulf Panzer
- III, Medical Clinic University Hospital Eppendorf , Hamburg , Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
39
|
Abstract
IgA nephropathy (IgAN), a common primary glomerulonephritis worldwide, is associated with a substantial risk of progression to end-stage renal failure. The disease runs a highly variable clinical course with frequent involvement of tubulointerstitial damage. A subgroup of IgAN with proximal tubular epithelial cells (PTECs) and tubulointerstitial damage often is associated with rapid progression to end-stage renal failure. Human mesangial cell-derived mediators lead to podocyte and tubulointerstitial injury via mesangial-podocytic-tubular cross-talk. Although mesangial-podocytic communication plays a pathogenic role in podocytic injury, the implication of a podocyte-PTEC cross-talk pathway in the progression of tubulointerstitial injury in IgAN should not be underscored. We review the role of mesangial-podocytic-tubular cross-talk in the progression of IgAN. We discuss how podocytopathy in IgAN promotes subsequent PTEC dysfunction and whether tubulointerstitial injury affects the propagation of podocytic injury in IgAN. A thorough understanding of the cross-talk mechanisms among mesangial cells, podocytes, and PTECs may lead to better design of potential therapeutic options for IgAN.
Collapse
Affiliation(s)
- Joseph C K Leung
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong..
| | - Kar Neng Lai
- Nephrology Center, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
40
|
New Therapies for the Treatment of Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:625-659. [PMID: 31399988 DOI: 10.1007/978-981-13-8871-2_31] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Renal fibrosis is the common pathway for progression of chronic kidney disease (CKD) to end stage of renal disease. It is now widely accepted that the degree of renal fibrosis correlates with kidney function and CKD stages. The key cellular basis of renal fibrosis includes activation of myofibroblasts, excessive production of extracellular matrix components, and infiltration of inflammatory cells. Many cellular mechanisms responsible for renal fibrosis have been identified, and some antifibrotic agents show a greater promise in slowing down and even reversing fibrosis in animal models; however, translating basic findings into effective antifibrotic therapies in human has been limited. In this chapter, we will discuss the effects and mechanisms of some novel antifibrotic agents in both preclinical studies and clinical trials.
Collapse
|
41
|
Lux M, Blaut A, Eltrich N, Bideak A, Müller MB, Hoppe JM, Gröne HJ, Locati M, Vielhauer V. The Atypical Chemokine Receptor 2 Limits Progressive Fibrosis after Acute Ischemic Kidney Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:231-247. [PMID: 30448408 DOI: 10.1016/j.ajpath.2018.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 09/14/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
Following renal ischemia-reperfusion injury (IRI), resolution of inflammation allows tubular regeneration, whereas ongoing inflammatory injury mediated by infiltrating leukocytes leads to nephron loss and renal fibrosis, typical hallmarks of chronic kidney disease. Atypical chemokine receptor 2 (ACKR2) is a chemokine decoy receptor that binds and scavenges inflammatory CC chemokines and reduces local leukocyte accumulation. We hypothesized that ACKR2 limits leukocyte infiltration, inflammation, and fibrotic tissue remodeling after renal IRI, thus preventing progression to chronic kidney disease. Compared with wild type, Ackr2 deficiency increases CC chemokine ligand 2 levels in tumor necrosis factor-stimulated tubulointerstitial tissue in vitro. In Ackr2-deficient mice with early IRI 1 or 5 days after transient renal pedicle clamping, tubular injury was similar to wild type, although accumulation of mononuclear phagocytes increased in postischemic Ackr2-/- kidneys. Regarding long-term outcomes, Ackr2-/- kidneys displayed more tubular injury 5 weeks after IRI, which was associated with persistently increased renal infiltrates of mononuclear phagocytes, T cells, Ly6Chigh inflammatory macrophages, and inflammation. Moreover, Ackr2 deficiency caused substantially aggravated renal fibrosis in Ackr2-/- kidneys 5 weeks after IRI, shown by increased expression of matrix molecules, renal accumulation of α-smooth muscle actin-positive myofibroblasts, and bone marrow-derived fibrocytes. ACKR2 is important in limiting persistent inflammation, tubular loss, and renal fibrosis after ischemic acute kidney injury and, thus, can prevent progression to chronic renal disease.
