1
|
Grover M, Vanuytsel T, Chang L. Intestinal Permeability in Disorders of Gut-Brain Interaction: From Bench to Bedside. Gastroenterology 2024:S0016-5085(24)05416-7. [PMID: 39236897 DOI: 10.1053/j.gastro.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Intestinal barrier function lies at a critical interface of a range of peripheral and central processes that influence disorders of gut-brain interactions (DGBI). Although rigorously tested, the role of barrier dysfunction in driving clinical phenotype of DGBI remains to be fully elucidated. In vitro, in vivo, and ex vivo strategies can test various aspects of the broader permeability and barrier mechanisms in the gut. Luminal mediators of host, bacterial, and dietary origin can influence the barrier function and a disrupted barrier can also influence the luminal milieu. Critical to our understanding is how barrier dysfunction is influenced by stress and other comorbidities that associate with DGBI and the crosstalk between barrier and neural, hormonal, and immune responses. Additionally, the microbiome's significant role in the communication between the brain and gut has led to the integrative model of a microbiome gut-brain axis with reciprocal interactions between brain networks and networks composed of multiple cells in the gut, including immune cells, enterochromaffin cells, gut microbiota and the derived luminal mediators. This review highlights the techniques for assessment of barrier function, appraises evidence for barrier dysfunction in DGBI including mechanistic studies in humans, as well as provides an overview of therapeutic strategies that can be used to directly or indirectly restore barrier function in DGBI patients.
Collapse
Affiliation(s)
- Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta), KULeuven, Leuven, Belgium
| | - Lin Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
2
|
Zhou AL, Ward RE. Dietary milk polar lipids modulate gut barrier integrity and lipid metabolism in C57BL/6J mice during systemic inflammation induced by Escherichia coli lipopolysaccharide. J Dairy Sci 2024:S0022-0302(24)00863-4. [PMID: 38825111 DOI: 10.3168/jds.2024-24759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024]
Abstract
The focus of this work is the role milk polar lipids play in affecting gut permeability, systemic inflammation, and lipid metabolism during acute and chronic inflammation induced by a single subcutaneous injection of lipopolysaccharide. Three groups of C57BL/6J mice were fed: modified AIN-93G diet with moderate level of fat (CO); CO with milk gangliosides (GG); CO with milk phospholipids (MPL). The MPL did not prevent a gut permeability increase upon LPS stress but increased the expression of tight junction proteins zonula occludens-1 and occludin in colon mucosa. The GG prevented the gut permeability increase upon LPS stress. The MPL decreased absolute and relative liver mass and decreased hepatic gene expression of acetyl-CoA carboxylase 2 and 3-hydroxy-3-methylglutaryl-CoA reductase. The GG increased hepatic gene expression of acetyl-CoA acyltransferase 2. In conclusion, milk GG protected the intestinal barrier integrity but had little effect on systemic inflammation and lipid metabolism; milk MPL, conversely, had complex effects on gut permeability, did not affect systemic inflammation, and had beneficial effect on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Albert Lihong Zhou
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, USA
| | - Robert E Ward
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, USA.
| |
Collapse
|
3
|
Xing L, Li T, Zhang Y, Bao J, Wei H, Li J. Intermittent and Mild Cold Stimulation Maintains Immune Function Stability through Increasing the Levels of Intestinal Barrier Genes of Broilers. Animals (Basel) 2023; 13:2138. [PMID: 37443936 DOI: 10.3390/ani13132138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In order to improve the adaptability of broilers to low-temperature environments and their ability to resist acute cold stress (ACS), 240 one-day-old broilers were selected and randomly divided into three groups. The control treatment (CC) group was raised at the conventional feeding temperature from 1-43 days (d), the cold stimulation treatment (CS) group was kept at 3 °C below the temperature of CC at 1 d intervals for 3 and 6 h from 15 to 35 d, namely, CS3 and CS6, respectively. Then, all broilers were kept at 20 °C from 36 to 43 d. ACS was then carried out at 44 d, and the ambient temperature was dropped to 10 °C for 6 h. The study investigated the production performance, as well as levels of intestinal barrier genes (including Claudin-1, E-cadherin, Occludin, ZO-1, ZO-2 and Mucin2), secretory IgA in duodenum and jejunum, and immunoglobulins (IgA and IgG) in serum. The results showed that IMCS could increase the daily weight gain and decrease the feed conversion ratio. During IMCS, the expression levels of intestinal barrier genes were up-regulated and the content of secretory IgA was increased. When IMCS ceased for one week, the level of immunoglobulins in serum stabilized, and the expression levels of Occludin, ZO-2 and Mucin2 still maintained high levels. After ACS, broilers that received IMCS training maintained high levels of intestinal barrier genes and secretory IgA.
Collapse
Affiliation(s)
- Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
4
|
Dahlgren D, Lennernäs H. Review on the effect of chemotherapy on the intestinal barrier: Epithelial permeability, mucus and bacterial translocation. Biomed Pharmacother 2023; 162:114644. [PMID: 37018992 DOI: 10.1016/j.biopha.2023.114644] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Chemotherapy kills fast-growing cells including gut stem cells. This affects all components of the physical and functional intestinal barrier, i.e., the mucus layer, epithelium, and immune system. This results in an altered intestinal permeability of toxic compounds (e.g., endotoxins) as well as luminal bacterial translocation into the mucosa and central circulation. However, there is uncertainty regarding the relative contributions of the different barrier components for the development of chemotherapy-induced gut toxicity. This review present an overview of the intestinal mucosal barrier determined with various types of molecular probes and methods, and how they are affected by chemotherapy based on reported rodent and human data. We conclude that there is overwhelming evidence that chemotherapy increases bacterial translocation, and that it affects the mucosal barrier by rendering the mucosa more permeable to large permeability probes. Chemotherapy also seems to impede the intestinal mucus barrier, even though this has been less clearly evaluated from a functional standpoint but certainly plays a role in bacteria translocation. Combined, it is however difficult to outline a clear temporal or succession between the different gastrointestinal events and barrier functions, especially as chemotherapy-induced neutropenia is also involved in intestinal immunological homeostasis and bacterial translocation. A thorough characterization of this would need to include a time dependent development of neutropenia, intestinal permeability, and bacterial translocation, ideally after a range of chemotherapeutics and dosing regimens.
Collapse
|
5
|
Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00766-3. [PMID: 37186118 PMCID: PMC10127193 DOI: 10.1038/s41575-023-00766-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Arie Horowitz
- UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xenia Haest
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Kullenberg F, Peters K, Luna-Marco C, Salomonsson A, Kopsida M, Degerstedt O, Sjöblom M, Hellström PM, Heindryckx F, Dahlgren D, Lennernäs H. The progression of doxorubicin-induced intestinal mucositis in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:247-260. [PMID: 36271936 PMCID: PMC9832110 DOI: 10.1007/s00210-022-02311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/14/2022] [Indexed: 01/29/2023]
Abstract
Chemotherapy-induced intestinal mucositis is a severe side effect contributing to reduced quality of life and premature death in cancer patients. Despite a high incidence, a thorough mechanistic understanding of its pathophysiology and effective supportive therapies are lacking. The main objective of this rat study was to determine how 10 mg/kg doxorubicin, a common chemotherapeutic, affected jejunal function and morphology over time (6, 24, 72, or 168 h). The secondary objective was to determine if the type of dosing administration (intraperitoneal or intravenous) affected the severity of mucositis or plasma exposure of the doxorubicin. Morphology, proliferation and apoptosis, and jejunal permeability of mannitol were examined using histology, immunohistochemistry, and single-pass intestinal perfusion, respectively. Villus height was reduced by 40% after 72 h, preceded at 24 h by a 75% decrease in proliferation and a sixfold increase in apoptosis. Villus height recovered completely after 168 h. Mucosal permeability of mannitol decreased after 6, 24, and 168 h. There were no differences in intestinal injury or plasma exposure after intraperitoneal or intravenous doxorubicin dosing. This study provides an insight into the progression of chemotherapy-induced intestinal mucositis and associated cellular mucosal processes. Knowledge from this in vivo rat model can facilitate development of preventive and supportive therapies for cancer patients.
Collapse
Affiliation(s)
- F Kullenberg
- Department of Pharmaceutical Biosciences, Uppsala University, 752 37, Uppsala, Sweden
| | - K Peters
- Department of Pharmaceutical Biosciences, Uppsala University, 752 37, Uppsala, Sweden
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
| | - C Luna-Marco
- Department of Pharmaceutical Biosciences, Uppsala University, 752 37, Uppsala, Sweden
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
| | - A Salomonsson
- Department of Pharmaceutical Biosciences, Uppsala University, 752 37, Uppsala, Sweden
| | - M Kopsida
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
| | - O Degerstedt
- Department of Pharmaceutical Biosciences, Uppsala University, 752 37, Uppsala, Sweden
| | - M Sjöblom
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
| | - P M Hellström
- Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - F Heindryckx
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
| | - D Dahlgren
- Department of Pharmaceutical Biosciences, Uppsala University, 752 37, Uppsala, Sweden
| | - H Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, 752 37, Uppsala, Sweden.
