1
|
Hu F, Shao W, Qiu X. Functions and Clinical Relevance of Liver-Derived Immunoglobulins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:91-99. [PMID: 38967752 DOI: 10.1007/978-981-97-0511-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Liver is the largest internal organ of the body with vital functions. In addition to its endocrine and exocrine activities, liver also plays a pivotal role in the immune system, including haematopoietic functions. Liver parenchymal cells, which are epithelial cells, have been found to possess innate immune functions by expressing pattern-recognition receptors (PRRs), producing complement components, and secreting cytokines. Intriguingly, in recent years, it has been discovered that liver epithelial cells also produce immunoglobulins (Igs), which have long been thought to be produced exclusively by B cells. Notably, even liver epithelial cells from B lymphocyte-deficient mice, including SCID mice and μMT mice, could also produce Igs. Compelling evidence has revealed both the physiological and pathological functions of liver-derived Igs. For instance, liver epithelial cells-derived IgM can serve as a source of natural and specific antibodies that contribute to innate immune responses, while liver-produced IgG can act as a growth factor to promote cell proliferation and survival in normal hepatocytes and hepatocarcinoma. Similar to that in B cells, the toll-like receptor 9 (TLR9)-MyD88 signaling pathway is also actively involved in promoting liver epithelial cells to secrete IgM. Liver-derived Igs could potentially serve as biomarkers, prognostic indicators, and therapeutic targets in the clinical setting, particularly for liver cancers and liver injury. Nevertheless, despite significant advances, much remains unknown about the mechanisms governing Ig transcription in liver cells, as well as the detailed functions of liver-derived Igs and their involvement in diseases and adaptive immunity. Further studies are still needed to reveal these underlying, undefined issues related to the role of liver-derived Igs in both immunity and diseases.
Collapse
Affiliation(s)
- Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing, China.
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Li L, Ding Q, Wu Y, Zheng Z, Zhang X, Zhang M, Long M, Lü S. Binding of different hyaluronan to CD44 mediates distinct cell adhesion dynamics under shear flow. FEBS J 2023; 290:4695-4711. [PMID: 37254632 DOI: 10.1111/febs.16882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/30/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
As a known receptor-ligand pair for mediating cell-cell or cell-extracellular matrix adhesions, cluster of differentiation 44 (CD44)-hyaluronan (HA) interactions are not only determined by molecular weight (MW) diversity of HA, but also are regulated by external physical or mechanical factors. However, the coupling effects of HA MW and shear flow are still unclear. Here, we compared the differences between high molecular weight HA (HHA) and low molecular weight HA (LHA) binding to CD44 under varied shear stresses. The results demonstrated that HHA dominated the binding phase but LHA was in favour of the shear resistance phase, respectively, under shear stress range ≤ 1.0 dyne·cm-2 . This difference was attributed to the high binding strength of the CD44-HHA interaction, as well as the optimal distribution matching between both CD44 and HA sides. Activation of the intracellular signal pathway was sensitive to both HA MW and shear flow. Our findings also indicate that only CD44-HHA interaction under shear stress of 0.2 dyne·cm-2 could significantly enhance the clustering of CD44, as well as induce the increase in both CD44 and CD18 expression. The present study offers the basis for further quantification of the features of CD44-HA interactions and their biological functions.
Collapse
Affiliation(s)
- Linda Li
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, China
| | - Qihan Ding
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Zheng
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Abstract
The phenomenon of swarming has long been observed in nature as a strategic event that serves as a good offense toward prey and predators. Imaging studies have uncovered that neutrophils employ this swarm-like tactic within infected and inflamed tissues as part of the innate immune response. Much of our understanding of neutrophil swarming builds from observations during sterile inflammation and various bacterial, fungal, and parasitic infections of the skin. However, the architecture and function of the skin differ significantly from vital organs where highly specialized microenvironments carry out critical functions. Therefore, the detrimental extent this perturbation may have on organ function remains unclear. In this review, we examine organ-specific swarming within the skin, liver, and lungs, with a detailed focus on swarming within microvascular environments. In addition, we examine potential "swarmulants" that initiate both transient and persistent swarms that have been implicated in disease.
Collapse
Affiliation(s)
- Luke Brown
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Kitching AR, Hickey MJ. Immune cell behaviour and dynamics in the kidney - insights from in vivo imaging. Nat Rev Nephrol 2022; 18:22-37. [PMID: 34556836 DOI: 10.1038/s41581-021-00481-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
The actions of immune cells within the kidney are of fundamental importance in kidney homeostasis and disease. In disease settings such as acute kidney injury, anti-neutrophil cytoplasmic antibody-associated vasculitis, lupus nephritis and renal transplant rejection, immune cells resident within the kidney and those recruited from the circulation propagate inflammatory responses with deleterious effects on the kidney. As in most forms of inflammation, intravital imaging - particularly two-photon microscopy - has been critical to our understanding of immune cell responses in the renal microvasculature and interstitium, enabling visualization of immune cell dynamics over time rather than statically. These studies have demonstrated differences in the recruitment and function of these cells from those in more conventional vascular beds, and provided a wealth of information on the actions of blood-borne immune cells such as neutrophils, monocytes and T cells, as well as kidney-resident mononuclear phagocytes, in a range of diseases affecting different kidney compartments. In particular, in vivo imaging has furthered our understanding of leukocyte function within the glomerulus in acute glomerulonephritis, and in the tubulointerstitium and interstitial microvasculature during acute kidney injury and following transplantation, revealing mechanisms of immune surveillance, antigen presentation and inflammation in the kidney.
Collapse
Affiliation(s)
- A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia. .,Departments of Nephrology and Paediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Choudhury SR, Babes L, Rahn JJ, Ahn BY, Goring KAR, King JC, Lau A, Petri B, Hao X, Chojnacki AK, Thanabalasuriar A, McAvoy EF, Tabariès S, Schraeder C, Patel KD, Siegel PM, Kopciuk KA, Schriemer DC, Muruve DA, Kelly MM, Yipp BG, Kubes P, Robbins SM, Senger DL. Dipeptidase-1 Is an Adhesion Receptor for Neutrophil Recruitment in Lungs and Liver. Cell 2020; 178:1205-1221.e17. [PMID: 31442408 DOI: 10.1016/j.cell.2019.07.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/14/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022]
Abstract
A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs. Using biochemical, genetic, and confocal intravital imaging approaches, we identified dipeptidase-1 (DPEP1) as the target and established its role as a physical adhesion receptor for neutrophil sequestration independent of its enzymatic activity. Importantly, genetic ablation or functional peptide blocking of DPEP1 significantly reduced neutrophil recruitment to the lungs and liver and provided improved survival in models of endotoxemia. Our data establish DPEP1 as a major adhesion receptor on the lung and liver endothelium and identify a therapeutic target for neutrophil-driven inflammatory diseases of the lungs.
Collapse
Affiliation(s)
- Saurav Roy Choudhury
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Liane Babes
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jennifer J Rahn
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Bo-Young Ahn
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kimberly-Ann R Goring
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jennifer C King
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Arthur Lau
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Björn Petri
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Xiaoguang Hao
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Andrew K Chojnacki
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ajitha Thanabalasuriar
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Erin F McAvoy
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christoph Schraeder
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kamala D Patel
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Karen A Kopciuk
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, AB T2S 3C3, Canada
| | - David C Schriemer
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Daniel A Muruve
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Margaret M Kelly
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Bryan G Yipp
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Stephen M Robbins
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Donna L Senger
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
6
|
Abstract
Chronic fatty liver disease is common worldwide. This disease is a spectrum of disease states, ranging from simple steatosis (fat accumulation) to inflammation, and eventually to fibrosis and cirrhosis if untreated. The fibrotic stage of chronic liver disease is primarily characterized by robust accumulation of extracellular matrix (ECM) proteins (collagens) that ultimately impairs the function of the organ. The role of the ECM in early stages of chronic liver disease is less well-understood, but recent research has demonstrated that several changes in the hepatic ECM in prefibrotic liver disease are not only present but may also contribute to disease progression. The purpose of this review is to summarize the established and proposed changes to the hepatic ECM that may contribute to inflammation during earlier stages of disease development, and to discuss potential mechanisms by which these changes may mediate the progression of the disease.