Collapse
Affiliation(s)
- Moritz Lux
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexander Blaut
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nuru Eltrich
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrei Bideak
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin B Müller
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - John M Hoppe
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Massimo Locati
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Volker Vielhauer
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
42
|
Exclusive expression of transmembrane TNF aggravates acute glomerulonephritis despite reduced leukocyte infiltration and inflammation. Kidney Int 2018; 95:75-93. [PMID: 30389199 DOI: 10.1016/j.kint.2018.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 02/03/2023]
Abstract
Tumor necrosis factor-α (TNF) is a cytokine mediating inflammatory kidney diseases such as immune complex glomerulonephritis. Its two receptors, TNFR1 and TNFR2, play distinct roles in this process, with TNFR2 strongly required for induction of disease. In contrast to soluble TNF (sTNF), transmembrane TNF robustly activates TNFR2. Thus, we examined the functional role of transmembrane TNF by inducing heterologous nephrotoxic serum nephritis in wild-type and transgenic TNFΔ1-9,K11E knock-in mice expressing transmembrane TNF but no sTNF (memTNF mice). Compared to wild-type, nephritis was exacerbated in memTNF mice on day 5, indicated by increased albuminuria, higher serum urea levels, and more pronounced glomerular deposits, together with higher numbers of dying and proliferating glomerular cells. This was associated with greater loss of glomerular endothelial cells, increased podocyte stress, and signs of augmented necroptosis in memTNF kidneys. Aggravation of nephritis was dependent on transmembrane TNF expression in parenchymal cells, but not leukocytes. Surprisingly, increased kidney injury was associated with reduced renal leukocyte infiltration in memTNF mice, which correlated with decreased renal mRNA expression of pro-inflammatory mediators. This effect was also present in isolated memTNF glomeruli stimulated with interleukin-1β in vitro. Thus, uncleaved transmembrane TNF is an important mediator of renal tissue damage characterized by increased renal cell death and loss of glomerular endothelial cells in murine glomerulonephritis. In contrast, sTNF predominantly mediates renal leukocyte recruitment and inflammation. These findings highlight the importance of transmembrane TNF in inflammatory kidney disease as a possible therapeutic target.
Collapse
|
43
|
Romoli S, Angelotti ML, Antonelli G, Kumar Vr S, Mulay SR, Desai J, Anguiano Gomez L, Thomasova D, Eulberg D, Klussmann S, Melica ME, Conte C, Lombardi D, Lasagni L, Anders HJ, Romagnani P. CXCL12 blockade preferentially regenerates lost podocytes in cortical nephrons by targeting an intrinsic podocyte-progenitor feedback mechanism. Kidney Int 2018; 94:1111-1126. [PMID: 30385042 PMCID: PMC6251974 DOI: 10.1016/j.kint.2018.08.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 01/10/2023]
Abstract
Insufficient podocyte regeneration after injury is a central pathomechanism of glomerulosclerosis and chronic kidney disease. Podocytes constitutively secrete the chemokine CXCL12, which is known to regulate homing and activation of stem cells; hence we hypothesized a similar effect of CXCL12 on podocyte progenitors. CXCL12 blockade increased podocyte numbers and attenuated proteinuria in mice with Adriamycin-induced nephropathy. Similar studies in lineage-tracing mice revealed enhanced de novo podocyte formation from parietal epithelial cells in the setting of CXCL12 blockade. Super-resolution microscopy documented full integration of these progenitor-derived podocytes into the glomerular filtration barrier, interdigitating with tertiary foot processes of neighboring podocytes. Quantitative 3D analysis revealed that conventional 2D analysis underestimated the numbers of progenitor-derived podocytes. The 3D analysis also demonstrated differences between juxtamedullary and cortical nephrons in both progenitor endowment and Adriamycin-induced podocyte loss, with more robust podocyte regeneration in cortical nephrons with CXCL12 blockade. Finally, we found that delayed CXCL12 inhibition still had protective effects. In vitro studies found that CXCL12 inhibition uncoupled Notch signaling in podocyte progenitors. These data suggest that CXCL12-driven podocyte-progenitor feedback maintains progenitor quiescence during homeostasis, but also limits their intrinsic capacity to regenerate lost podocytes, especially in cortical nephrons. CXCL12 inhibition could be an innovative therapeutic strategy in glomerular disorders.
Collapse
Affiliation(s)
- Simone Romoli
- Renal Division, Department of Medicine IV, University Hospital, Munich, Germany
| | - Maria Lucia Angelotti
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Giulia Antonelli
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Santhosh Kumar Vr
- Renal Division, Department of Medicine IV, University Hospital, Munich, Germany
| | - Shrikant R Mulay
- Renal Division, Department of Medicine IV, University Hospital, Munich, Germany
| | - Jyaysi Desai
- Renal Division, Department of Medicine IV, University Hospital, Munich, Germany
| | | | - Dana Thomasova
- Renal Division, Department of Medicine IV, University Hospital, Munich, Germany
| | | | | | - Maria Elena Melica
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Carolina Conte
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Duccio Lombardi
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Renal Division, Department of Medicine IV, University Hospital, Munich, Germany.
