1
|
Li M, Zhao DQ, Kong XY, Wang SM. Effects of SCT genetic polymorphisms on methotrexate concentrations and toxicities in Chinese children with acute lymphoblastic leukemia. Leuk Lymphoma 2025; 66:1068-1078. [PMID: 39798147 DOI: 10.1080/10428194.2025.2451059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Solute carrier (SLC) transporters play a crucial role in facilitating the cellular uptake of various anticancer drugs, such as methotrexate (MTX). This study aimed to analyze the impact of nonsynonymous single nucleotide polymorphisms (SNPs) in SLC19A1, SLCO1B1, and SLCO1B3 on MTX exposure, toxicities, and prognosis in 148 patients with acute lymphoblastic leukemia (ALL). The SLCO1B3 rs7311358 polymorphism was significantly associated with the median dose-normalized MTX concentrations at 24 h (p < .05). There were significant differences in the proportions of patients with serum MTX levels >40 µmol/L at 24 h among SLC19A1 rs1051266 GG, GA, and AA genotype carriers (29.0, 24.7, and 6.2%, respectively, p < .05). The SLC19A1 rs1051266 G > A polymorphism also displayed significant associations with hematological (p < .05) and hepatic toxicities (p < .01). Our findings indicate that the analysis of SNPs in solute carrier transporters (SCTs) could offer valuable insights into the interpatient variability of MTX pharmacokinetics and toxicities in ALL children.
Collapse
Affiliation(s)
- Miao Li
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dan-Qi Zhao
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Pharmacy, College of Pharmacy, Capital Medical University, Beijing, China
| | - Xiao-Yan Kong
- Department of Pharmacy, Armed Police Beijing Corps Hospital, Beijing, China
| | - Shu-Mei Wang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Sung MW, Hu K, Hurlimann LM, Lees JA, Fennell KF, West MA, Costales C, Rodrigues AD, Zimmermann I, Dawson RJP, Liu S, Han S. Cyclosporine A sterically inhibits statin transport by solute carrier OATP1B1. J Biol Chem 2025; 301:108484. [PMID: 40199401 PMCID: PMC12127550 DOI: 10.1016/j.jbc.2025.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Members of the Organic Anion Transporter Polypeptides (OATP) are integral membrane proteins responsible for facilitating the transport of organic anions across the cell membrane. OATP1B1 (SLCO1B1), the prototypic OATP family member, is the most abundant uptake transporter in the liver and a key mediator of the hepatic uptake and clearance of numerous endogenous and xenobiotic compounds. It serves as a locus of important drug-drug interactions, such as those between statins and cyclosporine A, and carries the potential to enable liver-targeting therapeutics. In this study, we report cryo-EM structures of OATP1B1 and its complexes with one of its statin substrates, atorvastatin, and an inhibitor, cyclosporine A. This structural analysis has yielded insights into the mechanisms underlying the OATP1B1-mediated transport of statins and the inhibitory effect of cyclosporine A. These findings contribute to a better understanding of the molecular processes involved in drug transport and offer potential avenues for the development of targeted medications for liver-related conditions.
Collapse
Affiliation(s)
- Min Woo Sung
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Kuan Hu
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | | | - Joshua A Lees
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Kimberly F Fennell
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Mark A West
- Pharmacokinetics, Dynamics, and Metabolism, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Chester Costales
- Pharmacokinetics, Dynamics, and Metabolism, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Amilcar David Rodrigues
- Pharmacokinetics, Dynamics, and Metabolism, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | | | | | - Shenping Liu
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA.
| | - Seungil Han
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA.
| |
Collapse
|
3
|
Ayub Ali M, Maalouf MA, Feng D, Rashid M, Gehrke NR, Chhonker YS, Murry DJ, Wiemer DF, Holstein SA. Impact of fixed phosphorus position on activity of triazole bisphosphonates as geranylgeranyl diphosphate synthase inhibitors. Bioorg Med Chem 2025; 122:118140. [PMID: 40043324 DOI: 10.1016/j.bmc.2025.118140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Geranylgeranyl diphosphate synthase (GGDPS) produces the 20-carbon isoprenoid species used in protein geranylgeranylation reactions. Inhibition of GGDPS has emerged as a novel means of disrupting the activity of geranylgeranylated proteins in cancers such as myeloma and osteosarcoma. We have focused on developing a series of isoprenoid triazole bisphosphonate-based GGDPS inhibitors, demonstrating a complex structure-activity relationship (SAR), not only at the enzymatic level, but also at the cellular and whole organism levels. To further investigate this SAR, we have prepared a family of novel derivatives that have a fixed phosphorus position by virtue of vinyl, epoxy or cyclopropyl groups that incorporate the α-carbon position. Additional modifications include compounds with homocitronellyl chains instead of homogeranyl or homoneryl chains. All new compounds were evaluated in GGDPS enzyme assays and in cellular assays involving a panel of human myeloma and osteosarcoma cell lines. The homocitronellyl derivatives displayed markedly reduced activity in both enzymatic and cellular assays. While all of the homogeranyl/homoneryl vinyl/epoxy/cyclopropyl compounds had relatively similar activity in the enzyme assay (IC50's 0.37-2.87 μM), the cellular potencies varied more dramatically (ranging from 10 nM to no activity at 100 μM), depending on the olefin stereochemistry, the specific α-carbon modification and the tumor cell type. These findings, coupled with POM-prodrug and membrane permeability studies, support the hypothesis that there are specific membrane transporters mediating cellular uptake of these GGDPS inhibitors. Future studies focused on the identification of the membrane transporters responsible for the cellular uptake will enable further understanding of this complex SAR.
Collapse
Affiliation(s)
- Md Ayub Ali
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA; Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh
| | - Mona A Maalouf
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Dan Feng
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mamunur Rashid
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nathaniel R Gehrke
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daryl J Murry
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, USA
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Deng Z, Yang Z, Li L, Zeng G, Meng Z, Liu R. A lipid metabolism related gene signature predicts postoperative recurrence in pancreatic cancer through multicenter cohort validation. Sci Rep 2025; 15:11683. [PMID: 40188284 PMCID: PMC11972318 DOI: 10.1038/s41598-025-96855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
Postoperative recurrence of pancreatic adenocarcinoma (PAAD) remains a major challenge. This study aims to establish and validate a lipid metabolism-related prognostic model to predict recurrence in PAAD patients. The TCGA-PAAD database was used to establish a training cohort, which was validated using the ICGC database and multiple center cohorts. A prognostic model based on LASSO Cox regression and a nomogram was developed and further validated. Among 196 lipid metabolism-related genes, four were selected for the prognostic model. Patients were stratified into high- and low-risk groups based on the risk score. Univariate and multivariate Cox regression analyses showed that tumor site, T stage, N stage, M stage, and risk score were significantly associated with progression-free interval (PFI). High-risk patients had worse PFI, overall survival (OS), and disease-specific survival (DSS) (all P < 0.05). Time-dependent ROC and decision curve analyses confirmed the superior diagnostic capacity of the nomogram. GSEA revealed enrichment in G2M checkpoint, glycolysis, estrogen response, and hypoxia pathways for the high-risk group. Additionally, high-risk scores correlated with poor immune infiltration, gene mutations, and tumor mutational burden (TMB). Single-cell analysis suggested that risk genes interact with various cell types to promote PAAD progression. A novel lipid metabolism-related prognostic model was developed and validated to predict recurrence and survival in PAAD patients, with strong accuracy and stability.
Collapse
Affiliation(s)
- Zhaoda Deng
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zitong Yang
- Medical School of Chinese PLA, Beijing, China
| | - Lincheng Li
- Department of Surgery, Second Mobile Corps Hospital of Chinese People's Armed Police Force, Wuxi, China
| | - Guineng Zeng
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Nankai University School of Medicine, Nankai University, Tianjin, 300300, China
| | - Zihe Meng
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Inner Mongolia Medical University, Hohhot, China
| | - Rong Liu
- Medical School of Chinese PLA, Beijing, China.
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Schaller S, Michon I, Baier V, Martins FS, Nolain P, Taneja A. Evaluation of BCRP-Related DDIs Between Methotrexate and Cyclosporin A Using Physiologically Based Pharmacokinetic Modelling. Drugs R D 2025; 25:1-17. [PMID: 39715910 PMCID: PMC12011704 DOI: 10.1007/s40268-024-00495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVE This study provides a physiologically based pharmacokinetic (PBPK) model-based analysis of the potential drug-drug interaction (DDI) between cyclosporin A (CsA), a breast cancer resistance protein transporter (BCRP) inhibitor, and methotrexate (MTX), a putative BCRP substrate. METHODS PBPK models for CsA and MTX were built using open-source tools and published data for both model building and for model verification and validation. The MTX and CsA PBPK models were evaluated for their application in simulating BCRP-related DDIs. A qualification of an introduced empirical uniform in vitro scaling factor of Ki values for transporter inhibition by CsA was conducted by using a previously developed model of rosuvastatin (sensitive index BCRP substrate), and assessing if corresponding DDI ratios were well captured. RESULTS Within the simulated DDI scenarios for MTX in the presence of CsA, the developed models could capture the observed changes in PK parameters as changes in the area under the curve ratios (area under the curve during DDI/area under the curve control) of 1.30 versus 1.31 observed and the DDI peak plasma concentration ratios (peak plasma concentration during DDI/peak plasma concentration control) of 1.07 versus 1.28 observed. The originally reported in vitro Ki values of CsA were scaled with the uniform qualified scaling factor for their use in the in vivo DDI simulations to correct for the low intracellular unbound fraction of the CsA effector concentration. The resulting predicted versus observed ratios of peak plasma concentration and area under the curve DDI ratios with MTX were 0.82 and 0.99, respectively, indicating adequate model accuracy and choice of a scaling factor to capture the observed DDI. CONCLUSIONS All models have been comprehensively documented and made publicly available as tools to support the drug development and clinical research community and further community-driven model development.