| |
Collapse
|
7
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
8
|
Kuo WT, Odenwald MA, Turner JR, Zuo L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann N Y Acad Sci 2022; 1514:21-33. [PMID: 35580994 PMCID: PMC9427709 DOI: 10.1111/nyas.14798] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epithelial cells are the first line of mucosal defense. In the intestine, a single layer of epithelial cells must establish a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing the leakage of potentially harmful luminal materials. Key to this is the tight junction, which seals the paracellular space and prevents unrestricted leakage. The tight junction is a protein complex established by interactions between members of the claudin, zonula occludens, and tight junction-associated MARVEL protein (TAMP) families. Claudins form the characteristic tight junction strands seen by freeze-fracture microscopy and create paracellular channels, but the functions of ZO-1 and occludin, founding members of the zonula occludens and TAMP families, respectively, are less well defined. Recent studies have revealed that these proteins have essential noncanonical (nonbarrier) functions that allow them to regulate epithelial apoptosis and proliferation, facilitate viral entry, and organize specialized epithelial structures. Surprisingly, neither is required for intestinal barrier function or overall health in the absence of exogenous stressors. Here, we provide a brief overview of ZO-1 and occludin canonical (barrier-related) functions, and a more detailed examination of their noncanonical functions.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Graduate Institute of Oral Biology, National Taiwan University, Taipei, Taiwan.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Rousou C, de Maar J, Qiu B, van der Wurff-Jacobs K, Ruponen M, Urtti A, Oliveira S, Moonen C, Storm G, Mastrobattista E, Deckers R. The Effect of Microbubble-Assisted Ultrasound on Molecular Permeability across Cell Barriers. Pharmaceutics 2022; 14:494. [PMID: 35335871 PMCID: PMC8949944 DOI: 10.3390/pharmaceutics14030494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
The combination of ultrasound and microbubbles (USMB) has been applied to enhance drug permeability across tissue barriers. Most studies focused on only one physicochemical aspect (i.e., molecular weight of the delivered molecule). Using an in vitro epithelial (MDCK II) cell barrier, we examined the effects of USMB on the permeability of five molecules varying in molecular weight (182 Da to 20 kDa) and hydrophilicity (LogD at pH 7.4 from 1.5 to highly hydrophilic). Treatment of cells with USMB at increasing ultrasound pressures did not have a significant effect on the permeability of small molecules (molecular weight 259 to 376 Da), despite their differences in hydrophilicity (LogD at pH 7.4 from -3.2 to 1.5). The largest molecules (molecular weight 4 and 20 kDa) showed the highest increase in the epithelial permeability (3-7-fold). Simultaneously, USMB enhanced intracellular accumulation of the same molecules. In the case of the clinically relevant anti- C-X-C Chemokine Receptor Type 4 (CXCR4) nanobody (molecular weight 15 kDa), USMB enhanced paracellular permeability by two-fold and increased binding to retinoblastoma cells by five-fold. Consequently, USMB is a potential tool to improve the efficacy and safety of the delivery of drugs to organs protected by tissue barriers, such as the eye and the brain.
Collapse
Affiliation(s)
- Charis Rousou
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
- Imaging and Oncology Division, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (J.d.M.); (C.M.); (R.D.)
| | - Josanne de Maar
- Imaging and Oncology Division, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (J.d.M.); (C.M.); (R.D.)
| | - Boning Qiu
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
| | - Kim van der Wurff-Jacobs
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland; (M.R.); (A.U.)
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland; (M.R.); (A.U.)
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Yliopistonkatu 4, 00100 Helsinki, Finland
- Institute of Chemistry, Saint Petersburg State University, Lieutenant Schmidt emb., 11/2, 199034 Saint Petersburg, Russia
| | - Sabrina Oliveira
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - Chrit Moonen
- Imaging and Oncology Division, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (J.d.M.); (C.M.); (R.D.)
| | - Gert Storm
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
- Department of Biomaterials Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.R.); (B.Q.); (K.v.d.W.-J.); (S.O.); (G.S.)
| | - Roel Deckers
- Imaging and Oncology Division, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (J.d.M.); (C.M.); (R.D.)
| |
Collapse
|
10
|
Chemotherapeutics Combined with Luminal Irritants: Effects on Small-Intestinal Mannitol Permeability and Villus Length in Rats. Int J Mol Sci 2022; 23:ijms23031021. [PMID: 35162944 PMCID: PMC8834916 DOI: 10.3390/ijms23031021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Chemotherapy causes intestinal mucositis, which includes villous atrophy and altered mucosal barrier function. However, there is an uncertainty regarding how the reduced small-intestinal surface area affects the mucosal permeability of the small marker probe mannitol (MW 188), and how the mucosa responds to luminal irritants after chemotherapy. The aims in this study were to determine (i) the relationship between chemotherapy-induced villus atrophy and the intestinal permeability of mannitol and (ii) how the mucosa regulate this permeability in response to luminal ethanol and sodium dodecyl sulfate (SDS). This was investigated by treating rats with a single intraperitoneal dose of doxorubicin, irinotecan, or 5-fluorouracil. After 72 h, jejunum was single-pass perfused and mannitol permeability determined at baseline and after 15 min luminal exposure to 15% ethanol or 5 mg/mL SDS. Tissue samples for morphological analyses were sampled from the perfused segment. All three chemotherapeutics caused a similar 30% reduction in villus length. Mannitol permeability increased with irinotecan (1.3-fold) and 5-fluorouracil (2.5-fold) and was reduced with doxorubicin (0.5-fold), suggesting that it is not epithelial surface area alone that regulates intestinal permeability to mannitol. There was no additional increase in mannitol permeability induced by luminal ethanol or SDS in the chemotherapy-treated rats compared to controls, which may be related to the relatively high basal permeability of mannitol compared to other common low-permeability probes. We therefore suggest that future studies should focus on elucidating the complex interplay between chemotherapy in combination with luminal irritants on the intestinal permeability of other probes.
Collapse
|
11
|
Zhang X, Monnoye M, Mariadassou M, Beguet-Crespel F, Lapaque N, Heberden C, Douard V. Glucose but Not Fructose Alters the Intestinal Paracellular Permeability in Association With Gut Inflammation and Dysbiosis in Mice. Front Immunol 2021; 12:742584. [PMID: 35024040 PMCID: PMC8744209 DOI: 10.3389/fimmu.2021.742584] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
A causal correlation between the metabolic disorders associated with sugar intake and disruption of the gastrointestinal (GI) homeostasis has been suggested, but the underlying mechanisms remain unclear. To unravel these mechanisms, we investigated the effect of physiological amounts of fructose and glucose on barrier functions and inflammatory status in various regions of the GI tract and on the cecal microbiota composition. C57BL/6 mice were fed chow diet and given 15% glucose or 15% fructose in drinking water for 9 weeks. We monitored caloric intake, body weight, glucose intolerance, and adiposity. The intestinal paracellular permeability, cytokine, and tight junction protein expression were assessed in the jejunum, cecum, and colon. In the cecum, the microbiota composition was determined. Glucose-fed mice developed a marked increase in total adiposity, glucose intolerance, and paracellular permeability in the jejunum and cecum while fructose absorption did not affect any of these parameters. Fructose-fed mice displayed increased circulation levels of IL6. In the cecum, both glucose and fructose intake were associated with an increase in Il13, Ifnγ, and Tnfα mRNA and MLCK protein levels. To clarify the relationships between monosaccharides and barrier function, we measured the permeability of Caco-2 cell monolayers in response to IFNγ+TNFα in the presence of glucose or fructose. In vitro, IFNγ+TNFα-induced intestinal permeability increase was less pronounced in response to fructose than glucose. Mice treated with glucose showed an enrichment of Lachnospiracae and Desulfovibrionaceae while the fructose increased relative abundance of Lactobacillaceae. Correlations between pro-inflammatory cytokine gene expression and bacterial abundance highlighted the potential role of members of Desulfovibrio and Lachnospiraceae NK4A136 group genera in the inflammation observed in response to glucose intake. The increase in intestinal inflammation and circulating levels of IL6 in response to fructose was observed in the absence of intestinal permeability modification, suggesting that the intestinal permeability alteration does not precede the onset of metabolic outcome (low-grade inflammation, hyperglycemia) associated with chronic fructose consumption. The data also highlight the deleterious effects of glucose on gut barrier function along the GI tract and suggest that Desulfovibrionaceae and Lachnospiraceae play a key role in the onset of GI inflammation in response to glucose.
Collapse
Affiliation(s)
- Xufei Zhang
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | | | | | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Christine Heberden
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Veronique Douard
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| |
Collapse
|
12
|
Fein KC, Gleeson JP, Newby AN, Whitehead KA. Intestinal permeation enhancers enable oral delivery of macromolecules up to 70 kDa in size. Eur J Pharm Biopharm 2021; 170:70-76. [PMID: 34879228 DOI: 10.1016/j.ejpb.2021.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023]
Abstract
The decades-long effort to deliver peptide drugs orally has resulted in several clinically successful formulations. These formulations are enabled by the inclusion of permeation enhancers that facilitate the intestinal absorption of peptides. Thus far, these oral peptide drugs have been limited to peptides less than 5 kDa, and it is unclear whether there is an upper bound of protein size that can be delivered with permeation enhancers. In this work, we examined two permeation enhancers, 1-phenylpiperazine (PPZ) and sodium deoxycholate (SDC), for their ability to increase intestinal transport of a model macromolecule (FITC-Dextran) as a function of its size. Specifically, the permeability of dextrans with molecular weights of 4, 10, 40, and 70 kDa was assessed in an in vitro and in vivo model of the intestine. In Caco-2 monolayers, both PPZ and SDC significantly increased the permeability of only FD4 and FD10. However, in mice, PPZ and SDC behaved differently. While SDC improved the absorption of all tested sizes of dextrans, PPZ was effective only for FD4 and FD10. This work is the first report of PPZ as a permeation enhancer in vivo, and it highlights the ability of permeation enhancers to improve the absorption of macromolecules across a broad range of sizes relevant for protein drugs.
Collapse
Affiliation(s)
- Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213
| | - John P Gleeson
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213
| | - Alexandra N Newby
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213.
| |
Collapse
|
13
|
Alizadeh A, Akbari P, Garssen J, Fink-Gremmels J, Braber S. Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions. Tissue Barriers 2021; 10:1996830. [PMID: 34719339 PMCID: PMC9359365 DOI: 10.1080/21688370.2021.1996830] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An intact intestinal barrier is crucial for immune homeostasis and its impairment activates the immune system and may result in chronic inflammation. The epithelial cells of the intestinal barrier are connected by tight junctions, which form an anastomosing network sealing adjacent epithelial cells. Tight junctions are composed of transmembrane and cytoplasmic scaffolding proteins. Transmembrane tight junction proteins at the apical-lateral membrane of the cell consist of occludin, claudins, junctional adhesion molecules, and tricellulin. Cytoplasmic scaffolding proteins, including zonula occludens, cingulin and afadin, provide a direct link between transmembrane tight junction proteins and the intracellular cytoskeleton. Each individual component of the tight junction network closely interacts with each other to form an efficient intestinal barrier. This review aims to describe the molecular structure of intestinal epithelial tight junction proteins and to characterize their organization and interaction. Moreover, clinically important biomarkers associated with impairment of gastrointestinal integrity are discussed.