Collapse
Affiliation(s)
- Christine E. Dolin
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Role and Molecular Mechanisms of Pericytes in Regulation of Leukocyte Diapedesis in Inflamed Tissues. Mediators Inflamm 2019; 2019:4123605. [PMID: 31205449 PMCID: PMC6530229 DOI: 10.1155/2019/4123605] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/15/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
Leukocyte recruitment is a hallmark of the inflammatory response. Migrating leukocytes breach the endothelium along with the vascular basement membrane and associated pericytes. While much is known about leukocyte-endothelial cell interactions, the mechanisms and role of pericytes in extravasation are poorly understood and the classical paradigm of leukocyte recruitment in the microvasculature seldom adequately discusses the involvement of pericytes. Emerging evidence shows that pericytes are essential players in the regulation of leukocyte extravasation in addition to their functions in blood vessel formation and blood-brain barrier maintenance. Junctions between venular endothelial cells are closely aligned with extracellular matrix protein low expression regions (LERs) in the basement membrane, which in turn are aligned with gaps between pericytes. This forms preferential paths for leukocyte extravasation. Breaching of the layer formed by pericytes and the basement membrane entails remodelling of LERs, leukocyte-pericyte adhesion, crawling of leukocytes on pericyte processes, and enlargement of gaps between pericytes to form channels for migrating leukocytes. Furthermore, inflamed arteriolar and capillary pericytes induce chemotactic migration of leukocytes that exit postcapillary venules, and through direct pericyte-leukocyte contact, they induce efficient interstitial migration to enhance the immunosurveillance capacity of leukocytes. Given their role as regulators of leukocyte extravasation, proper pericyte function is imperative in inflammatory disease contexts such as diabetic retinopathy and sepsis. This review summarizes research on the molecular mechanisms by which pericytes mediate leukocyte diapedesis in inflamed tissues.
Collapse
|
8
|
Maas SL, Soehnlein O, Viola JR. Organ-Specific Mechanisms of Transendothelial Neutrophil Migration in the Lung, Liver, Kidney, and Aorta. Front Immunol 2018; 9:2739. [PMID: 30538702 PMCID: PMC6277681 DOI: 10.3389/fimmu.2018.02739] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Immune responses are dependent on the recruitment of leukocytes to the site of inflammation. The classical leukocyte recruitment cascade, consisting of capture, rolling, arrest, adhesion, crawling, and transendothelial migration, is thoroughly studied but mostly in model systems, such as the cremasteric microcirculation. This cascade paradigm, which is widely accepted, might be applicable to many tissues, however recruitment mechanisms might substantially vary in different organs. Over the last decade, several studies shed light on organ-specific mechanisms of leukocyte recruitment. An improved awareness of this matter opens new therapeutic windows and allows targeting inflammation in a tissue-specific manner. The aim of this review is to summarize the current understanding of the leukocyte recruitment in general and how this varies in different organs. In particular we focus on neutrophils, as these are the first circulating leukocytes to reach the site of inflammation. Specifically, the recruitment mechanism in large arteries, as well as vessels in the lungs, liver, and kidney will be addressed.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Physiology and Pharmacology (FyFa) and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joana R Viola
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
9
|
White EJ, Gyulay G, Lhoták Š, Szewczyk MM, Chong T, Fuller MT, Dadoo O, Fox-Robichaud AE, Austin RC, Trigatti BL, Igdoura SA. Sialidase down-regulation reduces non-HDL cholesterol, inhibits leukocyte transmigration, and attenuates atherosclerosis in ApoE knockout mice. J Biol Chem 2018; 293:14689-14706. [PMID: 30097518 DOI: 10.1074/jbc.ra118.004589] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/01/2018] [Indexed: 01/01/2023] Open
Abstract
Atherosclerosis is a complex disease that involves alterations in lipoprotein metabolism and inflammation. Protein and lipid glycosylation events, such as sialylation, contribute to the development of atherosclerosis and are regulated by specific glycosidases, including sialidases. To evaluate the effect of the sialidase neuraminidase 1 (NEU1) on atherogenesis, here we generated apolipoprotein E (ApoE)-deficient mice that express hypomorphic levels of NEU1 (Neu1hypoApoe-/-). We found that the hypomorphic NEU1 expression in male Apoe-/- mice reduces serum levels of very-low-density lipoprotein (VLDL) and LDL cholesterol, diminishes infiltration of inflammatory cells into lesions, and decreases aortic sinus atherosclerosis. Transplantation of Apoe-/- bone marrow (BM) into Neu1hypoApoe-/- mice significantly increased atherosclerotic lesion development and had no effect on serum lipoprotein levels. Moreover, Neu1hypoApoe-/- mice exhibited a reduction in circulating monocyte and neutrophil levels and had reduced hyaluronic acid and P-selectin adhesion capability on monocytes/neutrophils and T cells. Consistent with these findings, administration of a sialidase inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, had a significant anti-atherogenic effect in the Apoe-/- mice. In summary, the reduction in NEU1 expression or function decreases atherosclerosis in mice via its significant effects on lipid metabolism and inflammatory processes. We conclude that NEU1 may represent a promising target for managing atherosclerosis.
Collapse
Affiliation(s)
| | | | - Šárka Lhoták
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | | | | | - Mark T Fuller
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Omid Dadoo
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Alison E Fox-Robichaud
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Richard C Austin
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Bernardo L Trigatti
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Suleiman A Igdoura
- From the Departments of Biology, .,Pathology and Molecular Medicine, and
| |
Collapse
|
10
|
Low-density lipoprotein (LDL)-dependent uptake of Gram-positive lipoteichoic acid and Gram-negative lipopolysaccharide occurs through LDL receptor. Sci Rep 2018; 8:10496. [PMID: 30002483 PMCID: PMC6043579 DOI: 10.1038/s41598-018-28777-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/26/2018] [Indexed: 12/29/2022] Open
Abstract
Lipoteichoic acid (LTA) and lipopolysaccharide (LPS) are bacterial lipids that stimulate pro-inflammatory cytokine production, thereby exacerbating sepsis pathophysiology. Proprotein convertase subtilisin/kexin type 9 (PCSK9) negatively regulates uptake of cholesterol by downregulating hepatic lipoprotein receptors, including low-density lipoprotein (LDL) receptor (LDLR) and possibly LDLR-related protein-1 (LRP1). PCSK9 also negatively regulates Gram-negative LPS uptake by hepatocytes, however this mechanism is not completely characterized and mechanisms of Gram-positive LTA uptake are unknown. Therefore, our objective was to elucidate the mechanisms through which PCSK9 regulates uptake of LTA and LPS by investigating the roles of lipoproteins and lipoprotein receptors. Here we show that plasma PCSK9 concentrations increase transiently over time in septic and non-septic critically ill patients, with highly similar profiles over 14 days. Using flow cytometry, we demonstrate that PCSK9 negatively regulates LDLR-mediated uptake of LTA and LPS by HepG2 hepatocytes through an LDL-dependent mechanism, whereas LRP1 and high-density lipoprotein do not contribute to this uptake pathway. Bacterial lipid uptake by hepatocytes was not associated with cytokine production or hepatocellular injury. In conclusion, our study characterizes an LDL-dependent and LDLR-mediated bacterial lipid uptake pathway regulated by PCSK9, and provides evidence in support of PCSK9 inhibition as a potential therapeutic strategy for sepsis.
Collapse
|
11
|
Reesink KD, Hendrikx T, van Gorp PJ, Hoeks AP, Shiri-Sverdlov R. Ultrasonic Perfluorohexane-Loaded Monocyte Imaging: Toward a Minimally Invasive Technique for Selective Detection of Liver Inflammation in Fatty Liver Disease. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:921-933. [PMID: 28990215 DOI: 10.1002/jum.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/06/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES To investigate the utility of ultrasonic (US) perfluorohexane (PFH)-loaded monocyte imaging for detection of liver inflammation in fatty liver disease. METHODS C57Bl6 mice were injected intraperitoneally with tumor necrosis factor α and assessed by US PFH-loaded monocyte imaging 3 hours later. Echogenic monocytes were injected intravenously, leading to a transient increase in liver tissue intensity on a US perfusion scan. The contrast wash-out time constant was hypothesized to reflect the degree of inflammation. Next, we evaluated US PFH-loaded monocyte imaging in Ldlr-/- mice fed a 1-week high-fat/high-cholesterol diet as model for early developing nonalcoholic steatohepatitis. Adjunct analyses included tissue markers of liver inflammation. RESULTS Tumor necrosis factor α-injected mice showed a reduced wash-out time constant (mean ± SEM, 0.013 ± 0.003; n = 8) compared to controls (0.054 ± 0.009; n = 7; P = .0006), indicative of increased inflammatory adhesion molecule expression on the endothelium. The Ldlr-/- mice fed the high-fat/high-cholesterol diet showed liver inflammation, as reflected by increased (3- to 4-fold) infiltration of inflammatory cells and increased (3- to 4-fold) gene expression of tumor necrosis factor α, integrin αM, intracellular adhesion molecule, and vascular cell adhesion molecule. However, in these mice, no difference was detected in the wash-out time constant as assessed by US PFH-loaded monocyte imaging (high-fat/high-cholesterol, 0.050 ± 0.017; n = 5; chow, 0.048 ± 0.006; n = 6; P = .91). CONCLUSIONS Our results indicate that US PFH-loaded monocyte imaging is able to detect vascularly expressed inflammatory adhesion molecules in the mouse liver on direct endothelial stimulation. However, in our mouse model of early developing nonalcoholic steatohepatitis, we did not detect inflammation by this method, which may suggest that the time-dependent relationship between parenchymal and endothelial inflammation remains a fundamental issue to be addressed.