Collapse
Affiliation(s)
| | | | | | | | | | - Amit Taneja
- Galapagos SASU, Romainville, France
- Simulations Plus, Inc., Lancaster, California, USA
| |
Collapse
|
6
|
Surrer DB, Schüsser S, König J, Fromm MF, Gessner A. Transport of aromatic amino acids l-tryptophan, l-tyrosine, and l-phenylalanine by the organic anion transporting polypeptide (OATP) 3A1. FEBS J 2024; 291:4732-4743. [PMID: 39206635 DOI: 10.1111/febs.17255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Amino acids are important for cellular metabolism. Their uptake across the plasma membrane is mediated by transport proteins. Despite the fact that the organic anion transporting polypeptide 4C1 (OATP4C1, Uniprot: Q6ZQN7) mediates transport of l-arginine and l-arginine derivatives, other members of the OATP family have not been characterized as amino acid transporters. The OATP family member OATP3A1 (gene symbol SLCO3A1, Uniprot: Q9UIG8) is ubiquitously expressed in human cells and highly expressed in many cancer tissues and cell lines. However, only a few substrates are known for OATP3A1. Accordingly, knowledge about its biological relevance is restricted. Our aim was to identify new substrates of OATP3A1 to gain insights into its (patho-)physiological function. In an LC-MS-based untargeted metabolomics assay using untreated OATP3A1-overexpressing HEK293 cells and control cells, we identified several amino acids as potential substrates of OATP3A1. Subsequent uptake experiments using exogenously added substrates revealed OATP3A1-mediated transport of l-tryptophan, l-tyrosine, and l-phenylalanine with 194.8 ± 28.7% (P < 0.05), 226.2 ± 18.7% (P < 0.001), and 235.2 ± 13.5% (P < 0.001), respectively, in OATP3A1-overexpressing cells compared to control cells. Furthermore, kinetic transport parameters (Km values) were determined (Trp = 61.5 ± 14.2 μm, Tyr = 220.8 ± 54.5 μm, Phe = 234.7 ± 20.6 μm). In summary, we identified the amino acids l-tryptophan, l-tyrosine, and l-phenylalanine as new substrates of OATP3A1. These findings could be used for a better understanding of (patho-)physiological processes involving increased demand of amino acids, where OATP3A1 should be considered as an important uptake transporter of l-tryptophan, l-tyrosine, and l-phenylalanine.
Collapse
Affiliation(s)
- Daniela B Surrer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Sarah Schüsser
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
7
|
Liu H, Li L, Liang T, Huan R, Hagenbuch B, Gui C. Molecular Mechanisms for the Selective Transport of Dichlorofluorescein by Human Organic Anion Transporting Polypeptide 1B1. Drug Metab Dispos 2024; 52:1323-1331. [PMID: 39209550 PMCID: PMC12164719 DOI: 10.1124/dmd.124.001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Human organic anion transporting polypeptide (OATP) 1B1 and 1B3 are two highly homologous liver-specific uptake transporters. However, 2',7'-dichlorofluorescein (DCF) is preferably transported by OATP1B1. In the present study, the molecular mechanisms for the selective transport of DCF by OATP1B1 were investigated by constructing and characterizing an array of OATP1B1/1B3 chimeras and site-directed mutagenesis. Our results show that transmembrane domain (TM) 10 is crucial for the surface expression and function of OATP1B1, in which Q541 and L545 play the most important roles in DCF transport. Replacement of TM10 in OATP1B1 with its OATP1B3 counterpart led to OATP1B1's complete intracellular retention. Q541 and L545 may interact with DCF directly via hydrogen bonding and hydrophobic interactions. The decrease of DCF uptake by Q541A and L545S was due to their reduced binding affinity for DCF as compared with OATP1B1. In addition, Q541 and L545 are also crucial for the transport of estradiol-17β-glucuronide (E17βG) but not for the transport of estrone-3-sulfate (E3S), indicating different interaction modes between DCF/E17βG and E3S in OATP1B1. Taken together, Q541 and L545 in TM10 are critical for OATP1B1-mediated DCF uptake, but their effect is substrate-dependent. SIGNIFICANCE STATEMENT: The key TMs and amino acid residues for the selective transport of DCF by OATP1B1 were identified. TM10 is crucial for the surface expression and function of OATP1B1. Within TM10, Q541 and L545 played the most significant roles and affected the function of OATP1B1 in a substrate-dependent manner. This information is crucial for a better understanding of the mechanism of the multispecificity of OATP1B1 and as a consequence the mechanism of OATP1B1-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Han Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (H.L., L.L., T.L., R.H., C.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Lanjing Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (H.L., L.L., T.L., R.H., C.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Ting Liang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (H.L., L.L., T.L., R.H., C.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Ru Huan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (H.L., L.L., T.L., R.H., C.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Bruno Hagenbuch
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (H.L., L.L., T.L., R.H., C.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (H.L., L.L., T.L., R.H., C.G.); and Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| |
Collapse
|
8
|
Slepnev AA, Abalenikhina YV, Shchulkin AV, Ananyeva PD, Yakusheva EN. Regulation of the Organic Anion Transporting Polypeptide 1B3 (OATP1B3) by Sex Hormones. Bull Exp Biol Med 2024; 177:630-634. [PMID: 39343843 DOI: 10.1007/s10517-024-06238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Indexed: 10/01/2024]
Abstract
The mechanisms of regulation of the organic anion transporting polypeptide OATP1B3 by sex hormones were studied using HepG2 cells. Estradiol, progesterone, and testosterone were added to cells at concentrations of 1, 10, 100 μM for 24 h. The relative content of OATP1B3 was evaluated by Western blotting. Estradiol at concentrations of 10 and 100 μM increased the level of OATP1B3 acting through the farnesoid X-receptor, testosterone at concentrations of 1, 10, and 100 μM increased the expression of the transporter protein due to its effect on the liver X-receptor subtype α (LXRα), and progesterone did not affect the expression of OATP1B3.
Collapse
Affiliation(s)
- A A Slepnev
- Ryazan State Medical University, Ministry of Health of the Russian Federation, Ryazan, Russia
| | - Yu V Abalenikhina
- Ryazan State Medical University, Ministry of Health of the Russian Federation, Ryazan, Russia
| | - A V Shchulkin
- Ryazan State Medical University, Ministry of Health of the Russian Federation, Ryazan, Russia.
| | - P D Ananyeva
- Ryazan State Medical University, Ministry of Health of the Russian Federation, Ryazan, Russia
| | - E N Yakusheva
- Ryazan State Medical University, Ministry of Health of the Russian Federation, Ryazan, Russia
| |
Collapse
|
9
|
Goetz A, Verloh N, Utpatel K, Fellner C, Rennert J, Einspieler I, Doppler M, Luerken L, Alizadeh LS, Uller W, Stroszczynski C, Haimerl M. Differentiating Well-Differentiated from Poorly-Differentiated HCC: The Potential and the Limitation of Gd-EOB-DTPA in the Presence of Liver Cirrhosis. Diagnostics (Basel) 2024; 14:1676. [PMID: 39125552 PMCID: PMC11311873 DOI: 10.3390/diagnostics14151676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
This study uses magnetic resonance imaging (MRI) to investigate the potential of the hepatospecific contrast agent gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) in distinguishing G1- from G2/G3-differentiated hepatocellular carcinoma (HCC). Our approach involved analyzing the dynamic behavior of the contrast agent in different phases of imaging by signal intensity (SI) and lesion contrast (C), to surrounding liver parenchyma, and comparing it across distinct groups of patients differentiated based on the histopathological grading of their HCC lesions and the presence of liver cirrhosis. Our results highlighted a significant contrast between well- and poorly-differentiated lesions regarding the lesion contrast in the arterial and late arterial phases. Furthermore, the hepatobiliary phase showed limited diagnostic value in cirrhotic liver parenchyma due to altered pharmacokinetics. Ultimately, our findings underscore the potential of Gd-EOB-DTPA-enhanced MRI as a tool for improving preoperative diagnosis and treatment selection for HCC while emphasizing the need for continued research to overcome the diagnostic complexities posed by the disease.
Collapse
Affiliation(s)
- Andrea Goetz
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Niklas Verloh
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Kirsten Utpatel
- Department of Pathology, University Regensburg, 93053 Regensburg, Germany
| | - Claudia Fellner
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Janine Rennert
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ingo Einspieler
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Doppler
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Lukas Luerken
- Department of Radiology, Klinikum Würzburg Mitte, 97074 Würzburg, Germany
| | - Leona S. Alizadeh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt am Main, Germany
| | - Wibke Uller
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | | | - Michael Haimerl
- Department of Radiology, Klinikum Würzburg Mitte, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Mondal J, Basu T, Das A. Application of a novel remote sensing ecological index (RSEI) based on geographically weighted principal component analysis for assessing the land surface ecological quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32350-32370. [PMID: 38649612 DOI: 10.1007/s11356-024-33330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
In evaluating the integrated remote sensing-based ecological index (RSEIPCA), principal component analysis (PCA) has been extensively utilized. However, the conventional PCA-based RSEI (RSEIPCA) cannot accurately evaluate component indicators' spatially shifting relative significance. This study presented a novel RSEI evaluation strategy based on geographically weighted principal component analysis (RSEIGWPCA) to address this deficiency. Second, compared to the classic RSEIPCA, RSEIGWPCA was tested at English Bazar and surrounding areas using two-fold validation. In this regard, the Jaccard test from a different setting and correlation analysis were utilized to examine the geographical distribution of RSEI derived by PCA and GWPCA. The validation output revealed better effectiveness of GWPCA over PCA in assessing the RSEI. The findings revealed that (i) in RSEI assessment, the spatial heterogeneity of the dataset helped to formulate individual weights by GWPCA that was not performed by PCA; and (ii) the areas having higher RSEI were primarily located around the Chatra wetland of this study area, and the areas with lower RSEI were located mainly in the industrial part. It has been concluded that RSEIGWPCA is a helpful approach in the RSEI evaluating for the regional and local scale like English bazaar city and its neighbourhood.
Collapse
Affiliation(s)
- Jayanta Mondal
- Department of Geography, University of Gour Banga, Malda, West Bengal, 732103, India
| | | | - Arijit Das
- Department of Geography, University of Gour Banga, Malda, West Bengal, 732103, India
| |
Collapse
|
11
|
Penna GC, Salas-Lucia F, Ribeiro MO, Bianco AC. Gene polymorphisms and thyroid hormone signaling: implication for the treatment of hypothyroidism. Endocrine 2024; 84:309-319. [PMID: 37740833 PMCID: PMC10959761 DOI: 10.1007/s12020-023-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Mutations and single nucleotide polymorphisms (SNPs) in the genes encoding the network of proteins involved in thyroid hormone signaling (TH) may have implications for the effectiveness of the treatment of hypothyroidism with LT4. It is conceivable that loss-of-function mutations or SNPs impair the ability of LT4 to be activated to T3, reach its targets, and ultimately resolve symptoms of hypothyroidism. Some of these patients do benefit from therapy containing LT4 and LT3. METHODS Here, we reviewed the PubMed and examined gene mutations and SNPs in the TH cellular transporters, deiodinases, and TH receptors, along with their impact on TH signaling, and potential clinical implications. RESULTS In some mechanisms, such as the Thr92Ala-DIO2 SNP, there is a compelling rationale for reduced T4 to T3 activation that limits the effectiveness of LT4 to restore euthyroidism. In other mechanisms, a potential case can be made but more studies with a larger number of individuals are needed. DISCUSSION/CONCLUSION Understanding the clinical impact of the genetic makeup of LT4-treated patients may help in the preemptive identification of those individuals that would benefit from therapy containing LT3.