Collapse
Affiliation(s)
- Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Peyman Akbari
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Afolami I, Samuel FO, Mwangi M, Oderinde M, Diepeveen-de Bruin M, Melse-Boonstra A. Assessment of small-intestine permeability in healthy Nigerian children is altered by urinary volume and voiding status. PLoS One 2021; 16:e0253436. [PMID: 34543276 PMCID: PMC8452060 DOI: 10.1371/journal.pone.0253436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/04/2021] [Indexed: 11/25/2022] Open
Abstract
Objective This study aimed to uncover the effect of voided urinary volume on small intestine permeability ratios in healthy children. Methods We assessed small intestine permeability in 155 apparently healthy children, aged 3–5 years old, without any visible symptoms of disease, in a rural, malaria-endemic setting in Nigeria, using a multi-sugar test solution, comprising lactulose, sucrose, mannitol, and rhamnose. Children were categorized into low urinary volume (LV) and high urinary volume (HV), based on the volume of urine voided per kg body weight per hour. LV children voided less than 25th percentile of the total population, while HV children voided greater than 75th percentile of the total population. Urinary volume excreted over a 90-minute period after administration of the test solution was measured, and differences in sugar ratios were compared between children with high (HV) and low urinary volumes (LV), as well as between children who voided (VC) or who were not able to void (NVC) before administration of the test solution. Results Urinary mannitol and rhamnose recovery were 44% (p = 0.002) and 77% (p<0.001) higher in HV children compared to LV children respectively, while urinary lactulose recovery was 34% lower (p = 0.071). There was no difference in urinary sucrose recovery between groups (p = 0.74). Lactulose-mannitol ratio, lactulose-rhamnose ratio and sucrose-rhamnose ratio were all significantly higher in children in the LV group compared to children in the HV group (p<0.001). In a multiple regression analysis, urinary volume and voiding status combined, explained 13%, 23% and 7% of the variation observed in lactulose-mannitol, lactulose-rhamnose and sucrose-rhamnose ratios, respectively. Conclusion Sugar permeability ratios vary significantly with total urinary volume in multi-sugar small-intestine permeability tests. Voiding status before sugar administration appears to influence lactulose recovery, lactulose-rhamnose and sucrose-rhamnose ratios independently of total urinary volume. Evidence from this study suggests the need to take urinary volume into account when conducting multi-sugar small-intestine permeability tests.
Collapse
Affiliation(s)
- Ibukun Afolami
- Department of Human Nutrition, University of Ibadan, Ibadan, Nigeria
- Department of Human Nutrition, Wageningen University & Research, Wageningen, the Netherlands
- * E-mail:
| | | | - Martin Mwangi
- Department of Human Nutrition, Wageningen University & Research, Wageningen, the Netherlands
| | - Michael Oderinde
- Department of Human Nutrition, University of Ibadan, Ibadan, Nigeria
| | | | - Alida Melse-Boonstra
- Department of Human Nutrition, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
15
|
Usuda H, Okamoto T, Wada K. Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. Int J Mol Sci 2021; 22:ijms22147613. [PMID: 34299233 PMCID: PMC8305009 DOI: 10.3390/ijms22147613] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal tract is the boundary that prevents harmful molecules from invading into the mucosal tissue, followed by systemic circulation. Intestinal permeability is an index for intestinal barrier integrity. Intestinal permeability has been shown to increase in various diseases-not only intestinal inflammatory diseases, but also systemic diseases, including diabetes, chronic kidney dysfunction, cancer, and cardiovascular diseases. Chronic increase of intestinal permeability is termed 'leaky gut' which is observed in the patients and animal models of these diseases. This state often correlates with the disease state. In addition, recent studies have revealed that gut microbiota affects intestinal and systemic heath conditions via their metabolite, especially short-chain fatty acids and lipopolysaccharides, which can trigger leaky gut. The etiology of leaky gut is still unknown; however, recent studies have uncovered exogenous factors that can modulate intestinal permeability. Nutrients are closely related to intestinal health and permeability that are actively investigated as a hot topic of scientific research. Here, we will review the effect of nutrients on intestinal permeability and microbiome for a better understanding of leaky gut and a possible mechanism of increase in intestinal permeability.
Collapse
Affiliation(s)
- Haruki Usuda
- Correspondence: (H.U.); (T.O.); Tel.: +81-853-20-3067 (H.U.)
| | | | | |
Collapse
|
16
|
Shashikanth N, Rizzo HE, Pongkorpsakol P, Heneghan JF, Turner JR. Electrophysiologic Analysis of Tight Junction Size and Charge Selectivity. Curr Protoc 2021; 1:e143. [PMID: 34106526 DOI: 10.1002/cpz1.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tight junctions form selectively permeable barriers that limit paracellular flux across epithelial-lined surfaces. Rather than being absolute barriers, tight junctions in many tissues allow ions, water, and other small molecules to cross on the basis of size and charge selectivity via the high-capacity pore pathway. Most probes currently used to assess tight junction permeability exceed the maximum size capacity of the pore pathway. As a result, available analytical tools have generally been limited to measurement of transepithelial electrical resistances. These provide no information regarding size selectivity and, therefore, cannot be used to distinguish between the pore pathway and the leak pathway, a low-capacity route that accommodates larger macromolecules. This article describes use of dilution potential and bi-ionic potential measurements for analysis of tight junction size and charge selectivity within monolayers of cultured epithelial cells. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Culture of MDCK monolayers on semipermeable supports and induction of claudin-2 expression Basic Protocol 2: Configuring voltage/current clamp and other equipment Basic Protocol 3: Measuring dilution and bi-ionic potentials Basic Protocol 4: Calculating ion permeabilities and pore diameter Support Protocol: Preparation of agar bridges and electrophysiology rig setup.
Collapse
Affiliation(s)
- Nitesh Shashikanth
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Heather E Rizzo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pawin Pongkorpsakol
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - John F Heneghan
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Liang B, Zhong Y, Huang Y, Lin X, Liu J, Lin L, Hu M, Jiang J, Dai M, Wang B, Zhang B, Meng H, Lelaka JJJ, Sui H, Yang X, Huang Z. Underestimated health risks: polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis. Part Fibre Toxicol 2021; 18:20. [PMID: 34098985 PMCID: PMC8186235 DOI: 10.1186/s12989-021-00414-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background Micro- and nanoplastic pollution has become a global environmental problem. Nanoplastics in the environment are still hard to detect because of analysis technology limitations. It is believed that when microplastics are found in the environment, more undetected nanoplastics are around. The current “microplastic exposure” is in fact the mixture of micro- and nanoplastic exposures. Therefore, the biological interaction between organisms among different sizes of micro- and nanoplastics should not be neglected. Results We measured the biodistribution of three polystyrene (PS) particles (50 nm PS, PS50; 500 nm PS, PS500; 5000 nm PS, PS5000) under single and co-exposure conditions in mice. We explored the underlying mechanisms by investigating the effects on three major components of the intestinal barrier (the mucus layer, tight junctions and the epithelial cells) in four intestine segments (duodenum, jejunum, ileum and colon) of mice. We found that the amounts of both PS500 and PS5000 increased when they were co-exposed with PS50 for 24 h in the mice. These increased amounts were due primarily to the increased permeability in the mouse intestines. We also confirmed there was a combined toxicity of PS50 and PS500 in the mouse intestines. This manifested as the mixture of PS50 and PS500 causing more severe dysfunction of the intestinal barrier than that caused by PS50 or PS500 alone. We found that the combined toxicity of PS micro- and nanoplastics on intestinal barrier dysfunction was caused primarily by reactive oxygen species (ROS)-mediated epithelial cell apoptosis in the mice. These findings were further confirmed by an oxidants or antioxidants pretreatment study. In addition, the combined toxicity of PS micro- and nanoplastics was also found in the mice after a 28-day repeated dose exposure. Conclusions There is a combined toxicity of PS50 and PS500 in the mouse intestines, which was caused primarily by ROS-mediated epithelial cell apoptosis in the mice. Considering that most recent studies on PS micro- and nanoplastics have been conducted using a single particle size, the health risks of exposure to PS micro- and nanoplastics on organisms may be underestimated. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00414-1.
Collapse
Affiliation(s)
- Boxuan Liang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Yizhou Zhong
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Yuji Huang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Xi Lin
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Jun Liu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Li Lin
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Manjiang Hu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Junying Jiang
- Faculty of Preventive Medicine, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou, 310051, PR China
| | - Bo Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Bingli Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Hao Meng
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Jesse Justin J Lelaka
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Haixia Sui
- Division III of risk assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, PR China
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China.
| | - Zhenlie Huang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China.
| |
Collapse
|
18
|
Dahlgren D, Olander T, Sjöblom M, Hedeland M, Lennernäs H. Effect of paracellular permeation enhancers on intestinal permeability of two peptide drugs, enalaprilat and hexarelin, in rats. Acta Pharm Sin B 2021; 11:1667-1675. [PMID: 34221875 PMCID: PMC8245904 DOI: 10.1016/j.apsb.2020.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Transcellular permeation enhancers are known to increase the intestinal permeability of enalaprilat, a 349 Da peptide, but not hexarelin (887 Da). The primary aim of this paper was to investigate if paracellular permeability enhancers affected the intestinal permeation of the two peptides. This was investigated using the rat single-pass intestinal perfusion model with concomitant blood sampling. These luminal compositions included two paracellular permeation enhancers, chitosan (5 mg/mL) and ethylenediaminetetraacetate (EDTA, 1 and 5 mg/mL), as well as low luminal tonicity (100 mOsm) with or without lidocaine. Effects were evaluated by the change in lumen-to-blood permeability of hexarelin and enalaprilat, and the blood-to-lumen clearance of 51chromium-labeled EDTA (CLCr-EDTA), a clinical marker for mucosal barrier integrity. The two paracellular permeation enhancers increased the mucosal permeability of both peptide drugs to a similar extent. The data in this study suggests that the potential for paracellular permeability enhancers to increase intestinal absorption of hydrophilic peptides with low molecular mass is greater than for those with transcellular mechanism-of-action. Further, the mucosal blood-to-lumen flux of 51Cr-EDTA was increased by the two paracellular permeation enhancers and by luminal hypotonicity. In contrast, luminal hypotonicity did not affect the lumen-to-blood transport of enalaprilat and hexarelin. This suggests that hypotonicity affects paracellular solute transport primarily in the mucosal crypt region, as this area is protected from luminal contents by a constant water flow from the crypts.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Uppsala 752 36, Sweden
| | - Tobias Olander
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Uppsala 752 36, Sweden
| | - Markus Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala 752 36, Sweden
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala 752 36, Sweden
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala 751 89, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Uppsala 752 36, Sweden
| |
Collapse
|
19
|
Gao L, Xie C, Liang X, Li Z, Li B, Wu X, Yin Y. Yeast-based nucleotide supplementation in mother sows modifies the intestinal barrier function and immune response of neonatal pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:84-93. [PMID: 33997335 PMCID: PMC8110885 DOI: 10.1016/j.aninu.2020.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
In the present study, we aimed to evaluate the effects of maternal yeast-based nucleotide (YN) supplementation on the intestinal immune response and barrier function in neonatal pigs, as well as the diarrhoea rate and growth performance in suckling piglets. Sixty-four late-gestation sows were assigned to the following groups: the CON (fed a basal diet) and YN groups (fed a basal diet with 4 g YN/kg diet). The experiment started on d 85 of gestation and ended on d 20 of lactation. Diarrhoea rate and average daily gain of the piglets were recorded, and samples of blood and intestines from neonatal piglets were collected before they consumed colostrum during farrowing. Compared with the CON group, maternal YN supplementation increased the weaning weight of litter and decreased the diarrhoea rate (P < 0.01). In addition, maternal YN supplementation promoted the ileal villus development in the neonates compared with that in the CON group (P < 0.01). Maternal YN supplementation also increased the ileal secretory immunoglobulin A (sIgA) level compared with that in the CON group (P < 0.05). The real-time PCR results showed that maternal dietary YN supplementation increased the jejunal and ileal expression of interleukin (IL)-17, IL-8, IL-1β, IL-10 and tumor necrosis factor (TNF)- α in the neonates compared with that in the CON group (P < 0.05). Overall, maternal nucleotide supplementation improved the villus development and innate immunity of neonatal piglets during late pregnancy. This may be associated with the decrease in diarrhoea and the increase in weaning weight of the litter of suckling piglets.