Collapse
Affiliation(s)
- Koen D Reesink
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Tim Hendrikx
- Department of Molecular Genetics, Nutrition and Toxicology Research Institute Maastricht School for Nutritional Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Patrick J van Gorp
- Department of Molecular Genetics, Nutrition and Toxicology Research Institute Maastricht School for Nutritional Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Arnold P Hoeks
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Nutrition and Toxicology Research Institute Maastricht School for Nutritional Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
12
|
Abstract
The liver is a key, frontline immune tissue. Ideally positioned to detect pathogens entering the body via the gut, the liver appears designed to detect, capture, and clear bacteria, viruses, and macromolecules. Containing the largest collection of phagocytic cells in the body, this organ is an important barrier between us and the outside world. Importantly, as portal blood also transports a large number of foreign but harmless molecules (e.g., food antigens), the liver's default immune status is anti-inflammatory or immunotolerant; however, under appropriate conditions, the liver is able to mount a rapid and robust immune response. This balance between immunity and tolerance is essential to liver function. Excessive inflammation in the absence of infection leads to sterile liver injury, tissue damage, and remodeling; insufficient immunity allows for chronic infection and cancer. Dynamic interactions between the numerous populations of immune cells in the liver are key to maintaining this balance and overall tissue health.
Collapse
Affiliation(s)
- Paul Kubes
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Craig Jenne
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
13
|
Neutrophil adhesion and crawling dynamics on liver sinusoidal endothelial cells under shear flow. Exp Cell Res 2017; 351:91-99. [DOI: 10.1016/j.yexcr.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 02/07/2023]
|
14
|
McNamara HA, Cockburn IA. The three Rs: Recruitment, Retention and Residence of leukocytes in the liver. Clin Transl Immunology 2016; 5:e123. [PMID: 28435674 PMCID: PMC5384287 DOI: 10.1038/cti.2016.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
The composition of leukocytes in the liver is highly distinct from that of the blood and lymphoid organs. In particular, the liver is highly enriched in non-conventional T cells such as natural killer T (NKT) cells, γδ T cells and mucosal-associated invariant T cells. In addition, there are significant populations of tissue-resident NK cells (or innate lymphoid cells (ILC1)) and memory CD8+ T cells. These cells are joined in conditions of inflammation by neutrophils, monocytes and macrophages. In recent years a multitude of studies have generated insights into how these cells arrest, move and remain resident in the liver. This new understanding has largely been due to the use of intra-vital microscopy to track immune cells in the liver, coupled with gene expression profiling and parabiosis techniques. These studies have revealed that leukocyte recruitment in the liver does not correspond to the classical paradigm of the leukocyte adhesion cascade. Rather, both lymphoid and myeloid cells have been found to adhere in the liver sinusoids in a platelet-dependent manner. Leukocytes have also been observed to patrol the hepatic sinusoids using a characteristic crawling motility. Moreover, T cells have been observed surveying hepatocytes for antigen through the unique fenestrated endothelium of the liver sinusoids, potentially negating the need for extravasation. In this review we highlight some of these recent discoveries and examine the different molecular interactions required for the recruitment, retention and-in some cases-residence of diverse leukocyte populations within the liver.
Collapse
Affiliation(s)
- Hayley A McNamara
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
15
|
Lawendy AR, Bihari A, Sanders DW, Badhwar A, Cepinskas G. Compartment syndrome causes systemic inflammation in a rat. Bone Joint J 2016; 98-B:1132-7. [DOI: 10.1302/0301-620x.98b8.36325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/07/2016] [Indexed: 01/13/2023]
Abstract
Aims Compartment syndrome results from increased intra-compartmental pressure (ICP) causing local tissue ischaemia and cell death, but the systemic effects are not well described. We hypothesised that compartment syndrome would have a profound effect not only on the affected limb, but also on remote organs. Methods Using a rat model of compartment syndrome, its systemic effects on the viability of hepatocytes and on inflammation and circulation were directly visualised using intravital video microscopy. Results We found that hepatocellular injury was significantly higher in the compartment syndrome group (192 PI-labelled cells/10-1 mm3, standard error of the mean (sem) 51) compared with controls (30 PI-labelled cells/10-1 mm3, sem 12, p < 0.01). The number of adherent venular white blood cells was significantly higher for the compartment syndrome group (5 leukocytes/30s/10 000 μm2, sem 1) than controls (0.2 leukocytes/30 s/10 000 μm2, sem 0.2, p < 0.01). Volumetric blood flow was not significantly different between the two groups, although there was an increase in the heterogeneity of perfusion. Conclusions Compartment syndrome can be accompanied by severe systemic inflammation and end organ damage. This study provides evidence of the relationship between compartment syndrome in a limb and systemic inflammation and dysfunction in a remote organ. Cite this article: Bone Joint J 2016; 98-B:1132–7.
Collapse
Affiliation(s)
- A-R. Lawendy
- Victoria Hospital, London
Health Sciences Centre, 800 Commissioners Road
East London, Ontario, N6A
4G5, Canada
| | - A. Bihari
- Victoria Hospital, London
Health Sciences Centre, 800 Commissioners Road
East London, Ontario, N6A
4G5, Canada
| | - D. W. Sanders
- Victoria Hospital, London
Health Sciences Centre, 800 Commissioners Road
East London, Ontario, N6A
4G5, Canada
| | - A. Badhwar
- Davol, A Bard Company, Warwick, Rhode
Island, USA
| | - G. Cepinskas
- Victoria Hospital, London
Health Sciences Centre, 800 Commissioners Road
East London, Ontario, N6A
4G5, Canada
| |
Collapse
|
16
|
Hepatic metastatic niche: from normal to pre-metastatic and metastatic niche. Tumour Biol 2015; 37:1493-503. [DOI: 10.1007/s13277-015-4557-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
|
17
|
Lakshman R, Shah R, Reyes-Gordillo K, Varatharajalu R. Synergy between NAFLD and AFLD and potential biomarkers. Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S29-34. [PMID: 26189985 DOI: 10.1016/j.clinre.2015.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 05/15/2015] [Indexed: 02/04/2023]
Abstract
Fatty liver (hepatosteatosis) is the earliest abnormality in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) due either to metabolic risk factors associated with insulin resistance and/or metabolic syndrome in the absence of alcohol consumption or to chronic alcohol abuse. When unchecked, both NAFLD and AFLD lead to steatohepatitis, fibrosis, cirrhosis, hepatocellular carcinoma (HCC) and eventual death. A number of common mechanisms contribute to the above various stages of hepatocyte injury, including lipotoxicity, endotoxin release, oxidative and ER stress leading to increased pro-inflammatory cytokines that stimulate hepatic fibrogenesis and cirrhosis by activating the quiescent hepatic stellate cells (HSC) into myofibroblasts. Significantly, patients with either NAFLD or AFLD respond favorably to early treatment modalities to reduce hepatic fat accumulation and consequent increased inflammatory signalling and activation of hepatic stellate cells. Although the pathogenic pathways associated with NAFLD and AFLD are seemingly similar, differentiation of the molecular mechanism/s of the pathogenesis of these liver diseases is critical in identifying the unique molecular signatures, especially in the early diagnosis of NAFLD and AFLD. Current clinical practice requires the invasive biopsy procedure for the conclusive diagnosis of NAFLD and AFLD. Micro RNAs (miRNAs) are ∼22 nucleotide non-coding sequences that bind to the 3'-untranslated region of target transcripts and regulate gene expression by degradation of target mRNAs or inhibition of translation. Emerging studies may prove to establish miRNAs as excellent non-invasive tools for the early diagnosis of various stages of liver diseases.
Collapse
Affiliation(s)
- Raj Lakshman
- Lipid Research Laboratory, VA Medical Center and Department of Biochemistry and Molecular Medicine, The George Washington University, 50 Irving Street, Washington, DC 20422, NW, USA.
| | - Ruchi Shah
- Lipid Research Laboratory, VA Medical Center and Department of Biochemistry and Molecular Medicine, The George Washington University, 50 Irving Street, Washington, DC 20422, NW, USA
| | - Karina Reyes-Gordillo
- Lipid Research Laboratory, VA Medical Center and Department of Biochemistry and Molecular Medicine, The George Washington University, 50 Irving Street, Washington, DC 20422, NW, USA
| | - Ravi Varatharajalu
- Lipid Research Laboratory, VA Medical Center and Department of Biochemistry and Molecular Medicine, The George Washington University, 50 Irving Street, Washington, DC 20422, NW, USA
| |
Collapse
|
18
|
McDonald B, Kubes P. Interactions between CD44 and Hyaluronan in Leukocyte Trafficking. Front Immunol 2015; 6:68. [PMID: 25741341 PMCID: PMC4330908 DOI: 10.3389/fimmu.2015.00068] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/02/2015] [Indexed: 11/17/2022] Open
Abstract
Recruitment of leukocytes from the bloodstream to inflamed tissues requires a carefully regulated cascade of binding interactions between adhesion molecules on leukocytes and endothelial cells. Adhesive interactions between CD44 and hyaluronan (HA) have been implicated in the regulation of immune cell trafficking within various tissues. In this review, the biology of CD44–HA interactions in cell trafficking is summarized, with special attention to neutrophil recruitment within the liver microcirculation. We describe the molecular mechanisms that regulate adhesion between neutrophil CD44 and endothelial HA, including recent evidence implicating serum-derived hyaluronan-associated protein as an important co-factor in the binding of HA to CD44 under flow conditions. CD44–HA-mediated neutrophil recruitment has been shown to contribute to innate immune responses to invading microbes, as well as to the pathogenesis of many inflammatory diseases, including various liver pathologies. As a result, blockade of neutrophil recruitment by targeting CD44–HA interactions has proven beneficial as an anti-inflammatory treatment strategy in a number of animal models of inflammatory diseases.
