1
|
Oravilahti A, Vangipurapu J, Laakso M, Fernandes Silva L. Metabolomics-Based Machine Learning for Predicting Mortality: Unveiling Multisystem Impacts on Health. Int J Mol Sci 2024; 25:11636. [PMID: 39519188 PMCID: PMC11546733 DOI: 10.3390/ijms252111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Reliable predictors of long-term all-cause mortality are needed for middle-aged and older populations. Previous metabolomics mortality studies have limitations: a low number of participants and metabolites measured, measurements mainly using nuclear magnetic spectroscopy, and the use only of conventional statistical methods. To overcome these challenges, we applied liquid chromatography-tandem mass spectrometry and measured >1000 metabolites in the METSIM study including 10,197 men. We applied the machine learning approach together with conventional statistical methods to identify metabolites associated with all-cause mortality. The three independent machine learning methods (logistic regression, XGBoost, and Welch's t-test) identified 32 metabolites having the most impactful associations with all-cause mortality (25 increasing and 7 decreasing the risk). From these metabolites, 20 were novel and encompassed various metabolic pathways, impacting the cardiovascular, renal, respiratory, endocrine, and central nervous systems. In the Cox regression analyses (hazard ratios and their 95% confidence intervals), clinical and laboratory risk factors increased the risk of all-cause mortality by 1.76 (1.60-1.94), the 25 metabolites by 1.89 (1.68-2.12), and clinical and laboratory risk factors combined with the 25 metabolites by 2.00 (1.81-2.22). In our study, the main causes of death were cancers (28%) and cardiovascular diseases (25%). We did not identify any metabolites associated with cancer but found 13 metabolites associated with an increased risk of cardiovascular diseases. Our study reports several novel metabolites associated with an increased risk of mortality and shows that these 25 metabolites improved the prediction of all-cause mortality beyond and above clinical and laboratory measurements.
Collapse
Affiliation(s)
- Anniina Oravilahti
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.O.); (J.V.); (M.L.)
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.O.); (J.V.); (M.L.)
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.O.); (J.V.); (M.L.)
- Department of Medicine, Kuopio University Hospital, 70200 Kuopio, Finland
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.O.); (J.V.); (M.L.)
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Levassort H, Boucquemont J, Lambert O, Liabeuf S, Laville SM, Teillet L, Tabcheh AH, Frimat L, Combe C, Fouque D, Laville M, Jacquelinet C, Helmer C, Alencar de Pinho N, Pépin M, Massy ZA. Urea Level and Depression in Patients with Chronic Kidney Disease. Toxins (Basel) 2024; 16:326. [PMID: 39057966 PMCID: PMC11281192 DOI: 10.3390/toxins16070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Depression is common in patients with chronic kidney disease (CKD). Experimental studies suggest the role of urea toxicity in depression. We assessed both the incidence of antidepressant prescriptions and depressive symptoms (measured by CESD (Center for Epidemiologic Depression) scale) in 2505 patients with CKD (Stage 3-4) followed up over 5 years in the Chronic Kidney Disease Renal Epidemiology and Information Network (CKD-REIN) cohort. We used a joint model to assess the association between the serum urea level and incident antidepressant prescriptions, and mixed models for the association between the baseline serum urea level and CESD score over the 5-year follow-up. Among the 2505 patients, 2331 were not taking antidepressants at baseline. Of the latter, 87 started taking one during a median follow-up of 4.6 years. After adjustment for confounding factors, the hazard ratio for incident antidepressant prescription associated with the serum urea level (1.28 [95%CI, 0.94,1.73] per 5 mmol/L increment) was not significant. After adjustment, the serum urea level was associated with the mean change in the CESD score (β = 0.26, [95%CI, 0.11,0.41] per 5 mmol/L increment). Depressive symptoms burden was associated with serum urea level unlike depression events. Further studies are needed to draw firm conclusions and better understand the mechanisms of depression in CKD.
Collapse
Affiliation(s)
- Hélène Levassort
- Geriatrics, Hôpital Ambroise-Paré, Assistance Publique des Hôpitaux de Paris (APHP), UVSQ, 9 Avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France (M.P.)
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Julie Boucquemont
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Oriane Lambert
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Sophie Liabeuf
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens-Picardie University Medical Center, F-80054 Amiens, France (S.M.L.)
- MP3CV Laboratory, Jules Verne University of Picardie, F-80054 Amiens, France
| | - Solene M. Laville
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens-Picardie University Medical Center, F-80054 Amiens, France (S.M.L.)
- MP3CV Laboratory, Jules Verne University of Picardie, F-80054 Amiens, France
| | - Laurent Teillet
- Geriatrics, Hôpital Ambroise-Paré, Assistance Publique des Hôpitaux de Paris (APHP), UVSQ, 9 Avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France (M.P.)
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Abdel-Hay Tabcheh
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Luc Frimat
- Service de Néphrologie, CHRU de Nancy, F-54000 Vandoeuvre-lès-Nancy, France;
- Université de Lorraine, APEMAC, F-54000 Nancy, France
| | - Christian Combe
- Service de Néphrologie Transplantation Dialyse Aphérèse, Centre Hospitalier Universitaire de Bordeaux, F-33076 Bordeaux, France;
- Inserm U1026, Université Bordeaux Segalen, F-33076 Bordeaux, France
| | - Denis Fouque
- Service de Néphrologie, Centre Hospitalier Lyon Sud, Université de Lyon, Carmen, F-69495 Pierre-Bénite, France;
| | - Maurice Laville
- Université Claude Bernard Lyon 1, Carmen INSERM U1060, F-69495 Pierre-Bénite, France
| | - Christian Jacquelinet
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
- Agence de la Biomédecine, F-93212 Saint-Denis La Plaine, France
| | - Catherine Helmer
- Bordeaux Population Health Center, INSERM U1219, 146 rue Léo Saignat, F-33076 Bordeaux, France;
| | - Natalia Alencar de Pinho
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Marion Pépin
- Geriatrics, Hôpital Ambroise-Paré, Assistance Publique des Hôpitaux de Paris (APHP), UVSQ, 9 Avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France (M.P.)
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
| | - Ziad A. Massy
- Centre for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, Inserm U1018, Paris-Saclay University, 12 Avenue Paul Vaillant Couturier, F-94800 Villejuif, France (O.L.); (A.-H.T.); (N.A.d.P.)