Collapse
Affiliation(s)
- Gustavo C Penna
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo, SP, Brazil
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Ungvári O, Bakos É, Kovacsics D, Özvegy-Laczka C. The fluorescence-based competitive counterflow assay developed for organic anion transporting polypeptides 1A2, 1B1, 1B3 and 2B1 identifies pentamidine as a selective OATP1A2 substrate. FASEB J 2023; 37:e23223. [PMID: 37781971 DOI: 10.1096/fj.202300530rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Organic anion transporting polypeptides OATP1A2, OATP1B1, OATP1B3 and OATP2B1 are Na+ - and ATP-independent exchangers of large, organic compounds, encompassing structurally diverse xenobiotics, including various drugs. These OATPs influence intestinal absorption (OATP2B1), hepatic clearance (OATP1B1/3) and blood to brain penetration (OATP1A2, OATP2B1) of their drug substrates. Consequently, OATP-mediated drug or food interactions may lead to altered pharmacokinetics and toxicity. During drug development, investigation of hepatic OATP1B1 and OATP1B3 is recommended by international regulatory agencies. Most frequently, OATP-drug interactions are investigated in an indirect assay, i.e., by examining uptake inhibition of a radioactive or fluorescent probe. However, indirect assays do not distinguish between transported substrates and non-transported OATP inhibitors. To fill this hiatus, a novel assay, termed competitive counterflow (CCF) has been developed and has since been applied for several OATPs to differentiate between substrates and non-transported inhibitors. However, previous OATP CCF assays, with the exception of that for OATP1B1, used radioactive probes. In the current study, we demonstrate that sulforhodamine 101 or pyranine can be used as fluorescent probes in a CCF assay to identify transported substrates of OATP1A2, or OATPs 1B1, 1B3 and 2B1, respectively. With the help of the newly developed fluorescence-based CCF method, we identify the FDA-approved anti-protozoal drug, pentamidine as a unique substrate of OATP1A2. Furthermore, we confirm the selective, OATP1A2-mediated uptake of pentamidine in a cytotoxicity assay. Based on our results, OATP1A2 may be an important determinant of pentamidine transport through the blood-brain barrier.
Collapse
Affiliation(s)
- Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Daniella Kovacsics
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
13
|
Yu L, Xu M, Yan Y, Huang S, Yuan M, Cui B, Lv C, Zhang Y, Wang H, Jin X, Hui R, Wang Y. ZFYVE28 mediates insulin resistance by promoting phosphorylated insulin receptor degradation via increasing late endosomes production. Nat Commun 2023; 14:6833. [PMID: 37884540 PMCID: PMC10603069 DOI: 10.1038/s41467-023-42657-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Insulin resistance is associated with many pathological conditions, and an in-depth understanding of the mechanisms involved is necessary to improve insulin sensitivity. Here, we show that ZFYVE28 expression is decreased in insulin-sensitive obese individuals but increased in insulin-resistant individuals. Insulin signaling inhibits ZFYVE28 expression by inhibiting NOTCH1 via the RAS/ERK pathway, whereas ZFYVE28 expression is elevated due to impaired insulin signaling in insulin resistance. While Zfyve28 overexpression impairs insulin sensitivity and causes lipid accumulation, Zfyve28 knockout in mice can significantly improve insulin sensitivity and other indicators associated with insulin resistance. Mechanistically, ZFYVE28 colocalizes with early endosomes via the FYVE domain, which inhibits the generation of recycling endosomes but promotes the conversion of early to late endosomes, ultimately promoting phosphorylated insulin receptor degradation. This effect disappears with deletion of the FYVE domain. Overall, in this study, we reveal that ZFYVE28 is involved in insulin resistance by promoting phosphorylated insulin receptor degradation, and ZFYVE28 may be a potential therapeutic target to improve insulin sensitivity.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengchen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupeng Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuchen Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Lv
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongrui Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolei Jin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Parvez MM, Sadighi A, Ahn Y, Keller SF, Enoru JO. Uptake Transporters at the Blood-Brain Barrier and Their Role in Brain Drug Disposition. Pharmaceutics 2023; 15:2473. [PMID: 37896233 PMCID: PMC10610385 DOI: 10.3390/pharmaceutics15102473] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Uptake drug transporters play a significant role in the pharmacokinetic of drugs within the brain, facilitating their entry into the central nervous system (CNS). Understanding brain drug disposition is always challenging, especially with respect to preclinical to clinical translation. These transporters are members of the solute carrier (SLC) superfamily, which includes organic anion transporter polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), and amino acid transporters. In this systematic review, we provide an overview of the current knowledge of uptake drug transporters in the brain and their contribution to drug disposition. Here, we also assemble currently available proteomics-based expression levels of uptake transporters in the human brain and their application in translational drug development. Proteomics data suggest that in association with efflux transporters, uptake drug transporters present at the BBB play a significant role in brain drug disposition. It is noteworthy that a significant level of species differences in uptake drug transporters activity exists, and this may contribute toward a disconnect in inter-species scaling. Taken together, uptake drug transporters at the BBB could play a significant role in pharmacokinetics (PK) and pharmacodynamics (PD). Continuous research is crucial for advancing our understanding of active uptake across the BBB.
Collapse
Affiliation(s)
- Md Masud Parvez
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Armin Sadighi
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Steve F. Keller
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Julius O. Enoru
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| |
Collapse
|
15
|
Dhakne P, Pillai M, Mishra S, Chatterjee B, Tekade RK, Sengupta P. Refinement of safety and efficacy of anti-cancer chemotherapeutics by tailoring their site-specific intracellular bioavailability through transporter modulation. Biochim Biophys Acta Rev Cancer 2023; 1878:188906. [PMID: 37172652 DOI: 10.1016/j.bbcan.2023.188906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Low intracellular bioavailability, off-site toxicities, and multi drug resistance (MDR) are the major constraints involved in cancer chemotherapy. Many anticancer molecules fail to become a good lead in drug discovery because of their poor site-specific bioavailability. Concentration of a molecule at target sites is largely varied because of the wavering expression of transporters. Recent anticancer drug discovery strategies are paying high attention to enhance target site bioavailability by modulating drug transporters. The level of genetic expression of transporters is an important determinant to understand their ability to facilitate drug transport across the cellular membrane. Solid carrier (SLC) transporters are the major influx transporters involved in the transportation of most anti-cancer drugs. In contrast, ATP-binding cassette (ABC) superfamily is the most studied class of efflux transporters concerning cancer and is significantly involved in efflux of chemotherapeutics resulting in MDR. Balancing SLC and ABC transporters is essential to avoid therapeutic failure and minimize MDR in chemotherapy. Unfortunately, comprehensive literature on the possible approaches of tailoring site-specific bioavailability of anticancer drugs through transporter modulation is not available till date. This review critically discussed the role of different specific transporter proteins in deciding the intracellular bioavailability of anticancer molecules. Different strategies for reversal of MDR in chemotherapy by incorporation of chemosensitizers have been proposed in this review. Targeted strategies for administration of the chemotherapeutics to the intracellular site of action through clinically relevant transporters employing newer nanotechnology-based formulation platforms have been explained. The discussion embedded in this review is timely considering the current need of addressing the ambiguity observed in pharmacokinetic and clinical outcomes of the chemotherapeutics in anti-cancer treatment regimens.
Collapse
Affiliation(s)
- Pooja Dhakne
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Megha Pillai
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sonam Mishra
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Bappaditya Chatterjee
- SVKM's NMIMS School of Pharmacy and Management, Department of Pharmaceutics, Vaikunthlal Mehta Road, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
16
|
McRae SW, Cleary M, DeRoche D, Martinez FM, Xia Y, Caravan P, Gale EM, Ronald JA, Scholl TJ. Development of a Suite of Gadolinium-Free OATP1-Targeted Paramagnetic Probes for Liver MRI. J Med Chem 2023; 66:6567-6576. [PMID: 37159947 PMCID: PMC12074583 DOI: 10.1021/acs.jmedchem.2c01561] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Five amphiphilic, anionic Mn(II) complexes were synthesized as contrast agents targeted to organic anion transporting polypeptide transporters (OATP) for liver magnetic resonance imaging (MRI). The Mn(II) complexes are synthesized in three steps, each from the commercially available trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) chelator, with T1-relaxivity of complexes ranging between 2.3 and 3.0 mM-1 s-1 in phosphate buffered saline at an applied field strength of 3.0 T. Pharmacokinetics were assessed in female BALB/c mice by acquiring T1-weighted images dynamically for 70 min after agent administration and determining contrast enhancement and washout in various organs. Uptake of Mn(II) complexes in human OATPs was investigated through in vitro assays using MDA-MB-231 cells engineered to express either OATP1B1 or OATP1B3 isoforms. Our study introduces a new class of Mn-based OATP-targeted contrast that can be broadly tuned via simple synthetic protocols.