Collapse
Affiliation(s)
- Braedon McDonald
- Department of Medicine, University of British Columbia , Vancouver, BC , Canada ; Snyder Institute for Chronic Diseases, University of Calgary , Calgary, AB , Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary , Calgary, AB , Canada
| |
Collapse
|
19
|
McCurdy TR, Patrick AL, Eltringham-Smith LJ, Bhakta V, Sheffield WP, Fox-Robichaud AE. Alpha-1 acid glycoprotein reduces hepatic leukocyte recruitment in murine models of either early endotoxemia or early sepsis. Microcirculation 2014; 21:74-83. [PMID: 23941548 DOI: 10.1111/micc.12081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 08/09/2013] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To characterize the effect of systemically administered AGP on early leukocyte recruitment in the livers of endotoxemic or septic mice and to determine whether this is influenced by LPS sequestration. METHODS Endotoxemia was induced in C57Bl/6 mice via intraperitoneal injection of LPS. Sepsis was induced in mice by cecal ligation and perforation. AGP (165 mg/kg) or saline (20 mL/kg) or HAS (200 mg/kg) was administered immediately after surgery or LPS injection and the hepatic microcirculation was examined by intravital microscopy at four hour. RESULTS Leukocyte adhesion in the PSV was reduced by treatment with AGP in mice subjected to either LPS or CLP protocols compared to either saline or HAS treatment. AGP-treated mice also had significantly higher sinusoidal flow in both models. Pre-incubation of LPS with AGP reduced the ability of LPS to recruit leukocytes to the liver microcirculation. CONCLUSIONS AGP was more effective in limiting hepatic inflammation and maintaining perfusion than saline or HAS, in both endotoxemic and septic mice. AGP sequestration of LPS may contribute to its anti-inflammatory effects.
Collapse
Affiliation(s)
- Teresa R McCurdy
- Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Canadian Blood Services Research and Development, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Kowalewska PM, Patrick AL, Fox-Robichaud AE. Syndecan-1 in the mouse parietal peritoneum microcirculation in inflammation. PLoS One 2014; 9:e104537. [PMID: 25184228 PMCID: PMC4153572 DOI: 10.1371/journal.pone.0104537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background The heparan sulfate proteoglycan syndecan-1 (CD138) was shown to regulate inflammatory responses by binding chemokines and cytokines and interacting with adhesion molecules, thereby modulating leukocyte trafficking to tissues. The objectives of this study were to examine the expression of syndecan-1 and its role in leukocyte recruitment and chemokine presentation in the microcirculation underlying the parietal peritoneum. Methods Wild-type BALB/c and syndecan-1 null mice were stimulated with an intraperitoneal injection of Staphylococcus aureus LTA, Escherichia coli LPS or TNFα and the microcirculation of the parietal peritoneum was examined by intravital microscopy after 4 hours. Fluorescence confocal microscopy was used to examine syndecan-1 expression in the peritoneal microcirculation using fluorescent antibodies. Blocking antibodies to adhesion molecules were used to examine the role of these molecules in leukocyte-endothelial cell interactions in response to LTA. To determine whether syndecan-1 co-localizes with chemokines in vivo, fluorescent antibodies to syndecan-1 were co-injected intravenously with anti-MIP-2 (CXCL2), anti-KC (CXCL1) or anti-MCP-1 (CCL2). Results and Conclusion Syndecan-1 was localized to the subendothelial region of peritoneal venules and the mesothelial layer. Leukocyte rolling was significantly decreased with LPS treatment while LTA and TNFα significantly increased leukocyte adhesion compared with saline control. Leukocyte-endothelial cell interactions were not different in syndecan-1 null mice. Antibody blockade of β2 integrin (CD18), ICAM-1 (CD54) and VCAM-1 (CD106) did not decrease leukocyte adhesion in response to LTA challenge while blockade of P-selectin (CD62P) abrogated leukocyte rolling. Lastly, MIP-2 expression in the peritoneal venules was not dependent on syndecan-1 in vivo. Our data suggest that syndecan-1 is expressed in the parietal peritoneum microvasculature but does not regulate leukocyte recruitment and is not necessary for the presentation of the chemokine MIP-2 in this tissue.
Collapse
Affiliation(s)
| | - Amanda L Patrick
- Thrombosis and Atherosclerosis Research Institute and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alison E Fox-Robichaud
- Thrombosis and Atherosclerosis Research Institute and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Remote ischemic preconditioning prevents lipopolysaccharide-induced liver injury through inhibition of NF-κB activation in mice. J Anesth 2014; 28:898-905. [DOI: 10.1007/s00540-014-1850-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
|
22
|
McDonald B, Jenne CN, Zhuo L, Kimata K, Kubes P. Kupffer cells and activation of endothelial TLR4 coordinate neutrophil adhesion within liver sinusoids during endotoxemia. Am J Physiol Gastrointest Liver Physiol 2013; 305:G797-806. [PMID: 24113769 DOI: 10.1152/ajpgi.00058.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A key pathological feature of the systemic inflammatory response of sepsis/endotoxemia is the accumulation of neutrophils within the microvasculature of organs such as the liver, where they cause tissue damage and vascular dysfunction. There is emerging evidence that the vascular endothelium is critical to the orchestration of inflammatory responses to blood-borne microbes and microbial products in sepsis/endotoxemia. In this study, we aimed to understand the role of endothelium, and specifically endothelial TLR4 activation, in the regulation of neutrophil recruitment to the liver during endotoxemia. Intravital microscopy of bone marrow chimeric mice revealed that TLR4 expression by non-bone marrow-derived cells was required for neutrophil recruitment to the liver during endotoxemia. Furthermore, LPS-induced neutrophil adhesion in liver sinusoids was equivalent between wild-type mice and transgenic mice that express TLR4 only on endothelium (tlr4(-/-)Tie2(tlr4)), revealing that activation of endothelial TLR4 alone was sufficient to initiate neutrophil adhesion. Neutrophil arrest within sinusoids of endotoxemic mice requires adhesive interactions between neutrophil CD44 and endothelial hyaluronan. Intravital immunofluorescence imaging demonstrated that stimulation of endothelial TLR4 alone was sufficient to induce the deposition of serum-derived hyaluronan-associated protein (SHAP) within sinusoids, which was required for CD44/hyaluronan-dependent neutrophil adhesion. In addition to endothelial TLR4 activation, Kupffer cells contribute to neutrophil recruitment via a distinct CD44/HA/SHAP-independent mechanism. This study sheds new light on the control of innate immune activation within the liver vasculature during endotoxemia, revealing a key role for endothelial cells as sentinels in the detection of intravascular infections and coordination of neutrophil recruitment to the liver.
Collapse
Affiliation(s)
- Braedon McDonald
- Director, Snyder Institute for Chronic Disease, Dept. of Physiology and Pharmacology, Univ. of Calgary, Alberta, Canada, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.
| | | | | | | | | |
Collapse
|
23
|
Guettler C, Kubes P. Hydrogen sulfide, another simple gas with complex biology. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1066-9. [PMID: 23639806 DOI: 10.1152/ajpgi.00125.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Christopher Guettler
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Van den Eynden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, Høyer-Hansen G, Eefsen RL, Reynolds AR, Brodt P. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Cancer Res 2013; 73:2031-43. [PMID: 23536564 DOI: 10.1158/0008-5472.can-12-3931] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The liver is host to many metastatic cancers, particularly colorectal cancer, for which the last 2 decades have seen major advances in diagnosis and treatment. The liver is a vital organ, and the extent of its involvement with metastatic disease is a major determinant of survival. Metastatic cells arriving in the liver via the bloodstream encounter the microenvironment of the hepatic sinusoid. The interactions of the tumor cells with hepatic sinusoidal and extrasinusoidal cells (endothelial, Kupffer, stellate, and inflammatory cells) determine their fate. The sinusoidal cells can have a dual role, sometimes fatal to the tumor cells but also facilitatory to their survival and growth. Adhesion molecules participate in these interactions and may affect their outcome. Bone marrow-derived cells and chemokines also play a part in the early battle for survival of the metastases. Once the tumor cells have arrested and survived the initial onslaught, tumors can grow within the liver in 3 distinct patterns, reflecting differing host responses, mechanisms of vascularization, and proteolytic activity. This review aims to present current knowledge of the interactions between the host liver cells and the invading metastases that has implications for the clinical course of the disease and the response to treatment.