- Association Pour L’Utilisation du Rein Artificiel dans la Région Parisienne (AURA), 185a rue Raymond Losserand, F-75014 Paris, France
- Ambroise Paré University Hospital, APHP, Department of Nephrology, 9 Avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France
| | | |
Collapse
|
3
|
Lee AM, Xu Y, Hu J, Xiao R, Hooper SR, Hartung EA, Coresh J, Rhee EP, Vasan RS, Kimmel PL, Warady BA, Furth SL, Denburg MR. Longitudinal Plasma Metabolome Patterns and Relation to Kidney Function and Proteinuria in Pediatric CKD. Clin J Am Soc Nephrol 2024; 19:837-850. [PMID: 38709558 PMCID: PMC11254025 DOI: 10.2215/cjn.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Key Points Longitudinal untargeted metabolomics. Children with CKD have a circulating metabolome that changes over time. Background Understanding plasma metabolome patterns in relation to changing kidney function in pediatric CKD is important for continued research for identifying novel biomarkers, characterizing biochemical pathophysiology, and developing targeted interventions. There are a limited number of studies of longitudinal metabolomics and virtually none in pediatric CKD. Methods The CKD in Children study is a multi-institutional, prospective cohort that enrolled children aged 6 months to 16 years with eGFR 30–90 ml/min per 1.73 m2. Untargeted metabolomics profiling was performed on plasma samples from the baseline, 2-, and 4-year study visits. There were technologic updates in the metabolomic profiling platform used between the baseline and follow-up assays. Statistical approaches were adopted to avoid direct comparison of baseline and follow-up measurements. To identify metabolite associations with eGFR or urine protein-creatinine ratio (UPCR) among all three time points, we applied linear mixed-effects (LME) models. To identify metabolites associated with time, we applied LME models to the 2- and 4-year follow-up data. We applied linear regression analysis to examine associations between change in metabolite level over time (∆level) and change in eGFR (∆eGFR) and UPCR (∆UPCR). We reported significance on the basis of both the false discovery rate (FDR) <0.05 and P < 0.05. Results There were 1156 person-visits (N : baseline=626, 2-year=254, 4-year=276) included. There were 622 metabolites with standardized measurements at all three time points. In LME modeling, 406 and 343 metabolites associated with eGFR and UPCR at FDR <0.05, respectively. Among 530 follow-up person-visits, 158 metabolites showed differences over time at FDR <0.05. For participants with complete data at both follow-up visits (n =123), we report 35 metabolites with ∆level–∆eGFR associations significant at FDR <0.05. There were no metabolites with significant ∆level–∆UPCR associations at FDR <0.05. We report 16 metabolites with ∆level–∆UPCR associations at P < 0.05 and associations with UPCR in LME modeling at FDR <0.05. Conclusions We characterized longitudinal plasma metabolomic patterns associated with eGFR and UPCR in a large pediatric CKD population. Many of these metabolite signals have been associated with CKD progression, etiology, and proteinuria in previous CKD Biomarkers Consortium studies. There were also novel metabolite associations with eGFR and proteinuria detected.
Collapse
Affiliation(s)
- Arthur M. Lee
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yunwen Xu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Rui Xiao
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen R. Hooper
- Department of Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Erum A. Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- NYU Grossman School of Medicine, New York, New York
| | - Eugene P. Rhee
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ramachandran S. Vasan
- Boston University School of Medicine, Boston, Massachusetts
- Boston University School of Public Health, Boston, Massachusetts
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Bradley A. Warady
- Division of Nephrology, Children’s Mercy Kansas City, Kansas City, Missouri
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Susan L. Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle R. Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Bankir L, Crambert G, Vargas-Poussou R. The SLC6A18 Transporter Is Most Likely a Na-Dependent Glycine/Urea Antiporter Responsible for Urea Secretion in the Proximal Straight Tubule: Influence of This Urea Secretion on Glomerular Filtration Rate. Nephron Clin Pract 2024; 148:796-822. [PMID: 38824912 PMCID: PMC11651341 DOI: 10.1159/000539602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Urea is the major end-product of protein metabolism in mammals. In carnivores and omnivores, a large load of urea is excreted daily in urine, with a concentration that is 30-100 times above that in plasma. This is important for the sake of water economy. Too little attention has been given to the existence of energy-dependent urea transport that plays an important role in this concentrating activity. SUMMARY This review first presents functional evidence for an energy-dependent urea secretion that occurs exclusively in the straight part of the proximal tubule (PST). Second, it proposes a candidate transmembrane transporter responsible for this urea secretion in the PST. SLC6A18 is expressed exclusively in the PST and has been identified as a glycine transporter, based on findings in SLC6A18 knockout mice. We propose that it is actually a glycine/urea antiport, secreting urea into the lumen in exchange for glycine and Na. Glycine is most likely recycled back into the cell via a transporter located in the brush border. Urea secretion in the PST modifies the composition of the tubular fluid in the thick ascending limb and, thus, contributes, indirectly, to influence the "signal" at the macula densa that plays a crucial role in the regulation of the glomerular filtration rate (GFR) by the tubulo-glomerular feedback. KEY MESSAGES Taking into account this secondary active secretion of urea in the mammalian kidney provides a new understanding of the influence of protein intake on GFR, of the regulation of urea excretion, and of the urine-concentrating mechanism.
Collapse
Affiliation(s)
- Lise Bankir
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
| | - Rosa Vargas-Poussou
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
- Service de Médecine Génomique des Maladies Rares, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, MARHEA, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
5
|
Haddad G, Blaine J. Identification of Four Mouse FcRn Splice Variants and FcRn-Specific Vesicles. Cells 2024; 13:594. [PMID: 38607033 PMCID: PMC11012118 DOI: 10.3390/cells13070594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Research into the neonatal Fc receptor (FcRn) has increased dramatically ever since Simister and Mostov first purified a rat version of the receptor. Over the years, FcRn has been shown to function not only as a receptor that transfers immunity from mother to fetus but also performs an array of different functions that include transport and recycling of immunoglobulins and albumin in the adult. Due to its important cellular roles, several clinical trials have been designed to either inhibit/enhance FcRn function or develop of non-invasive therapeutic delivery system such as fusion of drugs to IgG Fc or albumin to enhance delivery inside the cells. Here, we report the accidental identification of several FcRn alternatively spliced variants in both mouse and human cells. The four new mouse splice variants are capable of binding immunoglobulins' Fc and Fab portions. In addition, we have identified FcRn-specific vesicles in which immunoglobulins and albumin can be stored and that are involved in the endosomal-lysosomal system. The complexity of FcRn functions offers significant potential to design and develop novel and targeted therapeutics.
Collapse
Affiliation(s)
| | - Judith Blaine
- Division of Renal Disease and Hypertension, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA;
| |
Collapse
|
6
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
7
|
Lakis R, Sauvage FL, Pinault E, Marquet P, Saint-Marcoux F, El Balkhi S. Absolute Quantification of Human Serum Albumin Isoforms by Internal Calibration Based on a Top-Down LC-MS Approach. Anal Chem 2024; 96:746-755. [PMID: 38166371 DOI: 10.1021/acs.analchem.3c03933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Well-characterized biomarkers using reliable quantitative methods are essential for the management of various pathologies such as diabetes, kidney, and liver diseases. Human serum albumin (HSA) isoforms are gaining interest as biomarkers of advanced liver pathologies. In view of the structural alterations observed for HSA, insights into its isoforms are required to establish them as reliable biomarkers. Therefore, a robust absolute quantification method seems necessary. In this study, we developed and validated a far more advanced top-down liquid chromatography-mass spectrometry (LC-MS) method for the absolute quantification of HSA isoforms, using myoglobin (Mb) as an internal standard for quantification and for mass recalibration. Two different quantification approaches were investigated based on peak integration from the deconvoluted spectrum and extracted ion chromatogram (XIC). The protein mixture human serum albumin/myoglobin eluted in well-shaped separated peaks. Mb allowed a systematic mass recalibration for every sample, resulting in extremely low mass deviations compared to conventional deconvolution-based methods. In total, eight HSA isoforms of interest were quantified. Specific-isoform calibration curves showing good linearity were obtained by using the deconvoluted peaks. Noticeably, the HSA ionization behavior appeared to be isoform-dependent, suggesting that the use of an enriched isoform solution as a calibration standard for absolute quantification studies of HSA isoforms is necessary. Good repeatability, reproducibility, and accuracy were observed, with better sensitivity for samples with low albumin concentrations compared to routine biochemical assays. With a relatively simple workflow, the application of this method for absolute quantification shows great potential, especially for HSA isoform studies in a clinical context, where a high-throughput method and sensitivity are needed.
