1
|
Adilović M, Hromić-Jahjefendić A, Mahmutović L, Šutković J, Rubio-Casillas A, Redwan EM, Uversky VN. Intrinsic Factors Behind the Long-COVID: V. Immunometabolic Disorders. J Cell Biochem 2025; 126:e30683. [PMID: 39639607 DOI: 10.1002/jcb.30683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The complex link between COVID-19 and immunometabolic diseases demonstrates the important interaction between metabolic dysfunction and immunological response during viral infections. Severe COVID-19, defined by a hyperinflammatory state, is greatly impacted by underlying chronic illnesses aggravating the cytokine storm caused by increased levels of Pro-inflammatory cytokines. Metabolic reprogramming, including increased glycolysis and altered mitochondrial function, promotes viral replication and stimulates inflammatory cytokine production, contributing to illness severity. Mitochondrial metabolism abnormalities, strongly linked to various systemic illnesses, worsen metabolic dysfunction during and after the pandemic, increasing cardiovascular consequences. Long COVID-19, defined by chronic inflammation and immune dysregulation, poses continuous problems, highlighting the need for comprehensive therapy solutions that address both immunological and metabolic aspects. Understanding these relationships shows promise for effectively managing COVID-19 and its long-term repercussions, which is the focus of this review paper.
Collapse
Affiliation(s)
- Muhamed Adilović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jasmin Šutković
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Masset C, Drillaud N, Ternisien C, Degauque N, Gerard N, Bruneau S, Branchereau J, Blancho G, Mesnard B, Brouard S, Giral M, Cantarovich D, Dantal J. The concept of immunothrombosis in pancreas transplantation. Am J Transplant 2024:S1600-6135(24)00738-X. [PMID: 39709128 DOI: 10.1016/j.ajt.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/23/2024] [Indexed: 12/23/2024]
Abstract
Early failure of a pancreatic allograft due to complete thrombosis has an incidence of approximately 10% and is the main cause of comorbidity in pancreas transplantation. Although several risk factors have been identified, the exact mechanisms leading to this serious complication are still unclear. In this review, we define the roles of the individual components involved during sterile immunothrombosis-namely endothelial cells, platelets, and innate immune cells. Further, we review the published evidence linking the main risk factors for pancreatic thrombosis to cellular activation and vascular modifications. We also explore the unique features of the pancreas itself: the vessel endothelium, specific vascularization, and relationship to other organs-notably the spleen and adipose tissue. Finally, we summarize the therapeutic possibilities for the prevention of pancreatic thrombosis depending on the different mechanisms such as anticoagulation, anti-inflammatory molecules, endothelium protectors, antagonism of damage-associated molecular patterns, and use of machine perfusion.
Collapse
Affiliation(s)
- Christophe Masset
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Nicolas Drillaud
- Laboratory of Hemostasis, Nantes University Hospital, Nantes, France
| | | | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Nathalie Gerard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sarah Bruneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Julien Branchereau
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Gilles Blancho
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Benoit Mesnard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Magali Giral
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Diego Cantarovich
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jacques Dantal
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| |
Collapse
|
3
|
Kofoed JS, Tuncer FB, Kwok AC, Agarwal JP, Ruple BA, Borrelli M, Symons JD, Richardson RS, Broxterman RM. Lasting Effects of Surgically Used Topical Vasodilators on DIEP Artery Vascular Function. J Reconstr Microsurg 2024. [PMID: 39038459 DOI: 10.1055/s-0044-1788326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
BACKGROUND Surgeons routinely apply papaverine, lidocaine, or verapamil to produce acute vasodilation and prevent vasospasms during microvascular surgeries. There is evidence that topical vasodilators may induce postoperative endothelial and smooth muscle dysfunction, which would present after the acute vasodilatory effects of the topical drugs wear off. Therefore, the purpose of the current study was to evaluate the lasting effects of papaverine, lidocaine, and verapamil on human deep inferior epigastric perforator artery vasodilatory function after the acute effects of the topical drugs had worn off. METHODS Deep inferior epigastric arterial samples were obtained from 12 patients during surgery. Each artery was dissected into four rings which where incubated for 1 minute in either physiological saline solution (control), papaverine (30 mg/mL), lidocaine (20 mg/mL), or verapamil (2.5 mg/mL), followed by a 2-hour washout. Endothelial-dependent and -independent vasorelaxation were then assessed by the isometric tension responses to acetylcholine or sodium nitroprusside, respectively. RESULTS Peak acetylcholine-evoked vasorelaxation (mean ± standard deviation) was not different between control (62 ± 23%) and lidocaine (57 ± 18%, p = 0.881), but was reduced (all p < 0.002) in papaverine (22 ± 27%) and verapamil (22 ± 20%). Peak sodium nitroprusside-evoked vasorelaxation was not different (all p > 0.692) among control (132 ± 35%), lidocaine (121 ± 22%), and verapamil (127 ± 22%), but was less in papaverine (104 ± 41%; p = 0.045) than control. CONCLUSION Surgically used doses of papaverine and verapamil, but not lidocaine, have lasting negative effects on arterial vasodilatory function despite the acute effects of the drugs having worn off. These findings, in conjunction with the spasmolytic properties of each drug, may help guide the selection of an optimal topical vasodilator for use during microvascular surgeries.
Collapse
Affiliation(s)
- Jason S Kofoed
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Fatma B Tuncer
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Alvin C Kwok
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | | | - Bradley A Ruple
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, Utah
| | - Marta Borrelli
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - J David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Division of Endocrinology, Metabolism and Diabetes, Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, Utah
| | - Ryan M Broxterman
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, Utah
| |
Collapse
|
4
|
Hao D, Lin J, Liu R, Pivetti C, Yamashiro K, Schutzman LM, Sageshima J, Kwong M, Bahatyrevich N, Farmer DL, Humphries MD, Lam KS, Panitch A, Wang A. A bio-instructive parylene-based conformal coating suppresses thrombosis and intimal hyperplasia of implantable vascular devices. Bioact Mater 2023; 28:467-479. [PMID: 37408799 PMCID: PMC10318457 DOI: 10.1016/j.bioactmat.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Implantable vascular devices are widely used in clinical treatments for various vascular diseases. However, current approved clinical implantable vascular devices generally have high failure rates primarily due to their surface lacking inherent functional endothelium. Here, inspired by the pathological mechanisms of vascular device failure and physiological functions of native endothelium, we developed a new generation of bioactive parylene (poly(p-xylylene))-based conformal coating to address these challenges of the vascular devices. This coating used a polyethylene glycol (PEG) linker to introduce an endothelial progenitor cell (EPC) specific binding ligand LXW7 (cGRGDdvc) onto the vascular devices for preventing platelet adhesion and selectively capturing endogenous EPCs. Also, we confirmed the long-term stability and function of this coating in human serum. Using two vascular disease-related large animal models, a porcine carotid artery interposition model and a porcine carotid artery-jugular vein arteriovenous graft model, we demonstrated that this coating enabled rapid generation of self-renewable "living" endothelium on the blood contacting surface of the expanded polytetrafluoroethylene (ePTFE) grafts after implantation. We expect this easy-to-apply conformal coating will present a promising avenue to engineer surface properties of "off-the-shelf" implantable vascular devices for long-lasting performance in the clinical settings.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jonathan Lin
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Kaeli Yamashiro
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Linda M. Schutzman
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Junichiro Sageshima
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Mimmie Kwong
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Nataliya Bahatyrevich
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Misty D. Humphries
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Alyssa Panitch
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| |
Collapse
|
5
|
Chu PY, Hsieh HY, Chung PS, Wang PW, Wu MC, Chen YQ, Kuo JC, Fan YJ. Development of vessel mimicking microfluidic device for studying mechano-response of endothelial cells. iScience 2023; 26:106927. [PMID: 37305698 PMCID: PMC10251125 DOI: 10.1016/j.isci.2023.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/24/2022] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
The objective of this study is to develop a device to mimic a microfluidic system of human arterial blood vessels. The device combines fluid shear stress (FSS) and cyclic stretch (CS), which are resulting from blood flow and blood pressure, respectively. The device can reveal real-time observation of dynamic morphological change of cells in different flow fields (continuous flow, reciprocating flow and pulsatile flow) and stretch. We observe the effects of FSS and CS on endothelial cells (ECs), including ECs align their cytoskeleton proteins with the fluid flow direction and paxillin redistribution to the cell periphery or the end of stress fibers. Thus, understanding the morphological and functional changes of endothelial cells on physical stimuli can help us to prevent and improve the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Pei-Yu Chu
- College of Biomedical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Han-Yun Hsieh
- College of Biomedical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Pei-Shan Chung
- Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Pai-Wen Wang
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan
| | - Yu-Jui Fan
- College of Biomedical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
6
|
D'Alessio A. Role of Endothelial Cell Metabolism in Normal and Tumor Vasculature. Cancers (Basel) 2023; 15:cancers15071921. [PMID: 37046582 PMCID: PMC10093580 DOI: 10.3390/cancers15071921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Endothelial cells (ECs) form a simple squamous epithelium, the endothelium, which lines the lumen of all blood vessels and the heart [...].
Collapse
Affiliation(s)
- Alessio D'Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
7
|
Ivnitsky JJ, Schäfer TV, Rejniuk VL, Golovko AI. Endogenous humoral determinants of vascular endothelial dysfunction as triggers of acute poisoning complications. J Appl Toxicol 2023; 43:47-65. [PMID: 35258106 DOI: 10.1002/jat.4312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022]
Abstract
The vascular endothelium is not only the semipermeable membrane that separates tissue from blood but also an organ that regulates inflammation, vascular tone, blood clotting, angiogenesis and synthesis of connective tissue proteins. It is susceptible to the direct cytotoxic action of numerous xenobiotics and to the acute hypoxia that accompanies acute poisoning. This damage is superimposed on the preformed state of the vascular endothelium, which, in turn, depends on many humoral factors. The probability that an exogenous toxicant will cause life-threatening dysfunction of the vascular endothelium, thereby complicating the course of acute poisoning, increases with an increase in the content of endogenous substances in the blood that disrupt endothelial function. These include ammonia, bacterial endotoxin, indoxyl sulfate, para-cresyl sulfate, trimethylamine N-oxide, asymmetric dimethylarginine, glucose, homocysteine, low-density and very-low-density lipoproteins, free fatty acids and products of intravascular haemolysis. Some other endogenous substances (albumin, haptoglobin, haemopexin, biliverdin, bilirubin, tetrahydrobiopterin) or food-derived compounds (ascorbic acid, rutin, omega-3 polyunsaturated fatty acids, etc.) reduce the risk of lethal vascular endothelial dysfunction. The individual variability of the content of these substances in the blood contributes to the stochasticity of the complications of acute poisoning and is a promising target for the risk reduction measures. Another feasible option may be the repositioning of drugs that affect the function of the vascular endothelium while being currently used for other indications.