Collapse
Affiliation(s)
- Sean W McRae
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Michael Cleary
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Daniel DeRoche
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Francisco M. Martinez
- Imaging Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ying Xia
- Imaging Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eric M. Gale
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - John A. Ronald
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Imaging Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Timothy J. Scholl
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Imaging Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Physics and Astronomy, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| |
Collapse
|
17
|
Klein I, Isensee J, Wiesen MHJ, Imhof T, Wassermann MK, Müller C, Hucho T, Koch M, Lehmann HC. Glycyrrhizic Acid Prevents Paclitaxel-Induced Neuropathy via Inhibition of OATP-Mediated Neuronal Uptake. Cells 2023; 12:cells12091249. [PMID: 37174648 PMCID: PMC10177491 DOI: 10.3390/cells12091249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Peripheral neuropathy is a common side effect of cancer treatment with paclitaxel. The mechanisms by which paclitaxel is transported into neurons, which are essential for preventing neuropathy, are not well understood. We studied the uptake mechanisms of paclitaxel into neurons using inhibitors for endocytosis, autophagy, organic anion-transporting polypeptide (OATP) drug transporters, and derivatives of paclitaxel. RT-qPCR was used to investigate the expression levels of OATPs in different neuronal tissues and cell lines. OATP transporters were pharmacologically inhibited or modulated by overexpression and CRISPR/Cas9-knock-out to investigate paclitaxel transport in neurons. Through these experiments, we identified OATP1A1 and OATP1B2 as the primary neuronal transporters for paclitaxel. In vitro inhibition of OATP1A1 and OAT1B2 by glycyrrhizic acid attenuated neurotoxicity, while paclitaxel's antineoplastic effects were sustained in cancer cell lines. In vivo, glycyrrhizic acid prevented paclitaxel-induced toxicity and improved behavioral and electrophysiological measures. This study indicates that a set of OATPs are involved in paclitaxel transport into neurons. The inhibition of OATP1A1 and OATP1B2 holds a promising strategy to prevent paclitaxel-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Ines Klein
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jörg Isensee
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Martin H J Wiesen
- Pharmacology at the Laboratory Diagnostics Center, Therapeutic Drug Monitoring, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Thomas Imhof
- Center for Biochemistry, Institute for Dental Research and Oral Musculoskeletal Research, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Meike K Wassermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Carsten Müller
- Pharmacology at the Laboratory Diagnostics Center, Therapeutic Drug Monitoring, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Center for Biochemistry, Institute for Dental Research and Oral Musculoskeletal Research, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Helmar C Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Department of Neurology, Hospital Leverkusen, 51375 Leverkusen, Germany
| |
Collapse
|
18
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
19
|
Temesszentandrási-Ambrus C, Nagy G, Bui A, Gáborik Z. A Unique In Vitro Assay to Investigate ABCB4 Transport Function. Int J Mol Sci 2023; 24:ijms24054459. [PMID: 36901890 PMCID: PMC10003010 DOI: 10.3390/ijms24054459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
ABCB4 is almost exclusively expressed in the liver, where it plays an essential role in bile formation by transporting phospholipids into the bile. ABCB4 polymorphisms and deficiencies in humans are associated with a wide spectrum of hepatobiliary disorders, attesting to its crucial physiological function. Inhibition of ABCB4 by drugs may lead to cholestasis and drug-induced liver injury (DILI), although compared with other drug transporters, there are only a few identified substrates and inhibitors of ABCB4. Since ABCB4 shares up to 76% identity and 86% similarity in the amino acid sequence with ABCB1, also known to have common drug substrates and inhibitors, we aimed to develop an ABCB4 expressing Abcb1-knockout MDCKII cell line for transcellular transport assays. This in vitro system allows the screening of ABCB4-specific drug substrates and inhibitors independently of ABCB1 activity. Abcb1KO-MDCKII-ABCB4 cells constitute a reproducible, conclusive, and easy to use assay to study drug interactions with digoxin as a substrate. Screening a set of drugs with different DILI outcomes proved that this assay is applicable to test ABCB4 inhibitory potency. Our results are consistent with prior findings concerning hepatotoxicity causality and provide new insights for identifying drugs as potential ABCB4 inhibitors and substrates.
Collapse
Affiliation(s)
- Csilla Temesszentandrási-Ambrus
- SOLVO Biotechnology, Charles River Laboratories Hungary, H-1117 Budapest, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Gábor Nagy
- SOLVO Biotechnology, Charles River Laboratories Hungary, H-1117 Budapest, Hungary
| | - Annamária Bui
- SOLVO Biotechnology, Charles River Laboratories Hungary, H-1117 Budapest, Hungary
| | - Zsuzsanna Gáborik
- SOLVO Biotechnology, Charles River Laboratories Hungary, H-1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-303879216
| |
Collapse
|
20
|
Haberkorn B, Löwen D, Meier L, Fromm MF, König J. Transcriptional Regulation of Liver-Type OATP1B3 (Lt-OATP1B3) and Cancer-Type OATP1B3 (Ct-OATP1B3) Studied in Hepatocyte-Derived and Colon Cancer-Derived Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15030738. [PMID: 36986600 PMCID: PMC10051083 DOI: 10.3390/pharmaceutics15030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Due to alternative splicing, the SLCO1B3 gene encodes two protein variants; the hepatic uptake transporter liver-type OATP1B3 (Lt-OATP1B3) and the cancer-type OATP1B3 (Ct-OATP1B3) expressed in several cancerous tissues. There is limited information about the cell type-specific transcriptional regulation of both variants and about transcription factors regulating this differential expression. Therefore, we cloned DNA fragments from the promoter regions of the Lt-SLCO1B3 and the Ct-SLCO1B3 gene and investigated their luciferase activity in hepatocellular and colorectal cancer cell lines. Both promoters showed differences in their luciferase activity depending on the used cell lines. We identified the first 100 bp upstream of the transcriptional start site as the core promoter region of the Ct-SLCO1B3 gene. In silico predicted binding sites for the transcription factors ZKSCAN3, SOX9 and HNF1α localized within these fragments were further analyzed. The mutagenesis of the ZKSCAN3 binding site reduced the luciferase activity of the Ct-SLCO1B3 reporter gene construct in the colorectal cancer cell lines DLD1 and T84 to 29.9% and 14.3%, respectively. In contrast, using the liver-derived Hep3B cells, 71.6% residual activity could be measured. This indicates that the transcription factors ZKSCAN3 and SOX9 are important for the cell type-specific transcriptional regulation of the Ct-SLCO1B3 gene.
Collapse
Affiliation(s)
| | | | | | | | - Jörg König
- Correspondence: ; Tel.: +49-9131-8522077
| |
Collapse
|
21
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
22
|
Tseng HC, Kuo CY, Liao WT, Chou TS, Hsiao JK. Indocyanine green as a near-infrared theranostic agent for ferroptosis and apoptosis-based, photothermal, and photodynamic cancer therapy. Front Mol Biosci 2022; 9:1045885. [PMID: 36567945 PMCID: PMC9768228 DOI: 10.3389/fmolb.2022.1045885] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is a recently discovered programmed cell death pathway initiated by reactive oxygen species (ROS). Cancer cells can escape ferroptosis, and strategies to promote cancer treatment are crucial. Indocyanine green (ICG) is a near-infrared (NIR) fluorescent molecule used in the imaging of residual tumor removal during surgery. Growing attention has been paid to the anticancer potential of ICG-NIR irradiation by inducing ROS production and theranostic effects. Organic anion transmembrane polypeptide (OATP) 1B3 is responsible for ICG metabolism. Additionally, the overexpression of OATP1B3 has been reported in several cancers. However, whether ICG combined with NIR exposure can cause ferroptosis remains unknown and the concept of treating OATP1B3-expressing cells with ICG-NIR irradiation has not been validated. We then used ICG as a theranostic molecule and an OATP1B3-transfected fibrosarcoma cell line, HT-1080 (HT-1080-OATP1B3), as a cell model. The HT-1080-OATP1B3 cell could promote the uptake of ICG into the cytoplasm. We observed that the HT-1080-OATP1B3 cells treated with ICG and exposed to 808-nm laser irradiation underwent apoptosis, as indicated by a reduction in mitochondrial membrane potential, and upregulation of cleaved Caspase-3 and Bax but downregulation of Bcl-2 expression. Moreover, lipid ROS production and consequent ferroptosis and hyperthermic effect were noted after ICG and laser administration. Finally, in vivo study findings also revealed that ICG with 808-nm laser irradiation has a significant effect on cancer suppression. ICG is a theranostic molecule that exerts synchronous apoptosis, ferroptosis, and hyperthermia effects and thus can be used in cancer treatment. Our findings may facilitate the development of treatment modalities for chemo-resistant cancers.
Collapse
Affiliation(s)
- Hsiang-Ching Tseng
- Department of Medical Imaging, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan,Department of Research, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - Wei-Ting Liao
- Department of Research, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - Te-Sen Chou
- Department of Medical Imaging, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan,Department of Research, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Taipei Tzu Chi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan,*Correspondence: Jong-Kai Hsiao,
| |
Collapse
|
23
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
24
|
Haberkorn B, Oswald S, Kehl N, Gessner A, Taudte RV, Dobert JP, Zunke F, Fromm MF, König J. Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) is localized in lysosomes and mediates resistance against kinase inhibitors. Mol Pharmacol 2022; 102:MOLPHARM-AR-2022-000539. [PMID: 36167426 DOI: 10.1124/molpharm.122.000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3), a splice variant of the hepatic uptake transporter OATP1B3 (liver-type; Lt-OATP1B3), is expressed in several tumor entities including colorectal carcinoma (CRC) and breast cancer. In CRC, high OATP1B3 expression has been associated with reduced progression-free and overall survival. Several kinase inhibitors used for antitumor treatment are substrates and/or inhibitors of OATP1B3 (e.g. encorafenib, vemurafenib). The functional importance of Ct-OATP1B3 has not been elucidated so far. HEK293 cells stably overexpressing Ct-OATP1B3 protein were established and compared with control cells. Confocal laser scanning microscopy, immunoblot, and proteomics-based expression analysis demonstrated that Ct-OATP1B3 protein is intracellularly localized in lysosomes of stably-transfetced cells. Cytotoxicity experiments showed that cells recombinantly expressing the Ct-OATP1B3 protein were more resistant against the kinase inhibitor encorafenib compared to control cells [e.g. encorafenib (100 µM) survival rates: 89.5% vs. 52.8%]. In line with these findings, colorectal cancer DLD1 cells endogenously expressing Ct-OATP1B3 protein had poorer survival rates when the OATP1B3 substrate bromosulfophthalein (BSP) was coincubated with encorafenib or vemurafenib compared to the incubation with the kinase inhibitor alone. This indicates a competitive inhibition of Ct-OATP1B3-mediated uptake into lysosomes by BSP. Accordingly, mass spectrometry-based drug analysis of lysosomes showed a reduced lysosomal accumulation of encorafenib in DLD1 cells additionally exposed to BSP. These results demonstrate that Ct-OATP1B3 protein is localized in the lysosomal membrane and can mediate transport of certain kinase inhibitors into lysosomes revealing a new mechanism of resistance. Significance Statement We describe the characterization of a splice variant of the liver-type uptake transporter OATP1B3 expressed in several tumor entities. This variant is localized in lysosomes mediating resistance against kinase inhibitors which are substrates of this transport protein by transporting them into lysosomes and thereby reducing the cytoplasmic concentration of these antitumor agents. Therefore, the expression of the Ct-OATP1B3 protein is associated with a better survival of cells revealing a new mechanism of drug resistance.