Collapse
Affiliation(s)
- Roy Lakis
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - François-Ludovic Sauvage
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - Emilie Pinault
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - Pierre Marquet
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| | - Franck Saint-Marcoux
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| | - Souleiman El Balkhi
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| |
Collapse
|
8
|
Zhao Y, Xu Q, He N, Jiang M, Chen Y, Ren Z, Tang Z, Wu C, Liu L. Non-oxidative Modified Low-density Lipoproteins: The Underappreciated Risk Factors for Atherosclerosis. Curr Med Chem 2024; 31:5598-5611. [PMID: 37550912 DOI: 10.2174/0929867331666230807154019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 08/09/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular diseases, is a main risk factor causing about 20 million deaths each year worldwide. Oxidized low-density lipoprotein is recognized as the most important and independent risk factor in initiating and promoting atherosclerosis. Numerous antioxidants are extensively used in clinical practice, but they have no significant effect on reducing the morbidity and mortality of cardiovascular diseases. This finding suggests that researchers should pay more attention to the important role of non-oxidative modified low-density lipoprotein in atherosclerosis with a focus on oxidized low-density lipoprotein. This review briefly summarizes several important non-oxidative modified low-density lipoproteins associated with atherosclerosis, introduces the pathways through which these non-oxidative modified low-density lipoproteins induce the development of atherosclerosis in vivo, and discusses the mechanism of atherogenesis induced by these non-oxidative modified low-density lipoproteins. New therapeutic strategies and potential drug targets are provided for the prevention and treatment of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Yimeng Zhao
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Qian Xu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Naiqi He
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Mulin Jiang
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Yingzhuo Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zhong Ren
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zhihan Tang
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Chunyan Wu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Lushan Liu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
9
|
Cholico GN, Fling RR, Sink WJ, Nault R, Zacharewski T. Inhibition of the urea cycle by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin increases serum ammonia levels in mice. J Biol Chem 2024; 300:105500. [PMID: 38013089 PMCID: PMC10731612 DOI: 10.1016/j.jbc.2023.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
The aryl hydrocarbon receptor is a ligand-activated transcription factor known for mediating the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. TCDD induces nonalcoholic fatty liver disease (NAFLD)-like pathologies including simple steatosis that can progress to steatohepatitis with fibrosis and bile duct proliferation in male mice. Dose-dependent progression of steatosis to steatohepatitis with fibrosis by TCDD has been associated with metabolic reprogramming, including the disruption of amino acid metabolism. Here, we used targeted metabolomic analysis to reveal dose-dependent changes in the level of ten serum and eleven hepatic amino acids in mice upon treatment with TCDD. Bulk RNA-seq and protein analysis showed TCDD repressed CPS1, OTS, ASS1, ASL, and GLUL, all of which are associated with the urea cycle and glutamine biosynthesis. Urea and glutamine are end products of the detoxification and excretion of ammonia, a toxic byproduct of amino acid catabolism. Furthermore, we found that the catalytic activity of OTC, a rate-limiting step in the urea cycle was also dose dependently repressed. These results are consistent with an increase in circulating ammonia. Collectively, the repression of the urea and glutamate-glutamine cycles increased circulating ammonia levels and the toxicity of TCDD.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA; Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Warren J Sink
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Rance Nault
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
10
|
Lenglet A, Jaisson S, Gillery P, El Balkhi S, Liabeuf S, Massy ZA. Comparison of homocitrulline and carbamylated albumin as biomarkers of carbamylation reactions in hemodialyzed patients. Amino Acids 2023; 55:1455-1460. [PMID: 37532908 PMCID: PMC10689527 DOI: 10.1007/s00726-023-03306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
To describe the association between levels of homocitrulline (HCit) and the degree of albumin carbamylation in a cohort of hemodialyzed patients. Plasma total and protein-bound HCit concentrations in samples from hemodialyzed patients included in NICOREN trial were determined by LC-MS/MS at baseline and after 24 weeks of treatment with either sevelamer or nicotinamide. HCit concentrations at all timepoints and in both groups were positively and significantly correlated with the degree of albumin carbamylation. Plasma concentrations of total HCit, protein-bound HCit and carbamylated albumin did not decrease after 24 weeks of treatment with either sevelamer or nicotinamide. The present results demonstrate that plasma total and protein-bound HCit concentrations were closely associated with albumin carbamylation in hemodialyzed patients. Therefore, total and protein-bound HCit concentrations might be valuable biomarkers of the overall intensity of protein carbamylation in this context. Given the less complex and time-consuming analytical methods required, these markers should be favored in future clinical studies of carbamylation reaction.
Collapse
Affiliation(s)
- Aurelie Lenglet
- UM7517, MP3CV Laboratory, CURS, Faculty of Pharmacy, Jules Verne University of Picardie, Amiens, France
- Pharmacy Division, Amiens University Medical Center, Amiens, France
| | - Stéphane Jaisson
- University of Reims Champagne-Ardenne, CNRS, MEDyC Unit UMR 7369, Reims, France
- Biochemistry Department, Reims University Medical Center, Reims, France
| | - Philippe Gillery
- University of Reims Champagne-Ardenne, CNRS, MEDyC Unit UMR 7369, Reims, France
- Biochemistry Department, Reims University Medical Center, Reims, France
| | | | - Sophie Liabeuf
- UM7517, MP3CV Laboratory, CURS, Faculty of Pharmacy, Jules Verne University of Picardie, Amiens, France
- Division of Nephrology, Ambroise Paré Hospital and Paris Ile de France Ouest University, 9 Avenue Charles de Gaulle, 92104, Boulogne Billancourt Cedex, France
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital and Paris Ile de France Ouest University, 9 Avenue Charles de Gaulle, 92104, Boulogne Billancourt Cedex, France.