Collapse
Affiliation(s)
- Jury Ju Ivnitsky
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| | - Timur V Schäfer
- State Scientific Research Test Institute of the Military Medicine of Defense Ministry of the Russian Federation, Saint Petersburg, Russia
| | - Vladimir L Rejniuk
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| | - Alexandr I Golovko
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| |
Collapse
|
8
|
Investigation of Cell Adhesion and Cell Viability of the Endothelial and Fibroblast Cells on Electrospun PCL, PLGA and Coaxial Scaffolds for Production of Tissue Engineered Blood Vessel. J Funct Biomater 2022; 13:jfb13040282. [PMID: 36547542 PMCID: PMC9782893 DOI: 10.3390/jfb13040282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Endothelialization of artificial scaffolds is considered an effective strategy for increasing the efficiency of vascular transplantation. This study aimed to compare the biophysical/biocompatible properties of three different biodegradable fibrous scaffolds: Poly (ɛ-caprolactone) (PCL) alone, Poly Lactic-co-Glycolic Acid (PLGA) alone (both processed using Spraybase® electrospinning machine), and Coaxial scaffold where the fiber core and sheath was made of PCL and PLGA, respectively. Scaffold structural morphology was assessed by scanning electron microscope and tensile testing was used to investigate the scaffold tension resistance over time. Biocompatibility studies were carried out with human umbilical vein endothelial cells (HUVEC) and human vascular fibroblasts (HVF) for which cell viability (and cell proliferation over a 4-day period) and cell adhesion to the scaffolds were assessed by cytotoxicity assays and confocal microscopy, respectively. Our results showed that all biodegradable polymeric scaffolds are a reliable host to adhere and promote proliferation in HUVEC and HVF cells. In particular, PLGA membranes performed much better adhesion and enhanced cell proliferation compared to control in the absence of polymers. In addition, we demonstrate here that these biodegradable membranes present improved mechanical properties to construct potential tissue-engineered vascular graft.
Collapse
|
9
|
Ranjbar T, Oza PP, Kashfi K. The Renin-Angiotensin-Aldosterone System, Nitric Oxide, and Hydrogen Sulfide at the Crossroads of Hypertension and COVID-19: Racial Disparities and Outcomes. Int J Mol Sci 2022; 23:ijms232213895. [PMID: 36430371 PMCID: PMC9699619 DOI: 10.3390/ijms232213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 is caused by SARS-CoV-2 and is more severe in the elderly, racial minorities, and those with comorbidities such as hypertension and diabetes. These pathologies are often controlled with medications involving the renin-angiotensin-aldosterone system (RAAS). RAAS is an endocrine system involved in maintaining blood pressure and blood volume through components of the system. SARS-CoV-2 enters the cells through ACE2, a membrane-bound protein related to RAAS. Therefore, the use of RAAS inhibitors could worsen the severity of COVID-19's symptoms, especially amongst those with pre-existing comorbidities. Although a vaccine is currently available to prevent and reduce the symptom severity of COVID-19, other options, such as nitric oxide and hydrogen sulfide, may also have utility to prevent and treat this virus.
Collapse
Affiliation(s)
- Tara Ranjbar
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Palak P. Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
10
|
Venous Thromboembolic Disease in COVID-19, Pathophysiology, Therapy and Prophylaxis. Int J Mol Sci 2022; 23:ijms231810372. [PMID: 36142282 PMCID: PMC9499629 DOI: 10.3390/ijms231810372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/08/2023] Open
Abstract
For over two years, the world has been facing the epidemiological and health challenge of the coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Growing problems are also complications after the development of COVID-19 in the form of post and long- COVID syndromes, posing a challenge for the medical community, both for clinicians and the scientific world. SARS-CoV-2 infection is associated with an increased risk of cardiovascular complications, especially thromboembolic complications, which are associated with both thrombosis of small and very small vessels due to immunothrombosis, and the development of venous thromboembolism. Low molecular wight heparin (LMHW) are the basic agents used in the prevention and treatment of thromboembolic complications in COVID-19. There is still a great deal of controversy regarding both the prevention and treatment of thromboembolic complications, including the prophylaxis dose or the optimal duration of anticoagulant treatment in patients with an episode of venous thromboembolism.
Collapse
|
11
|
Shin JH, Seo BG, Lee IW, Kim HJ, Seo EC, Lee KM, Jeon SB, Baek SK, Kim TS, Lee JH, Choi JW, Hwangbo C, Lee JH. Functional Characterization of Endothelial Cells Differentiated from Porcine Epiblast Stem Cells. Cells 2022; 11:1524. [PMID: 35563830 PMCID: PMC9104949 DOI: 10.3390/cells11091524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells (ECs), lining blood vessels' lumen, play an essential role in regulating vascular functions. As multifunctional components of vascular structures, pluripotent stem cells (PSCs) are the promising source for potential therapeutic applications in various vascular diseases. Our laboratory has previously established an approach for differentiating porcine epiblast stem cells (pEpiSCs) into ECs, representing an alternative and potentially superior cell source. However, the condition of pEpiSCs-derived ECs growth has yet to be determined, and whether pEpiSCs differentiate into functional ECs remained unclear. Changes in morphology, proliferation and functional endothelial marker were assessed in pEpiSCs-derived ECs in vitro. pEpiSCs-derived ECs were subjected to magnetic-activated cell sorting (MACS) to collect CD-31+ of ECs. We found that sorted ECs showed the highest proliferation rate in differentiation media in primary culture and M199 media in the subculture. Next, sorted ECs were examined for their ability to act as typical vascular ECs through capillary-like structure formation assay, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and three-dimensional spheroid sprouting. Consequently, pEpiSCs-derived ECs function as typical vascular ECs, indicating that pEpiSC-derived ECs might be used to develop cell therapeutics for vascular disease.
Collapse
Affiliation(s)
- Joon-Hong Shin
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
| | - Bo-Gyeong Seo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - In-Won Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
| | - Hyo-Jin Kim
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Eun-Chan Seo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Kwang-Min Lee
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Soo-Been Jeon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
| | - Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24414, Korea;
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon 24414, Korea;
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
- Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
12
|
Bioengineering silk into blood vessels. Biochem Soc Trans 2021; 49:2271-2286. [PMID: 34495327 DOI: 10.1042/bst20210359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
The rising incidence of cardiovascular disease has increased the demand for small diameter (<6 mm) synthetic vascular grafts for use in bypass surgery. Clinically available synthetic grafts (polyethylene terephthalate and expanded polytetrafluorethylene) are incredibly strong, but also highly hydrophobic and inelastic, leading to high rates of failure when used for small diameter bypass. The poor clinical outcomes of commercial synthetic grafts in this setting have driven significant research in search of new materials that retain favourable mechanical properties but offer improved biocompatibility. Over the last several decades, silk fibroin derived from Bombyx mori silkworms has emerged as a promising biomaterial for use in vascular applications. Progress has been driven by advances in silk manufacturing practices which have allowed unprecedented control over silk strength, architecture, and the ensuing biological response. Silk can now be manufactured to mimic the mechanical properties of native arteries, rapidly recover the native endothelial cell layer lining vessels, and direct positive vascular remodelling through the regulation of local inflammatory responses. This review summarises the advances in silk purification, processing and functionalisation which have allowed the production of robust vascular grafts with promise for future clinical application.
Collapse
|
13
|
Gu Y, Tian C, Qin Y, Sun Y, Liu S, Li H, Duan X, Shu C, Ouyang C. The novel hybrid polycarbonate polyurethane / polyester three-layered large-diameter artificial blood vessel. J Biomater Appl 2021; 36:965-975. [PMID: 34284662 DOI: 10.1177/08853282211033415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The most common materials of artificial blood vessels are polyethylene terephthalate and polytetrafluoroethylene. But polycarbonate polyurethane (PCU) is an ideal material for vascular prostheses because of their excellent characteristics. As far as we know, our artificial blood vessel is the first type of hybrid PCU/polyester three-layered large-diameter artificial blood vessel in the world. OBJECTIVE The purpose of this preclinical animal experiment is to evaluate the hemocompatibility, histocompatibility, effectiveness, and safety of the three-layered large-diameter artificial blood vessel in sheep. METHODS The artificial blood vessels took place of the initial segments of the sheep's thoracic aorta by end-to-end anastomosis. RESULTS All of the 14 sheep are male, their average body weight (BW) was 30.57 ± 3.95 kg. All 14 artificial blood vessels successfully replaced the thoracic aortas. 5 sheep did not survive to the end of the experiment, while the remaining 9 sheep did. After the surgery, the blood biochemical and blood routine indicators fluctuate slightly within the normal range. The angiography showed that the implanted artificial blood vessels were unobstructed without obvious stenosis or expansion. 24 weeks after surgery, the lumen surfaces of the artificial blood vessels were covered by endothelia in different degrees, and the average endothelialization rate was 69.44% (range: 20% to 100%). CONCLUSIONS This artificial blood vessel is the first to use PCU in large-diameter artificial vascular grafts. It has excellent blood compatibility, wonderful biocompatibility, high endothelialization rate, and 100% patency.