Collapse
Affiliation(s)
- Bastian Haberkorn
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Stefan Oswald
- Department of Pharmacology, Rostock University Medical Center, Germany
| | - Niklas Kehl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - R Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
25
|
Kodama T, Kodama M, Jenkins NA, Copeland NG, Chen HJ, Wei Z. Ring Finger Protein 125 Is an Anti-Proliferative Tumor Suppressor in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14112589. [PMID: 35681566 PMCID: PMC9179258 DOI: 10.3390/cancers14112589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide and the only cancer with an increasing incidence in the United States. Recent advances in sequencing technology have enabled detailed profiling of liver cancer genomes and revealed extensive inter- and intra-tumor heterogeneity, making it difficult to identify driver genes for HCC. To identify HCC driver genes, we performed transposon mutagenesis screens in a mouse HBV model of HCC and discovered many candidate cancer genes (SB/HBV-CCGs). Here, we show that one of these genes, RNF125 is a potent anti-proliferative tumor suppressor gene in HCC. RNF125 is one of nine CCGs whose expression was >3-fold downregulated in human HCC. Depletion of RNF125 in immortalized mouse liver cells led to tumor formation in transplanted mice and accelerated growth of human liver cancer cell lines, while its overexpression inhibited their growth, demonstrating the tumor-suppressive function of RNF125 in mouse and human liver. Whole-transcriptome analysis revealed that RNF125 transcriptionally suppresses multiple genes involved in cell proliferation and/or liver regeneration, including Egfr, Met, and Il6r. Blocking Egfr or Met pathway expression inhibited the increased cell proliferation observed in RNF125 knockdown cells. In HCC patients, low expression levels of RNF125 were correlated with poor prognosis demonstrating an important role for RNF125 in HCC. Collectively, our results identify RNF125 as a novel anti-proliferative tumor suppressor in HCC.
Collapse
Affiliation(s)
- Takahiro Kodama
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
- Correspondence: (T.K.); (Z.W.)
| | - Michiko Kodama
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| | - Nancy A. Jenkins
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Neal G. Copeland
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA;
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Zhubo Wei
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Correspondence: (T.K.); (Z.W.)
| |
Collapse
|
26
|
Choudhuri S, Klaassen CD. Molecular Regulation of Bile Acid Homeostasis. Drug Metab Dispos 2022; 50:425-455. [PMID: 34686523 DOI: 10.1124/dmd.121.000643] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
Bile acids have been known for decades to aid in the digestion and absorption of dietary fats and fat-soluble vitamins in the intestine. The development of gene knockout mice models and transgenic humanized mouse models have helped us understand other functions of bile acids, such as their role in modulating fat, glucose, and energy metabolism, and in the molecular regulation of the synthesis, transport, and homeostasis of bile acids. The G-protein coupled receptor TGR5 regulates the bile acid induced alterations of intermediary metabolism, whereas the nuclear receptor FXR regulates bile acid synthesis and homeostasis. However, this review indicates that unidentified factors in addition to FXR must exist to aid in the regulation of bile acid synthesis and homeostasis. SIGNIFICANCE STATEMENT: This review captures the present understanding of bile acid synthesis, the role of bile acid transporters in the enterohepatic circulation of bile acids, the role of the nuclear receptor FXR on the regulation of bile acid synthesis and bile acid transporters, and the importance of bile acids in activating GPCR signaling via TGR5 to modify intermediary metabolism. This information is useful for developing drugs for the treatment of various hepatic and intestinal diseases, as well as the metabolic syndrome.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland (S.C.) and Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas (C.D.K.)
| | - Curtis D Klaassen
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland (S.C.) and Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas (C.D.K.)
| |
Collapse
|
27
|
Quantification of contrast agent uptake in the hepatobiliary phase helps to differentiate hepatocellular carcinoma grade. Sci Rep 2021; 11:22991. [PMID: 34837039 PMCID: PMC8626433 DOI: 10.1038/s41598-021-02499-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
This study aimed to assess the degree of differentiation of hepatocellular carcinoma (HCC) using Gd-EOB-DTPA-assisted magnetic resonance imaging (MRI) with T1 relaxometry. Thirty-three solitary HCC lesions were included in this retrospective study. This study's inclusion criteria were preoperative Gd-EOB-DTPA-assisted MRI of the liver and a histopathological evaluation after hepatic tumor resection. T1 maps of the liver were evaluated to determine the T1 relaxation time and reduction rate between the native phase and hepatobiliary phase (HBP) in liver lesions. These findings were correlated with the histopathologically determined degree of HCC differentiation (G1, well-differentiated; G2, moderately differentiated; G3, poorly differentiated). There was no significant difference between well-differentiated (950.2 ± 140.2 ms) and moderately/poorly differentiated (1009.4 ± 202.0 ms) HCCs in the native T1 maps. After contrast medium administration, a significant difference (p ≤ 0.001) in the mean T1 relaxation time in the HBP was found between well-differentiated (555.4 ± 140.2 ms) and moderately/poorly differentiated (750.9 ± 146.4 ms) HCCs. For well-differentiated HCCs, the reduction rate in the T1 time was significantly higher at 0.40 ± 0.15 than for moderately/poorly differentiated HCCs (0.25 ± 0.07; p = 0.006). In conclusion this study suggests that the uptake of Gd-EOB-DTPA in HCCs is correlated with tumor grade. Thus, Gd-EOB-DTPA-assisted T1 relaxometry can help to further differentiation of HCC.
Collapse
|
28
|
Effect of type 2 diabetes on Gd-EOB-DTPA uptake into liver parenchyma: replication study in human subjects. Abdom Radiol (NY) 2021; 46:4682-4688. [PMID: 34164726 DOI: 10.1007/s00261-021-03184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) is a contrast agent for magnetic resonance imaging (MRI), which specifically taken up by hepatocytes through organic anion-transporting polypeptides (OATPs). Previous research in mice has shown that type 2 diabetes is associated with reduced uptake of Gd-EOB-DTPA into the liver parenchyma, reflecting reduced expression of OATP. Since considerable differences in OATP expression exist between mice and humans, human studies are necessary to clarify the effect of diabetes to Gd-EOB-DTPA uptake. The purpose of this study was to validate the effect of diabetes to Gd-EOB-DTPA liver uptake by a confirmatory study in humans. METHODS Patients who underwent Gd-EOB-DTPA-enhanced MRI were retrospectively reviewed and divided into two groups: severe or uncontrolled diabetic group (patients with insulin therapy and/or HbA1c ≥ 8.4%) and the control group. Liver-to-spleen ratio (LSR) and relative enhancement of the liver (REL) were calculated to represent Gd-EOB-DTPA liver uptake. RESULTS A total of 94 patients fulfilled the criteria. The severe or uncontrolled diabetic group (n = 15) showed significantly lower LSR (1.74 ± 0.26 vs. 1.98 ± 0.31, p = 0.007) and REL (0.69 ± 0.23 vs. 0.87 ± 0.31, p = 0.005), compared to the control group (n = 79). CONCLUSION Our study revealed decreased uptake of Gd-EOB-DTPA into liver parenchyma in the severe or uncontrolled diabetic patients. Further studies to determine the impact of the reduced liver enhancement on clinical diagnostic practice will be needed.
Collapse
|
29
|
Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy. TOXICS 2021; 9:toxics9100229. [PMID: 34678925 PMCID: PMC8540213 DOI: 10.3390/toxics9100229] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Peripheral neuropathy is one of the most common side effects of chemotherapy, affecting up to 60% of all cancer patients receiving chemotherapy. Moreover, paclitaxel induces neuropathy in up to 97% of all gynecological and urological cancer patients. In cancer cells, paclitaxel induces cell death via microtubule stabilization interrupting cell mitosis. However, paclitaxel also affects cells of the central and peripheral nervous system. The main symptoms are pain and numbness in hands and feet due to paclitaxel accumulation in the dorsal root ganglia. This review describes in detail the pathomechanisms of paclitaxel in the peripheral nervous system. Symptoms occur due to a length-dependent axonal sensory neuropathy, where axons are symmetrically damaged and die back. Due to microtubule stabilization, axonal transport is disrupted, leading to ATP undersupply and oxidative stress. Moreover, mitochondria morphology is altered during paclitaxel treatment. A key player in pain sensation and axonal damage is the paclitaxel-induced inflammation in the spinal cord as well as the dorsal root ganglia. An increased expression of chemokines and cytokines such as IL-1β, IL-8, and TNF-α, but also CXCR4, RAGE, CXCL1, CXCL12, CX3CL1, and C3 promote glial activation and accumulation, and pain sensation. These findings are further elucidated in this review.
Collapse
|
30
|
Organic Anion Transporting Polypeptide 1B1 Is a Potential Reporter for Dual MR and Optical Imaging. Int J Mol Sci 2021; 22:ijms22168797. [PMID: 34445497 PMCID: PMC8395777 DOI: 10.3390/ijms22168797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Membrane proteins responsible for transporting magnetic resonance (MR) and fluorescent contrast agents are of particular importance because they are potential reporter proteins in noninvasive molecular imaging. Gadobenate dimeglumine (Gd-BOPTA), a liver-specific MR contrast agent, has been used globally for more than 10 years. However, the corresponding molecular transportation mechanism has not been validated. We previously reported that the organic anion transporting polypeptide (OATP) 1B3 has an uptake capability for both MR agents (Gd-EOB-DTPA) and indocyanine green (ICG), a clinically available near-infrared (NIR) fluorescent dye. This study further evaluated OATP1B1, another polypeptide of the OATP family, to determine its reporter capability. In the OATP1B1 transfected 293T transient expression model, both Gd-BOPTA and Gd-EOB-DTPA uptake were confirmed through 1.5 T MR imaging. In the constant OAPT1B1 and OATP1B3 expression model in the HT-1080 cell line, both HT-1080-OAPT1B1 and HT-1080-OATP1B3 were observed to ingest Gd-BOPTA and Gd-EOB-DTPA. Lastly, we validated the ICG uptake capability of both OATP1B1 and OATP1B3. OAPT1B3 exhibited a superior ICG uptake capability to that of OAPT1B1. We conclude that OATP1B1 is a potential reporter for dual MR and NIR fluorescent molecular imaging, especially in conjunction with Gd-BOPTA.