- INSERM U-1018, Centre de recherche en épidémiologie et santé des populations (CESP), Paris-Saclay University (PSU) and University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), Equipe 5, Villejuif, France.
| |
Collapse
|
11
|
Dutta H, Jain N. Post-translational modifications and their implications in cancer. Front Oncol 2023; 13:1240115. [PMID: 37795435 PMCID: PMC10546021 DOI: 10.3389/fonc.2023.1240115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational modifications (PTMs) are crucial regulatory mechanisms that alter the properties of a protein by covalently attaching a modified chemical group to some of its amino acid residues. PTMs modulate essential physiological processes such as signal transduction, metabolism, protein localization, and turnover and have clinical relevance in cancer and age-related pathologies. Majority of proteins undergo post-translational modifications, irrespective of their occurrence in or after protein biosynthesis. Post-translational modifications link to amino acid termini or side chains, causing the protein backbone to get cleaved, spliced, or cyclized, to name a few. These chemical modifications expand the diversity of the proteome and regulate protein activity, structure, locations, functions, and protein-protein interactions (PPIs). This ability to modify the physical and chemical properties and functions of proteins render PTMs vital. To date, over 200 different protein modifications have been reported, owing to advanced detection technologies. Some of these modifications include phosphorylation, glycosylation, methylation, acetylation, and ubiquitination. Here, we discuss about the existing as well as some novel post-translational protein modifications, with their implications in aberrant states, which will help us better understand the modified sites in different proteins and the effect of PTMs on protein functions in core biological processes and progression in cancer.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
You Y, Tsai CF, Patel R, Sarkar S, Clair G, Zhou M, Liu T, Metz TO, Das C, Nakayasu ES. Analysis of a macrophage carbamylated proteome reveals a function in post-translational modification crosstalk. Cell Commun Signal 2023; 21:241. [PMID: 37723562 PMCID: PMC10506243 DOI: 10.1186/s12964-023-01257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/05/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Lysine carbamylation is a biomarker of rheumatoid arthritis and kidney diseases. However, its cellular function is understudied due to the lack of tools for systematic analysis of this post-translational modification (PTM). METHODS We adapted a method to analyze carbamylated peptides by co-affinity purification with acetylated peptides based on the cross-reactivity of anti-acetyllysine antibodies. We also performed immobilized-metal affinity chromatography to enrich for phosphopeptides, which allowed us to obtain multi-PTM information from the same samples. RESULTS By testing the pipeline with RAW 264.7 macrophages treated with bacterial lipopolysaccharide, 7,299, 8,923 and 47,637 acetylated, carbamylated, and phosphorylated peptides were identified, respectively. Our analysis showed that carbamylation occurs on proteins from a variety of functions on sites with similar as well as distinct motifs compared to acetylation. To investigate possible PTM crosstalk, we integrated the carbamylation data with acetylation and phosphorylation data, leading to the identification 1,183 proteins that were modified by all 3 PTMs. Among these proteins, 54 had all 3 PTMs regulated by lipopolysaccharide and were enriched in immune signaling pathways, and in particular, the ubiquitin-proteasome pathway. We found that carbamylation of linear diubiquitin blocks the activity of the anti-inflammatory deubiquitinase OTULIN. CONCLUSIONS Overall, our data show that anti-acetyllysine antibodies can be used for effective enrichment of carbamylated peptides. Moreover, carbamylation may play a role in PTM crosstalk with acetylation and phosphorylation, and that it is involved in regulating ubiquitination in vitro. Video Abstract.
Collapse
Affiliation(s)
- Youngki You
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Rishi Patel
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Mowei Zhou
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
13
|
Faerber V, Kuhn KS, Garneata L, Kalantar-Zadeh K, Kalim S, Raj DS, Westphal M. The Microbiome and Protein Carbamylation: Potential Targets for Protein-Restricted Diets Supplemented with Ketoanalogues in Predialysis Chronic Kidney Disease. Nutrients 2023; 15:3503. [PMID: 37630693 PMCID: PMC10459041 DOI: 10.3390/nu15163503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
In chronic kidney disease (CKD), metabolic derangements resulting from the interplay between decreasing renal excretory capacity and impaired gut function contribute to accelerating disease progression and enhancing the risk of complications. To protect residual kidney function and improve quality of life in conservatively managed predialysis CKD patients, current guidelines recommend protein-restricted diets supplemented with essential amino acids (EAAs) and their ketoanalogues (KAs). In clinical studies, such an approach improved nitrogen balance and other secondary metabolic disturbances, translating to clinical benefits, mainly the delayed initiation of dialysis. There is also increasing evidence that a protein-restricted diet supplemented with KAs slows down disease progression. In the present review article, recent insights into the role of KA/EAA-supplemented protein-restricted diets in delaying CKD progression are summarized, and possible mechanistic underpinnings, such as protein carbamylation and gut dysbiosis, are elucidated. Emerging evidence suggests that lowering urea levels may reduce protein carbamylation, which might contribute to decreased morbidity and mortality. Protein restriction, alone or in combination with KA/EAA supplementation, modulates gut dysbiosis and decreases the generation of gut-derived uremic toxins associated, e.g., with cardiovascular disease, inflammation, protein energy wasting, and disease progression. Future studies are warranted to assess the effects on the gut microbiome, the generation of uremic toxins, as well as markers of carbamylation.
Collapse
Affiliation(s)
- Valentin Faerber
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| | - Katharina S. Kuhn
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| | - Liliana Garneata
- “Dr. Carol Davila” Teaching Hospital of Nephrology, 4 Calea Grivitei, Sector 1, 010731 Bucharest, Romania;
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI), Orange, CA 90286, USA;
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Dominic S. Raj
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC 20037, USA;
| | - Martin Westphal
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| |
Collapse
|
14
|
Mernissi T, Demagny J, Le Guyader M, Renou M, Choukroun G, Kamel S, Liabeuf S, Bodeau S. Quantitative determination of plasma free and total concentrations of antivitamin K drugs using a new sensitive and rapid LC-MS/MS method: Application in hemodialysis patients. Clin Chim Acta 2023; 548:117498. [PMID: 37482192 DOI: 10.1016/j.cca.2023.117498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND AND AIMS Vitamin K antagonists (VKAs) are the first-line anticoagulants used in end stage renal disease. This population experiences a significant variability in their International Normalized Ratio (INR) over time. There is a need for methods allowing the study of the pharmacokinetics of free and total concentrations of VKAs to explain INR variability. MATERIALS AND METHODS We developed and validated a high-performance liquid chromatography-tandem mass spectrometry method allowing the quantification of warfarin and fluindione free and total plasma concentrations. Chromatographic separation was achieved in a raptor biphenyl column and the spectrometry acquisition was set in multiple reaction monitoring mode after negative electrospray ionization. We then applied it in describing the plasma free and total concentrations of VKAs in samples from 50 hemodialysis patients. RESULTS The developed method is rapid, sensitive and specific. Our cohort results showed a correlation between free and total VKA concentrations. The free VKA concentrations tended to be higher in patients with higher INR. Although VKAs are highly albumin-bound drugs, albumin concentration did not totally explain the high inter-individual total VKA concentrations variability. CONCLUSION This opens the door to further studies to understand the factors involved in their variability.