Collapse
Affiliation(s)
- Lumin Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Chunyan Xie
- Hunan Co-Innovation Center of Safety Animal Production, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoxiao Liang
- Henan Zhongke Ground Food Co., Ltd, Zhengzhou 450001, China
| | - Zhihong Li
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang 443003, China
| | - Biao Li
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang 443003, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
- Hunan Co-Innovation Center of Safety Animal Production, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
- Hunan Co-Innovation Center of Safety Animal Production, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
20
|
Deluco B, Fourie KR, Simko OM, Wilson HL. Localization of Claudin-3 and Claudin-4 within the Small Intestine of newborn piglets. Physiol Rep 2021; 9:e14717. [PMID: 33523589 PMCID: PMC7849452 DOI: 10.14814/phy2.14717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022] Open
Abstract
Piglets must acquire passive immunity through colostrum within hours after birth to survive. How colostral macromolecules traverse the small intestinal epithelium may include nonselective pinocytosis and paracellular transport through tight junction proteins located between epithelial cells. Claudin proteins-3 and -4 contribute to the epithelial tight junctions (TJs) on the apical aspect of lateral surfaces of intestinal epithelial cells (IECs) where they help regulate ion and macromolecule movement across the intestinal epithelium. Throughout the small intestine of newborn piglets, Claudin-3 was localized to the lateral and basolateral surface of intestinal epithelial cells as well as the membrane of large vacuoles. In the duodenum and jejunum, Claudin-4 was localized to the apical surface independent of tight junction regions. In the ileum, Claudin-4 was localized to the lateral and basolateral surfaces indicating region-specific differences and noncanonical patterns of Claudin-4 localization independent of tight junction regions. Understanding the timing of changes in surface localization of Claudin-3 and Claudin-4 and how they may coincide with changes in small intestinal permeability may help develop new protective strategies against infectious diseases within newborn piglets.
Collapse
Affiliation(s)
- Brodie Deluco
- Vaccine and Infectious Disease Organization‐International Vaccine Centre (VIDO‐InterVac)University of SaskatchewanSaskatoonSKCanada
| | - Kezia R Fourie
- Vaccine and Infectious Disease Organization‐International Vaccine Centre (VIDO‐InterVac)University of SaskatchewanSaskatoonSKCanada
| | - Olena M Simko
- Vaccine and Infectious Disease Organization‐International Vaccine Centre (VIDO‐InterVac)University of SaskatchewanSaskatoonSKCanada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization‐International Vaccine Centre (VIDO‐InterVac)University of SaskatchewanSaskatoonSKCanada
| |
Collapse
|
21
|
Das P, Vaiphei K, Amarapurkar AD, Sakhuja P, Nada R, Paulose RR, Chaturvedi R, Sekaran A, Kini U, Rastogi A, Kumari N, Pulimood A, Banerjee M, Kinra P, Singh L, Puri A, Pai G, Kochhar R, Dhali GK, Ramakrishna BS, Sood A, Ghoshal UC, Ahuja V, DattaGupta S, Makharia GK, Misra V. Best practices of handling, processing, and interpretation of small intestinal biopsies for the diagnosis and management of celiac disease: A joint consensus of Indian association of pathologists and microbiologists and Indian society of gastroenterology. INDIAN J PATHOL MICR 2021; 64:S8-S31. [PMID: 34135135 DOI: 10.4103/ijpm.ijpm_1405_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The Indian Association of Pathologists and Microbiologists (IAPM) and Indian Society of Gastroenterology (ISG) decided to make a joint consensus recommendation for handling, processing, and interpretation of SI biopsies for the diagnosis and management of celiac disease (CD) recognizing the inhomogeneous practice of biopsy sampling, orientation, processing, and interpretation. A modified Delphi process was used to develop this consensus document containing a total of 42 statements and recommendations, which were generated by sharing the document draft, incorporating expert's opinion, followed by three cycles of electronic voting as well as a full-day face-to-face virtual ZOOM meeting and review of supporting literature. Of the 42 statements, 7 statements are on small intestinal (SI) biopsy in suspected patients of CD, site and the number of biopsies; 7 on handling, fixative, orientation, processing, and sectioning in pathology laboratories; 2 on histological orientation; 13 statements on histological interpretation and histological grading; 3 on the assessment of follow-up biopsies; 2 statements on gluten-free diet (GFD)-nonresponsive CD; 4 on challenges in the diagnosis of CD; 2 statements each on pathology reporting protocol and training and infrastructure in this area. The goal of this guideline document is to formulate a uniform protocol agreed upon both by the experienced pathologists and gastroenterologists to standardize the practice, improve the yield of small bowel biopsy interpretation, patients' compliance, overall management in CD, and generate unified data for patient care and research in the related field.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kim Vaiphei
- Department of Pathology, Post Graduate Institute of Medical Sciences and Research, Chandigarh, India
| | - Anjali D Amarapurkar
- Department of Pathology, Lokmanya Tilak Municipal General Hospital Sion Hospital, Mumbai, Maharashtra, India
| | - Puja Sakhuja
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Ritambhra Nada
- Department of Pathology, Post Graduate Institute of Medical Sciences and Research, Chandigarh, India
| | - Roopa Rachel Paulose
- Department of Pathology, School of Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Rachana Chaturvedi
- Department of Pathology, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| | - Anuradha Sekaran
- Department of Pathology, Asian Institute of Gastroenterology and AIG Hospitals, Hyderabad, Telangana, India
| | - Usha Kini
- Department of Pathology, St. John's Medical College, Bangalore, Karnataka, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Niraj Kumari
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anna Pulimood
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Mala Banerjee
- Department of Pathology, KPC Medical College and Hospital and Peerless Hospital, Kolkata, West Bengal, India
| | - Prateek Kinra
- Department of Pathology, Armed Forces Medical College, Pune, Maharashtra, India
| | - Lavleen Singh
- Department of Pathology, Chacha Nehru Bal Chikitsalya, New Delhi, India
| | - AmarenderSingh Puri
- Department of Gastroenterology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Ganesh Pai
- Department of Gastroenterology, Kuwait Hospital, Sharjah, UAE
| | - Rakesh Kochhar
- Department of Gastroenterology, Post Graduate Institute of Medical Sciences and Research, Chandigarh, India
| | - Gopal Krishna Dhali
- Department of Gastroenterology, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - B S Ramakrishna
- Department of Gastroenterology, SRM Institute of Medical Sciences, Chennai, Tamil Nadu, India
| | - Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Uday Chand Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Govind K Makharia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Vatsala Misra
- Department of Pathology, MLN Medical College, Allahabad, Uttar Pradesh, India
| |
Collapse
|
22
|
Chanez-Paredes SD, Abtahi S, Kuo WT, Turner JR. Differentiating Between Tight Junction-Dependent and Tight Junction-Independent Intestinal Barrier Loss In Vivo. Methods Mol Biol 2021; 2367:249-271. [PMID: 33830456 PMCID: PMC8249353 DOI: 10.1007/7651_2021_389] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intestinal barrier is an essential component of innate host defense. The single layer of epithelial cells that line the intestine must balance barrier function with both active, transcellular and diffusive, paracellular transport. Tight junctions, which link adjacent cells, form a selectively permeable seal that defines both paracellular transport and barrier properties. Molecules can cross tight junctions by either of two distinct routes, termed pore and the leak pathways, that differ in capacity, charge-selectivity, size-selectivity, and responses to physiological and pathophysiological stimuli. A third intestinal permeability route, the unrestricted pathway, reflects loss of the epithelial barrier, as occurs with mucosal damage, is independent of paracellular and transcellular pathways, and is neither charge- nor size-selective.The most commonly used approach for measuring intestinal permeability in vivo involves gavage of FITC-4 kDa dextran and analysis of the quantity recovered in serum. Unfortunately, this method cannot distinguish between leak and unrestricted pathways, as 4 kDa dextran can cross both. Moreover, 4 kDa dextran is too large to cross the pore pathway and, therefore, provides no information regarding this paracellular flux route. Here we describe a multiplex method that allows simultaneous, independent analysis of each pathway.