Collapse
|
31
|
Kim YG, Sung H, Shin HS, Kim MJ, Lee JS, Park SS, Seong MW. Intronic LINE-1 insertion in SLCO1B3 as a highly prevalent cause of rotor syndrome in East Asian population. J Hum Genet 2021; 67:71-77. [PMID: 34354231 DOI: 10.1038/s10038-021-00967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/09/2022]
Abstract
Rotor syndrome is caused by digenic loss-of-function variants in SLCO1B1 and SLCO1B3 but only a few studies have reported co-occurring inactivating variants from both genes. A rotor syndrome-causing long interspersed element-1 (LINE-1) insertion in SLCO1B3 had been reported to be highly prevalent in the Japanese population but there has been no additional report. In spite of its known association with various human diseases, LINE-1 is hard to detect with current sequencing technologies. In this study, we aimed to devise a method to screen the LINE-1 insertion variant and investigate the frequency of this variant in various populations. A chimeric sequence, that was generated by concatenating the reference sequence at the junction and a part of inserted LINE-1 sequence, was searched from 725 raw sequencing data files. In cases containing the chimeric sequence, confirmatory long-range PCR and gap-PCR were performed. In total, 95 (13.1%) of 725 patients were positive for the chimeric sequence, and all were confirmed to have the SLCO1B3 LINE-1 insertion by PCR-based tests. The same chimeric sequence was searched from the 1000 Genomes Project data repository and the carrier frequency was remarkably high in the East Asian populations (10.1%), especially in Southern Han Chinese (18.5%), but almost absent in other populations. This SLCO1B3 LINE-1 insertion should be screened in a population-specific manner under suspicion of Rotor syndrome and the methods proposed in this study would enable this in a simple way.
Collapse
Affiliation(s)
- Young-Gon Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hobin Sung
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Seob Shin
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Man Jin Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Ren X, Liang S, Li Y, Ji Y, Li L, Qin C, Fang K. ENAM gene associated with T classification and inhibits proliferation in renal clear cell carcinoma. Aging (Albany NY) 2021; 13:7035-7051. [PMID: 33539322 PMCID: PMC7993715 DOI: 10.18632/aging.202558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/23/2020] [Indexed: 01/18/2023]
Abstract
The potential involvement of T classification-related genes in renal clear cell carcinoma (ccRCC) must be further explored. Public data were obtained from The Cancer Genome Atlas (TCGA) database. An overall survival (OS) predictive model was developed and validated (TCGA train, 5 years, AUC = 0.73, 3 years, AUC = 0.73, 1 year, AUC = 0.76; TCGA test, 5 years, AUC = 0.74, 3 years, AUC = 0.65, 1 year, AUC = 0.73; TCGA all, 5 years, AUC = 0.72, 3 years, AUC = 0.71, 1 year, AUC = 0.75). Finally, ENAM was selected for further analysis. In vitro experiment indicated that ENMA is downregulated in ccRCC, and its knockdown could promote proliferation in two cancer cell lines (OSRC-2 and SW839). Immune infiltration analysis revealed that ENAM could remarkably increase the content of cytotoxic cells, NK CD56 cells, NK cells and CD8+ T cells in the tumor immune microenvironment, which may be one reason for its tumor-inhibiting effect. In summary, ENAM may suppress cell proliferation in ccRCC and can be used as a potential reference value for the relief and immunotherapy of ccRCC.
Collapse
Affiliation(s)
- Xiaohan Ren
- The State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shengjie Liang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Huinan, Pudong, Shanghai 201399, China
| | - Yang Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Huinan, Pudong, Shanghai 201399, China
| | - Yisheng Ji
- The First Clinical Medical College, Nanjing Medical University, Nanjing 211166, China
| | - Lin Li
- The First Clinical Medical College, Nanjing Medical University, Nanjing 211166, China
| | - Chao Qin
- The State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kai Fang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Huinan, Pudong, Shanghai 201399, China
| |
Collapse
|
33
|
Liao W, Tang Y, Hu Z, Wang C, Chen Y, Zhang Y, Fan W. Preparation of Galactosyl Nanoparticles and Their Targeting Efficiency to Hepatocellular Carcinoma. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:987-994. [PMID: 33183434 DOI: 10.1166/jnn.2021.18666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liver diseases seriously endanger people's physical health, especially liver cancer, and its morbidity and mortality have increased year by year. The reason why liver cancer is difficult to cure is that in addition to the low lethality of cancer drugs to cancer cells, another important factor is that the drugs do not have liver targeting, and there is no way to efficiently deliver anti-cancer drugs to the liver lesions. Hepatocytes can specifically recognize galactose, therefore the galactosyl liver-targeted drug carrier can deliver the drug to the liver in a targeted manner, so that the drug can be directed to the liver, reduce the dose and times of drug administration, reduce toxic side effects, and reduce the adverse reactions of patients, which is of great significance for the treatment of liver cancer. In this thesis, paclitaxel long-circulating nano-liposomes targeting liver cancer constructed with galactose as raw materials can improve the pharmacokinetics and tissue distribution of traditional formulations of paclitaxel, and enhance the safety and tumor suppressive effect of paclitaxel in vivo.
Collapse
Affiliation(s)
- Wei Liao
- Infection Division, Changhai Hospital, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Yan Tang
- Meilong Community Health Service Center, Minhang District, Shanghai, 200237, China
| | - Zhengcui Hu
- Infection Division, Changhai Hospital, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Chunyan Wang
- Infection Division, Changhai Hospital, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Yi Chen
- Infection Division, Changhai Hospital, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Yi Zhang
- Shanghai Public Health Clinical Center, Shanghai, 201508, China
| | - Wenhan Fan
- Infection Division, Changhai Hospital, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| |
Collapse
|
34
|
Tang T, Wang G, Liu S, Zhang Z, Liu C, Li F, Liu X, Meng L, Yang H, Li C, Sang M, Zhao L. Highly expressed SLCO1B3 inhibits the occurrence and development of breast cancer and can be used as a clinical indicator of prognosis. Sci Rep 2021; 11:631. [PMID: 33436824 PMCID: PMC7803962 DOI: 10.1038/s41598-020-80152-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.
Collapse
Affiliation(s)
- Tiantian Tang
- Breast Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Guiying Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China. .,Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050001, Hebei Province, China.
| | - Sihua Liu
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Zhaoxue Zhang
- Breast Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Chen Liu
- Breast Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Fang Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Xudi Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Lingjiao Meng
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Huichai Yang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Chunxiao Li
- Breast Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Meixiang Sang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, China
| |
Collapse
|
35
|
Lee W, Ha JM, Sugiyama Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides. J Biol Chem 2020; 295:17349-17364. [PMID: 33051208 PMCID: PMC7863896 DOI: 10.1074/jbc.rev120.009132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs) belong to the solute carrier (SLC) transporter superfamily and play important roles in handling various endogenous and exogenous compounds of anionic charge. The OATs and OATPs are often implicated in drug therapy by impacting the pharmacokinetics of clinically important drugs and, thereby, drug exposure in the target organs or cells. Various mechanisms (e.g. genetic, environmental, and disease-related factors, drug-drug interactions, and food-drug interactions) can lead to variations in the expression and activity of the anion drug-transporting proteins of OATs and OATPs, possibly impacting the therapeutic outcomes. Previous investigations mainly focused on the regulation at the transcriptional level and drug-drug interactions as competing substrates or inhibitors. Recently, evidence has accumulated that cellular trafficking, post-translational modification, and degradation mechanisms serve as another important layer for the mechanisms underlying the variations in the OATs and OATPs. This review will provide a brief overview of the major OATs and OATPs implicated in drug therapy and summarize recent progress in our understanding of the post-translational modifications, in particular ubiquitination and degradation pathways of the individual OATs and OATPs implicated in drug therapy.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Jeong-Min Ha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| |
Collapse
|
36
|
Cellular Mechanisms Accounting for the Refractoriness of Colorectal Carcinoma to Pharmacological Treatment. Cancers (Basel) 2020; 12:cancers12092605. [PMID: 32933095 PMCID: PMC7563523 DOI: 10.3390/cancers12092605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) causes a high number (more than 800,000) of deaths worldwide each year. Better methods for early diagnosis and the development of strategies to enhance the efficacy of the therapeutic approaches used to complement or substitute surgical removal of the tumor are urgently needed. Currently available pharmacological armamentarium provides very moderate benefits to patients due to the high resistance of tumor cells to respond to anticancer drugs. The present review summarizes and classifies into seven groups the cellular and molecular mechanisms of chemoresistance (MOC) accounting for the failure of CRC response to the pharmacological treatment. Abstract The unsatisfactory response of colorectal cancer (CRC) to pharmacological treatment contributes to the substantial global health burden caused by this disease. Over the last few decades, CRC has become the cause of more than 800,000 deaths per year. The reason is a combination of two factors: (i) the late cancer detection, which is being partially solved by the implementation of mass screening of adults over age 50, permitting earlier diagnosis and treatment; (ii) the inadequate response of advanced unresectable tumors (i.e., stages III and IV) to pharmacological therapy. The latter is due to the existence of complex mechanisms of chemoresistance (MOCs) that interact and synergize with each other, rendering CRC cells strongly refractory to the available pharmacological regimens based on conventional chemotherapy, such as pyrimidine analogs (5-fluorouracil, capecitabine, trifluridine, and tipiracil), oxaliplatin, and irinotecan, as well as drugs targeted toward tyrosine kinase receptors (regorafenib, aflibercept, bevacizumab, cetuximab, panitumumab, and ramucirumab), and, more recently, immune checkpoint inhibitors (nivolumab, ipilimumab, and pembrolizumab). In the present review, we have inventoried the genes involved in the lack of CRC response to pharmacological treatment, classifying them into seven groups (from MOC-1 to MOC-7) according to functional criteria to identify cancer cell weaknesses. This classification will be useful to pave the way for developing sensitizing tools consisting of (i) new agents to be co-administered with the active drug; (ii) pharmacological approaches, such as drug encapsulation (e.g., into labeled liposomes or exosomes); (iii) gene therapy interventions aimed at restoring the impaired function of some proteins (e.g., uptake transporters and tumor suppressors) or abolishing that of others (such as export pumps and oncogenes).