Collapse
Affiliation(s)
- Touria Mernissi
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, Amiens, F-80000 Amiens, France; Department of Clinical Pharmacology, Amiens University Medical Center, F-80000 Amiens, France
| | - Julien Demagny
- Department of Hematology, Amiens University Medical Center, F-80000 Amiens, France
| | - Mailys Le Guyader
- Department of Hematology, Amiens University Medical Center, F-80000 Amiens, France
| | - Marianne Renou
- Department of Nephrology, Dialysis and Transplantation, Amiens University Medical Center, F-80000 Amiens, France
| | - Gabriel Choukroun
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, Amiens, F-80000 Amiens, France; Department of Nephrology, Dialysis and Transplantation, Amiens University Medical Center, F-80000 Amiens, France
| | - Saïd Kamel
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, Amiens, F-80000 Amiens, France; Department of Biochemistry, Amiens University Medical Center, F-80000 Amiens, France
| | - Sophie Liabeuf
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, Amiens, F-80000 Amiens, France; Department of Clinical Pharmacology, Amiens University Medical Center, F-80000 Amiens, France
| | - Sandra Bodeau
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, Amiens, F-80000 Amiens, France; Department of Clinical Pharmacology, Amiens University Medical Center, F-80000 Amiens, France.
| |
Collapse
|
15
|
You Y, Tsai CF, Patel R, Sarkar S, Clair G, Zhou M, Liu T, Metz TO, Das C, Nakayasu ES. Analysis of a macrophage carbamylated proteome reveals a function in post-translational modification crosstalk. RESEARCH SQUARE 2023:rs.3.rs-3044777. [PMID: 37398265 PMCID: PMC10312928 DOI: 10.21203/rs.3.rs-3044777/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background. Lysine carbamylation is a biomarker of rheumatoid arthritis and kidney diseases. However, its cellular function is understudied due to the lack of tools for systematic analysis of this post-translational modification (PTM). Methods. We adapted a method to analyze carbamylated peptides by co-affinity purification with acetylated peptides based on the cross-reactivity of anti-acetyllysine antibodies. We integrated this method into a mass spectrometry-based multi-PTM pipeline to simultaneously analyze carbamylated and acetylated peptides in addition to phosphopeptides were enriched by sequential immobilized-metal affinity chromatography. Results. By testing the pipeline with RAW 264.7 macrophages treated with bacterial lipopolysaccharide, 7,299, 8,923 and 47,637 acetylated, carbamylated, and phosphorylated peptides were identified, respectively. Our analysis showed that carbamylation occurs on proteins from a variety of functions on sites with similar as well as distinct motifs compared to acetylation. To investigate possible PTM crosstalk, we integrated the carbamylation data with acetylation and phosphorylation data, leading to the identification 1,183 proteins that were modified by all 3 PTMs. Among these proteins, 54 had all 3 PTMs regulated by lipopolysaccharide and were enriched in immune signaling pathways, and in particular, the ubiquitin-proteasome pathway. We found that carbamylation of linear diubiquitin blocks the activity of the anti-inflammatory deubiquitinase OTULIN. Conclusions Overall, our data show that anti-acetyllysine antibodies can be used for effective enrichment of carbamylated peptides. Moreover, carbamylation may play a role in PTM crosstalk with acetylation and phosphorylation, and that it is involved in regulating ubiquitination in vitro .
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Liu
- Pacific Northwest National Laboratory
| | | | | | | |
Collapse
|
16
|
Schlosser P, Grams ME, Rhee EP. Proteomics: Progress and Promise of High-Throughput Proteomics in Chronic Kidney Disease. Mol Cell Proteomics 2023; 22:100550. [PMID: 37076045 PMCID: PMC10326701 DOI: 10.1016/j.mcpro.2023.100550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023] Open
Abstract
Current proteomic tools permit the high-throughput analysis of the blood proteome in large cohorts, including those enriched for chronic kidney disease (CKD) or its risk factors. To date, these studies have identified numerous proteins associated with cross-sectional measures of kidney function, as well as with the longitudinal risk of CKD progression. Representative signals that have emerged from the literature include an association between levels of testican-2 and favorable kidney prognosis and an association between levels of TNFRSF1A and TNFRSF1B and worse kidney prognosis. For these and other associations, however, understanding whether the proteins play a causal role in kidney disease pathogenesis remains a fundamental challenge, especially given the strong impact that kidney function can have on blood protein levels. Prior to investing in dedicated animal models or randomized trials, methods that leverage the availability of genotyping in epidemiologic cohorts-including Mendelian randomization, colocalization analyses, and proteome-wide association studies-can add evidence for causal inference in CKD proteomics research. In addition, integration of large-scale blood proteome analyses with urine and tissue proteomics, as well as improved assessment of posttranslational protein modifications (e.g., carbamylation), represent important future directions. Taken together, these approaches seek to translate progress in large-scale proteomic profiling into the promise of improved diagnostic tools and therapeutic target identification in kidney disease.
Collapse
Affiliation(s)
- Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| | - Morgan E Grams
- Division of Precision Medicine, Department of Medicine, New York University, New York, New York, USA
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Rahali MA, Lakis R, Sauvage FL, Pinault E, Marquet P, Saint-Marcoux F, El Balkhi S. Posttranslational-modifications of human-serum-albumin analysis by a top-down approach validated by a comprehensive bottom-up analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1224:123740. [PMID: 37182409 DOI: 10.1016/j.jchromb.2023.123740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
The posttranslational modifications (PTM) of human serum albumin (HSA) can result in the development of isoforms that have been identified as potential biomarkers for advanced hepatic diseases. However, previous approaches using top-down (TD) analysis to identify isoforms based on molecular weight may have resulted in misidentifications. The nature of the identified isoforms has never been confirmed in previous works. Here, we aimed to critically evaluate TD for the characterization and determination of HSA isoforms in patients and make an inventory of HSA-PTM. Serum samples from control subjects and patients with liver dysfunctions were analyzed using both top-down (TD) and bottom-up (BU) approaches. TD analysis involved using a LC-TOF-MS system to obtain a multicharged spectrum of HSA, which was deconvoluted to identify isoforms. Spectra were then used for relative quantitation analysis of albumin isoform abundances based on trapezoidal integration. For BU analysis, serums were reduced +/- alkylated, digested with trypsin and analyzed in the Q-TOF, data-dependent acquisition (DDA) mode to generate a SWATH-MS high-resolution mass spectral library of all HSA peptides. Tryptic digests of another set of serum samples were then analyzed using data-independent acquisition (DIA) mode to confirm the presence of HSA isoforms and their modification sites. TD detected 15 isoforms corresponding to various modifications, including glycation, cysteinylation, nitrosylation, and oxidation (di- and tri-). In BU, the spectral library containing 127 peptides allowed for the characterization of the important isoforms with their modified sites, including some modifications that were only characterized in BU (carbamylation, deamidation, and amino-acid substitution). The method used for determining isoforms offered acceptable reproducibility (intra-/inter-assay CVs < 15%) for all isoforms present at relative abundances higher than 2%. Overall, the study found that several isoforms could be missed or misidentified by TD. However, all HSA isoforms identified by TD and reported to be relevant in liver dysfunctions were confirmed by BU. This critical evaluation of TD approach helped design an adequate and reliable method for the characterization of HSA isoforms in patients and offers the possibility to estimate isoform abundances within 3 min. These findings have significant implications for the diagnosis and treatment of liver dysfunctions.