Collapse
|
25
|
Rossaint J, Zarbock A. Tissue-specific neutrophil recruitment into the lung, liver, and kidney. J Innate Immun 2012; 5:348-57. [PMID: 23257511 DOI: 10.1159/000345943] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/20/2012] [Indexed: 12/26/2022] Open
Abstract
The recruitment of immune cells is crucial for the development of inflammatory processes. The classical recruitment cascade of neutrophils into inflamed tissues is well understood and consists of capturing, rolling, slow rolling, arrest, postadhesion strengthening, crawling, and transmigration. While this commonly agreed paradigm might be applicable to most peripheral tissues, recruitment mechanisms may substantially vary in different organs such as the lung, liver, and kidney. These organs are highly specialized tissues with unique cell populations and structural organization, which enables them to fulfill their individual functions. The published research over the last decade has shed some light on organ-specific mechanisms of neutrophil recruitment and helped to generate a deeper understanding of the specific recruitment mechanisms involved in this process. The aim of this review is to highlight current concepts of tissue-specific differences and similarities of neutrophil recruitment into the lung, liver, and kidney.
Collapse
Affiliation(s)
- Jan Rossaint
- Max Planck Institute for Molecular Biomedicine, and Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
26
|
Guidotti LG, Iannacone M. Effector CD8 T cell trafficking within the liver. Mol Immunol 2012; 55:94-9. [PMID: 23149103 DOI: 10.1016/j.molimm.2012.10.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 01/06/2023]
Abstract
CD8 T cells play a critical role in several pathological conditions affecting the liver, most notably viral hepatitis. Accordingly, understanding the mechanisms that modulate the intrahepatic recruitment of CD8 T cells is of paramount importance. Some of the rules governing the behavior of these cells in the liver have been characterized at the population level, or have been inferred by studying the intrahepatic behavior of other leukocyte subpopulations. In contrast to most microvascular beds where leukocyte adhesion is restricted to the endothelium of post-capillary venules, it is now becoming clear that in the liver leukocytes, including CD8 T cells, can efficiently interact with the endothelium of hepatic capillaries (i.e. the sinusoids). While physical trapping has been proposed to play an important role in leukocyte adhesion to hepatic sinusoids, there is mounting evidence that T cell recruitment to the liver is highly regulated and depends on recruitment signals that are either constitutive or induced by inflammation. We review here several specific adhesive mechanisms that have been shown to regulate CD8 T cell trafficking within the liver, as well as highlight recent data that establish platelets as key cellular regulators of intrahepatic CD8 T cell accumulation.
Collapse
Affiliation(s)
- Luca G Guidotti
- Division of Immunology, Infectious Diseases and Transplantation, San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
27
|
Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012; 143:1158-1172. [PMID: 22982943 DOI: 10.1053/j.gastro.2012.09.008] [Citation(s) in RCA: 505] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/10/2012] [Accepted: 09/13/2012] [Indexed: 12/13/2022]
Abstract
Inflammation In the absence of pathogens occurs in all tissues in response to a wide range of stimuli that cause tissue stress and injury. Such sterile inflammation (SI) is a key process in drug-induced liver injury, nonalcoholic steatohepatitis, and alcoholic steatohepatitis and is a major determinant of fibrosis and carcinogenesis. In SI, endogenous damage-associated molecular patterns (DAMPS), which are usually hidden from the extracellular environment, are released on tissue injury and activate receptors on immune cells. More than 20 such DAMPS have been identified and activate cellular pattern recognition receptors, which were originally identified as sensors of pathogen-associated molecular patterns. Activation of pattern recognition receptors by DAMPS results in a wide range of immune responses, including production of proinflammatory cytokines and localization of immune cells to the site of injury. DAMPS result in the assembly of a cytosolic protein complex termed the inflammasome, which activates the serine protease caspase-1, resulting in activation and secretion of interleukin-1β and other cytokines. SI-driven liver diseases are responsible for the majority of liver pathology in industrially developed countries and lack specific therapy. Identification of DAMPS, their receptors, signaling pathways, and cytokines now provides a wide range of therapeutic targets for which many antagonists are already available.
Collapse
Affiliation(s)
- Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Yale University, and West Haven Veterans Medical Center, New Haven, Connecticut.
| |
Collapse
|
28
|
Kowalewska PM, Burrows LL, Fox-Robichaud AE. Intravital microscopy of the murine urinary bladder microcirculation. Microcirculation 2012; 18:613-22. [PMID: 21790840 DOI: 10.1111/j.1549-8719.2011.00123.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To establish an in vivo mouse model of the urinary bladder microcirculation, and characterize the molecular mechanisms of endotoxin-induced leukocyte recruitment. METHODS The murine model was adapted from a technique previously reported for the rat. Mouse bladder microcirculation was observed using intravital microscopy, four hours after intravesical challenge with lipopolysaccharide (LPS) and leukocyte-endothelial interactions were examined. Molecular mechanisms of leukocyte recruitment were identified using antibodies to adhesion molecules and chemokines. RESULTS LPS from Escherichia coli administered intravesically resulted in a significant increase in leukocyte adhesion and rolling at four hours post stimulation. LPS from Pseudomonas aeruginosa administered at similar doses resulted in a significant, but lower increase in leukocyte adhesion after four hours compared with E. coli LPS. Leukocyte adhesion within the bladder microcirculation was dependent on α(4) -integrins and ICAM-1, whereas leukocyte rolling was P-selectin dependent, but α(4) -integrin independent. Blockade of MIP-2 and KC did not alter leukocyte-endothelial interactions. The bladder endothelium expressed P-selectin, ICAM-1, VCAM-1, MIP-2, and MCP-1. Only VCAM-1 endothelial expression was significantly increased after LPS stimulation. CONCLUSION The mouse model of the urinary bladder microcirculation is suitable for the study of inflammatory responses during urinary tract infection (UTI) in vivo.
Collapse
|
29
|
McDonald B, Kubes P. Neutrophils and intravascular immunity in the liver during infection and sterile inflammation. Toxicol Pathol 2011; 40:157-65. [PMID: 22105645 DOI: 10.1177/0192623311427570] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The liver is a target of many inflammatory pathologies of both infectious and noninfectious etiology. As key effectors of the innate immune system, neutrophils are critical for defense against microbial infections but are often the source of profound collateral damage to host tissues during disease states. In this article based on the authors' presentation at the 2011 Society of Toxicologic Pathology Annual Symposium, they review the molecular mechanisms of neutrophil recruitment to the liver in response to sepsis/endotoxemia, as well as sterile inflammation, and discuss variations in the molecular choreography of neutrophil trafficking in response to these different insults. Furthermore, the authors discuss the functional contributions of neutrophils within the liver microvasculature during severe sepsis, including their contributions to both host defense and organ damage. Given that inappropriate neutrophilic inflammation contributes to the pathogenesis of many liver diseases, a thorough understanding of the molecular mechanisms that regulate the recruitment of neutrophils to the liver, and their functions therein, may reveal new avenues for therapeutic interventions to treat inflammatory liver pathologies.
Collapse
Affiliation(s)
- Braedon McDonald
- Calvin, Phoebe, and Joan Snyder Institute for Infection, Immunity, and Inflammation, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
30
|
von Heesen M, Hülser M, Seibert K, Scheuer C, Dold S, Kollmar O, Wagner M, Menger MD, Schilling MK, Moussavian MR. Split-liver procedure and inflammatory response: improvement by pharmacological preconditioning. J Surg Res 2011; 168:e125-35. [PMID: 21435665 DOI: 10.1016/j.jss.2011.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND Final outcome of split-liver (SL) transplantation is impaired due to an increased rate of vascular complications and primary non-function. Herein, we hypothesized that an in situ split-liver procedure induces an inflammatory response and a deterioration of graft quality. We further studied whether graft quality can be improved by pharmacologic preconditioning. MATERIAL AND METHODS SL-procedure was performed in rats. One group (SL-HPP; n = 8) was pretreated according to a defined protocol [Homburg preconditioning protocol (HPP)], including pentoxyphylline, glycine, deferoxamine, N-acetylcysteine, erythropoietin, melatonin, and simvastatin. A second SL group (SL-Con; n = 8) received NaCl. Untreated non-SL served as controls (Sham; n = 8). Cytokines release, leukocyte invasion, endothelial activation and liver morphology were studied directly after liver harvest and after 8 h cold storage. Lung tissue was studied to determine remote injury. RESULTS The SL-procedure induced an increase of TNF-α concentration, intercellular-adhesion-molecule 1 (ICAM-1) expression, leukocytic-tissue infiltration and vacuolization. This was associated with an increased number of apoptotic hepatocytes. HPP reduced TNF-α release, ICAM-1 expression, the number of infiltrated leukocytes, as well as hepatocellular vacuolization and apoptosis. In lung tissue, the SL-procedure caused an increased IL-1 and IL-6 concentration and leukocyte infiltration. CONCLUSIONS HPP was capable of abrogating cytokine-mediated leukocytic response. Pharmacologic preconditioning of liver donors prevents the SL procedure-mediated inflammatory response, resulting in an improved graft quality.