Collapse
Affiliation(s)
- Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shabnam Abtahi
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wei-Ting Kuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
|
24
|
Peripheral Corticotropin-Releasing Factor Triggers Jejunal Mast Cell Activation and Abdominal Pain in Patients With Diarrhea-Predominant Irritable Bowel Syndrome. Am J Gastroenterol 2020; 115:2047-2059. [PMID: 32740086 DOI: 10.14309/ajg.0000000000000789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION To determine the effect of peripheral CRF on intestinal barrier function in diarrhea-predominant IBS (IBS-D). Irritable bowel syndrome (IBS) pathophysiology has been linked to life stress, epithelial barrier dysfunction, and mast cell activation. Corticotropin-releasing factor (CRF) is a major mediator of stress responses in the gastrointestinal tract, yet its role on IBS mucosal function remains largely unknown. METHODS Intestinal response to sequential i.v. 5-mL saline solution (placebo) and CRF (100 μg) was evaluated in 21 IBS-D and 17 healthy subjects (HSs). A 20-cm jejunal segment was perfused with an isosmotic solution and effluents collected at baseline, 30 minutes after placebo, and 60 minutes after CRF. We measured water flux, albumin output, tryptase release, stress hormones, cardiovascular and psychological responses, and abdominal pain. A jejunal biopsy was obtained for CRF receptor expression assessment. RESULTS Water flux did not change after placebo in IBS-D and HS but significantly increased after CRF in IBS-D (P = 0.007). Basal luminal output of albumin was higher in IBS-D and increased further after CRF in IBS-D (P = 0.042). Basal jejunal tryptase release was higher in IBS-D, and CRF significantly increased it in both groups (P = 0.004), the response being higher in IBS-D than in HS (P = 0.0023). Abdominal pain worsened only in IBS-D after CRF and correlated with jejunal tryptase release, water flux, and albumin output. IBS-D displayed jejunal up-regulation of CRF2 and down-regulation of CRF1 compared with HS. DISCUSSION Stress via CRF-driven mast cell activation seems to be relevant in the pathophysiology of IBS-D.
Collapse
|
25
|
Intestinal Permeability in Children with Celiac Disease after the Administration of Oligofructose-Enriched Inulin into a Gluten-Free Diet-Results of a Randomized, Placebo-Controlled, Pilot Trial. Nutrients 2020; 12:nu12061736. [PMID: 32531982 PMCID: PMC7352250 DOI: 10.3390/nu12061736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Abnormalities in the intestinal barrier are a possible cause of celiac disease (CD) development. In animal studies, the positive effect of prebiotics on the improvement of gut barrier parameters has been observed, but the results of human studies to date remain inconsistent. Therefore, this study aimed to evaluate the effect of twelve-week supplementation of a gluten-free diet (GFD) with prebiotic oligofructose-enriched inulin (10 g per day) on the intestinal permeability in children with CD treated with a GFD. A pilot, randomized, placebo-controlled nutritional intervention was conducted in 34 children with CD, being on a strict GFD. Sugar absorption test (SAT) and the concentrations of intestinal permeability markers, such as zonulin, intestinal fatty acid-binding protein, claudin-3, calprotectin, and glucagon-like peptide-2, were measured. We found that the supplementation with prebiotic did not have a substantial effect on barrier integrity. Prebiotic intake increased excretion of mannitol, which may suggest an increase in the epithelial surface. Most children in our study seem to have normal values for intestinal permeability tests before the intervention. For individuals with elevated values, improvement in calprotectin and SAT was observed after the prebiotic intake. This preliminary study suggests that prebiotics may have an impact on the intestinal barrier, but it requires confirmation in studies with more subjects with ongoing leaky gut.
Collapse
|
26
|
Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. Cell Mol Gastroenterol Hepatol 2020; 10:327-340. [PMID: 32304780 PMCID: PMC7326733 DOI: 10.1016/j.jcmgh.2020.04.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Defective epithelial barrier function is present in maladies including epidermal burn injury, environmental lung damage, renal tubular disease, and a range of immune-mediated and infectious intestinal disorders. When the epithelial surface is intact, the paracellular pathway between cells is sealed by the tight junction. However, permeability of tight junctions varies widely across tissues and can be markedly impacted by disease. For example, tight junctions within the skin and urinary bladder are largely impermeant and their permeability is not regulated. In contrast, tight junctions of the proximal renal tubule and intestine are selectively permeable to water and solutes on the basis of their biophysical characteristics and, in the gut, can be regulated by the immune system with remarkable specificity. Conversely, modulation of tight junction barrier conductance, especially within the gastrointestinal tract, can impact immune homeostasis and diverse pathologies. Thus, tight junctions are both effectors and targets of immune regulation. Using the gastrointestinal tract as an example, this review explores current understanding of this complex interplay between tight junctions and immunity.
Collapse
|
27
|
Camilleri M, Lyle BJ, Madsen KL, Sonnenburg J, Verbeke K, Wu GD. Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations. Am J Physiol Gastrointest Liver Physiol 2019; 317:G17-G39. [PMID: 31125257 PMCID: PMC6689735 DOI: 10.1152/ajpgi.00063.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A reduction in intestinal barrier function is currently believed to play an important role in pathogenesis of many diseases, as it facilitates passage of injurious factors such as lipopolysaccharide, peptidoglycan, whole bacteria, and other toxins to traverse the barrier to damage the intestine or enter the portal circulation. Currently available evidence in animal models and in vitro systems has shown that certain dietary interventions can be used to reinforce the intestinal barrier to prevent the development of disease. The relevance of these studies to human health is unknown. Herein, we define the components of the intestinal barrier, review available modalities to assess its structure and function in humans, and review the available evidence in model systems or perturbations in humans that diet can be used to fortify intestinal barrier function. Acknowledging the technical challenges and the present gaps in knowledge, we provide a conceptual framework by which evidence could be developed to support the notion that diet can reinforce human intestinal barrier function to restore normal function and potentially reduce the risk for disease. Such evidence would provide information on the development of healthier diets and serve to provide a framework by which federal agencies such as the US Food and Drug Administration can evaluate evidence linking diet with normal human structure/function claims focused on reducing risk of disease in the general public.
Collapse
Affiliation(s)
- Michael Camilleri
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Barbara J. Lyle
- 2International Life Sciences Institute North America, Washington, DC,3School of Professional Studies, Northwestern University, Evanston, Illinois
| | - Karen L. Madsen
- 4Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Justin Sonnenburg
- 5Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - Kristin Verbeke
- 6Translational Research in Gastrointestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gary D. Wu
- 7Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Huh H, Wong S, St Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: Therapeutic applications. Adv Drug Deliv Rev 2019; 145:4-17. [PMID: 30659855 DOI: 10.1016/j.addr.2019.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
The human body is a large reservoir for bacterial viruses known as bacteriophages (phages), which participate in dynamic interactions with their bacterial and human hosts that ultimately affect human health. The current growing interest in human resident phages is paralleled by new uses of phages, including the design of engineered phages for therapeutic applications. Despite the increasing number of clinical trials being conducted, the understanding of the interaction of phages and mammalian cells and tissues is still largely unknown. The presence of phages in compartments within the body previously considered purely sterile, suggests that phages possess a unique capability of bypassing anatomical and physiological barriers characterized by varying degrees of selectivity and permeability. This review will discuss the direct evidence of the accumulation of bacteriophages in various tissues, focusing on the unique capability of phages to traverse relatively impermeable barriers in mammals and its relevance to its current applications in therapy.
Collapse
Affiliation(s)
- Haein Huh
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Jesse St Jean
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada.
| |
Collapse
|
29
|
Pereira MT, Malik M, Nostro JA, Mahler GJ, Musselman LP. Effect of dietary additives on intestinal permeability in both Drosophila and a human cell co-culture. Dis Model Mech 2018; 11:dmm034520. [PMID: 30504122 PMCID: PMC6307910 DOI: 10.1242/dmm.034520] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Increased intestinal barrier permeability has been correlated with aging and disease, including type 2 diabetes, Crohn's disease, celiac disease, multiple sclerosis and irritable bowel syndrome. The prevalence of these ailments has risen together with an increase in industrial food processing and food additive consumption. Additives, including sugar, metal oxide nanoparticles, surfactants and sodium chloride, have all been suggested to increase intestinal permeability. We used two complementary model systems to examine the effects of food additives on gut barrier function: a Drosophila in vivo model and an in vitro human cell co-culture model. Of the additives tested, intestinal permeability was increased most dramatically by high sugar. High sugar also increased feeding but reduced gut and overall animal size. We also examined how food additives affected the activity of a gut mucosal defense factor, intestinal alkaline phosphatase (IAP), which fluctuates with bacterial load and affects intestinal permeability. We found that high sugar reduced IAP activity in both models. Artificial manipulation of the microbiome influenced gut permeability in both models, revealing a complex relationship between the two. This study extends previous work in flies and humans showing that diet can play a role in the health of the gut barrier. Moreover, simple models can be used to study mechanisms underlying the effects of diet on gut permeability and function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Matthew T Pereira
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902, USA
| | - Mridu Malik
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | - Jillian A Nostro
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | | |
Collapse
|
30
|
Dahlgren D, Roos C, Lundqvist A, Tannergren C, Sjöblom M, Sjögren E, Lennernäs H. Time-dependent effects on small intestinal transport by absorption-modifying excipients. Eur J Pharm Biopharm 2018; 132:19-28. [PMID: 30179738 DOI: 10.1016/j.ejpb.2018.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/23/2018] [Accepted: 09/01/2018] [Indexed: 12/31/2022]
Abstract
The relevance of the rat single-pass intestinal perfusion model for investigating in vivo time-dependent effects of absorption-modifying excipients (AMEs) is not fully established. Therefore, the dynamic effect and recovery of the intestinal mucosa was evaluated based on the lumen-to-blood flux (Jabs) of six model compounds, and the blood-to-lumen clearance of 51Cr-EDTA (CLCr), during and after 15- and 60-min mucosal exposure of the AMEs, sodium dodecyl sulfate (SDS) and chitosan, in separate experiments. The contribution of enteric neurons on the effect of SDS and chitosan was also evaluated by luminal coadministration of the nicotinic receptor antagonist, mecamylamine. The increases in Jabs and CLCr (maximum and total) during the perfusion experiments were dependent on exposure time (15 and 60 min), and the concentration of SDS, but not chitosan. The increases in Jabs and CLCr following the 15-min intestinal exposure of both SDS and chitosan were greater than those reported from an in vivo rat intraintestinal bolus model. However, the effect in the bolus model could be predicted from the increase of Jabs at the end of the 15-min exposure period, where a six-fold increase in Jabs was required for a corresponding effect in the in vivo bolus model. This illustrates that a rapid and robust effect of the AME is crucial to increase the in vivo intestinal absorption rate before the yet unabsorbed drug in lumen has been transported distally in the intestine. Further, the recovery of the intestinal mucosa was complete following 15-min exposures of SDS and chitosan, but it only recovered 50% after the 60-min intestinal exposures. Our study also showed that the luminal exposure of AMEs affected the absorptive model drug transport more than the excretion of 51Cr-EDTA, as Jabs for the drugs was more sensitive than CLCr at detecting dynamic mucosal AME effects, such as response rate and recovery. Finally, there appears to be no nicotinergic neural contribution to the absorption-enhancing effect of SDS and chitosan, as luminal administration of 0.1 mM mecamylamine had no effect.