Collapse
Affiliation(s)
- Yuanrui Gu
- Department of Vascular, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Tian
- Department of Vascular, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilang Qin
- Department of Vascular, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangxue Sun
- 2nd Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sishi Liu
- Wuhan Yangsen Biotechnology Co., Ltd, Wuhan, China
| | - Huichai Li
- Wuhan Yangsen Biotechnology Co., Ltd, Wuhan, China
| | - Xuejing Duan
- Department of Pathology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang Shu
- Department of Vascular, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Vascular Surgery, The Second Xiangya Hospital, Vascular Disease Institute, Central South University, Changsha, China
| | - Chenxi Ouyang
- Department of Vascular, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Mazzeffi MA, Chow JH, Tanaka K. COVID-19 Associated Hypercoagulability: Manifestations, Mechanisms, and Management. Shock 2021; 55:465-471. [PMID: 32890309 PMCID: PMC7959868 DOI: 10.1097/shk.0000000000001660] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Patients with severe coronavirus disease-2019 (COVID-19) frequently have hypercoagulability caused by the immune response to the severe acute respiratory syndrome coronavirus-2 infection. The pathophysiology of COVID-19 associated hypercoagulability is not fully understood, but characteristic changes include: increased fibrinogen concentration, increased Factor VIII activity, increased circulating von Willebrand factor, and exhausted fibrinolysis. Anticoagulant therapy improves outcomes in mechanically ventilated patients with COVID-19 and viscoelastic coagulation testing offers an opportunity to tailor anticoagulant therapy based on an individual patient's coagulation status. In this narrative review, we summarize clinical manifestations of COVID-19, mechanisms, monitoring considerations, and anticoagulant therapy. We also review unique considerations for COVID-19 patients who are on extracorporeal membrane oxygenation.
Collapse
Affiliation(s)
- Michael A Mazzeffi
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
15
|
Pasarikovski CR, Keith J, da Costa L, Ramjist J, Dobashi Y, Black SE, Yang VXD. Optical coherence tomography imaging after endovascular thrombectomy: a novel method for evaluating vascular injury in a swine model. J Neurosurg 2021; 134:870-877. [PMID: 32059182 DOI: 10.3171/2019.12.jns192881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/09/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although studies have shown that some degree of iatrogenic endothelial injury occurs during endovascular thrombectomy (EVT), the clinical significance of such injury is uncertain. Furthermore, it is likely that iatrogenic effects such as endothelial denudation, intimal dissection, and tunica media edema will have varying clinical implications. The purpose of this study was to assess the feasibility of endovascular optical coherence tomography (OCT) in quantifying vessel injury in real time after EVT, correlate vessel injury with histological findings, and perform imaging at varying time intervals after EVT to assess the impact of prolonged direct exposure of the vessel to the thrombus. METHODS Yorkshire swine weighing 35-40 kg were selected for use as the animal model, with a total of 9 vessels from 3 swine examined. Thrombectomy was performed using a second-generation stent retriever 1, 3, and 6 hours after thrombus deposition. The presence and degree of denudation of the endothelium, detachment and separation of the layers of the tunic media, hemorrhage within the media, dissection of the vessels, and thrombus within the lumina were assessed using OCT images acquired immediately after EVT. Bland-Altman analysis indicated that these OCT findings were correlated with postmortem histological findings. RESULTS OCT image acquisition was technically successful in all cases. Endothelial denudation was present in 65% ± 16%, 87% ± 8%, and 93% ± 7% of the vessel surface 1, 3, and 6 hours, respectively, after thrombus deposition and subsequent EVT. Residual intraluminal thrombus was present in vessels at all time intervals despite complete angiographic revascularization. Bland-Altman plots showed good agreement between OCT and histological analysis with respect to the degree of endothelial denudation and elevation, separation of the tunica media, and hemorrhage within the media. OCT appears to be more specific than histological analysis in detecting endothelial elevation. CONCLUSIONS OCT is a feasible method that can be used to assess vascular injury after EVT with histological accuracy. Varying degrees of vessel injury occur after EVT, and residual luminal thrombus can be present despite complete angiographic revascularization.
Collapse
Affiliation(s)
| | - Julia Keith
- 2Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, University of Toronto
| | - Leodante da Costa
- 3Division of Neurosurgery, Sunnybrook Hospital, University of Toronto
| | - Joel Ramjist
- 3Division of Neurosurgery, Sunnybrook Hospital, University of Toronto
| | - Yuta Dobashi
- 3Division of Neurosurgery, Sunnybrook Hospital, University of Toronto
| | - Sandra E Black
- 4Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto; and
- 5Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Victor X D Yang
- 1Division of Neurosurgery, Department of Surgery, University of Toronto
- 3Division of Neurosurgery, Sunnybrook Hospital, University of Toronto
- 4Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto; and
| |
Collapse
|
16
|
BRANCH RETINAL ARTERY WALL RUPTURE AND SUBSEQUENT OCCLUSION DURING PARS PLANA VITRECTOMY WITH MEMBRANE PEEL. Retin Cases Brief Rep 2021; 15:131-134. [PMID: 30063578 DOI: 10.1097/icb.0000000000000764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To report a case of branch retinal artery wall rupture and subsequent branch retinal artery occlusion occurring during a routine pars plana vitrectomy with epiretinal membrane and internal limiting membrane peeling. METHODS Case report. Multimodal imaging including fluorescein angiography, spectral domain optical coherence tomography (OCT), en face OCT, and OCT angiography were performed. RESULTS An 86-year-old woman presented with a symptomatic epiretinal membrane in the right eye. Pars plana vitrectomy with epiretinal membrane and internal limiting membrane peel was performed. During the peel, spontaneous preretinal and intraretinal hemorrhage emanating from an adjacent branch retinal artery developed. At postoperative Week 1, OCT showed retinal thinning and hyperreflectivity suggestive of vascular accident. At postoperative Year 1, OCT imaging revealed retinal atrophy while fluorescein angiography demonstrated the arterial occlusion, and OCT angiography illustrated reduction in retinal perfusion in the region of the branch retinal artery occlusion. CONCLUSION The authors report an unusual case of retinal arterial wall rupture and hemorrhaging during routine pars plana vitrectomy with membrane peel resulting in a branch retinal artery occlusion and subsequent retinal atrophy. Surgeons must limit stress on the underlying retina during membrane peel to avoid this surgical complication.
Collapse
|
17
|
Du Y, Taylor CG, Aukema HM, Zahradka P. Regulation of docosahexaenoic acid-induced apoptosis of confluent endothelial cells: Contributions of MAPKs and caspases. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158902. [PMID: 33578050 DOI: 10.1016/j.bbalip.2021.158902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/20/2020] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
Endothelial cells, which help to maintain vascular homeostasis, can be functionally modulated by polyunsaturated fatty acids. Previously, we reported that docosahexaenoic acid (DHA) reduced the viability of confluent EA.hy926 endothelial cells with caspase-3 activation. This study therefore examined the molecular mechanism by which DHA affects the viability of confluent cells, with a focus on the interaction between caspase-9, caspase-8, caspase-3, p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) by Western blotting. Our results revealed that DHA induces apoptosis of confluent cells through both intrinsic and extrinsic pathways, which requires activation of p38 MAPK, and involves activation of JNK, caspase-9, caspase-8 and caspase-3 with the exception that cleavage of caspase-8 was incomplete and truncated BID was not detected at the maximum time (8 h) examined. Apoptosis induced by high levels of DHA in healthy endothelial cells is achieved through positive feedback loops linking these MAPKs to multiple caspases, as well as negative feedback from p38 MAPK to JNK. However, only p38 MAPK is crucial in apoptosis induction in comparison with JNK or any other caspase examined. This study has expanded the knowledge on the molecular mechanism of DHA-induced apoptosis in human endothelial cells and has also implied the differential roles of MAP kinases and caspases in apoptosis.
Collapse
Affiliation(s)
- Youjia Du
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Peter Zahradka
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.
| |
Collapse
|
18
|
Rosen S, Benedicenti L, Petesch S, Reetz J, Galban EM. Case Report: Mineralized Pulmonary Artery Thrombi in Two Dogs Treated for Meningoencephalitis of Unknown Origin. Front Vet Sci 2020; 7:569597. [PMID: 33392278 PMCID: PMC7773639 DOI: 10.3389/fvets.2020.569597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Meningoencephalitis of unknown origin (MUO) is a relatively common and very serious canine neurologic condition, which is typically associated with a poor long term prognosis despite treatment. This case series chronicles two dogs diagnosed with MUO who were treated with long term corticosteroids and cytosine arabinoside and lived well-beyond the typical survival time for this condition. Both eventually succumbed to respiratory signs associated with mineralized thrombi in their pulmonary arteries. Adverse effects from the two drugs used for treatment are reviewed in order to propose a possible mechanism to explain how long term use of these medications could result in such a phenomenon.
Collapse
Affiliation(s)
- Suzanne Rosen
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | | | | |
Collapse
|
19
|
Duijvelshoff R, Cabrera MS, Sanders B, Dekker S, Smits AIPM, Baaijens FPT, Bouten CVC. Transcatheter-Delivered Expandable Bioresorbable Polymeric Graft With Stenting Capacity Induces Vascular Regeneration. ACTA ACUST UNITED AC 2020; 5:1095-1110. [PMID: 33294741 PMCID: PMC7691284 DOI: 10.1016/j.jacbts.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023]
Abstract
We designed a transcatheter balloon-expandable resorbable vascular graft with support capacity. After 2 months in vivo, grafts show native-like tissue reconstruction with endoluminal elastin. The concept convenes regenerative grafting, minimally invasive delivery, and clinical stenting.
As the next step in the translation of vascular tissue engineering, this study uniquely combines transcatheter delivery and in situ tissue regeneration using a novel bioresorbable electrospun polymer graft that can be implanted minimally invasively. Once delivered inside a small-diameter vessel, the electrospun microstructure supports the vessel wall, facilitates cellular infiltration, and guides organized tissue formation.