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy.
| |
Collapse
|
44
|
Weidenbusch M, Song S, Iwakura T, Shi C, Rodler S, Kobold S, Mulay SR, Honarpisheh MM, Anders H. IL-22 sustains epithelial integrity in progressive kidney remodeling and fibrosis. Physiol Rep 2018; 6:e13817. [PMID: 30156011 PMCID: PMC6113136 DOI: 10.14814/phy2.13817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
IL-22, a member of the IL-10 cytokine family, accelerates tubule regeneration upon acute kidney injury, hence we speculated on a protective role also in chronic kidney disease. We quantified intrarenal IL-22 expression after unilateral ureteral (UUO) in wild-type mice and performed UUO in IL-22 knock-out animals. Obstruction phenotypic differences between IL22+/+ and IL22-/- mice were assessed by histology, immunohistochemistry, immunofluorescence as well as western blotting and reverse-transcriptase quantitative PCR ex vivo. Additionally, we performed in vitro experiments using both murine and human tubular cells to characterize IL-22 effects in epithelial healing. We found increasing IL-22 positivity in infiltrating immune cells over time upon UUO in wild-type mice. UUO in IL22-/- mice caused more tubular cell injury as defined by TUNEL positive cells and loss of tetragonolobus lectin staining. Instead, tubular dilation, loss of CD31+ perivascular capillaries, and interstitial fibrosis were independent of the Il22 genotype as assessed by standard histology, immunostaining, and mRNA expression profiling. In vitro experiments showed that recombinant human IL-22 significantly enhanced human tubular epithelial cell proliferation and wound closure upon mechanical injury, and electric cell-substrate impedance sensing studies revealed that recombinant IL-22 sustained tubular epithelial barrier function upon injury. In contrast, IL-22 had no such direct effects on human fibroblasts. Together, in progressive kidney remodeling upon UUO, infiltrating immune cells secrete IL-22, which augments tubular epithelial integrity and epithelial barrier function, but does not affect vascular rarefaction or fibrogenesis. We conclude that IL-22 could represent a molecular target to specifically modulate tubular atrophy.
Collapse
Affiliation(s)
- Marc Weidenbusch
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLudwig Maximilians University of MunichMunichGermany
| | - Shangqing Song
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLudwig Maximilians University of MunichMunichGermany
- Department of UrologyShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Takamasa Iwakura
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLudwig Maximilians University of MunichMunichGermany
| | - Chongxu Shi
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLudwig Maximilians University of MunichMunichGermany
| | - Severin Rodler
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLudwig Maximilians University of MunichMunichGermany
| | - Sebastian Kobold
- Center for Integrated Protein Science Munich (CIPSM) and Abteilung für Klinische PharmakologieMedizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLudwig Maximilians University of MunichMunichGermany
| | - Shrikant R. Mulay
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLudwig Maximilians University of MunichMunichGermany
| | - Mohsen M. Honarpisheh
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLudwig Maximilians University of MunichMunichGermany
| | - Hans‐Joachim Anders
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenLudwig Maximilians University of MunichMunichGermany
| |
Collapse
|
45
|
Cai X, Wang L, Wang X, Hou F. Silence of IGFBP7 suppresses apoptosis and epithelial mesenchymal transformation of high glucose induced-podocytes. Exp Ther Med 2018; 16:1095-1102. [PMID: 30112052 PMCID: PMC6090473 DOI: 10.3892/etm.2018.6298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor-binding protein 7 (IGFBP7) has been identified as a secreted protein associated with a number of cellular processes. However, the specific regulatory mechanisms of IGFBP7 on podocytes of diabetic nephropathy (DN) are yet to be elucidated. In the present study, podocytes were identified initially via an immunofluorescence assay using an anti-synaptopodin antibody. It was subsequently demonstrated that glucose promoted podocyte proliferation in a time- and dose-dependent manner via MTT assay. In addition, IGFBP7 expression was silenced in podocytes via siRNA, the effects of which were evaluated using western blotting and reverse transcription-quantitative polymerase chain reaction. It was demonstrated that silencing IGFBP7 inhibited apoptosis and epithelial mesenchymal transformation (EMT) of podocytes mediated by high glucose (HG). Transforming growth factor (TGF)-β1/mothers against decapentaplegic homolog (Smad) signaling was associated with proliferation, apoptotic activities and EMT. Therefore, the expression levels of TGF-β1/Smad pathway were detected, and it was observed that silencing IGFBP7 suppressed the TGF-β1/Smad pathway in podocytes induced by HG. These findings suggested that IGFBP7 may serve as a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Xiaojun Cai