Collapse
Affiliation(s)
- D Dahlgren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - C Roos
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | - M Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala, Sweden
| | - E Sjögren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - H Lennernäs
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
31
|
Morimoto K, Tominaga Y, Agatsuma Y, Miyamoto M, Kashiwagura S, Takahashi A, Sano Y, Yano K, Kakinuma C, Ogihara T, Tomita M. Intestinal secretion of indoxyl sulfate as a possible compensatory excretion pathway in chronic kidney disease. Biopharm Drug Dispos 2018; 39:328-334. [PMID: 29975986 DOI: 10.1002/bdd.2149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/10/2022]
Abstract
Indoxyl sulfate (IS) is a protein-bound uremic toxin that progressively accumulates in plasma during chronic kidney disease (CKD), and its accumulation is associated with the progression of CKD. This study examined the intestinal secretion of IS using in situ single-pass intestinal perfusion in a rat model of renal insufficiency, MRP2- and BCRP-overexpressing Sf9 membrane vesicles, and Caco-2 cell monolayers. An in situ single-pass perfusion study in CKD model rats demonstrated that a small amount of IS is secreted into intestinal lumen after iv administration of IS, and the clearance increased AUC-dependently. An excess amount of IS (3 mm) partially inhibited the MRP2- and BCRP-mediated uptake of specific fluorescent substrates, CDCF and Lucifer yellow, respectively, into the membrane vesicles, although IS was not taken up at a physiological concentration, 10 μm. In the Caco-2 cell monolayers, the IS transport was higher in the absorptive direction than in the secretory direction (p < 0.05). p-Aminohippuric acid (PAH) strongly inhibited IS transport in both directions (absorptive, p = 0.142; secretory, p < 0.01). Given that the blood IS levels are much higher than those in the intestinal lumen, it is possible that this unknown PAH-sensitive system contributes to the intestinal IS secretion. Although in situ inhibition study is needed to confirm that this unknown transporter mediates the in vivo intestinal secretion of IS, we speculate that this unknown active efflux system works as a compensatory excretion pathway for excess organic anions such as IS especially in end-stage renal disease.
Collapse
Affiliation(s)
- Kaori Morimoto
- Faculty of Pharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuuta Tominaga
- Faculty of Pharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuta Agatsuma
- Faculty of Pharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masanari Miyamoto
- Faculty of Pharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shota Kashiwagura
- Faculty of Pharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akira Takahashi
- Faculty of Pharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshimi Sano
- Faculty of Pharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kentaro Yano
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Chihaya Kakinuma
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Mikio Tomita
- Faculty of Pharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
32
|
Effect of absorption-modifying excipients, hypotonicity, and enteric neural activity in an in vivo model for small intestinal transport. Int J Pharm 2018; 549:239-248. [PMID: 30055302 DOI: 10.1016/j.ijpharm.2018.07.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
The small intestine mucosal barrier is physiologically regulated by the luminal conditions, where intestinal factors, such as diet and luminal tonicity, can affect mucosal permeability. The intestinal barrier may also be affected by absorption-modifying excipients (AME) in oral drug delivery systems. Currently, there is a gap in the understanding of how AMEs interact with the physiological regulation of intestinal electrolyte transport and fluid flux, and epithelial permeability. Therefore, the objective of this single-pass perfusion study in rat was to investigate the effect of three AMEs on the intestinal mucosal permeability at different luminal tonicities (100, 170, and 290 mOsm). The effect was also evaluated following luminal administration of a nicotinic receptor antagonist, mecamylamine, and after intravenous administration of a COX-2 inhibitor, parecoxib, both of which affect the enteric neural activity involved in physiological regulation of intestinal functions. The effect was evaluated by changes in intestinal lumen-to-blood transport of six model compounds, and blood-to-lumen clearance of 51Cr-EDTA (a mucosal barrier marker). Luminal hypotonicity alone increased the intestinal epithelial transport of 51Cr-EDTA. This effect was potentiated by two AMEs (SDS and caprate) and by parecoxib, while it was reduced by mecamylamine. Consequently, the impact of enteric neural activity and luminal conditions may affect nonclinical determinations of intestinal permeability. In vivo predictions based on animal intestinal perfusion models can be improved by considering these effects. The in vivo relevance can be increased by treating rats with a COX-2 inhibitor prior to surgery. This decreases the risk of surgery-induced ileus, which may affect the physiological regulation of mucosal permeability.
Collapse
|
33
|
Abstract
Gut barrier disruption is often implicated in pathogenesis associated with burn and other traumatic injuries. In this study, the authors examined whether therapeutic intervention with mesalamine (5-aminosalicylic acid [5-ASA]), a common anti-inflammatory treatment for patients with inflammatory bowel disease, reduces intestinal inflammation and maintains normal barrier integrity after burn injury. Male C57BL/6 mice were administered an approximately 20% TBSA dorsal scald burn and resuscitated with either 1 ml normal saline or 100 mg/kg of 5-ASA dissolved in saline. The authors examined intestinal transit and permeability along with the levels of small intestine epithelial cell proinflammatory cytokines and tight junction protein expression 1 day after burn injury in the presence or absence of 5-ASA. A significant decrease in intestinal transit was observed 1 day after burn injury, which accompanied a significant increase in gut permeability. The authors found a substantial increase in the levels of interleukin (IL)-6 (by ~1.5-fold) and IL-18 (by ~2.5-fold) in the small intestine epithelial cells 1 day after injury. Furthermore, burn injury decreases the expression of the tight junction proteins claudin-4, claudin-8, and occludin. Treatment with 5-ASA after burn injury prevented the burn-induced increase in permeability, partially restored normal intestinal transit, normalized the levels of the proinflammatory cytokines IL-6 and IL-18, and restored tight junction protein expression of claudin-4 and occludin compared with that of sham levels. Together these findings suggest that 5-ASA can potentially be used as treatment to decrease intestinal inflammation and normalize intestinal function after burn injury.
Collapse
|
34
|
Pearce SC, Al-Jawadi A, Kishida K, Yu S, Hu M, Fritzky LF, Edelblum KL, Gao N, Ferraris RP. Marked differences in tight junction composition and macromolecular permeability among different intestinal cell types. BMC Biol 2018; 16:19. [PMID: 29391007 PMCID: PMC5793346 DOI: 10.1186/s12915-018-0481-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mammalian small intestinal tight junctions (TJ) link epithelial cells to one another and function as a permselective barrier, strictly modulating the passage of ions and macromolecules through the pore and leak pathways, respectively, thereby preventing the absorption of harmful compounds and microbes while allowing regulated transport of nutrients and electrolytes. Small intestinal epithelial permeability is ascribed primarily to the properties of TJs between adjoining enterocytes (ENTs), because there is almost no information on TJ composition and the paracellular permeability of nonenterocyte cell types that constitute a small but significant fraction of the intestinal epithelia. RESULTS Here we directed murine intestinal crypts to form specialized organoids highly enriched in intestinal stem cells (ISCs), absorptive ENTs, secretory goblet cells, or Paneth cells. The morphological and morphometric characteristics of these cells in organoids were similar to those in vivo. The expression of certain TJ proteins varied with cell type: occludin and tricellulin levels were high in both ISCs and Paneth cells, while claudin-1, -2, and -7 expression was greatest in Paneth cells, ISCs, and ENTs, respectively. In contrast, the distribution of claudin-15, zonula occludens 1 (ZO-1), and E-cadherin was relatively homogeneous. E-cadherin and claudin-7 marked mainly the basolateral membrane, while claudin-2, ZO-1, and occludin resided in the apical membrane. Remarkably, organoids enriched in ENTs or goblet cells were over threefold more permeable to 4 and 10 kDa dextran compared to those containing stem and Paneth cells. The TJ-regulator larazotide prevented the approximately tenfold increases in dextran flux induced by the TJ-disrupter AT1002 into organoids of different cell types, indicating that this ZO toxin nonselectively increases permeability. Forced dedifferentiation of mature ENTs results in the reacquisition of ISC-like characteristics in TJ composition and dextran permeability, suggesting that the post-differentiation properties of TJs are not hardwired. CONCLUSIONS Differentiation of adult intestinal stem cells into mature secretory and absorptive cell types causes marked, but potentially reversible, changes in TJ composition, resulting in enhanced macromolecular permeability of the TJ leak pathway between ENTs and between goblet cells. This work advances our understanding of how cell differentiation affects the paracellular pathway of epithelia.