Collapse
|
37
|
Meyer Zu Schwabedissen HE, Seibert I, Grube M, Alter CL, Siegmund W, Hussner J. Genetic variants of SLCO1B7 are of relevance for the transport function of OATP1B3-1B7. Pharmacol Res 2020; 161:105155. [PMID: 32818652 DOI: 10.1016/j.phrs.2020.105155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
The family of Organic Anion Transporting Polypeptides are known to facilitate the transmembrane transport. OATP1B3-1B7 is a novel member of the OATP1B-subfamily, and is encoded by SLCO1B3-SLCO1B7 readthrough deriving from the genes SLCO1B3 and SLCO1B7 on chromosome 12. The resulting protein is expressed in the smooth endoplasmatic reticulum of hepatocytes, is functional, and transports dehydroepiandrosterone-sulfate (DHEAS). In the gene area encoding for the 1B7-part of the protein, there are coding polymorphisms. It was the aim of this study to test the frequency and the impact of these genetic variants on transport activity. The minor allele frequency (MAF) of the coding polymorphisms was determined in a cohort of 192 individuals. DHEAS transport function was determined by applying the vTF-7 based heterologous expression system using plasmids encoding for OATP1B3-1B7 or the respective variants. The genetic variants 641 T (MAF 0.021), 1073 G (MAF 0.169) and 1775 A (MAF 0.013) significantly reduced DHEAS accumulation in cells transfected with OATP1B3-1B7, albeit without significantly influencing expression of the transporter as determined by Western blot analysis and immunofluorescence after heterologous expression. Genotyping revealed complete linkage of the variants 884A, 1073 G and 1501C. Presence of the haplotype abolished the DHEAS-transport function of OATP1B3-1B7. Naturally and frequently occurring genetic variants located within the gene region of SLCO1B7 encoding for the 1B7-part of OATP1B3-1B7 influence the in vitro function of this member of the OATP1B-family. With their functional characterisation, we provide the basis for pharmacogenetic studies, which may help to understand the in vivo relevance of this transporter.
Collapse
Affiliation(s)
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Markus Grube
- Clinical Pharmacology, Center of Drug Absorption and Transport C_DAT, University Medicine Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany.
| | - Claudio L Alter
- Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Werner Siegmund
- Clinical Pharmacology, Center of Drug Absorption and Transport C_DAT, University Medicine Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany.
| | - Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
38
|
Uptake Transporters of the SLC21, SLC22A, and SLC15A Families in Anticancer Therapy-Modulators of Cellular Entry or Pharmacokinetics? Cancers (Basel) 2020; 12:cancers12082263. [PMID: 32806706 PMCID: PMC7464370 DOI: 10.3390/cancers12082263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Solute carrier transporters comprise a large family of uptake transporters involved in the transmembrane transport of a wide array of endogenous substrates such as hormones, nutrients, and metabolites as well as of clinically important drugs. Several cancer therapeutics, ranging from chemotherapeutics such as topoisomerase inhibitors, DNA-intercalating drugs, and microtubule binders to targeted therapeutics such as tyrosine kinase inhibitors are substrates of solute carrier (SLC) transporters. Given that SLC transporters are expressed both in organs pivotal to drug absorption, distribution, metabolism, and elimination and in tumors, these transporters constitute determinants of cellular drug accumulation influencing intracellular drug concentration required for efficacy of the cancer treatment in tumor cells. In this review, we explore the current understanding of members of three SLC families, namely SLC21 (organic anion transporting polypeptides, OATPs), SLC22A (organic cation transporters, OCTs; organic cation/carnitine transporters, OCTNs; and organic anion transporters OATs), and SLC15A (peptide transporters, PEPTs) in the etiology of cancer, in transport of chemotherapeutic drugs, and their influence on efficacy or toxicity of pharmacotherapy. We further explore the idea to exploit the function of SLC transporters to enhance cancer cell accumulation of chemotherapeutics, which would be expected to reduce toxic side effects in healthy tissue and to improve efficacy.
Collapse
|
39
|
Human organic anion transporting polypeptide (OATP) 1B3 and mouse OATP1A/1B affect liver accumulation of Ochratoxin A in mice. Toxicol Appl Pharmacol 2020; 401:115072. [DOI: 10.1016/j.taap.2020.115072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022]
|
40
|
Choudhuri S, Klaassen CD. Elucidation of OATP1B1 and 1B3 transporter function using transgenic rodent models and commonly known single nucleotide polymorphisms. Toxicol Appl Pharmacol 2020; 399:115039. [DOI: 10.1016/j.taap.2020.115039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/02/2020] [Accepted: 05/09/2020] [Indexed: 02/08/2023]
|
41
|
Beaudoin JJ, Brouwer KLR, Malinen MM. Novel insights into the organic solute transporter alpha/beta, OSTα/β: From the bench to the bedside. Pharmacol Ther 2020; 211:107542. [PMID: 32247663 PMCID: PMC7480074 DOI: 10.1016/j.pharmthera.2020.107542] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Organic solute transporter alpha/beta (OSTα/β) is a heteromeric solute carrier protein that transports bile acids, steroid metabolites and drugs into and out of cells. OSTα/β protein is expressed in various tissues, but its expression is highest in the gastrointestinal tract where it facilitates the recirculation of bile acids from the gut to the liver. Previous studies established that OSTα/β is upregulated in liver tissue of patients with extrahepatic cholestasis, obstructive cholestasis, and primary biliary cholangitis (PBC), conditions that are characterized by elevated bile acid concentrations in the liver and/or systemic circulation. The discovery that OSTα/β is highly upregulated in the liver of patients with nonalcoholic steatohepatitis (NASH) further highlights the clinical relevance of this transporter because the incidence of NASH is increasing at an alarming rate with the obesity epidemic. Since OSTα/β is closely linked to the homeostasis of bile acids, and tightly regulated by the nuclear receptor farnesoid X receptor, OSTα/β is a potential drug target for treatment of cholestatic liver disease, and other bile acid-related metabolic disorders such as obesity and diabetes. Obeticholic acid, a semi-synthetic bile acid used to treat PBC, under review for the treatment of NASH, and in development for the treatment of other metabolic disorders, induces OSTα/β. Some drugs associated with hepatotoxicity inhibit OSTα/β, suggesting a possible role for OSTα/β in drug-induced liver injury (DILI). Furthermore, clinical cases of homozygous genetic defects in both OSTα/β subunits resulting in diarrhea and features of cholestasis have been reported. This review article has been compiled to comprehensively summarize the recent data emerging on OSTα/β, recapitulating the available literature on the structure-function and expression-function relationships of OSTα/β, the regulation of this important transporter, the interaction of drugs and other compounds with OSTα/β, and the comparison of OSTα/β with other solute carrier transporters as well as adenosine triphosphate-binding cassette transporters. Findings from basic to more clinically focused research efforts are described and discussed.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
42
|
Low expression of organic anion-transporting polypeptide 1B3 predicts a poor prognosis in hepatocellular carcinoma. World J Surg Oncol 2020; 18:127. [PMID: 32534581 PMCID: PMC7293789 DOI: 10.1186/s12957-020-01891-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Objective To detect the expression level of organic anion-transporting polypeptide 1B3 (OATP1B3) in hepatocellular carcinoma (HCC) and to determine the relationship between OATP1B3 expression, clinicopathological features, and prognosis. Methods Immunohistochemical (IHC) staining was performed to detect the expression of OATP1B3 in 131 HCC specimens and in 89 adjacent nontumorous tissues. Moreover, the expression levels of OATP1B3 in 30 pairs of tumor and matched adjacent nontumorous tissues were detected by quantitative real-time polymerase chain reaction, and 34 pairs of tumor and matched adjacent nontumorous tissues were detected by Western blotting. The χ2 test was applied to analyze the correlation between OATP1B3 expression and the clinical parameters of HCC patients. The prognostic value of OATP1B3 in HCC patients was estimated by Kaplan-Meier survival analysis and the Cox stepwise proportional hazards model. Results Compared with that in adjacent nontumorous tissues (25.8%, 23/89), OATP1B3 expression was significantly downregulated in tumor tissues (59.5%, 78/131) (P < 0.0001). Moreover, OATP1B3 expression was markedly correlated with tumor size, recurrence, tumor differentiation, and tumor node metastasis (TNM) stage (P < 0.05 for each). However, age, sex, tumor capsule status, HBsAg, cirrhosis, tumor number, vascular invasion, and serum alpha fetoprotein were not associated with OATP1B3 expression. The overall survival (OS) and disease-free survival (DFS) of HCC patients who had high expression of OATP1B3 were significantly longer than those of patients with low expression (33.0% vs 12.9%, P = 0.001; 18.8% vs 5.3%, P < 0.0001). Cox multivariate analysis showed that OATP1B3, invasion, and TNM stage (P < 0.05 for each) were independent prognostic factors of OS in HCC patients and that OATP1B3 and TNM stage (both P < 0.05) were independent prognostic factors of DFS in HCC patients. Conclusions The expression of OATP1B3 in HCC patients was significantly lower than that in adjacent nontumorous tissues. OATP1B3 expression may be a potential prognostic marker in HCC patients.
Collapse
|
43
|
Ma X, Shang X, Qin X, Lu J, Liu M, Wang X. Characterization of organic anion transporting polypeptide 1b2 knockout rats generated by CRISPR/Cas9: a novel model for drug transport and hyperbilirubinemia disease. Acta Pharm Sin B 2020; 10:850-860. [PMID: 32528832 PMCID: PMC7276679 DOI: 10.1016/j.apsb.2019.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the Slco1b2 gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the Slco1b2 knockout (KO) rat model via using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in Slco1b2 KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome. Therefore, this rat model is not only a powerful tool for the study of OATP1B2-mediated drug transportation, but also a good disease model to study hyperbilirubinemia-related diseases.