Collapse
Key Words
- BVS, bioresorbable vascular scaffold(s)
- ECM, extracellular matrix
- GPC, gel permeation chromatography
- Mw, weight-average molecular weight
- PBS, phosphate-buffered saline
- SEM, scanning electron microscopy
- SMA, smooth muscle actin
- SMC, smooth muscle cell
- T-TEVG, transcatheter tissue-engineered vascular graft
- TE, tissue engineering
- elastin
- regeneration
- tissue engineering
- transcatheter delivery
- vascular graft
Collapse
Affiliation(s)
- Renee Duijvelshoff
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven, the Netherlands
| | | | | | - Sylvia Dekker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven, the Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven, the Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven, the Netherlands
| |
Collapse
|
20
|
Pasarikovski CR, Ramjist J, da Costa L, Black SE, Yang V. Optical coherence tomography imaging after endovascular thrombectomy for basilar artery occlusion: report of 3 cases. J Neurosurg 2020; 133:1141-1146. [PMID: 31443067 DOI: 10.3171/2019.5.jns191252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 11/06/2022]
Abstract
Studies evaluating individuals for endothelial injury after endovascular thrombectomy (EVT) have been done by means of retrieved human thrombus, MR vessel-wall imaging, and animal histopathological studies. These techniques have limitations, because MR imaging has insufficient spatial resolution to directly visualize endothelium, and histopathological examinations are performed ex vivo and are unable to provide real-time patterns of injury. The purpose of the current study was to obtain in vivo intraluminal imaging after EVT by using optical coherence tomography (OCT), examining for evidence of endothelial injury in real time.Three consecutive patients with acute basilar artery occlusion underwent OCT imaging immediately after EVT. There were no complications and adequate images were obtained for all patients. Anatomical features of the vessel wall were discernible, including intima, media, adventitia, and internal/external elastic lamina. Basilar artery thick concentric plaque fibrosis was present, causing outward remodeling and loss of the internal/external lamina in certain regions. Evidence of significant residual thrombus was also visible, with mostly red thrombus present despite complete angiographic revascularization. The residual thrombus was not visible on CT, MR, or cerebral angiography and could certainly cause ongoing function-limiting strokes with occlusion of adjacent vital basilar perforators after EVT.
Collapse
Affiliation(s)
| | | | - Leodante da Costa
- 3Division of Neurosurgery, Sunnybrook Hospital, University of Toronto
| | - Sandra E Black
- 4Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto
- 5Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and
| | - Victor Yang
- 1Division of Neurosurgery, Department of Surgery, University of Toronto
- 2Sunnybrook Health Sciences Centre, Toronto
- 3Division of Neurosurgery, Sunnybrook Hospital, University of Toronto
- 6Bioengineering and Biophotonics Laboratory, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Perrotta I. The microscopic anatomy of endothelial cells in human atherosclerosis: Focus on ER and mitochondria. J Anat 2020; 237:1015-1025. [PMID: 32735733 DOI: 10.1111/joa.13281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Once regarded merely as a bland lipid storage disease consequence of aging, atherosclerosis is currently considered a slow and continuous inflammatory process (partially controllable by treatment) with complex etiology involving a multitude of genetic and environmental risk factors which ultimately result in the formation of the plaque. The vascular endothelium, a monolayer of endothelial cells (ECs), is an important regulatory "organ" critical for cardiovascular homeostasis in health which also contributes significantly to the pathomechanisms of several disease states, including atherosclerosis. Over the years, there has been evidence highlighting the central role of endoplasmic reticulum (ER) in the maintenance of endothelial function and perturbations in ER biology have been proposed to adversely affect a diverse range of endothelial functions. Of particular interest is the evidence that under certain pathophysiological circumstances, abnormal ER ultrastructure correlates with altered ER function and signaling and can contribute to cell injury and apoptosis. Therefore, the ultrastructural traits of ER membranes can have important implications not only for their functional bearings but also for the etiology and pathophysiology of diverse human disorders. With regard to atherosclerosis, the focus of ER research has been centered on the molecular signals originated from the ER to manage conditions of stress, leaving the fine structure of this organelle an almost unexplored (but promising) area of studies. There is, also, increasing evidence that mitochondrial dysfunction plays a critical role in promoting cell apoptosis, inflammation, and oxidative stress, thereby contributing to atheroma growth. It is within this context that the present study has been undertaken to investigate the microscopic architecture of ECs in human atherosclerosis and to determine whether the potential structural abnormalities of ER and mitochondria may play a central pathogenic role in atherogenesis or may merely reflect the condition of a tissue whose integrity has already been disturbed or destroyed. For this purpose, transmission electron microscopy (TEM) remains a powerful technique that can not only provide information about the ultrastructural state of cell organelles but also allow the correlation between different subcellular alterations indicative of a certain pathophysiological condition and cellular response. The present study expands the spectrum of ultrastructural defects known to exist in human atherosclerosis and suggests that ER alterations may be of great importance in the pathogenesis of the disease. The architectural changes of ER may be considered early pathological events that precede any overt histologic abnormalities in the vascular endothelium and its subcellular organelles, primarily the mitochondrial pool.
Collapse
Affiliation(s)
- Ida Perrotta
- Centre for Microscopy and Microanalysis, Transmission Electron Microscopy Laboratory, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
22
|
Zaric B, Obradovic M, Trpkovic A, Banach M, Mikhailidis DP, Isenovic ER. Endothelial Dysfunction in Dyslipidaemia: Molecular Mechanisms and Clinical Implications. Curr Med Chem 2020; 27:1021-1040. [DOI: 10.2174/0929867326666190903112146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
The endothelium consists of a monolayer of Endothelial Cells (ECs) which form
the inner cellular lining of veins, arteries, capillaries and lymphatic vessels. ECs interact with
the blood and lymph. The endothelium fulfils functions such as vasodilatation, regulation of
adhesion, infiltration of leukocytes, inhibition of platelet adhesion, vessel remodeling and
lipoprotein metabolism. ECs synthesize and release compounds such as Nitric Oxide (NO),
metabolites of arachidonic acid, Reactive Oxygen Species (ROS) and enzymes that degrade
the extracellular matrix. Endothelial dysfunction represents a phenotype prone to atherogenesis
and may be used as a marker of atherosclerotic risk. Such dysfunction includes impaired
synthesis and availability of NO and an imbalance in the relative contribution of endothelialderived
relaxing factors and contracting factors such as endothelin-1 and angiotensin. This
dysfunction appears before the earliest anatomic evidence of atherosclerosis and could be an
important initial step in further development of atherosclerosis. Endothelial dysfunction was
historically treated with vitamin C supplementation and L-arginine supplementation. Short
term improvement of the expression of adhesion molecule and endothelial function during
antioxidant therapy has been observed. Statins are used in the treatment of hyperlipidaemia, a
risk factor for cardiovascular disease. Future studies should focus on identifying the mechanisms
involved in the beneficial effects of statins on the endothelium. This may help develop
drugs specifically aimed at endothelial dysfunction.
Collapse
Affiliation(s)
- Bozidarka Zaric
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Milan Obradovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Andreja Trpkovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Esma R. Isenovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
23
|
Obradovic M, Essack M, Zafirovic S, Sudar‐Milovanovic E, Bajic VP, Van Neste C, Trpkovic A, Stanimirovic J, Bajic VB, Isenovic ER. Redox control of vascular biology. Biofactors 2020; 46:246-262. [PMID: 31483915 PMCID: PMC7187163 DOI: 10.1002/biof.1559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
Redox control is lost when the antioxidant defense system cannot remove abnormally high concentrations of signaling molecules, such as reactive oxygen species (ROS). Chronically elevated levels of ROS cause oxidative stress that may eventually lead to cancer and cardiovascular and neurodegenerative diseases. In this review, we focus on redox effects in the vascular system. We pay close attention to the subcompartments of the vascular system (endothelium, smooth muscle cell layer) and give an overview of how redox changes influence those different compartments. We also review the core aspects of redox biology, cardiovascular physiology, and pathophysiology. Moreover, the topic-specific knowledgebase DES-RedoxVasc was used to develop two case studies, one focused on endothelial cells and the other on the vascular smooth muscle cells, as a starting point to possibly extend our knowledge of redox control in vascular biology.
Collapse
Affiliation(s)
- Milan Obradovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Sonja Zafirovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Emina Sudar‐Milovanovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Vladan P. Bajic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Christophe Van Neste
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Andreja Trpkovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Julijana Stanimirovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Esma R. Isenovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| |
Collapse
|
24
|
Chan AHP, Filipe EC, Tan RP, Santos M, Yang N, Hung J, Feng J, Nazir S, Benn AJ, Ng MKC, Rnjak-Kovacina J, Wise SG. Altered processing enhances the efficacy of small-diameter silk fibroin vascular grafts. Sci Rep 2019; 9:17461. [PMID: 31767928 PMCID: PMC6877724 DOI: 10.1038/s41598-019-53972-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
Current synthetic vascular grafts are not suitable for use in low-diameter applications. Silk fibroin is a promising natural graft material which may be an effective alternative. In this study, we compared two electrospun silk grafts with different manufacturing processes, using either water or hexafluoroisopropanol (HFIP) as solvent. This resulted in markedly different Young's modulus, ultimate tensile strength and burst pressure, with HFIP spun grafts observed to have thicker fibres, and greater stiffness and strength relative to water spun. Assessment in a rat abdominal aorta grafting model showed significantly faster endothelialisation of the HFIP spun graft relative to water spun. Neointimal hyperplasia in the HFIP graft also stabilised significantly earlier, correlated with an earlier SMC phenotype switch from synthetic to contractile, increasing extracellular matrix protein density. An initial examination of the macrophage response showed that HFIP spun conduits promoted an anti-inflammatory M2 phenotype at early timepoints while reducing the pro-inflammatory M1 phenotype relative to water spun grafts. These observations demonstrate the important role of the manufacturing process and physical graft properties in determining the physiological response. Our study is the first to comprehensively study these differences for silk in a long-term rodent model.