Collapse
Affiliation(s)
- Sarah C Pearce
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
- Present address: Performance Nutrition Team, Combat Feeding Directorate, US Army, 15 General Greene Ave, Natick, MA, 01760-5018, USA
| | - Arwa Al-Jawadi
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Kunihiro Kishida
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
- Present address: Department of Science and Technology on Food Safety, Kindai University, Wakayama, 649-6493, Japan
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Life Science Center, 225 University Avenue, Newark, NJ, 07102, USA
| | - Madeleine Hu
- Department of Pathology & Laboratory Medicine, Center for Inflammation and Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Luke F Fritzky
- Advanced Microscopic Imaging Core Facility, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Karen L Edelblum
- Department of Pathology & Laboratory Medicine, Center for Inflammation and Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Life Science Center, 225 University Avenue, Newark, NJ, 07102, USA
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| |
Collapse
|
35
|
Shashikanth N, Yeruva S, Ong MLDM, Odenwald MA, Pavlyuk R, Turner JR. Epithelial Organization: The Gut and Beyond. Compr Physiol 2017; 7:1497-1518. [DOI: 10.1002/cphy.c170003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Dahlgren D, Roos C, Lundqvist A, Tannergren C, Langguth P, Sjöblom M, Sjögren E, Lennernäs H. Preclinical Effect of Absorption Modifying Excipients on Rat Intestinal Transport of Model Compounds and the Mucosal Barrier Marker 51Cr-EDTA. Mol Pharm 2017; 14:4243-4251. [PMID: 28737406 DOI: 10.1021/acs.molpharmaceut.7b00353] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is a renewed interest from the pharmaceutical field to develop oral formulations of compounds, such as peptides, oligonucleotides, and polar drugs. However, these often suffer from insufficient absorption across the intestinal mucosal barrier. One approach to circumvent this problem is the use of absorption modifying excipient(s) (AME). This study determined the absorption enhancing effect of four AMEs (sodium dodecyl sulfate, caprate, chitosan, N-acetylcysteine) on five model compounds in a rat jejunal perfusion model. The aim was to correlate the model compound absorption to the blood-to-lumen clearance of the mucosal marker for barrier integrity, 51Cr-EDTA. Sodium dodecyl sulfate and chitosan increased the absorption of the low permeation compounds but had no effect on the high permeation compound, ketoprofen. Caprate and N-acetylcysteine did not affect the absorption of any of the model compounds. The increase in absorption of the model compounds was highly correlated to an increased blood-to-lumen clearance of 51Cr-EDTA, independent of the AME. Thus, 51Cr-EDTA could be used as a general, sensitive, and validated marker molecule for absorption enhancement when developing novel formulations.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmacy, Uppsala University , 751 24 Uppsala, Sweden
| | - Carl Roos
- Department of Pharmacy, Uppsala University , 751 24 Uppsala, Sweden
| | | | | | - Peter Langguth
- School of Pharmacy, Johannes Gutenberg-University , 55122 Mainz, Germany
| | - Markus Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University , 752 36 Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University , 751 24 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University , 751 24 Uppsala, Sweden
| |
Collapse
|
37
|
Proteolysis in Helicobacter pylori-Induced Gastric Cancer. Toxins (Basel) 2017; 9:toxins9040134. [PMID: 28398251 PMCID: PMC5408208 DOI: 10.3390/toxins9040134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022] Open
Abstract
Persistent infections with the human pathogen and class-I carcinogen Helicobacter pylori (H. pylori) are closely associated with the development of acute and chronic gastritis, ulceration, gastric adenocarcinoma and lymphoma of the mucosa-associated lymphoid tissue (MALT) system. Disruption and depolarization of the epithelium is a hallmark of H. pylori-associated disorders and requires extensive modulation of epithelial cell surface structures. Hence, the complex network of controlled proteolysis which facilitates tissue homeostasis in healthy individuals is deregulated and crucially contributes to the induction and progression of gastric cancer through processing of extracellular matrix (ECM) proteins, cell surface receptors, membrane-bound cytokines, and lateral adhesion molecules. Here, we summarize the recent reports on mechanisms how H. pylori utilizes a variety of extracellular proteases, involving the proteases Hp0169 and high temperature requirement A (HtrA) of bacterial origin, and host matrix-metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs) and tissue inhibitors of metalloproteinases (TIMPs). H. pylori-regulated proteases represent predictive biomarkers and attractive targets for therapeutic interventions in gastric cancer.
Collapse
|
38
|
Contributions of intestinal epithelial barriers to health and disease. Exp Cell Res 2017; 358:71-77. [PMID: 28342899 DOI: 10.1016/j.yexcr.2017.03.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
A core function of epithelia is to form barriers that separate tissue compartments within complex organisms. These barriers also separate the internal milieu from the external environment and are, therefore, an essential component of host defense. However, in many cases, a perfect barrier would be improbable with life itself. Examples include the air spaces within the lungs, the renal tubules, and the intestines. Here, we focus on the mechanisms by which barriers are assembled, maintained, and regulated in the context of health and disease. Because of its unique challenges and extensive study, we focus on the gastrointestinal tract as an organ-specific example of the essential contributions of the paracellular barrier to life.
Collapse
|
39
|
Międzybrodzki R, Kłak M, Jończyk-Matysiak E, Bubak B, Wójcik A, Kaszowska M, Weber-Dąbrowska B, Łobocka M, Górski A. Means to Facilitate the Overcoming of Gastric Juice Barrier by a Therapeutic Staphylococcal Bacteriophage A5/80. Front Microbiol 2017; 8:467. [PMID: 28386250 PMCID: PMC5362586 DOI: 10.3389/fmicb.2017.00467] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/07/2017] [Indexed: 01/12/2023] Open
Abstract
In this article we compare the efficacy of different pharmacological agents (ranitidine, and omeprazole) to support phage transit from stomach to distal portions of the gastrointestinal tract in rats. We show that a temporal modification of environment in the animal stomach may protect Twort-like therapeutic antistaphylococcal phage A5/80 (from bacteriophage collection of the Hirszfeld Institute of Immunology and Experimental Therapy PAS in Wroclaw, Poland) from the inactivation by gastric juice effectively enough to enable a significant fraction of orally administered A5/80 to pass to the intestine. Interestingly, we found that yogurt may be a relatively strong in enhancing phage transit. Given the immunomodulating activities of phages our data may suggest that phages and yogurt can act synergistically in mediating their probiotic activities and enhancing the effectiveness of oral phage therapy. We also demonstrate that orally applied phages of similar size, morphology, and sensitivity to acidic environment may differ in their translocation into the bloodstream. This was evident in mice in which a therapeutic staphylococcal phage A5/80 reached the blood upon oral administration combined with antacid agent whilst T4 phage was not detected even when applied in 103 times higher dose. Our findings also suggest that phage penetration from digestive tract to the blood may be species-specific.
Collapse
Affiliation(s)
- Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Department of Clinical Immunology, Transplantation Institute, Medical University of WarsawWarsaw, Poland
| | - Marlena Kłak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Research and Development Center, Regional Specialized HospitalWrocław, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Barbara Bubak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Anna Wójcik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Marta Kaszowska
- Laboratory of Microbial Immunochemistry and Vaccines, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Małgorzata Łobocka
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGWWarsaw, Poland; Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Department of Clinical Immunology, Transplantation Institute, Medical University of WarsawWarsaw, Poland
| |
Collapse
|
40
|
Abstract
A fundamental function of the intestinal epithelium is to act as a barrier that limits interactions between luminal contents such as the intestinal microbiota, the underlying immune system and the remainder of the body, while supporting vectorial transport of nutrients, water and waste products. Epithelial barrier function requires a contiguous layer of cells as well as the junctions that seal the paracellular space between epithelial cells. Compromised intestinal barrier function has been associated with a number of disease states, both intestinal and systemic. Unfortunately, most current clinical data are correlative, making it difficult to separate cause from effect in interpreting the importance of barrier loss. Some data from experimental animal models suggest that compromised epithelial integrity might have a pathogenic role in specific gastrointestinal diseases, but no FDA-approved agents that target the epithelial barrier are presently available. To develop such therapies, a deeper understanding of both disease pathogenesis and mechanisms of barrier regulation must be reached. Here, we review and discuss mechanisms of intestinal barrier loss and the role of intestinal epithelial barrier function in pathogenesis of both intestinal and systemic diseases. We conclude with a discussion of potential strategies to restore the epithelial barrier.
Collapse
Affiliation(s)
- Matthew A Odenwald
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, Illinois 60637, USA
| | - Jerrold R Turner
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, Illinois 60637, USA
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck Street, Thorn 1428, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
Application of a Human Intestinal Epithelial Cell Monolayer to the Prediction of Oral Drug Absorption in Humans as a Superior Alternative to the Caco-2 Cell Monolayer. J Pharm Sci 2016; 105:915-924. [PMID: 26869436 DOI: 10.1016/j.xphs.2015.11.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/28/2015] [Accepted: 11/18/2015] [Indexed: 11/22/2022]
Abstract
A human small intestinal epithelial cell (HIEC) monolayer was recently established in our laboratories as a novel system to evaluate the Papp (apparent permeability coefficient) of compounds during their absorption in humans. An effusion-based analysis using polyethylene glycol oligomers with molecular weights ranging from 194-898 indicated that HIEC and Caco-2 cell monolayers both had paracellular pores with 2 distinct radiuses (∼ 5 and 9-14 Å), whereas the porosity of large pores was 11-fold higher in the HIEC monolayer (44 × 10(-8)) than in the Caco-2 cells (4 × 10(-8)). A comparison between the fraction-absorbed (Fa) values observed in humans and those predicted from Papp values in both monolayers indicated that the HIEC monolayer had markedly higher precision to predict Fa values with root mean square error of 9.40 than the Caco-2 cells (root mean square error = 16.90) for 10 paracellularly absorbed compounds. Furthermore, the accuracy of the HIEC monolayer to classify the absorption of 23 test drugs with diverse absorption properties, including different pathways in the presence or absence of susceptibility to efflux transporters, was higher than that of the Caco-2 cell monolayer. In conclusion, the HIEC monolayer exhibited advantages over Caco-2 cells in the ranking and prediction of absorption of compounds in humans.
Collapse
|
42
|
Lentle RG, Sequeira IR, Hardacre AK, Reynolds G. A method for assessing real time rates of dissolution and absorption of carbohydrate and other food matrices in human subjects. Food Funct 2016; 7:2820-32. [PMID: 27228950 DOI: 10.1039/c6fo00406g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We prepared pasta of differing physical dimensions but identical chemical composition that contained two monosaccharide probes (lactulose and mannitol) that are absorbed passively and promptly excreted in urine. We showed that the rates of their liberation from the pasta under simulated gastric and small intestinal conditions largely depended upon the rate of digestion of the starchy matrix. We showed, in 20 female subjects, that excretion of mannitol was slower from the pasta with the larger particle size. Hence, after consumption of either the powdered pasta or the simple solution of probe sugars, the mass of mannitol excreted between 1 and 2½ hours was greater than that excreted between 2½ and 4 hours. However these masses did not differ significantly after consumption of the pasta pellets. These differences were not reflected in the concurrent patterns of variation in either serum glucose or insulin taken over 120 minutes, their levels being similar for pasta pellets and powder with their peak values occurring synchronously during the first hour. Hence feeding test foods impregnated with lactulose and mannitol probes provided a reproducible and practical means of assessing the timing of digestion of the carbohydrate matrix and showed that this was more protracted than suggested by post prandial glucose levels. Further, the transit times calculated on a basis of the ratios of the two marker sugars could identify that the prolongation of digestion of larger particles was not accompanied by retention of digesta in particular segments of the gut.