Collapse
Key Words
- A/G, albumin/globulin ratio
- ADRs, adverse drug reactions
- ALB, albumin
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUC, the area under the time–plasma concentration curve
- BUN, blood urea nitrogen
- CL/F, clearance/bioavailability
- CR, reatinine
- CRISPR, clustered regularly interspaced short palindromic repeats
- CRISPR/Cas9
- Chr, chromosome
- Cmax, peak concentration
- DAB, 3,3′-diaminobenzidine
- DBL, direct bilirubin
- DDI, drug–drug interaction
- DMSO, dimethyl sulfoxide
- FDA, the U.S. Food and Drug Administration
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GLB, globulin
- GLU, glucose
- HCG, human chorionic gonadotropin
- HDL-C, high density lipoprotein cholesterol
- HE, haemotoxylin and eosin
- HMG, hydroxymethylglutaryl
- HRP, horseradish peroxidase
- HZ, heterozygous
- IBIL, indirect bilirubin
- IS, internal standard solution
- KO, knockout
- LDL-C, low density lipoprotein cholesterol
- MC, methylcellulose
- MRT, mean residence time
- NC, nitrocellulose
- OATP1B1/3
- OATP1B1/3, organic anion transporting polypeptide 1B1 and 1B3
- OATP1B2
- OATPs, organic anion transporting polypeptides
- PAM, protospacer adjacent motif
- PMSG, pregnant mare serum gonadotropin
- R-GT, γ-glutamyltranspeptidase
- Rat model
- SD, Sprague–Dawley
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- SLC, solute carrier
- SNPs, single nucleotide polymorphisms
- T-CH, total cholesterol
- T7E I, T7 endonuclease I
- TALEN, transcription activator-like effector nuclease
- TBA, total bile acid
- TBL, total bilirubin
- TBST, Tris-buffered saline Tween 20
- TG, triglyceride
- TP, total protein
- Tmax, peak time
- Transporter
- UA, uric acid
- Ugt1a1, UDP glucuronosyltransferase family 1 member A1
- Vd/F, the apparent volume of distribution/bioavailability
- WT, wild type
- ZFN, zinc-finger nucleases
- crRNA, mature CRISPR RNA
- p.o., peroral
- sgRNA, single guide RNA
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Wang
- Corresponding author. Tel.: +86 21 24206564; fax: +86 21 5434 4922.
| |
Collapse
|
44
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
45
|
Sun R, Ying Y, Tang Z, Liu T, Shi F, Li H, Guo T, Huang S, Lai R. The Emerging Role of the SLCO1B3 Protein in Cancer Resistance. Protein Pept Lett 2020; 27:17-29. [PMID: 31556849 PMCID: PMC6978646 DOI: 10.2174/0929866526666190926154248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Currently, chemotherapy is one of the mainstays of oncologic therapies. But the efficacy of chemotherapy is often limited by drug resistance and severe side effects. Consequently, it is becoming increasingly important to investigate the underlying mechanism and overcome the problem of anticancer chemotherapy resistance. The solute carrier organic anion transporter family member 1B3 (SLCO1B3), a functional transporter normally expressed in the liver, transports a variety of endogenous and exogenous compounds, including hormones and their conjugates as well as some anticancer drugs. The extrahepatic expression of SLCO1B3 has been detected in different cancer cell lines and cancer tissues. Recently, accumulating data indicates that the abnormal expression and function of SLCO1B3 are involved in resistance to anticancer drugs, such as taxanes, camptothecin and its analogs, SN-38, and Androgen Deprivation Therapy (ADT) in breast, prostate, lung, hepatic, and colorectal cancer, respectively. Thus, more investigations have been implemented to identify the potential SLCO1B3-related mechanisms of cancer drug resistance. In this review, we focus on the emerging roles of SLCO1B3 protein in the development of cancer chemotherapy resistance and briefly discuss the mechanisms of resistance. Elucidating the function of SLCO1B3 in chemoresistance may bring out novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Ruipu Sun
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Ting Liu
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Huixia Li
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Taichen Guo
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Shibo Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Department of Pharmacy, Medical College, Nanchang University, Nanchang 330006, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences / Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| |
Collapse
|
46
|
Mofers A, Perego P, Selvaraju K, Gatti L, Gullbo J, Linder S, D'Arcy P. Analysis of determinants for in vitro resistance to the small molecule deubiquitinase inhibitor b-AP15. PLoS One 2019; 14:e0223807. [PMID: 31639138 PMCID: PMC6804958 DOI: 10.1371/journal.pone.0223807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND b-AP15/VLX1570 are small molecule inhibitors of the ubiquitin specific peptidase 14 (USP14) and ubiquitin carboxyl-terminal hydrolase 5 (UCHL5) deubiquitinases (DUBs) of the 19S proteasome. b-AP15/VLX1570 have been shown to be cytotoxic to cells resistant to bortezomib, raising the possibility that this class of drugs can be used as a second-line therapy for treatment-resistant multiple myeloma. Limited information is available with regard to potential resistance mechanisms to b-AP15/VLX1570. RESULTS We found that b-AP15-induced cell death is cell-cycle dependent and that non-cycling tumor cells may evade b-AP15-induced cell death. Such non-cycling cells may re-enter the proliferative state to form colonies of drug-sensitive cells. Long-term selection of cells with b-AP15 resulted in limited drug resistance (~2-fold) that could be reversed by buthionine sulphoximine, implying altered glutathione (GSH) metabolism as a resistance mechanism. In contrast, drug uptake and overexpression of drug efflux transporters were found not to be associated with b-AP15 resistance. CONCLUSIONS The proteasome DUB inhibitors b-AP15/VLX1570 are cell cycle-active. The slow and incomplete development of resistance towards these compounds is an attractive feature in view of future clinical use.
Collapse
Affiliation(s)
- Arjan Mofers
- Department of Medicine and Health, Linköping University, Linköping, Sweden
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Karthik Selvaraju
- Department of Medicine and Health, Linköping University, Linköping, Sweden
| | - Laura Gatti
- Cerebrovascular Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Joachim Gullbo
- Department of Radiology, Oncology and Radiation Science, Section of Oncology, Uppsala University, Uppsala, Sweden
| | - Stig Linder
- Department of Medicine and Health, Linköping University, Linköping, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Padraig D'Arcy
- Department of Medicine and Health, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
47
|
|
48
|
Malagnino V, Duthaler U, Seibert I, Krähenbühl S, Meyer Zu Schwabedissen HE. OATP1B3-1B7 (LST-3TM12) Is a Drug Transporter That Affects Endoplasmic Reticulum Access and the Metabolism of Ezetimibe. Mol Pharmacol 2019; 96:128-137. [PMID: 31127008 DOI: 10.1124/mol.118.114934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/15/2019] [Indexed: 02/14/2025] Open
Abstract
Drug transporters play a crucial role in pharmacokinetics. One subfamily of transporters with proven clinical relevance are the OATP1B transporters. Recently we identified a new member of the OATP1B family named OATP1B3-1B7 (LST-3TM12). This functional transporter is encoded by SLCO1B3 and SLCO1B7 OATP1B3-1B7 is expressed in hepatocytes and is located in the membrane of the smooth endoplasmic reticulum (SER). One aim of this study was to test whether OATP1B3-1B7 interacts with commercial drugs. First, we screened a selection of OATP1B substrates for inhibition of OATP1B3-1B7-mediated transport of dehydroepiandrosterone sulfate and identified several inhibitors. One such inhibitor was ezetimibe, which not only inhibited OATP1B3-1B7 but is also a substrate, as its cellular content was significantly increased in cells heterologously expressing the transporter. In humans, ezetimibe is extensively metabolized by hepatic and intestinal uridine-5'-diphospho-glucuronosyltransferases (UGTs), the catalytic site of which is located within the SER lumen. After verification of OATP1B3-1B7 expression in the small intestine, we determined in microsomes whether SER access can be modulated by inhibitors of OATP1B3-1B7. We were able to show that these compounds significantly reduced accumulation in small intestinal and hepatic microsomes, which influenced the rate of ezetimibe β-D-glucuronide formation as determined in microsomes treated with bromsulphthalein. Notably, this molecule not only inhibits the herein reported transporter but also other transport systems. In conclusion, we report that multiple drugs interact with OATP1B3-1B7; for ezetimibe, we were able to show that SER access and metabolism is significantly reduced by bromsulphthalein, which is an inhibitor of OATP1B3-1B7. SIGNIFICANCE STATEMENT: OATP1B3-1B3 (LST-3TM12) is a transporter that has yet to be fully characterized. We provide valuable insight into the interaction potential of this transporter with several marketed drugs. Ezetimibe, which interacted with OATP1B3-1B7, is highly metabolized by uridine-5'-diphospho-glucuronosyltransferases (UGTs), whose catalytic site is located within the smooth endoplasmic reticulum (SER) lumen. Through microsomal assays with ezetimibe and the transport inhibitor bromsulphthalein we investigated the interdependence of SER access and the glucuronidation rate of ezetimibe. These findings led us to the hypothesis that access or exit of drugs to the SER is orchestrated by SER transporters such as OATP1B3-1B7.
Collapse
Affiliation(s)
- Vanessa Malagnino
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Urs Duthaler
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Stephan Krähenbühl
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Henriette E Meyer Zu Schwabedissen
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| |
Collapse
|
49
|
Nie Y, Yang J, Liu S, Sun R, Chen H, Long N, Jiang R, Gui C. Genetic polymorphisms of human hepatic OATPs: functional consequences and effect on drug pharmacokinetics. Xenobiotica 2019; 50:297-317. [DOI: 10.1080/00498254.2019.1629043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yingmin Nie
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jingjie Yang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shuai Liu
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ruiqi Sun
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Huihui Chen
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Nan Long
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Rui Jiang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
50
|
Gervasini G, Mota-Zamorano S. Clinical Implications of Methotrexate Pharmacogenetics in Childhood Acute Lymphoblastic Leukaemia. Curr Drug Metab 2019; 20:313-330. [DOI: 10.2174/1389200220666190130161758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Background:In the past two decades, a great body of research has been published regarding the effects of genetic polymorphisms on methotrexate (MTX)-induced toxicity and efficacy. Of particular interest is the role of this compound in childhood acute lymphoblastic leukaemia (ALL), where it is a pivotal drug in the different treatment protocols, both at low and high doses. MTX acts on a variety of target enzymes in the folates cycle, as well as being transported out and into of the cell by several transmembrane proteins.Methods:We undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question.Results:This review has intended to summarize the current knowledge concerning the clinical impact of polymorphisms in enzymes and transporters involved in MTX disposition and mechanism of action on paediatric patients with ALL.Conclusion:In this work, we describe why, in spite of the significant research efforts, pharmacogenetics findings in this setting have not yet found their way into routine clinical practice.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Av. Elvas s/n 06006, Badajoz, Spain
| | - Sonia Mota-Zamorano
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Av. Elvas s/n 06006, Badajoz, Spain
| |
Collapse
|