Collapse
Affiliation(s)
- Mohamad-Ali Rahali
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France
| | - Roy Lakis
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France
| | - François-Ludovic Sauvage
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France
| | - Emilie Pinault
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France
| | - Pierre Marquet
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France; Department of pharmacology, toxicology and pharmacovigilance, CHU Limoges, Limoges, France
| | - Franck Saint-Marcoux
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France; Department of pharmacology, toxicology and pharmacovigilance, CHU Limoges, Limoges, France
| | - Souleiman El Balkhi
- P&T, UMR1248, University of Limoges, National Institute for Health and Medical Research (INSERM), Limoges, France; Department of pharmacology, toxicology and pharmacovigilance, CHU Limoges, Limoges, France.
| |
Collapse
|
18
|
LaFavers K, Garimella PS. Uromodulin: more than a marker for chronic kidney disease progression. Curr Opin Nephrol Hypertens 2023; 32:271-277. [PMID: 36912260 DOI: 10.1097/mnh.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE OF REVIEW Uromodulin, a protein that is highly conserved across several species through evolution, functions to maintain homeostasis and prevent disease development and progression. Historically, the role of uromodulin has been thought to be limited to the kidney and genitourinary tract. This review highlights developments indicating a broader role of uromodulin in human health. RECENT FINDINGS Although initially discovered in the urine and found to have immunomodulatory properties, recent findings indicate that serum uromodulin (sUMOD) is distinct from urine uromodulin (uUMOD) in its structure, function, and regulation. uUMOD binds pathogenic bacteria in the urine preventing infection and is also upregulated in kidneys undergoing repair after injury. Uromodulin knockout mice exhibit higher mortality in the setting of sepsis which is also associated with upregulation of sUMOD. sUMOD lowers calcification risk but this may be influenced by presence of kidney disease. SUMMARY Uromodulin is an evolutionarily conserved protein produced exclusively in the kidney tubule cells with evolving roles being reported both in the kidney and systemically. Further research should be focused at harnessing its use as a potential therapeutic.
Collapse
Affiliation(s)
- Kaice LaFavers
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pranav S Garimella
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California, USA
| |
Collapse
|
19
|
Zeleznik OA, Welling DB, Stankovic K, Frueh L, Balasubramanian R, Curhan GC, Curhan SG. Association of Plasma Metabolomic Biomarkers With Persistent Tinnitus: A Population-Based Case-Control Study. JAMA Otolaryngol Head Neck Surg 2023; 149:404-415. [PMID: 36928544 PMCID: PMC10020935 DOI: 10.1001/jamaoto.2023.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/17/2023] [Indexed: 03/18/2023]
Abstract
Importance Persistent tinnitus is common, disabling, and difficult to treat. Objective To evaluate the association between circulating metabolites and persistent tinnitus. Design, Setting, and Participants This was a population-based case-control study of 6477 women who were participants in the Nurses' Health Study (NHS) and NHS II with metabolomic profiles and tinnitus data. Information on tinnitus onset and frequency was collected on biennial questionnaires (2009-2017). For cases, metabolomic profiles were measured (2015-2021) in blood samples collected after the date of the participant's first report of persistent tinnitus (NHS, 1989-1999 and 2010-2012; NHS II, 1996-1999). Data analyses were performed from January 24, 2022, to January 14, 2023. Exposures In total, 466 plasma metabolites from 488 cases of persistent tinnitus and 5989 controls were profiled using 3 complementary liquid chromatography tandem mass spectrometry approaches. Main Outcomes and Measures Logistic regression was used to estimate odds ratios (ORs) of persistent tinnitus (per 1 SD increase in metabolite values) and 95% CIs for each individual metabolite. Metabolite set enrichment analysis was used to identify metabolite classes enriched for associations with tinnitus. Results Of the 6477 study participants (mean [SD] age, 52 [9] years; 6477 [100%] female; 6121 [95%] White individuals) who were registered nurses, 488 reported experiencing daily persistent (≥5 minutes) tinnitus. Compared with participants with no tinnitus (5989 controls), those with persistent tinnitus were slightly older (53.0 vs 51.8 years) and more likely to be postmenopausal, using oral postmenopausal hormone therapy, and have type 2 diabetes, hypertension, and/or hearing loss at baseline. Compared with controls, homocitrulline (OR, 1.32; (95% CI, 1.16-1.50); C38:6 phosphatidylethanolamine (PE; OR, 1.24; 95% CIs, 1.12-1.38), C52:6 triglyceride (TAG; OR, 1.22; 95% CIs, 1.10-1.36), C36:4 PE (OR, 1.22; 95% CIs, 1.10-1.35), C40:6 PE (OR, 1.22; 95% CIs, 1.09-1.35), and C56:7 TAG (OR, 1.21; 95% CIs, 1.09-1.34) were positively associated, whereas α-keto-β-methylvalerate (OR, 0.68; 95% CIs, 0.56-0.82) and levulinate (OR, 0.60; 95% CIs, 0.46-0.79) were inversely associated with persistent tinnitus. Among metabolite classes, TAGs (normalized enrichment score [NES], 2.68), PEs (NES, 2.48), and diglycerides (NES, 1.65) were positively associated, whereas phosphatidylcholine plasmalogens (NES, -1.91), lysophosphatidylcholines (NES, -2.23), and cholesteryl esters (NES,-2.31) were inversely associated with persistent tinnitus. Conclusions and Relevance This population-based case-control study of metabolomic profiles and tinnitus identified novel plasma metabolites and metabolite classes that were significantly associated with persistent tinnitus, suggesting that metabolomic studies may help improve understanding of tinnitus pathophysiology and identify therapeutic targets for this challenging disorder.
Collapse
Affiliation(s)
- Oana A. Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - D. Bradley Welling
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear, Boston
| | - Konstantina Stankovic
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Palo Alto, California
| | - Lisa Frueh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst
| | - Gary C. Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sharon G. Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Jaisson S, Desmons A, Doué M, Gorisse L, Pietrement C, Gillery P. Measurement of Homocitrulline, A Carbamylation-derived Product, in Serum and Tissues by LC-MS/MS. Curr Protoc 2023; 3:e762. [PMID: 37097220 DOI: 10.1002/cpz1.762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Carbamylation corresponds to the nonenzymatic binding of isocyanic acid to protein amino groups and participates in protein molecular aging, characterized by the alteration of their structural and functional properties. Carbamylated proteins exert deleterious effects in vivo and are involved in the progression of various diseases, including atherosclerosis and chronic kidney disease. Therefore, there is a growing interest in evaluating the carbamylation rate of blood or tissue proteins, since carbamylation-derived products (CDPs) constitute valuable biomarkers in these contexts. Homocitrulline, formed by isocyanic acid covalently attaching to the ε-NH2 group of lysine residue side chain, is the most characteristic CDP. Sensitive and specific quantification of homocitrulline requires mass spectrometry-based methods. This article describes a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of homocitrulline, with special emphasis on preanalytical steps that allow quantification of total or protein-bound homocitrulline in serum or tissue samples. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Sample pretreatment for the quantification of homocitrulline by LC-MS/MS Alternate Protocol: Preanalytical steps for the quantification of homocitrulline in tissue samples Basic Protocol 2: LC-MS/MS quantification of homocitrulline Basic Protocol 3: LC-MS/MS quantification of lysine in hydrolysates.