Collapse
Affiliation(s)
- Alex H P Chan
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elysse C Filipe
- Garvan Institute of Medical Research & The Kinghorn Cancer Center, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Richard P Tan
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Miguel Santos
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nianji Yang
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia
| | - Juichien Hung
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia
| | - Jieyao Feng
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia
| | - Sidra Nazir
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia
| | - Alexander J Benn
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia
| | - Martin K C Ng
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, 2050, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Steven G Wise
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia. .,School of Medical Sciences, Dept of Physiology, University of Sydney, Sydney, NSW, 2006, Australia. .,Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
25
|
Wang Z, Mithieux SM, Weiss AS. Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Adv Healthc Mater 2019; 8:e1900742. [PMID: 31402593 DOI: 10.1002/adhm.201900742] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Impaired or damaged blood vessels can occur at all levels in the hierarchy of vascular systems from large vasculatures such as arteries and veins to meso- and microvasculatures such as arterioles, venules, and capillary networks. Vascular tissue engineering has become a promising approach for fabricating small-diameter vascular grafts for occlusive arteries. Vascularized tissue engineering aims to fabricate meso- and microvasculatures for the prevascularization of engineered tissues and organs. The ideal small-diameter vascular graft is biocompatible, bridgeable, and mechanically robust to maintain patency while promoting tissue remodeling. The desirable fabricated meso- and microvasculatures should rapidly integrate with the host blood vessels and allow nutrient and waste exchange throughout the construct after implantation. A number of techniques used, including engineering-based and cell-based approaches, to fabricate these synthetic vasculatures are herein explored, as well as the techniques developed to fabricate hierarchical structures that comprise multiple levels of vasculature.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Suzanne M. Mithieux
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
- Bosch Institute University of Sydney NSW 2006 Australia
- Sydney Nano Institute University of Sydney NSW 2006 Australia
| |
Collapse
|
26
|
Du Y, Taylor CG, Zahradka P. Modulation of endothelial cell responses and vascular function by dietary fatty acids. Nutr Rev 2019; 77:614-629. [PMID: 31228246 DOI: 10.1093/nutrit/nuz026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Healthy and functional endothelial cells play important roles in maintaining vascular homeostasis, whereas endothelial dysfunction initiates and exacerbates vascular disease progression. Interventional studies with dietary fatty acids have shown that these molecules have varying effects on vascular function. It is hypothesized that the actions of dietary fatty acids on vascular function may be mediated in part through endothelial cells. This review summarizes the results of studies that have examined the acute and chronic effects of dietary fatty acids on endothelial function and vascular properties in humans, as well as the potential mechanisms by which n-3 polyunsaturated fatty acids regulate endothelial function. Altogether, this article provides an extensive review of how fatty acids contribute to vascular function through their ability to modulate endothelial cells and discusses relationships between dietary fatty acids and endothelial cells in the context of vascular dysfunction.
Collapse
Affiliation(s)
- Youjia Du
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
27
|
Gossart A, Letourneur D, Gand A, Regnault V, Ben Mlouka MA, Cosette P, Pauthe E, Ollivier V, Santerre JP. Mitigation of monocyte driven thrombosis on cobalt chrome surfaces in contact with whole blood by thin film polar/hydrophobic/ionic polyurethane coatings. Biomaterials 2019; 217:119306. [PMID: 31271854 DOI: 10.1016/j.biomaterials.2019.119306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Monocytes are active at the crossroads between inflammation and coagulation processes since they can secrete pro-inflammatory cytokines and express tissue factor (TF), a major initiator of coagulation. Cobalt-chrome (CoCr), a metal alloy, used as a biomaterial for vascular stents, has been shown to be potentially pro-thrombotic and pro-inflammatory. Research work with a polymer from a family of degradable-polar hydrophobic ionic polyurethanes (D-PHI), called HHHI, has been shown to exhibit anti-inflammatory responses from human monocytes. We have generated multifunctional polyurethane thin films (MPTF) based on the HHHI chemistry, as a thin coating for CoCr and have evaluated the reactivity of blood with MPTF-coated CoCr. The results showed that the coating of CoCr with MPTF derived from HHHI prevents thrombin generation, reduces coagulation activation, and suppresses fibrin formation in whole blood. Activation of monocytes was also suppressed at the surface of MPTF-coated CoCr and specifically the decrease in thrombin generation was accompanied by a significant decrease in TF and pro-inflammatory cytokine levels. Mass spectroscopy of the adsorbed proteins showed lower levels of fibrinogen, fibronectin and complement C3, C4, and C8 when compared to CoCr. We can conclude that MPTFs reduce the pro-thrombotic and pro-inflammatory phenotype of monocytes and macrophages on CoCr, and prevent clotting in whole blood.
Collapse
Affiliation(s)
- Audrey Gossart
- Laboratory for Vascular Translational Science (LVTS), Inserm U1148, Université Paris Diderot, Université Paris 13, Hôpital Bichat, Paris, France; Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Biomaterial for Health Research Group, Institut des Matériaux, Maison International de la Recherche, Université de Cergy-Pontoise, 95000 Neuville sur Oise, France; Translational Biology and Engineering Program, Ted Rodgers Centre for Heart Research, Institute of Biomaterials and Biomedical Engineering (IBBME) and the Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Didier Letourneur
- Laboratory for Vascular Translational Science (LVTS), Inserm U1148, Université Paris Diderot, Université Paris 13, Hôpital Bichat, Paris, France
| | - Adeline Gand
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Biomaterial for Health Research Group, Institut des Matériaux, Maison International de la Recherche, Université de Cergy-Pontoise, 95000 Neuville sur Oise, France
| | | | - Mohamed Amine Ben Mlouka
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Pascal Cosette
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Emmanuel Pauthe
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Biomaterial for Health Research Group, Institut des Matériaux, Maison International de la Recherche, Université de Cergy-Pontoise, 95000 Neuville sur Oise, France
| | - Véronique Ollivier
- Laboratory for Vascular Translational Science (LVTS), Inserm U1148, Université Paris Diderot, Université Paris 13, Hôpital Bichat, Paris, France.
| | - J Paul Santerre
- Translational Biology and Engineering Program, Ted Rodgers Centre for Heart Research, Institute of Biomaterials and Biomedical Engineering (IBBME) and the Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Thakore P, Earley S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Compr Physiol 2019; 9:1249-1277. [PMID: 31187891 DOI: 10.1002/cphy.c180034] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vascular endothelium is a broadly distributed and highly specialized organ. The endothelium has a number of functions including the control of blood vessels diameter through the production and release of potent vasoactive substances or direct electrical communication with underlying smooth muscle cells, regulates the permeability of the vascular barrier, stimulates the formation of new blood vessels, and influences inflammatory and thrombotic processes. Endothelial cells that make up the endothelium express a variety of cell-surface receptors and ion channels on the plasma membrane that are capable of detecting circulating hormones, neurotransmitters, oxygen tension, and shear stress across the vascular wall. Changes in these stimuli activate signaling cascades that initiate an appropriate physiological response. Increases in the global intracellular Ca2+ concentration and localized Ca2+ signals that occur within specialized subcellular microdomains are fundamentally important components of many signaling pathways in the endothelium. The transient receptor potential (TRP) channels are a superfamily of cation-permeable ion channels that act as a primary means of increasing cytosolic Ca2+ in endothelial cells. Consequently, TRP channels are vitally important for the major functions of the endothelium. In this review, we provide an in-depth discussion of Ca2+ -permeable TRP channels in the endothelium and their role in vascular regulation. © 2019 American Physiological Society. Compr Physiol 9:1249-1277, 2019.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
29
|
Jalaie H, Steitz J, Afify M, Barbati ME, Hoeft K, Assar MAM, Hermanns-Sachweh B, Tolba RH, Jacobs MJ, Schleimer K. In vivo endothelialization and neointimal hyperplasia assessment after angioplasty of sheep carotid artery with a novel polycarbonate polyurethane patch. J Biomater Appl 2019; 34:208-218. [PMID: 31088184 DOI: 10.1177/0885328219849368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Houman Jalaie
- 1 European Vascular Center Aachen-Maastricht, Department of Vascular Surgery, University Hospital RWTH Aachen, Germany
| | - Julia Steitz
- 2 Institute for Laboratory Animal Science, RWTH-Aachen University, Germany
| | - Mamdouh Afify
- 2 Institute for Laboratory Animal Science, RWTH-Aachen University, Germany.,3 Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Mohammad Esmaeil Barbati
- 1 European Vascular Center Aachen-Maastricht, Department of Vascular Surgery, University Hospital RWTH Aachen, Germany
| | - Konrad Hoeft
- 4 Division of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Germany
| | - Mona Ali Mahmoud Assar
- 2 Institute for Laboratory Animal Science, RWTH-Aachen University, Germany.,6 Institute for Pathology, RWTH-Aachen University, Germany
| | | | - Rene H Tolba
- 2 Institute for Laboratory Animal Science, RWTH-Aachen University, Germany
| | - Michael J Jacobs
- 1 European Vascular Center Aachen-Maastricht, Department of Vascular Surgery, University Hospital RWTH Aachen, Germany
| | - Karina Schleimer
- 1 European Vascular Center Aachen-Maastricht, Department of Vascular Surgery, University Hospital RWTH Aachen, Germany
| |
Collapse
|
30
|
Baselet B, Sonveaux P, Baatout S, Aerts A. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci 2019; 76:699-728. [PMID: 30377700 PMCID: PMC6514067 DOI: 10.1007/s00018-018-2956-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
Abstract
The endothelium, a tissue that forms a single layer of cells lining various organs and cavities of the body, especially the heart and blood as well as lymphatic vessels, plays a complex role in vascular biology. It contributes to key aspects of vascular homeostasis and is also involved in pathophysiological processes, such as thrombosis, inflammation, and hypertension. Epidemiological data show that high doses of ionizing radiation lead to cardiovascular disease over time. The aim of this review is to summarize the current knowledge on endothelial cell activation and dysfunction after ionizing radiation exposure as a central feature preceding the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Pierre Sonveaux
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
| |
Collapse
|
31
|
Elucidation of Endothelial Cell Hemostatic Regulation with Integrin-Targeting Hydrogels. Ann Biomed Eng 2019; 47:866-877. [PMID: 30607644 DOI: 10.1007/s10439-018-02194-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
Despite advances in the development of materials for cardiovascular devices, current strategies generally lack the thromboresistance of the native endothelium both in terms of efficacy and longevity. To harness this innate hemostatic regulation and improve long-term hemocompatibility, biohybrid devices are designed to promote endothelialization. Much of the research effort to date has focused on the use of extracellular matrix (ECM)-mimics and coatings to promote endothelial cell adhesion and migration with less attention given to the effect of the supported ECM binding events on hemostatic regulation. In this study, we developed integrin-targeted hydrogels to investigate the individual and combined effects of integrin binding events supported by many ECM-based coatings (α1β1, α2β1, α5β1, αvβ3). Targeted endothelial cell integrin interactions were first confirmed with antibody blocking studies and then correlated with gene expression of hemostatic regulators and a functional assay of platelet attachment and activation. Surfaces that targeted integrins α1β1 and α2β1 resulted in an endothelial cell layer that exhibited a thromboresistant phenotype with an associated reduction in platelet attachment and activation. It is anticipated that identification of specific integrins that promote endothelial cell adhesion as well as thromboresistance will enable the design of cardiovascular materials with improved long-term hemocompatibility.