Collapse
Affiliation(s)
- Maximilian von Heesen
- Department of General, Vascular and Pediatric Surgery, University of Saarland, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Spicer J, Brodt P, Ferri L. Role of Inflammation in the Early Stages of Liver Metastasis. LIVER METASTASIS: BIOLOGY AND CLINICAL MANAGEMENT 2011. [DOI: 10.1007/978-94-007-0292-9_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Effects of Microbubbles and Ultrasound on the Microcirculation: Observation on the Hamster Cheek Pouch. J Am Soc Echocardiogr 2010; 23:1323-30. [DOI: 10.1016/j.echo.2010.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Indexed: 11/21/2022]
|
33
|
Kowalewska PM, Patrick AL, Fox-Robichaud AE. Innate immunity of the liver microcirculation. Cell Tissue Res 2010; 343:85-96. [PMID: 21049273 DOI: 10.1007/s00441-010-1058-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/10/2010] [Indexed: 12/30/2022]
Abstract
The liver is a complex organ with a unique microcirculation and both synthetic and immune functions. Innate immune responses have been studied in response to single inflammatory mediators and several clinically relevant models of infection and injury. While standard histological techniques have been used in many models, the liver microcirculation is also amenable to in vivo examination using epifluorescent, confocal and transillumination intravital microscopy. These techniques have begun to clarify not only the molecular mechanisms but also the specific cell populations involved in the liver inflammation. In this review, we discuss the cells and mediators involved in hepatic innate immunity in simple and complex models of injury and infection, and present the view that the liver microcirculation utilizes non-classical pathways for leukocyte recruitment.
Collapse
|
34
|
Tumor-infiltrating lymphocytes and hepatocellular carcinoma: molecular biology. Int J Clin Oncol 2010; 15:544-51. [PMID: 20924634 DOI: 10.1007/s10147-010-0130-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Indexed: 12/20/2022]
Abstract
Tumor-infiltrating lymphocytes (TIL) are one of the representative components of host antitumor immune responses. Both the quality and quantity of TIL determine the effect of the antitumor immune reaction. Previous studies have indicated that patients with cancers showing massive infiltration of CD8(+) T cells generally have a better clinical outcome. Conversely, patients with marked infiltration of immunosuppressive cells such as regulatory T cells tend to have a worse prognosis for several types of cancer. The density and distribution of TIL are also strongly affected by the trafficking route. Tumor-associated blood vessels in various cancers are structurally and functionally abnormal, and such abnormal vessels reportedly become an obstacle for infiltration of immune effector cells into tumors. Recently, understanding of the molecular mechanisms of lymphocyte trafficking has progressed rapidly. This review focuses on the mechanisms of lymphocyte trafficking to tumor cells and also discusses the importance of blood vessel for TIL trafficking, especially in relation to hepatocarcinogenesis.
Collapse
|
35
|
Heme oxygenase (HO)-1 protects from lipopolysaccharide (LPS)-mediated liver injury by inhibition of hepatic leukocyte accumulation and improvement of microvascular perfusion. Langenbecks Arch Surg 2010; 395:387-94. [PMID: 20237939 DOI: 10.1007/s00423-010-0603-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/26/2010] [Indexed: 02/06/2023]
Abstract
PURPOSE Lipopolysaccharide (LPS) represents a highly toxic substance which may aggravate morbidity and mortality in septic diseases. A recent study has reported that the induction of heme oxygenase (HO)-1 protects from LPS-induced liver injury. The mechanisms of action however, have not been clarified yet. Therefore, we analyzed in vivo the effects of HO-1 on the liver microcirculation under conditions of LPS exposure. METHODS In C57BL/6 mice, endotoxemia was induced by intraperitoneal (i.p.) administration of LPS (500 microg/kg) and D-galactosamine (Gal, 800 mg/kg). HO-1 was induced in vivo by pretreatment with hemin dissolved in DMSO (50 micromol/kg i.p.). Animals treated with DMSO only served as controls. Six hours after LPS exposure the hepatic microcirculation and leukocyte-endothelial cell interaction were analyzed by intravital fluorescence microscopy. HO-1 expression was determined by Western blot analysis. Hepatocellular damage was assessed by measuring the serum levels of aspartate aminotransferase and alanine aminotransferase. In addition, leukocyte transmigration and hepatocellular apoptosis were analyzed by histology and immunohistochemistry. RESULTS In controls, LPS/Gal caused severe liver injury, as indicated by increased liver enzyme levels and apoptotic cell death. This was associated with distinct sinusoidal perfusion failure and microvascular intrahepatic leukocyte accumulation. Of interest, induction of HO-1 significantly reduced numbers of adherent and extravascular leukocytes when compared to controls. Moreover, microvascular perfusion was significantly improved, resulting in a decrease of AST and ALT and a reduction of hepatocellular apoptosis. CONCLUSIONS Our novel data indicate that induction of HO-1 protects the liver from LPS-mediated injury by reducing leukocytic inflammation and improving intrahepatic microcirculation.
Collapse
|
36
|
Markovic N, McCaig LA, Stephen J, Mizuguchi S, Veldhuizen RAW, Lewis JF, Cepinskas G. Mediators released from LPS-challenged lungs induce inflammatory responses in liver vascular endothelial cells and neutrophilic leukocytes. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1066-76. [PMID: 19815624 DOI: 10.1152/ajpgi.00278.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The systemic inflammatory response plays an important role in the progression of acute lung injury (ALI) to multiple organ dysfunction syndrome (MODS). However, the role of lung-derived inflammatory mediators in induction of the inflammatory response in remote organs is poorly understood. To address the above, we investigated the effects of lung inflammation on induction of inflammatory response(s) in the liver in vitro. Inflammation in mouse lungs was induced by intranasal administration of lipopolysaccharide (LPS; 1 mg/ml) followed by mechanical ventilation using the isolated perfused mouse lung method to obtain and characterize lung perfusate from the pulmonary circulation. LPS administration to mouse lungs resulted in an increased release of inflammation-relevant cytokines and chemokines into the perfusate (Luminex assay) compared with the saline-controls. Subsequently, primary mouse liver vascular endothelial cells (LVEC) or mouse polymorphonuclear leukocytes (PMN) in vitro were stimulated with the perfusate obtained from saline- or LPS-challenged lungs and assessed for various inflammation-relevant end points. The obtained results indicate that stimulation of LVEC with perfusate obtained from LPS-challenged lungs results in 1) reactive oxygen species (ROS) production; 2) activation of NF-kappaB; and 3) expression of E-selectin, ICAM-1, and VCAM-1 and a subsequent increase in PMN rolling and adhesion to LVEC. In addition, perfusate from LPS-challenged lung induced activation of PMN with respect to increased ROS production and upregulation of cell surface levels of adhesion molecules MAC-1 and VLA-4. Heat-inactivation of the perfusate obtained from LPS-challenged lungs was very effective in suppressing increased proadhesive phenotype (i.e., E-selectin and ICAM-1 expression) in LVEC, whereas targeted inhibition (immunoneutralization) of TNF-alpha and/or IL-6 in LPS-lung perfusate had no effect. Taken together, these findings indicate that multiple proinflammatory mediators (proteinaceous in nature) released from inflamed lungs act synergistically to induce systemic activation of circulating PMN and promote inflammatory responses in liver vascular endothelial cells.
Collapse
Affiliation(s)
- N Markovic
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Syn WK, Teaberry V, Choi SS, Diehl AM. Similarities and differences in the pathogenesis of alcoholic and nonalcoholic steatohepatitis. Semin Liver Dis 2009; 29:200-10. [PMID: 19387919 PMCID: PMC3644873 DOI: 10.1055/s-0029-1214375] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subpopulations of individuals with alcohol-induced fatty livers and nonalcoholic steatosis develop steatohepatitis. Steatohepatitis is defined histologically: increased numbers of injured and dying hepatocytes distinguish this condition from simple steatosis. The increased hepatocyte death is generally accompanied by hepatic accumulation of inflammatory cells and sometimes increases in myofibroblastic cells, leading to hepatic fibrosis and eventually, cirrhosis. The purpose of this review is to summarize similarities and differences in the pathogenesis of steatohepatitis in alcoholic fatty liver disease and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Vanessa Teaberry
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Steve S. Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC 27705
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
38
|
Champigny MJ, Mitchell M, Fox-Robichaud A, Trigatti BL, Igdoura SA. A point mutation in the neu1 promoter recruits an ectopic repressor, Nkx3.2 and results in a mouse model of sialidase deficiency. Mol Genet Metab 2009; 97:43-52. [PMID: 19217813 DOI: 10.1016/j.ymgme.2009.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 12/19/2022]
Abstract
SM/J is an inbred mouse strain with a complex phenotype including small body size, impaired immune response and a tissue-specific sialidase deficiency. We identified a regulatory mutation, (-519G-->A) within the neu1 promoter which in reporter assays resulted in significantly reduced transcription. This mutation generates a consensus binding site for Nkx3 family transcription repressors. Recombinant Nkx3.2 bound strongly to and preferentially repressed transcription of the mutant promoter. This tissue-specific deficiency results in a retarded immune response and modulates leukocyte recruitment. Examination of the hepatic microcirculation in mutant mice revealed increased rolling and decreased adhesion of leukocytes. Our findings support a significant role for lysosomal sialidase in inflammation and highlight the significance of repressor-recruitment in genetic disease.