Collapse
Affiliation(s)
- Stéphane Jaisson
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N°7369 Extracellular Matrix and Cell Dynamics, University of Reims Champagne-Ardenne, Reims, France
- Laboratory of Pediatric Biology and Research, University Hospital of Reims, Reims, France
| | - Aurore Desmons
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N°7369 Extracellular Matrix and Cell Dynamics, University of Reims Champagne-Ardenne, Reims, France
- Laboratory of Pediatric Biology and Research, University Hospital of Reims, Reims, France
| | - Manon Doué
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N°7369 Extracellular Matrix and Cell Dynamics, University of Reims Champagne-Ardenne, Reims, France
| | - Laëtitia Gorisse
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N°7369 Extracellular Matrix and Cell Dynamics, University of Reims Champagne-Ardenne, Reims, France
| | - Christine Pietrement
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N°7369 Extracellular Matrix and Cell Dynamics, University of Reims Champagne-Ardenne, Reims, France
- Department of Pediatrics (Nephrology unit), University Hospital of Reims, Reims, France
| | - Philippe Gillery
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N°7369 Extracellular Matrix and Cell Dynamics, University of Reims Champagne-Ardenne, Reims, France
- Laboratory of Pediatric Biology and Research, University Hospital of Reims, Reims, France
| |
Collapse
|
21
|
Changes in the size and electrophoretic mobility of HDL subpopulation particles in chronic kidney disease. J Nephrol 2023; 36:115-124. [PMID: 35943666 PMCID: PMC9894991 DOI: 10.1007/s40620-022-01412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND High-density lipoprotein (HDL) is a heterogeneous group of particles with anti-atherogenic properties whose metabolism is alterated in chronic kidney disease (CKD). The aim of this study was to evaluate the particle size and mobility of HDL subpopulations in non-dialysis CKD patients. METHODS The study involved 42 non-dialysis CKD patients (stages 3a-4) and 18 control subjects. HDL was separated by non-denaturing two-dimensional polyacrylamide gradient gel electrophoresis (2D-PAGGE) and eight HDL subpopulations; preβ1, preβ2a-c, and α1-4 were distinguished. The size and electrophoretic mobility of HDL subpopulation particles were compared between the groups, and a regression analysis was conducted. RESULTS In CKD patients, the mean sizes of α-HDL and preβ2-HDL particles were significantly lower compared to the control group (8.42 ± 0.32 nm vs. 8.64 ± 0.26 nm, p = 0.014; 11.45 ± 0.51 vs. 12.34 ± 0.78 nm, p = 0.003, respectively). The electrophoretic mobility of preβ2-HDL relative to α-HDL was significantly higher in CKD patients compared to the control group (Rf 0.65 ± 0.06 vs. 0.53 ± 0.10, p = 0.002). The size and mobility of HDL subpopulations correlated with eGFR values (p < 0.01). These relationships remained statistically significant after adjusting for age, gender, statin treatment, apolipoprotein AI, total cholesterol, and triglyceride levels. DISCUSSION CKD affects the size and mobility of HDL particles, which can be related to HDL dysfunction. The magnitude of HDL size and mobility changes depended on CKD stage and differed for individual HDL subpopulations, which indicates that some stages of HDL metabolism may be more affected by the presence of chronic kidney disease.
Collapse
|
22
|
Pongsuwan K, Kusirisin P, Narongkiattikhun P, Chattipakorn SC, Chattipakorn N. Mitochondria and vascular calcification in chronic kidney disease: Lessons learned from the past to improve future therapy. J Cell Physiol 2022; 237:4369-4396. [PMID: 36183389 DOI: 10.1002/jcp.30891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
Chronic kidney disease-mineral and bone disorders (CKD-MBD) is a common complication of CKD Stages 3-5. Hyperphosphatemia is one of the major metabolic components of CKD-MBD, frequently resulting in vascular calcification (VC) in advanced-stage patients. Also, a long duration of renal replacement therapy can cause the worsening of VC, leading to increased cardiovascular morbidity and mortality. Vascular smooth muscle cells play an important role in the development of VC through osteochondrogenic transformation and the apoptotic process. It has been shown that mitochondrial dysfunction is involved with CKD progression, and excessive oxidative stress can aggravate osteoblastic transformation and VC. Currently, novel interventions targeting mitochondrial function and dynamics, in addition to mitochondrial antioxidants, have been studied with the aim of attenuating VC. This review aims to comprehensively summarize and discuss the experimental and clinical reports concerning mitochondrial studies, along with the purpose of interventions that can improve the outcomes of VC among CKD patients.
Collapse
Affiliation(s)
- Karn Pongsuwan
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prit Kusirisin
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Phoom Narongkiattikhun
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
23
|
Yadav SPS, Yu A, Zhao J, Singh J, Kakkar S, Chakraborty S, Mechref Y, Molitoris B, Wagner MC. Glycosylation of a key cubilin Asn residue results in reduced binding to albumin. J Biol Chem 2022; 298:102371. [PMID: 35970386 PMCID: PMC9485058 DOI: 10.1016/j.jbc.2022.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/28/2022] Open
Abstract
Kidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.
Collapse
Affiliation(s)
- Shiv Pratap Singh Yadav
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Saloni Kakkar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Bruce Molitoris
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark C Wagner
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
24
|
Binder V, Chruścicka-Smaga B, Bergum B, Jaisson S, Gillery P, Sivertsen J, Hervig T, Kaminska M, Tilvawala R, Nemmara VV, Thompson PR, Potempa J, Marti HP, Mydel P. Carbamylation of Integrin α IIb β 3: The Mechanistic Link to Platelet Dysfunction in ESKD. J Am Soc Nephrol 2022; 33:1841-1856. [PMID: 36038265 PMCID: PMC9528322 DOI: 10.1681/asn.2022010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/05/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Bleeding diatheses, common among patients with ESKD, can lead to serious complications, particularly during invasive procedures. Chronic urea overload significantly increases cyanate concentrations in patients with ESKD, leading to carbamylation, an irreversible modification of proteins and peptides. METHODS To investigate carbamylation as a potential mechanistic link between uremia and platelet dysfunction in ESKD, we used liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to quantify total homocitrulline, and biotin-conjugated phenylglyoxal labeling and Western blot to detect carbamylated integrin α IIb β 3 (a receptor required for platelet aggregation). Flow cytometry was used to study activation of isolated platelets and platelet-rich plasma. In a transient transfection system, we tested activity and fibrinogen binding of different mutated forms of the receptor. We assessed platelet adhesion and aggregation in microplate assays. RESULTS Carbamylation inhibited platelet activation, adhesion, and aggregation. Patients on hemodialysis exhibited significantly reduced activation of α IIb β 3 compared with healthy controls. We found significant carbamylation of both subunits of α IIb β 3 on platelets from patients receiving hemodialysis versus only minor modification in controls. In the transient transfection system, modification of lysine 185 in the β 3 subunit was associated with loss of receptor activity and fibrinogen binding. Supplementation of free amino acids, which was shown to protect plasma proteins from carbamylation-induced damage in patients on hemodialysis, prevented loss of α IIb β 3 activity in vitro. CONCLUSIONS Carbamylation of α IIb β 3-specifically modification of the K185 residue-might represent a mechanistic link between uremia and dysfunctional primary hemostasis in patients on hemodialysis. The observation that free amino acids prevented the carbamylation-induced loss of α IIb β 3 activity suggests amino acid administration during dialysis may help to normalize platelet function.