Collapse
|
32
|
Meng F, Almohanna F, Altuhami A, Assiri AM, Broering D. Vasculature reconstruction of decellularized liver scaffolds via gelatin-based re-endothelialization. J Biomed Mater Res A 2018; 107:392-402. [PMID: 30508280 DOI: 10.1002/jbm.a.36551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Fanwei Meng
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
- Organ Transplantation Center; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
| | - Falah Almohanna
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
| | - Abdullah Altuhami
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
- Organ Transplantation Center; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
| | - Abdallah M. Assiri
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
- College of Medicine, AlFaisal University; Riyadh, 11211 Saudi Arabia
- Institute for Research and Medical Consultations; Imam Abdulrahman Bin Faisal University; Dammam, 34212 Saudi Arabia
| | - Dieter Broering
- Organ Transplantation Center; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
| |
Collapse
|
33
|
Post A, Wang E, Cosgriff-Hernandez E. A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices. Ann Biomed Eng 2018; 47:366-380. [PMID: 30488311 DOI: 10.1007/s10439-018-02171-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Sustained biomaterial thromboresistance has long been a goal and challenge in blood-contacting device design. Endothelialization is one of the most successful strategies to achieve long-term thromboresistance of blood-contacting devices, with the endothelial cell layer providing dynamic hemostatic regulation. It is well established that endothelial cell behavior is influenced by interactions with the underlying extracellular matrix (ECM). Numerous researchers have sought to exploit these interactions to generate improved blood-contacting devices by investigating the expression of hemostatic regulators in endothelial cells on various ECM coatings. The ability to select substrates that promote endothelial cell-mediated thromboresistance is crucial to advancing material design strategies to improve cardiovascular device outcomes. This review provides an overview of endothelial cell regulation of hemostasis, the major components found within the cardiovascular basal lamina, and the interactions of endothelial cells with prominent ECM components of the basement membrane. A summary of ECM-mimetic strategies used in cardiovascular devices is provided with a focus on the effects of key adhesion modalities on endothelial cell regulators of hemostasis.
Collapse
Affiliation(s)
- Allison Post
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ellen Wang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, University of Texas, 107 W. Dean Keaton, BME 3.503D, 1 University Station, C0800, Austin, TX, 78712, USA.
| |
Collapse
|
34
|
Madfis N, Lin Z, Kumar A, Douglas SA, Platt MO, Fan Y, McCloskey KE. Co-Emergence of Specialized Endothelial Cells from Embryonic Stem Cells. Stem Cells Dev 2018; 27:326-335. [PMID: 29320922 DOI: 10.1089/scd.2017.0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A well-formed and robust vasculature is critical to the health of most organ systems in the body. However, the endothelial cells (ECs) forming the vasculature can exhibit a number of distinct functional subphenotypes like arterial or venous ECs, as well as angiogenic tip and stalk ECs. In this study, we investigate the in vitro differentiation of EC subphenotypes from embryonic stem cells (ESCs). Using our staged induction methods and chemically defined mediums, highly angiogenic EC subpopulations, as well as less proliferative and less migratory EC subpopulations, are derived. Furthermore, the EC subphenotypes exhibit distinct surface markers, gene expression profiles, and positional affinities during sprouting. While both subpopulations contained greater than 80% VE-cad+/CD31+ cells, the tip/stalk-like EC contained predominantly Flt4+/Dll4+/CXCR4+/Flt-1- cells, while the phalanx-like EC was composed of higher numbers of Flt-1+ cells. These studies suggest that the tip-specific EC can be derived in vitro from stem cells as a distinct and relatively stable EC subphenotype without the benefit of its morphological positioning in the sprouting vessel.
Collapse
Affiliation(s)
- Nicole Madfis
- 1 Graduate Program in Quantitative and System Biology, University of California , Merced, Merced, California
| | - Zhiqiang Lin
- 2 School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Ashwath Kumar
- 2 School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Simone A Douglas
- 3 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | - Manu O Platt
- 3 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | - Yuhong Fan
- 2 School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Kara E McCloskey
- 1 Graduate Program in Quantitative and System Biology, University of California , Merced, Merced, California.,4 Department of Materials Science and Engineering, University of California , Merced, Merced, California
| |
Collapse
|
35
|
Lopes van Balen VA, van Gansewinkel TAG, de Haas S, van Kuijk SMJ, van Drongelen J, Ghossein-Doha C, Spaanderman MEA. Physiological adaptation of endothelial function to pregnancy: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2017; 50:697-708. [PMID: 28170124 DOI: 10.1002/uog.17431] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/30/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
OBJECTIVES To establish reference values for flow-mediated dilatation (FMD) and brachial artery diameter (BAD) in pregnancy and to provide insight into the physiological and pathological course of endothelial adaptation throughout human singleton pregnancy. METHODS A meta-analysis was performed following a systematic review of current literature on FMD, as a derivative for endothelial function, and BAD, throughout uncomplicated and complicated pregnancy. PubMed (NCBI) and EMBASE (Ovid) electronic databases were used for the literature search, which was performed from inception to 9 June 2016. To allow judgment of changes in comparison with the non-pregnant state, studies were required to report both non-pregnant mean reference of FMD (matched control group, prepregnancy or postpartum measurement) and mean FMD at a predetermined and reported gestational age. Pooled mean differences between the reference and pregnant FMD values were calculated for predefined intervals of gestational age. RESULTS Fourteen studies that enrolled 1231 participants met the inclusion criteria. Publication dates ranged from 1999 to 2014. In uncomplicated pregnancy, FMD was increased in the second and third trimesters. Between 15 and 21 weeks of gestation, absolute FMD increased the most, by a mean (95% CI) of 1.89% (0.25-3.53%). This was a relative increase of 22.5% (3.0-42.0%) compared with the non-pregnant reference. BAD increased progressively, in a steady manner, by the second trimester but not significantly in the first half of the second trimester. We could not discern differences in FMD and BAD between complicated and uncomplicated pregnancies at 29-35 weeks' gestation, reported in the three studies that met our inclusion criteria. Despite the increase in FMD and BAD throughout gestation, both reference curves were characterized by wide 95% CIs. CONCLUSION During healthy pregnancy, endothelium-dependent vasodilatation and BAD increase. Women with a complicated pregnancy had FMD values within the lower range when compared with those with uncomplicated pregnancy but, as a group, did not differ from each other. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- V A Lopes van Balen
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - T A G van Gansewinkel
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - S de Haas
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - S M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J van Drongelen
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - C Ghossein-Doha
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M E A Spaanderman
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
36
|
Chantawong P, Tanaka T, Uemura A, Shimada K, Higuchi A, Tajiri H, Sakura K, Murakami T, Nakazawa Y, Tanaka R. Silk fibroin-Pellethane® cardiovascular patches: Effect of silk fibroin concentration on vascular remodeling in rat model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:191. [PMID: 29138940 DOI: 10.1007/s10856-017-5999-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Life-threatening cardiovascular anomalies require surgery for structural repair with cardiovascular patches. The biomaterial patch, derived from Bombyx mori silk fibroin (SF), is used as an alternative material due to its excellent tissue affinity and biocompatibility. However, SF lacks the elastomeric characteristics required for a cardiovascular patch. In order to overcome this shortcoming, we combined the thermoplastic polyurethane, Pellethane® (PU) with SF to develop an elastic biocompatible patch. Therefore, the purpose of this study was to investigate the feasibility of the blended SF/PU patch in a vascular model. Additionally, we focused on the effects of different SF concentrations in the SF/PU patch on its biological and physical properties. Three patches of different compositions (SF, SF7PU3 and SF4PU6) were created using an electrospinning method. Each patch type (n = 18) was implanted into rat abdominal aorta and histopathology was assessed at 1, 3, and 6 months post-implantation. The results showed that with increasing SF content the tensile strength and elasticity decreased. Histological evaluation revealed that inflammation gradually decreased in the SF7PU3 and SF patches throughout the study period. At 6 months post-implantation, the SF7PU3 patch demonstrated progressive remodeling, including significantly higher tissue infiltration, elastogenesis and endothelialization compared with SF4PU6. In conclusion, an increase of SF concentration in the SF/PU patch had effects on vascular remodeling and physical properties. Moreover, our blended patch might be an attractive alternative material that could induce the growth of a neo-artery composed of tissue present in native artery.
Collapse
Affiliation(s)
- Pinkarn Chantawong
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Takashi Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Akiko Uemura
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Akira Higuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan
| | - Hirokazu Tajiri
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan
| | - Kohta Sakura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan
| | - Tomoaki Murakami
- Department of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Yasumoto Nakazawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan.
| | - Ryou Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan.
| |
Collapse
|
37
|
Affiliation(s)
- Pavel Poredos
- Department of Vascular Disease, University Medical Centre Ljubljana & The Medical Faculty of The University of Ljubljana, Division of Internal Medicine, Ljubljana, Slovenia
| | - Mateja K. Jezovnik
- Center for Advanced Cardiopulmonary Therapies and Transplantation, Health Science Center at Houston, University of Texas, Houston, TX, USA
| |
Collapse
|
38
|
Chen L, He H, Wang M, Li X, Yin H. Surface Coating of Polytetrafluoroethylene with Extracellular Matrix and Anti-CD34 Antibodies Facilitates Endothelialization and Inhibits Platelet Adhesion Under Sheer Stress. Tissue Eng Regen Med 2017; 14:359-370. [PMID: 30603492 DOI: 10.1007/s13770-017-0044-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Expanded polytetrafluoroethylene (ePTFE) polymers do not support endothelialization because of nonconductive characteristics towards cellular attachment. Inner surface modification of the grafts can improve endothelialization and increase the long-term patency rate of the ePTFE vascular grafts. Here we reported a method of inner-surface modification of ePTFE vascular graft with extracellular matrix (ECM) and CD34 monoclonal antibodies (CD34 mAb) to stimulate the adhesion and proliferation of circulating endothelial progenitor cells on ePTFE graft to enhance graft endothelialization. The inner surface of ECM-coated ePTFE grafts were linked with CD34 mAb in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) solution and the physicochemical properties, surface morphology, biocompatibility, and hemocompatibility of the grafts were studied. The hydrophilicity of CD34 mAb-coated graft inner surface was significantly improved. Fourier transform infrared spectroscopy analysis confirmed ECM and CD34 mAb cross-linking in the ePTFE vascular grafts with our method. Scanning electron microscopy analysis showed protein layer covering uniformly on the inner surface of the modified grafts. The cell-counting kit-8 (CCK-8) assay confirmed that the modified graft has no obvious cytotoxicity. The modified graft showed a low hemolytic rate (0.9%) in the direct contact hemolysis test, suggesting the modification improved hemocompatibility of biopolymers. The modification also decreased adhesion of platelets, while significantly increased the adhesion of endothelial cells on the grafts. We conclude that our method enables ePTFE polymers modification with ECM and CD34 mAb, facilitates endothelialization, and inhibits platelet adhesion on the grafts, thus may increase the long-term patency rate of the prosthetic bypass grafts.