Collapse
Affiliation(s)
- Marc J Champigny
- Department of Biology, McMaster University, Hamilton, Ont., Canada L8S 4K1
| | | | | | | | | |
Collapse
|
39
|
Zarbock A, Ley K. New insights into leukocyte recruitment by intravital microscopy. Curr Top Microbiol Immunol 2009; 334:129-52. [PMID: 19521684 DOI: 10.1007/978-3-540-93864-4_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leukocyte recruitment to sites of inflammation requires adhesion to and transmigration through the blood vessel wall. Recent progress in optical equipment and new genetic and molecular tools have revealed additional steps in the leukocyte adhesion cascade beyond rolling, adhesion, and transmigration. In vivo studies using intravital microscopy (IVM) were essential for the discovery of slow rolling, postadhesion strengthening, intraluminal crawling, and different routes of transmigration. IVM revealed unique features of leukocyte recruitment in different organs. This review focuses on insights into the leukocyte adhesion cascade gained by IVM.
Collapse
Affiliation(s)
- Alexander Zarbock
- Department of Anesthesiology and Intensive Care Medicine, University of Münster, Münster, Germany.
| | | |
Collapse
|
40
|
Miura S, Kubes P, Granger DN. Gastrointestinal and Liver Microcirculations: Roles in Inflammation and Immunity. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
TNF-alpha induces thromboxane receptor signaling-dependent microcirculatory dysfunction in mouse liver. Shock 2008; 30:463-7. [PMID: 18800000 DOI: 10.1097/shk.0b013e3181673f54] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TNF-alpha is a critical mediator of hepatic microcirculatory dysfunction during endotoxemia. The present study was to investigate the role of thromboxane A2 (TXA2) and the biological significance of thromboxane prostanoid (TP) receptor signaling in TNF-alpha-mediated hepatic microcirculatory dysfunction in male C57Bl/6 mice. The number of leukocytes adhering to the endothelial cells of the hepatic microvessels (the portal venules, sinusoids, and central venules) and the percentage of nonperfused sinusoids were determined using in vivo fluorescence microscopy. FR167653, an inhibitor of TNF-alpha, was administered 0 and 2 h after LPS injection. A TXA2 synthase inhibitor, OKY-046, was administered 30 min before TNF-alpha injection. Thromboxane prostanoid receptor knockout mice were used to investigate whether TNF-alpha-induced hepatic microcirculatory dysfunction is mediated by endogenously produced TXA2. FR167653 reduced LPS-induced leukocyte adhesion (50%-80%) and the percentage of nonperfused sinusoids (55%). The leukocyte adhesion was increased in the portal venules (8-fold), sinusoids (51-fold), and central venules (73-fold) in TNF-alpha-treated mice, accompanied with an increase in sinusoidal perfusion deficits (8-fold). Alanine aminotransferase levels rose as the adhesion of leukocytes increased. OKY-046 administration before TNF-alpha administration reduced leukocyte adhesion (41%-49% decrease) and sinusoid perfusion deficits (34% decrease). In TP receptor knockout mice, the number of adhering leukocytes, the percentage of nonperfused sinusoids, and alanine aminotransferase levels were lower (by 43%-56%, 41%, and 29%, respectively) than in wild-type counterparts. The results suggest that TP receptor signaling may promote hepatic microcirculatory dysfunction elicited by TNF-alpha. Blockade of TNF-alpha generation and TP receptor signaling may be a good strategy for managing endotoxin-induced hepatic injury.
Collapse
|
42
|
LEUKOTRIENE B4/LEUKOTRIENE B4 RECEPTOR PATHWAY IS INVOLVED IN HEPATIC MICROCIRCULATORY DYSFUNCTION ELICITED BY ENDOTOXIN. Shock 2008; 30:87-91. [DOI: 10.1097/shk.0b013e31815d06a1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
McDonald B, McAvoy EF, Lam F, Gill V, de la Motte C, Savani RC, Kubes P. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J Exp Med 2008; 205:915-27. [PMID: 18362172 PMCID: PMC2292228 DOI: 10.1084/jem.20071765] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 03/05/2008] [Indexed: 12/13/2022] Open
Abstract
Adhesion molecules known to be important for neutrophil recruitment in many other organs are not involved in recruitment of neutrophils into the sinusoids of the liver. The prevailing view is that neutrophils become physically trapped in inflamed liver sinusoids. In this study, we used a biopanning approach to identify hyaluronan (HA) as disproportionately expressed in the liver versus other organs under both basal and inflammatory conditions. Spinning disk intravital microscopy revealed that constitutive HA expression was restricted to liver sinusoids. Blocking CD44-HA interactions reduced neutrophil adhesion in the sinusoids of endotoxemic mice, with no effect on rolling or adhesion in postsinusoidal venules. Neutrophil but not endothelial CD44 was required for adhesion in sinusoids, yet neutrophil CD44 avidity for HA did not increase significantly in endotoxemia. Instead, activation of CD44-HA engagement via qualitative modification of HA was demonstrated by a dramatic induction of serum-derived HA-associated protein in sinusoids in response to lipopolysaccharide (LPS). LPS-induced hepatic injury was significantly reduced by blocking CD44-HA interactions. Administration of anti-CD44 antibody 4 hours after LPS rapidly detached adherent neutrophils in sinusoids and improved sinusoidal perfusion in endotoxemic mice, revealing CD44 as a potential therapeutic target in systemic inflammatory responses involving the liver.
Collapse
Affiliation(s)
- Braedon McDonald
- Immunology Research Group, Department of Physiology and Biophysics, Institute of Infection, Immunity and Inflammation, University of Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
It is well known that leukocyte recruitment is a multi-step cascade that requires an initial tethering to the endothelium of post-capillary venules followed by rolling along the vessel wall until appropriate activating molecules are encountered which cause firm adhesion and emigration out of the vasculature. Recruitment of leukocytes in the post-sinusoidal venules of the liver follows a similar paradigm. However, distinct from most other organs is the observation that many leukocytes can also be seen adhering in the sinusoids which are specialized hepatic capillaries. In this review, the lack of importance of rolling in sinusoids is discussed. The molecular mechanisms leading to adhesion in the liver sinusoids can occur via integrin-dependent as well as integrin-independent mechanisms. In addition to the "classical" beta(1)- and beta(2)-integrin adhesion, some of the "non-classical" (non-integrin dependent) pathways including CD44 and vascular adhesion protein-1, are discussed.
Collapse
Affiliation(s)
- Woo-Yong Lee
- Department of Physiology and Biophysics, Immunology Research Group, Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
45
|
Miura S, Kubes P, Granger DN. Gastrointestinal and Liver Microcirculations. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Cepinskas G, Katada K, Bihari A, Potter RF. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am J Physiol Gastrointest Liver Physiol 2008; 294:G184-91. [PMID: 17991708 DOI: 10.1152/ajpgi.00348.2007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies suggest that exogenously administered CO is beneficial for the resolution of acute inflammation. In this study, we assessed the role of CO liberated from a systemically administered tricarbonyldichlororuthenium-(II)-dimer (CORM-2) on modulation of liver inflammation during sepsis. Polymicrobial sepsis in mice was induced by cecal ligation and perforation (CLP). CORM-2 (8 mg/kg iv) was administered immediately after CLP induction, and neutrophil [polymorphonuclear leukocyte (PMN)] tissue accumulation, activation of transcription factor, NF-kappaB, and changes in adhesion molecule ICAM-1 expression (inflammation-relevant markers) were assessed in murine liver 24 h later. In addition, the effects and potential mechanisms of CORM-2-released CO in modulation of vascular endothelial cell proinflammatory responses were assessed in vitro. To this end, human umbilical vein endothelial cells (HUVEC) were stimulated with LPS (1 microg/ml) in the presence or absence of CORM-2 (10-100 microM) and production of intracellular reactive oxygen species (ROS), (DHR123 oxidation) and NO (DAF-FM nitrosation) and subsequent activation of NF-kappaB were assessed 4 h later. In parallel, expression of ICAM-1 and inducible NO synthase (iNOS) proteins along with PMN adhesion to LPS-challenged HUVEC were also assessed. Induction of CLP resulted in increased PMN accumulation, ICAM-1 expression, and activation of NF-kappaB in the liver of septic mice. These effects were significantly attenuated by systemic administration of CORM-2. In in vitro experiments, CORM-2-released CO attenuated LPS-induced production of ROS and NO, activation of NF-kappaB, increase in ICAM-1 and iNOS protein expression and PMN adhesion to LPS-stimulated HUVEC. Taken together, these findings indicate that CO released from systemically administered CORM-2 provides anti-inflammatory effects by interfering with NF-kappaB activation and subsequent downregulation of proadhesive vascular endothelial cell phenotype in the liver of septic mice.