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang 150036, P.R. China
| | - Lei Wang
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang 150036, P.R. China
| | - Xuling Wang
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang 150036, P.R. China
| | - Fengyan Hou
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
46
|
Zou XF, Song B, Duan JH, Hu ZD, Cui ZL, Yang T. PRINS Long Noncoding RNA Involved in IP-10–Mediated Allograft Rejection in Rat Kidney Transplant. Transplant Proc 2018; 50:1558-1565. [DOI: 10.1016/j.transproceed.2018.03.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/01/2018] [Accepted: 03/12/2018] [Indexed: 01/10/2023]
|
47
|
Yanru W, Zhenyu B, Zhengchuan N, Qi Q, Chunmin L, Weiqiang Y. Transcriptomic analyses of chemokines reveal that down-regulation of XCR1 is associated with advanced hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 496:1314-1321. [PMID: 29408492 DOI: 10.1016/j.bbrc.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
Chemokines are essential coordinators of cellular migration and cell-cell interactions, therefore considerable attention has been paid to the application of chemokines to cancer immunotherapy. In this study, we screened for the expression levels of 58 human chemokines/chemokine receptors in hepatocellular carcinoma (HCC) by using samples from the TCGA LIHC cohort and found 16 consistently down-regulated and 11 up-regulated chemokine genes in HCC compared with normal samples. Furthermore, the expressions of XCR1 were verified by Western blot in liver cancer cell lines. We used CCK8, plate cloning formation, scratch-wound and transwell analysis to measure the ability of proliferation, metastasis and invasion, respectively. Protein expression was analyzed by cell immunofluorescence and western-blot. We found that silencing XCR1 promoted, while overexpressing XCR1 inhibited, HCC cell migration and invasion in vitro, its mechanism may involve in inhibition of Epithelial Mesenchymal Transition (EMT). However, the overexpression of XCR1 in HCCLM3 in vitro can restrain the growth partially due to the inhibition of MAPK and PI3K/AKT signaling pathway. Gene Set Enrichment Analysis (GSEA) showed that high expression of XCR1 is positively associated with EMT, which is closely associated with tumor migration and invasion. Our study provides the basis for further investigation of the molecular mechanism by which down-regulation of XCR1 promotes the development and progression of HCC.
Collapse
Affiliation(s)
- Wang Yanru
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Bai Zhenyu
- Department of Laboratory, General Hospital of Pingmei Shenma Medical Group, Henan, China.
| | - Niu Zhengchuan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qi Qi
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China.
| | - Liang Chunmin
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Yao Weiqiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Hochane M, Raison D, Coquard C, Béraud C, Bethry A, Danilin S, Massfelder T, Barthelmebs M. Parathyroid hormone-related protein modulates inflammation in mouse mesangial cells and blunts apoptosis by enhancing COX-2 expression. Am J Physiol Cell Physiol 2017; 314:C242-C253. [PMID: 29141920 DOI: 10.1152/ajpcell.00018.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Injury of mesangial cells (MC) is a prominent feature of glomerulonephritis. Activated MC secrete inflammatory mediators that induce cell apoptosis. Parathyroid hormone-related peptide (PTHrP) is a locally active cytokine that enhances cell survival and is upregulated by proinflammatory factors in many cell types. The aim of this study was to analyze the regulation of PTHrP expression by inflammatory cytokines and to evaluate whether PTHrP itself acts as a proinflammatory and/or survival factor on male murine MC in primary culture. Our results showed that IL-1β (10 ng/ml) and TNF-α (10 ng/ml) rapidly and transiently upregulated PTHrP expression in MC. The effects of IL-1β were both transcriptional and posttranscriptional, with stabilization of the PTHrP mRNA by human antigen R (HuR). Proteome profiler arrays showed that PTHrP itself enhanced cytokines within 2 h in cell lysates, mainly IL-17, IL-16, IL-1α, and IL-6. PTHrP also stimulated sustained expression (2-4 h) of chemokines, mainly regulated upon activation normal T cell expressed and secreted (RANTES)/C-C motif chemokine 5 (CCL5) and macrophage inflammatory protein-2 (MIP-2)/C-X-C motif chemokine 2 (CXCL2), thymus and activation-regulated chemokine (TARC)/CCL17, and interferon-inducible T cell α-chemoattractant (I-TAC)/CXCL11. Moreover, PTHrP markedly enhanced cyclooxygenase-2 (COX-2) expression and elicited its autoinduction through the activation of the NF-κB pathway. PTHrP induced MC survival via the COX-2 products, and PTHrP overexpression in MC blunted the apoptotic effects of IL-1β and TNF-α. Altogether, these findings suggest that PTHrP functions as a booster of glomerular inflammatory processes and may be a negative feedback loop preserving MC survival.