Collapse
Affiliation(s)
- Lei Chen
- 1Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 China
| | - Haipeng He
- 2Department of Vascular Surgery, The First Affiliated Hospital of Ji'nan University, Guangzhou, 510630 China
| | - Mian Wang
- 1Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 China
| | - Xiaoxi Li
- 1Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 China
| | - Henghui Yin
- 3Department of Vascular Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| |
Collapse
|
39
|
Chien YC, Chuang WT, Jeng US, Hsu SH. Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5419-5429. [PMID: 28165708 DOI: 10.1021/acsami.6b11993] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thermally induced shape memory is an attractive feature of certain functional materials. Among the shape memory polymers, shape memory elastomers (SMEs) especially those with biodegradability have great potential in the biomedical field. In this study, we prepared waterborne biodegradable polyurethane SME based on poly(ε-caprolactone) (PCL) oligodiol and poly(l-lactic acid) (PLLA) oligodiol as the mixed soft segments. The ratio of the soft segments in polyurethanes was optimized for shape memory behavior. The thermally induced shape memory mechanism of the series of polyurethanes was clarified using differential scanning calorimeter (DSC), X-ray diffraction (XRD), and small-angle X-ray scattering (SAXS). In particular, the in situ SAXS measurements combined with shape deformation processes were employed to examine the stretch-induced (oriented) crystalline structure of the polyurethanes and to elucidate the unique mechanism for shape memory properties. The polyurethane with optimized PLLA crystalline segments showed a diamond-shape two-dimensional SAXS pattern after being stretched, which gave rise to better shape fixing and shape recovery. The shape memory behavior was further tested in 37 °C water. The biodegradable polyurethane comprising 38 wt % PCL segments and 25 wt % PLLA segments and synthesized at a relatively lower temperature by the waterborne procedure showed ∼100% shape recovery in 37 °C water. The biodegradable polyurethane SME also demonstrated good endothelial cell viability as well as low platelet adhesion/activation. We conclude that the waterborne biodegradable polyurethane SME possesses a unique thermally induced shape memory mechanism and may have potential applications in making shape memory biodegradable stents or scaffolds.
Collapse
Affiliation(s)
- Yu-Chun Chien
- Institute of Polymer Science and Engineering, National Taiwan University , No. 1, Section 4 Roosevelt Road, Taipei 10617, Taiwan, R.O.C
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, R.O.C
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University , No. 1, Section 4 Roosevelt Road, Taipei 10617, Taiwan, R.O.C
| |
Collapse
|
40
|
das Graças Coelho de Souza M, Kraemer-Aguiar LG, Bouskela E. Inflammation-induced microvascular dysfunction in obesity – A translational approach. Clin Hemorheol Microcirc 2017; 64:645-654. [DOI: 10.3233/ch-168018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria das Graças Coelho de Souza
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Luiz Guilherme Kraemer-Aguiar
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, RJ, Brazil
- Ambulatório de Obesidade, Policlínica Piquet Carneiro, Departamento de Medicina Interna, Faculdade de Ciências Médicas, Centro Biomédico, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Eliete Bouskela
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
41
|
Wojtala M, Pirola L, Balcerczyk A. Modulation of the vascular endothelium functioning by dietary components, the role of epigenetics. Biofactors 2017; 43:5-16. [PMID: 27355807 DOI: 10.1002/biof.1306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Rather than being a passive barrier between circulating blood and smooth muscle cells and the underlying tissues, the endothelium is a fundamental functional component of the vasculature, and could be viewed as the largest human endocrine gland/organ, secreting multiple pro-/antiangiogenic factors, cytokines and low-molecular-weight mediators controlling the vascular tone. The location of endothelium, at the interface between the circulation and the tissues, makes this epithelial layer particularly exposed to physical and chemical cues coming from the bloodstream. In response to such stimuli, the endothelium modulates its morphology and functions to maintain vascular homeostasis. Dietary components significantly affect the proper functioning of the endothelium. High-calories and high-fat western diets, in the long term, cause endothelial dysfunction, which is a major contributor to the development of the metabolic syndrome and its pathological consequences, including atherosclerosis, diabetes, and hypertension. On the contrary, plant-derived antioxidant molecules and polyphenols have been shown to exert beneficial effects on endothelial function. Extensive research in the last decade has clearly shown the close relationship between food intake, dietary habits, and gene expression, which is driven by the action of macro- and micronutrients on chromatin regulation. Nutrient-induced chromatin epigenetic modifications via DNA methylation and histone post-translational modifications, especially in the context of the western diet, significantly contribute to the dysregulation of endothelial functioning. Here, we review the current understanding on how dietary components (macronutrients, antioxidants), acting on epigenetic mechanisms, regulate endothelial physiology, and physiopathology. © 2016 BioFactors, 43(1):5-16, 2017.
Collapse
Affiliation(s)
- Martyna Wojtala
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| | - Luciano Pirola
- Faculty of Medicine Lyon SUD, Carmen Institute, INSERM U1060, Oullins, Cedex, France
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| |
Collapse
|
42
|
Letra L, Sena C. Cerebrovascular Disease: Consequences of Obesity-Induced Endothelial Dysfunction. ADVANCES IN NEUROBIOLOGY 2017; 19:163-189. [PMID: 28933065 DOI: 10.1007/978-3-319-63260-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the well-known global impact of overweight and obesity in the incidence of cerebrovascular disease, many aspects of this association are still inconsistently defined. In this chapter we aim to present a critical review on the links between obesity and both ischemic and hemorrhagic stroke and discuss its influence on functional outcomes, survival, and current treatments to acute and chronic stroke. The role of cerebrovascular endothelial function and respective modulation is also described as well as its laboratory and clinical assessment. In this context, the major contributing mechanisms underlying obesity-induced cerebral endothelial function (adipokine secretion, insulin resistance, inflammation, and hypertension) are discussed. A special emphasis is given to the participation of adipokines in the pathophysiology of stroke, namely adiponectin, leptin, resistin, apelin, and visfatin.
Collapse
Affiliation(s)
- Liliana Letra
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,Neurology Department, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal.
| | - Cristina Sena
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Wang F, Guan X, Wu T, Qiao J, Han Z, Wu J, Yu X, You Q. Acellular Endocardium as a Novel Biomaterial for the Intima of Tissue-Engineered Small-Caliber Vascular Grafts. Artif Organs 2016; 40:E253-E265. [PMID: 27911030 DOI: 10.1111/aor.12814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 05/09/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Wang
- Department of Cardiothoracic Surgery; Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai
| | - Xin Guan
- Department of Cardiothoracic Surgery; Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai
| | - TianYi Wu
- Department of Orthopaedics & Traumatology, Faculty of Medicine; Chinese University of Hong Kong, Prince of Wales Hospital; Hong Kong
| | - JianOu Qiao
- Department of Respiratory Medicine; Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - ZhaoQing Han
- Department of Respiratory Medicine; Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - JinLong Wu
- Department of Cardiothoracic Surgery; Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai
| | - XiaoWei Yu
- Department of Orthopaedic Surgery; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai
| | - QingJun You
- Department of Thoracic and Cardiovascular Surgery; Affiliated Hospital of Jiangnan University; Wuxi China
| |
Collapse
|
44
|
Kennedy AR, Maity A, Sanzari JK. A Review of Radiation-Induced Coagulopathy and New Findings to Support Potential Prevention Strategies and Treatments. Radiat Res 2016; 186:121-40. [PMID: 27459701 DOI: 10.1667/rr14406.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Results from our recent studies have led to the novel hypothesis that radiation-induced coagulopathy (RIC) and associated hemorrhage occurring as part of the acute radiation syndrome (ARS) is a major cause of death resulting from radiation exposure in large mammals, including humans. This article contains information related to RIC, as well as potential strategies for the prevention and treatment of RIC. In addition, new findings are reported here on the occurrence of RIC biomarkers in humans exposed to radiation. To determine whether irradiated humans have RIC biomarkers, blood samples were obtained from radiotherapy patients who received treatment for different types of malignancies. Blood samples from allogeneic hematopoietic cell transplantation (allo-HCT) patients obtained before, during and after irradiation indicated that exposure led to prolonged clot formation times, increased levels of thrombin-antithrombin III (TAT) complex and increased circulating nucleosome/histone (cNH) levels, which suggest potential coagulopathies in the allo-HCT patients. Since these allo-HCT patients received chemotherapy prior to radiotherapy, it is possible that the chemical agents could have influenced the observed results. Frozen plasma samples from radiotherapy patients with prostate, lung and breast cancer were also obtained for analyses of cNH levels. The results indicated that some of these patients had very high cNH blood levels. Analysis of cNH levels in plasma samples from irradiated ferrets also indicated increased cNH levels compared to preirradiation baseline levels. The results from irradiated animals and some radiotherapy patients suggest the possibility that anti-histone antibodies, which block the toxic effects of elevated cNH levels in the blood, might be useful as therapeutic agents for adverse biological radiation-induced effects. The detection of increased levels of cNH in some radiotherapy patient blood samples demonstrates its potential as a biomarker for diagnosing and/or predicting the propensity for developing coagulopathies/hemorrhage, offering possible treatment options with personalized medicine therapies for cancer patients.