Collapse
Affiliation(s)
- Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, N6A 4G4, Canada.
| | | | | | | |
Collapse
|
47
|
The involvement of the sLe-a selectin ligand in the extravasation of human colorectal carcinoma cells. Immunol Lett 2007; 116:218-24. [PMID: 18191232 DOI: 10.1016/j.imlet.2007.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 11/28/2007] [Accepted: 11/30/2007] [Indexed: 11/22/2022]
Abstract
The extravasation of tumor cells is a pivotal stage in the formation of hematogenous metastasis. An interaction of selectins expressed on endothelial cells and selectin ligands expressed by tumor cells has been implicated to play a role in extravasation. In the present study we used a human-mouse model to prove the hypothesis that the selectin ligand sialyl Lewis-a (sLe-a) is indeed involved in the in vivo extravasation of colorectal carcinoma (CRC) cells. The results indicated that highly metastatic CRC cells expressing high levels of sLe-a extravasate more efficiently than non-metastatic CRC cells expressing low levels of sLe-a. It was also demonstrated that down regulating the expression levels of sLe-a in CRC cells by genetic manipulations, significantly reduced CRC extravasation. Non-specific effects of these manipulations were ruled out. The results of this study indicate that the arrest and adhesion of CRC cells, and possibly of other types of cancer cells as well, to endothelium depend on the expression of the selectin ligand sLe-a by the tumor cells.
Collapse
|
48
|
Patrick AL, Rullo J, Beaudin S, Liaw P, Fox-Robichaud AE. Hepatic leukocyte recruitment in response to time-limited expression of TNF-alpha and IL-1beta. Am J Physiol Gastrointest Liver Physiol 2007; 293:G663-72. [PMID: 17656447 DOI: 10.1152/ajpgi.00070.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The development of chronic liver diseases is mediated by sustained hepatic inflammation. Our objective was to characterize the molecular mechanisms responsible for the hepatic inflammatory response to time-limited TNF-alpha and IL-1beta expression. C57Bl/6 mice were injected with 2 x 10(7) plaque forming units intraperitoneally of an adenoviral vector containing TNF-alpha or IL-1beta (AdTNF-alpha or AdIL-1beta). A nonreplicating adenoviral vector served as control. Four days later, under ketamine and xylazine anesthesia, the liver microvasculature was examined by intravital microscopy. In the postsinusoidal venules, leukocyte rolling increased significantly in response to both AdTNF-alpha and AdIL-1beta, compared with controls. This response was significantly reduced following injection of an anti-alpha4-integrin monoclonal antibody (MAb). Postsinusoidal rolling was further reduced to baseline following injection of an anti-P-selectin or anti-L-selectin MAb. Sinusoidal adhesion was greater in mice treated with AdIL-1beta than with AdTNF-alpha. Blocking alpha4-integrin, P-selectin, or L-selectin had no significant effect on sinusoidal or postsinusoidal adhesion. In separate experiments, we administered AdTNF-alpha or AdIL-1beta to mice deficient in ICAM-1. In ICAM-1-/- mice, postsinusoidal leukocyte rolling significantly increased following expression of IL-1beta but not TNF-alpha. AdIL-1beta- but not AdTNF-alpha-mediated sinusoidal adhesion was ICAM-1 dependent. AdTNF-alpha-induced sinusoidal adhesion was significantly reduced following 4 days of anti-MIP-2 MAb and anti-KC MAb. Prolonged expression of the cytokines TNF-alpha and IL-1beta increases hepatic leukocyte-endothelial cell interactions. Interestingly, the mechanisms through which these cytokines bring about adhesion within the sinusoids differ; AdIL-1beta sinusoidal adhesion uses an ICAM-1-dependent mechanism whereas AdTNF-alpha-mediated adhesion is ICAM-1 independent but CXC chemokine dependent.
Collapse
Affiliation(s)
- Amanda L Patrick
- Dept. of Medicine, HSC 4N52, McMaster Univ., 1200 Main St. West, Hamilton, ON, Canada L8N 3Z5
| | | | | | | | | |
Collapse
|
49
|
Monson KM, Dowlatshahi S, Crockett ET. CXC-chemokine regulation and neutrophil trafficking in hepatic ischemia-reperfusion injury in P-selectin/ICAM-1 deficient mice. J Inflamm (Lond) 2007; 4:11. [PMID: 17524141 PMCID: PMC1891280 DOI: 10.1186/1476-9255-4-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 05/24/2007] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neutrophil adhesion and migration are critical in hepatic ischemia and reperfusion injury (I/R). P-selectin and the intercellular adhesion molecule (ICAM)-1 can mediate neutrophil-endothelial cell interactions, neutrophil migration, and the interactions of neutrophils with hepatocytes in the liver. Despite very strong preclinical data, recent clinical trials failed to show a protective effect of anti-adhesion therapy in reperfusion injury, indicating that the length of injury might be a critical factor in neutrophil infiltration. Therefore, the aim of this study was to assess the role of P-selectin and ICAM-1 in neutrophil infiltration and liver injury during early and late phases of liver I/R. METHODS Adult male wild-type and P-selectin/ICAM-1-deficient (P/I null) mice underwent 90 minutes of partial liver ischemia followed by various periods of reperfusion (6, 15 h, and a survival study). Liver injury was assessed by plasma level of alanine aminotransferase (ALT) and histopathology. The plasma cytokines, TNF-alpha, IL-6, MIP-2 and KC, were measured by ELISA. RESULTS Reperfusion caused significant hepatocellular injury in both wild-type and P/I null mice as was determined by plasma ALT levels and liver histopathology. The injury was associated with a marked neutrophil infiltration into the ischemic livers of both wild-type and P/I null mice. Although the levels of ALT and neutrophil infiltration were slightly lower in the P/I null mice compared with the wild-type mice the differences were not statistically significant. The plasma cytokine data of TNF-alpha and IL-6 followed a similar pattern to ALT data, and no significant difference was found between the wild-type and P/I null groups. In contrast, a significant difference in KC and MIP-2 chemokine levels was observed between the wild-type and P/I null mice. Additionally, the survival study showed a trend towards increased survival in the P/I null group. CONCLUSION While ICAM-1 and P-selectin does not appear to be critical for neutrophil infiltration and I/R injury in the liver, they may regulate CXC-chemokine production. Blockage of these adhesion molecules may improve survival and remote organ injury that often accompanies liver I/R injury, through chemokine regulation.
Collapse
Affiliation(s)
- Keith M Monson
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Shadi Dowlatshahi
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Elahé T Crockett
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
50
|
Kwon AH, Qiu Z. Neutrophil elastase inhibitor prevents endotoxin-induced liver injury following experimental partial hepatectomy. Br J Surg 2007; 94:609-19. [PMID: 17315175 DOI: 10.1002/bjs.5625] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Background
During endotoxaemia, neutrophils activated by inflammatory cytokines release reactive oxygen species and neutrophil elastase, resulting in hepatic necrosis and dysfunction. This study investigated the possible mechanism underlying the protective effect of sivelestat, a neutrophil elastase inhibitor, on endotoxin-induced liver injury following partial hepatectomy.
Methods
Lipopolysaccharide (LPS) was administered intravenously to male Sprague–Dawley rats 48 h after 70 per cent hepatectomy. Sivelestat or normal saline was given intravenously before LPS administration,
Results
Treatment with sivelestat significantly improved the survival rate. Sivelestat prevented increases in the concentration of serum enzymes and total bilirubin related to liver injury. Levels of inflammatory cytokines in serum and liver tissue were significantly lower in the sivelestat-treated group than in the control group. The degree of neutrophil infiltration, necrosis and apoptosis in the remnant liver was significantly decreased in sivelestat-treated rats. Sivelestat pretreatment inhibited the activation of nuclear factor (NF) κB, caspase 3 and 8 activities, and cytochrome c release.
Conclusion
Sivelestat prevents LPS-induced liver injury by inhibition of NF-κB activation and apoptosis.
Collapse
Affiliation(s)
- A-H Kwon
- Department of Surgery, Kansai Medical University, 10-15 Fumizono, Moriguchi, Osaka 570-8507, Japan.
| | | |
Collapse
|