Collapse
Affiliation(s)
- Mazène Hochane
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France
| | - Denis Raison
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Catherine Coquard
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France.,Université de Strasbourg , Strasbourg , France
| | - Claire Béraud
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Audrey Bethry
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Sabrina Danilin
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Thierry Massfelder
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France.,Université de Strasbourg , Strasbourg , France
| | - Mariette Barthelmebs
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France.,Université de Strasbourg , Strasbourg , France
| |
Collapse
|
49
|
Dipyridamole decreases dialysis risk and improves survival in patients with pre-dialysis advanced chronic kidney disease. Oncotarget 2017; 9:5368-5377. [PMID: 29435184 PMCID: PMC5797055 DOI: 10.18632/oncotarget.19850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023] Open
Abstract
Introduction Dipyridamole decreases proteinuria and improves renal function progression in patients with glomerular disease through its inhibition of platelet activation and enhanced nitric oxide expression. Few studies have evaluated the effects of dipyridamole on renal outcome or survival in CKD stage 5 patients who have not yet received dialysis (CKD 5 ND). Materials and Methods A prospective cohort study was conducted based on the Taiwan National Health Insurance Research Database. From January 1, 2000 to June 30, 2009, we enrolled 28,497 patients who had a serum creatinine > 6 mg/dL and a hematocrit < 28% and who were treated with erythropoiesis-stimulating agents (ESAs). All patients were further divided into two groups with or without dipyridamole use within 90 days after starting ESA therapy. Patient followed-up took place until dialysis, death before initiation of dialysis or December 31, 2009. The primary outcomes were long-term dialysis and death before initiating dialysis. Results The dipyridamole users and nonusers groups included 7,746 and 20,751 patients, respectively. We found that 20,152 patients (70.7%) required long-term dialysis and 5,697 patients (20.0%) died before a progression to end-stage renal disease required dialysis. After propensity score-matching, dipyridamole users were associated with lower risks for long-term dialysis (adjusted HR, 0.96; 95% CI, 0.93–0.99) and death (adjusted HR, 0.91; 95% CI, 0.85–0.97) compared with nonusers. Conclusions Dipyridamole exhibited a protective effect in reducing the risk for long-term dialysis and death among CKD 5 ND patients. Randomized studies are needed to validate this association.
Collapse
|
50
|
Zou HH, Yang PP, Huang TL, Zheng XX, Xu GS. PLK2 Plays an Essential Role in High D-Glucose-Induced Apoptosis, ROS Generation and Inflammation in Podocytes. Sci Rep 2017; 7:4261. [PMID: 28655909 PMCID: PMC5487358 DOI: 10.1038/s41598-017-00686-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/08/2017] [Indexed: 01/15/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of hyperglycemia. Currently, there is no effective therapeutic intervention for DKD. In this study, we sought to provide a set of gene profile in diabetic kidneys. We identified 338 genes altered in diabetes-induced DKD glomeruli, and PLK2 exhibited the most dramatic change. Gene set enrichment analysis (GSEA) indicated multiple signaling pathways are involved DKD pathogenesis. Here, we investigated whether PLK2 contributes to podocyte dysfunction, a characteristic change in the development of DKD. High D-glucose (HDG) significantly increased PLK2 expression in mouse podocytes. Suppressing PLK2 attenuated HDG-induced apoptosis and inflammatory responses both in vitro and in vivo. NAC, an antioxidant reagent, rescued HDG and PLK2 overexpression-induced kidney injuries. In summary, we demonstrated that silencing PLK2 attenuates HDG-induced podocyte apoptosis and inflammation, which may serve as a future therapeutic target in DKD.
Collapse
Affiliation(s)
- Hong-Hong Zou
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Ping-Ping Yang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Tian-Lun Huang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Xiao-Xu Zheng
- Department of Medicine, the George Washington University, Washington, DC20052, USA
| | - Gao-Si Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China.
| |
Collapse
|