Collapse
Affiliation(s)
- Ann R Kennedy
- Department of Radiation Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jenine K Sanzari
- Department of Radiation Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Berberine Protects Human Umbilical Vein Endothelial Cells against LPS-Induced Apoptosis by Blocking JNK-Mediated Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6983956. [PMID: 27478481 PMCID: PMC4961818 DOI: 10.1155/2016/6983956] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction is a critical factor during the initiation of atherosclerosis. Berberine has a beneficial effect on endothelial function; however, the underlying mechanisms remain unclear. In this study, we investigated the effects of berberine on lipopolysaccharide- (LPS-) induced apoptosis in human umbilical vein endothelial cells (HUVECs) and the molecular mechanisms mediating the effect. The effects of berberine on LPS-induced cell apoptosis and viability were measured with 5-ethynyl-2′-deoxyuridine staining, flow cytometry, and Cell Counting Kit-8 assays. The expression and/or activation of proapoptotic and antiapoptotic proteins or signaling pathways, including caspase-3, poly(ADP-ribose) polymerase, myeloid cell leukemia-1 (MCL-1), p38 mitogen-activated protein kinase, C-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase, were determined with western blotting. The malondialdehyde levels, superoxide dismutase (SOD) activity, and production of proinflammatory cytokines were measured with enzyme-linked immunosorbent assays. The results demonstrated that berberine pretreatment protected HUVECs from LPS-induced apoptosis, attenuated LPS-induced injury, inhibited LPS-induced JNK phosphorylation, increased MCL-1 expression and SOD activity, and decreased proinflammatory cytokine production. The effects of berberine on LPS-treated HUVECs were prevented by SP600125, a JNK-specific inhibitor. Thus, berberine might be a potential candidate in the treatment of endothelial cell injury-related vascular diseases.
Collapse
|
46
|
Poggesi A, Pasi M, Pescini F, Pantoni L, Inzitari D. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: A review. J Cereb Blood Flow Metab 2016; 36:72-94. [PMID: 26058695 PMCID: PMC4758546 DOI: 10.1038/jcbfm.2015.116] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 01/04/2023]
Abstract
The term cerebral small vessel disease (SVD) refers to a group of pathologic processes with various etiologies that affect small arteries, arterioles, venules, and capillaries of the brain. Magnetic resonance imaging (MRI) correlates of SVD are lacunes, recent small subcortical infarcts, white-matter hyperintensities, enlarged perivascular spaces, microbleeds, and brain atrophy. Endothelial dysfunction is thought to have a role in the mechanisms leading to SVD-related brain changes, and the study of endothelial dysfunction has been proposed as an important step for a better comprehension of cerebral SVD. Among available methods to assess endothelial function in vivo, measurement of molecules of endothelial origin in peripheral blood is currently receiving selective attention. These molecules include products of endothelial cells that change when the endothelium is activated, as well as molecules that reflect endothelial damage and repair. This review examines the main molecular factors involved in both endothelial function and dysfunction, and the evidence linking endothelial dysfunction with cerebral SVD, and gives an overview of clinical studies that have investigated the possible association between endothelial circulating biomarkers and SVD-related brain changes.
Collapse
Affiliation(s)
- Anna Poggesi
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Marco Pasi
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Francesca Pescini
- Stroke Unit and Neurology, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Leonardo Pantoni
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Domenico Inzitari
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
- Institute of Neuroscience, Italian National Research Council, Florence, Italy
| |
Collapse
|
47
|
ENDOXY - Development of a Biomimetic Oxygenator-Test-Device. PLoS One 2015; 10:e0142961. [PMID: 26682907 PMCID: PMC4684320 DOI: 10.1371/journal.pone.0142961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/29/2015] [Indexed: 12/03/2022] Open
Abstract
Objective This study focusses on the development of a biomimetic oxygenator test device. Due to limited biocompatibility, current oxygenators do not allow mid- to long-term therapy. Tissue engineering uses autologous cell sources to overcome the immunogenic barriers of biomaterials. Surface coating with endothelial cells might improve hemocompatibility and thus prevent immunogenic reactions of the body. In this study this concept is applied to endothelialise a gas-permeable membrane to develop a biomimetic oxygenator test-device (ENDOXY). Methods ENDOXY—a multifunctional test-system was developed to endothelialise a gas-permeable membrane suitable for cell culture and to test the cell retention under shear stress and to measure gas transfer through it. Results Successful endothelialisation of the membrane was achieved and cells showed characteristic endothelial morphologies. They stained positive for endothelial markers. The number of cells aligned with shear stress and cell retention after blood perfusing experiments was high. Gas transfer is observed via uncoated and endothelialised membranes. Conclusion The study showed promising results with regard to system design, endothelialisation, and cell retention under shear stress conditions. It strongly encourages further research into the system by testing different membrane materials to design a biomimetic membrane surface and pave way for a fully hemocompatible oxygenator.
Collapse
|
48
|
Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord 2015; 15:130. [PMID: 26481314 PMCID: PMC4617895 DOI: 10.1186/s12872-015-0124-z] [Citation(s) in RCA: 451] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023] Open
Abstract
Hemostasis encompasses a set of tightly regulated processes that govern blood clotting, platelet activation, and vascular repair. Upon vascular injury, the hemostatic system initiates a series of vascular events and activates extravascular receptors that act in concert to seal off the damage. Blood clotting is subsequently attenuated by a plethora of inhibitors that prevent excessive clot formation and eventual thrombosis. The endothelium which resides at the interface between the blood and surrounding tissues, serves an integral role in the hemostatic system. Depending on specific tissue needs and local stresses, endothelial cells are capable of evoking either antithrombotic or prothrombotic events. Healthy endothelial cells express antiplatelet and anticoagulant agents that prevent platelet aggregation and fibrin formation, respectively. In the face of endothelial dysfunction, endothelial cells trigger fibrin formation, as well as platelet adhesion and aggregation. Finally, endothelial cells release pro-fibrinolytic agents that initiate fibrinolysis to degrade the clot. Taken together, a functional endothelium is essential to maintain hemostasis and prevent thrombosis. Thus, a greater understanding into the role of the endothelium can provide new avenues for exploration and novel therapies for the management of thromboembolisms.
Collapse
Affiliation(s)
- Jonathan W Yau
- Division of Cardiac Surgery, St. Michael's Hospital, Suite 8-003, Bond Wing, 30 Bond St., Toronto, ON, M5B 1W8, Canada.
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Suite 8-003, Bond Wing, 30 Bond St., Toronto, ON, M5B 1W8, Canada. .,Divisions of Endocrinology & Metabolism, Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, ON, Canada.
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Suite 8-003, Bond Wing, 30 Bond St., Toronto, ON, M5B 1W8, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
49
|
Sobczynski DJ, Fish MB, Fromen CA, Carasco-Teja M, Coleman RM, Eniola-Adefeso O. Drug carrier interaction with blood: a critical aspect for high-efficient vascular-targeted drug delivery systems. Ther Deliv 2015; 6:915-34. [PMID: 26272334 PMCID: PMC4618056 DOI: 10.4155/tde.15.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vascular wall endothelial cells control several physiological processes and are implicated in many diseases, making them an attractive candidate for drug targeting. Vascular-targeted drug carriers (VTCs) offer potential for reduced side effects and improved therapeutic efficacy, however, only limited therapeutic success has been achieved to date. This is perhaps due to complex interactions of VTCs with blood components, which dictate VTC transport and adhesion to endothelial cells. This review focuses on VTC interaction with blood as well as novel 'bio-inspired' designs to mimic and exploit features of blood in VTC development. Advanced approaches for enhancing VTCs are discussed along with applications in regenerative medicine, an area of massive potential growth and expansion of VTC utility in the near future.
Collapse
Affiliation(s)
- Daniel J Sobczynski
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Margaret B Fish
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Catherine A Fromen
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Mariana Carasco-Teja
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Rhima M Coleman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
50
|
Balaoing LR, Post AD, Lin AY, Tseng H, Moake JL, Grande-Allen KJ. Laminin Peptide-Immobilized Hydrogels Modulate Valve Endothelial Cell Hemostatic Regulation. PLoS One 2015; 10:e0130749. [PMID: 26090873 PMCID: PMC4474637 DOI: 10.1371/journal.pone.0130749] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/23/2015] [Indexed: 11/18/2022] Open
Abstract
Valve endothelial cells (VEC) have unique phenotypic responses relative to other types of vascular endothelial cells and have highly sensitive hemostatic functions affected by changes in valve tissues. Furthermore, effects of environmental factors on VEC hemostatic function has not been characterized. This work used a poly(ethylene glycol) diacrylate (PEGDA) hydrogel platform to evaluate the effects of substrate stiffness and cell adhesive ligands on VEC phenotype and expression of hemostatic genes. Hydrogels of molecular weights (MWs) 3.4, 8, and 20 kDa were polymerized into platforms of different rigidities and thiol-modified cell adhesive peptides were covalently bound to acrylate groups on the hydrogel surfaces. The peptide RKRLQVQLSIRT (RKR) is a syndecan-1 binding ligand derived from laminin, a trimeric protein and a basement membrane matrix component. Conversely, RGDS is an integrin binding peptide found in many extracellular matrix (ECM) proteins including fibronectin, fibrinogen, and von Willebrand factor (VWF). VECs adhered to and formed a stable monolayer on all RKR-coated hydrogel-MW combinations. RGDS-coated platforms supported VEC adhesion and growth on RGDS-3.4 kDa and RGDS-8 kDa hydrogels. VECs cultured on the softer RKR-8 kDa and RKR-20 kDa hydrogel platforms had significantly higher gene expression for all anti-thrombotic (ADAMTS-13, tissue factor pathway inhibitor, and tissue plasminogen activator) and thrombotic (VWF, tissue factor, and P-selectin) proteins than VECs cultured on RGDS-coated hydrogels and tissue culture polystyrene controls. Stimulated VECs promoted greater platelet adhesion than non-stimulated VECs on their respective culture condition; yet stimulated VECs on RGDS-3.4 kDa gels were not as responsive to stimulation relative to the RKR-gel groups. Thus, the syndecan binding, laminin-derived peptide promoted stable VEC adhesion on the softer hydrogels and maintained VEC phenotype and natural hemostatic function. In conclusion, utilization of non-integrin adhesive peptide sequences derived from basement membrane ECM may recapitulate balanced VEC function and may benefit endothelialization of valve implants.
Collapse
Affiliation(s)
- Liezl Rae Balaoing
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | - Allison Davis Post
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | - Adam Yuh Lin
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | - Hubert Tseng
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | - Joel L. Moake
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | - K. Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, 77005, United States of America
| |
Collapse
|