Collapse
Affiliation(s)
- R G Lentle
- Massey Institute of Food Science and Technology, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | | | | | | |
Collapse
|
43
|
Resendez A, Panescu P, Zuniga R, Banda I, Joseph J, Webb DL, Singaram B. Multiwell Assay for the Analysis of Sugar Gut Permeability Markers: Discrimination of Sugar Alcohols with a Fluorescent Probe Array Based on Boronic Acid Appended Viologens. Anal Chem 2016; 88:5444-52. [PMID: 27116118 DOI: 10.1021/acs.analchem.6b00880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With the aim of discerning between different sugar and sugar alcohols of biomedical relevance, such as gut permeability, arrays of 2-component probes were assembled with up to six boronic acid-appended viologens (BBVs): 4,4'-o-BBV, 3,3'-o-BBV, 3,4'-o-BBV, 4,4'-o,m-BBV, 4,7'-o-PBBV, and pBoB, each coupled to the fluorophore 8-hydroxypyrene, 1,3,6-trisulfonic acid trisodium salt (HPTS). These probes were screened for their ability to discriminate between lactulose, l-rhamnose, 3-O-methyl-d-glucose, and xylose. Binding studies of sugar alcohols mannitol, sorbitol, erythritol, adonitol, arabitol, galactitol, and xylitol revealed that diols containing threo-1,2-diol units have higher affinity for BBVs relative diols containing erythro-1,2 units. Those containing both threo-1,2- and 1,3-syn diol motifs showed high affinity for boronic acid binding. Fluorescence from the arrays were examined by principle component analysis (PCA) and linear discriminant analysis (LDA). Arrays with only three BBVs sufficed to discriminate between sugars (e.g., lactulose) and sugar alcohols (e.g., mannitol), establishing a differential probe. Compared with 4,4'-o-BBV, 2-fold reductions in lower limits of detection (LOD) and quantification (LOQ) were achieved for lactulose with 4,7-o-PBBV (LOD 41 μM, LOQ 72 μM). Using a combination of 4,4'-o-BBV, 4,7-o-PBBV, and pBoB, LDA statistically segregated lactulose/mannitol (L/M) ratios from 0.1 to 0.5, consistent with values encountered in small intestinal permeability tests. Another triad containing 3,3'-o-BBV, 4,4'-o-BBV, and 4,7-o-PBBV also discerned similar L/M ratios. This proof-of-concept demonstrates the potential for BBV arrays as an attractive alternate to HPLC to analyze mixtures of sugars and sugar alcohols in biomedical applications and sheds light on structural motifs that make this possible.
Collapse
Affiliation(s)
- Angel Resendez
- Department of Chemistry and Biochemistry, University of California Santa Cruz , Santa Cruz, California 95064, United States
| | - Priera Panescu
- Department of Chemistry and Biochemistry, University of California Santa Cruz , Santa Cruz, California 95064, United States
| | - Ruth Zuniga
- Department of Chemistry and Biochemistry, University of California Santa Cruz , Santa Cruz, California 95064, United States
| | - Isaac Banda
- Department of Chemistry and Biochemistry, University of California Santa Cruz , Santa Cruz, California 95064, United States
| | - Jorly Joseph
- IIRBS, Mahatma Gandhi University , Kottayam, 686560, India
| | - Dominic-Luc Webb
- Department of Chemistry and Biochemistry, University of California Santa Cruz , Santa Cruz, California 95064, United States.,Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University , 751 85, Uppsala, Sweden
| | - Bakthan Singaram
- Department of Chemistry and Biochemistry, University of California Santa Cruz , Santa Cruz, California 95064, United States
| |
Collapse
|
44
|
Foulke-Abel J, In J, Yin J, Zachos NC, Kovbasnjuk O, Estes MK, de Jonge H, Donowitz M. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology. Gastroenterology 2016; 150:638-649.e8. [PMID: 26677983 PMCID: PMC4766025 DOI: 10.1053/j.gastro.2015.11.047] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na(+) absorption and stimulated fluid and anion secretion under basal and regulated conditions in undifferentiated and differentiated cultures to show their functional relevance to ion transport physiology and pathophysiology. METHODS Human intestinal tissue specimens were obtained from an endoscopic biopsy or surgical resections performed at Johns Hopkins Hospital. Crypts were isolated, enteroids were propagated in culture, induced to undergo differentiation, and transduced with lentiviral vectors. Crypt markers, surface cell enzymes, and membrane ion transporters were characterized using quantitative reverse-transcription polymerase chain reaction, immunoblot, or immunofluorescence analyses. We used multiphoton and time-lapse confocal microscopy to monitor intracellular pH and luminal dilatation in enteroids under basal and regulated conditions. RESULTS Enteroids differentiated upon withdrawal of WNT3A, yielding decreased crypt markers and increased villus-like characteristics. Na(+)/H(+) exchanger 3 activity was similar in undifferentiated and differentiated enteroids, and was affected by known inhibitors, second messengers, and bacterial enterotoxins. Forskolin-induced swelling was completely dependent on cystic fibrosis transmembrane conductance regulator and partially dependent on Na(+)/H(+) exchanger 3 and Na(+)/K(+)/2Cl(-) cotransporter 1 inhibition in undifferentiated and differentiated enteroids. Increases in cyclic adenosine monophosphate with forskolin caused enteroid intracellular acidification in HCO3(-)-free buffer. Cyclic adenosine monophosphate-induced enteroid intracellular pH acidification as part of duodenal HCO3(-) secretion appears to require cystic fibrosis transmembrane conductance regulator and electrogenic Na(+)/HCO3(-) cotransporter 1. CONCLUSIONS Undifferentiated or crypt-like, and differentiated or villus-like, human enteroids represent distinct points along the crypt-villus axis; they can be used to characterize electrolyte transport processes along the vertical axis of the small intestine. The duodenal enteroid model showed that electrogenic Na(+)/HCO3(-) cotransporter 1 might be a target in the intestinal mucosa for treatment of secretory diarrheas.
Collapse
Affiliation(s)
- Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julie In
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianyi Yin
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Hugo de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
45
|
Capaldo CT, Nusrat A. Claudin switching: Physiological plasticity of the Tight Junction. Semin Cell Dev Biol 2015; 42:22-9. [PMID: 25957515 DOI: 10.1016/j.semcdb.2015.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 01/22/2023]
Abstract
Tight Junctions (TJs) are multi-molecular complexes in epithelial tissues that regulate paracellular permeability. Within the TJ complex, claudins proteins span the paracellular space to form a seal between adjacent cells. This seal allows regulated passage of ions, fluids, and solutes, contingent upon the complement of claudins expressed. With as many as 27 claudins in the human genome, the TJ seal is complex indeed. This review focuses on changes in claudin expression within the epithelial cells of the gastrointestinal tract, where claudin differentiation results in several physiologically distinct TJs within the lifetime of the cell. We also review mechanistic studies revealing that TJs are highly dynamic, with the potential to undergo molecular remodeling while structurally intact. Therefore, physiologic Tight Junction plasticity involves both the adaptability of claudin expression and gene specific retention in the TJ; a process we term claudin switching.
Collapse
Affiliation(s)
- Christopher T Capaldo
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, United States
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, United States; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
46
|
Intestinal barrier function and the brain-gut axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:73-113. [PMID: 24997030 DOI: 10.1007/978-1-4939-0897-4_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.
Collapse
|
47
|
The role of molecular remodeling in differential regulation of tight junction permeability. Semin Cell Dev Biol 2014; 36:204-12. [PMID: 25263012 DOI: 10.1016/j.semcdb.2014.09.022] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 12/13/2022]
Abstract
Tight junctions create a paracellular barrier that is essential for survival of complex organisms. In many cases tight junctions define separate, generally sterile, tissue compartments. In the skin and gut, tight junctions must also seal the paracellular space to prevent microbiota from accessing the internal milieu. This is a relatively simple task in the integument, where an absolute barrier is effective. However, intestinal epithelial tight junctions are charged with the far more complex task of supporting paracellular transport of water, ions, and nutrients while providing a barrier to microbial translocation. The delicate nature of this balance, which is disrupted in disease, makes the intestine a unique organ in which to explore the complexities of tight junction permeability and barrier regulation. Here we review recent progress in understanding the molecular determinants of barrier function and events responsible for regulation, and dysregulation, of tight junction permeability.
Collapse
|
48
|
Three dimensional human small intestine models for ADME-Tox studies. Drug Discov Today 2014; 19:1587-94. [PMID: 24853950 DOI: 10.1016/j.drudis.2014.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/04/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
In vitro human small intestine models play a crucial part in preclinical drug development. Although conventional 2D systems possess many advantages, such as facile accessibility and high-throughput capability, they can also provide misleading results due to their relatively poor recapitulation of in vivo physiology. Significant progress has recently been made in developing 3D human small intestine models, suggesting that more-reliable preclinical results could be obtained by recreating the 3D intestinal microenvironment in vitro. Although there are still many challenges, 3D human small intestine models have the potential to facilitate drug screening and drug development.
Collapse
|
49
|
Vonlaufen A, Spahr L, Apte MV, Frossard JL. Alcoholic pancreatitis: A tale of spirits and bacteria. World J Gastrointest Pathophysiol 2014; 5:82-90. [PMID: 24891979 PMCID: PMC4025076 DOI: 10.4291/wjgp.v5.i2.82] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol is a major cause of chronic pancreatitis. About 5% of alcoholics will ever suffer from pancreatitis, suggesting that additional co-factors are required to trigger an overt disease. Experimental work has implicated lipopolysaccharide, from gut-derived bacteria, as a potential co-factor of alcoholic pancreatitis. This review discusses the effects of alcohol on the gut flora, the gut barrier, the liver-and the pancreas and proposes potential interventional strategies. A better understanding of the interaction between the gut, the liver and the pancreas may provide valuable insight into the pathophysiology of alcoholic pancreatitis.
Collapse
|
50
|
Murugesan G, Gabler N, Persia M. Effects of direct-fed microbial supplementation on broiler performance, intestinal nutrient transport and integrity under experimental conditions with increased microbial challenge. Br Poult Sci 2014; 55:89-97. [DOI: 10.1080/00071668.2013.865834] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|