Collapse
Affiliation(s)
- Veronika Binder
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | | | - Brith Bergum
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Stéphane Jaisson
- Laboratory of Biochemistry and Molecular Biology, Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Gillery
- Laboratory of Biochemistry and Molecular Biology, Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Joar Sivertsen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tor Hervig
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marta Kaminska
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Ronak Tilvawala
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Venkatesh V. Nemmara
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Paul R. Thompson
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Piotr Mydel
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
25
|
Shin HE, Won CW, Kim M. Metabolomic profiles to explore biomarkers of severe sarcopenia in older men: A pilot study. Exp Gerontol 2022; 167:111924. [PMID: 35963453 DOI: 10.1016/j.exger.2022.111924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The pathophysiology of sarcopenia is complex and multifactorial; however, it has not yet been fully elucidated. Identifying metabolomic profiles may help clarify the mechanisms underlying sarcopenia. OBJECTIVE This pilot study explored potential noninvasive biomarkers of severe sarcopenia through metabolomic analysis in community-dwelling older men. METHODS Twenty older men (mean age: 81.9 ± 2.8 years) were selected from the Korean Frailty and Aging Cohort Study. Participants with severe sarcopenia (n = 10) were compared with non-sarcopenic, age- and body mass index-matched controls (n = 10). Severe sarcopenia was defined as low muscle mass, low muscle strength, and low physical performance using the Asian Working Group for Sarcopenia 2019 criteria. Non-targeted metabolomic profiling of plasma metabolites was performed using capillary electrophoresis time-of-flight mass spectrometry and absolute quantification was performed in target metabolites. RESULTS Among 191 plasma metabolic peaks, the concentrations of 10 metabolites significantly differed between severe sarcopenia group and non-sarcopenic controls. The plasma concentrations of L-alanine, homocitrulline, N-acetylserine, gluconic acid, N-acetylalanine, proline, and sulfotyrosine were higher, while those of 4-methyl-2-oxovaleric acid, 3-methyl-2-oxovaleric acid, and tryptophan were lower in participants with severe sarcopenia than in non-sarcopenic controls (all, p < 0.05). Among the 53 metabolites quantified as target metabolites, L-alanine (area under the receiver operating characteristic curve [AUC] = 0.760; p = 0.049), gluconic acid (AUC = 0.800; p = 0.023), proline (AUC = 0.785; p = 0.031), and tryptophan (AUC = 0.800; p = 0.023) determined the presence of severe sarcopenia. CONCLUSIONS Plasma metabolomic analysis demonstrated that L-alanine, gluconic acid, proline, and tryptophan may be potential biomarkers of severe sarcopenia. The identified metabolites can provide new insights into the underlying pathophysiology of severe sarcopenia and serve as the basis for preventive interventions.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, South Korea.
| | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
26
|
Sortilin, carbamylation, and cardiovascular calcification in chronic kidney disease. Kidney Int 2022; 101:456-459. [DOI: 10.1016/j.kint.2021.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
|
27
|
Laville SM, Couturier A, Lambert O, Metzger M, Mansencal N, Jacquelinet C, Laville M, Frimat L, Fouque D, Combe C, Robinson BM, Stengel B, Liabeuf S, Massy ZA. Urea levels and cardiovascular disease in patients with chronic kidney disease. Nephrol Dial Transplant 2022; 38:gfac045. [PMID: 35544273 PMCID: PMC9869852 DOI: 10.1093/ndt/gfac045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Elevated serum urea levels are common in moderate-to-advanced CKD. Several studies have shown that urea is a direct and indirect uremic toxin, especially with regard to cardiovascular disease. We sought to determine whether serum urea levels are associated with adverse cardiovascular events and death before renal replacement therapy (RRT) in patients with CKD. METHODS CKD-REIN is a prospective cohort of CKD nephrology outpatients not receiving maintenance dialysis. The 2507 patients included in the analysis were divided into three groups according to the baseline serum urea level (T1 < 10.5, T2:10.5 to 15.1, and T3 ≥ 15.1 mmol/L). Cox proportional hazard models were used to estimate hazard ratios (HRs) for first atheromatous or nonatheromatous cardiovascular (CV) events, and all-cause mortality before RRT. The models were adjusted for baseline comorbidities, laboratory data, and medications. FINDINGS Of the 2507 included patients (median [interquartile range (IQR)] age: 69[61-77]; mean (standard deviation) eGFR 33.5(11.6) mL/min/1.73 m²), 54% had a history of cardiovascular disease. After multiple adjustments for cardiovascular risk factors (including eGFR), patients in T3 had a higher risk of atheromatous and nonatheromatous cardiovascular events than patient in T1 (n events = 451, HR[95%CI]: 1.93[1.39-2.69]). The adjusted HRs for death before RRT (n events = 407) were 1.31[0.97; 1.76] and 1.73[1.22; 2.45] for patients T2 and those in T3, respectively. INTERPRETATION Our data suggested that urea is a predictor of cardiovascular outcomes beyond CV risk factors including eGFR.
Collapse
Affiliation(s)
- Solène M Laville
- Department of Clinical Pharmacology, Amiens University Hospital, Amiens, France
- MP3CV Laboratory, EA7517, University of Picardie Jules Verne, Amiens, France
| | - Aymeric Couturier
- Department of Nephrology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt, Paris, France
| | - Oriane Lambert
- Centre for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles Saint Quentin University, INSERM UMRS, 1018 Villejuif, France
| | - Marie Metzger
- Centre for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles Saint Quentin University, INSERM UMRS, 1018 Villejuif, France
| | - Nicolas Mansencal
- Centre for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles Saint Quentin University, INSERM UMRS, 1018 Villejuif, France
- Department of Cardiology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt, Paris, France
| | | | | | - Luc Frimat
- Nephrology Department, CHRU de Nancy, Vandoeuvre-lès-Nancy, France
- Lorraine University, APEMAC, Vandoeuvre-lès-Nancy, France
| | - Denis Fouque
- Université de Lyon, CarMeN INSERM, Lyon, France
- Nephrology Department, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Christian Combe
- Service de Néphrologie Transplantation Dialyse Aphérèse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- INSERM, U1026, Univ Bordeaux Segalen, Bordeaux, France
| | | | - Bénédicte Stengel
- Centre for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles Saint Quentin University, INSERM UMRS, 1018 Villejuif, France
| | - Sophie Liabeuf
- Department of Clinical Pharmacology, Amiens University Hospital, Amiens, France
- MP3CV Laboratory, EA7517, University of Picardie Jules Verne, Amiens, France
| | - Ziad A Massy
- Department of Nephrology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt, Paris, France
- Centre for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles Saint Quentin University, INSERM UMRS, 1018 Villejuif, France
| |
Collapse
|
28
|
Avenues for post-translational protein modification prevention and therapy. Mol Aspects Med 2022; 86:101083. [PMID: 35227517 PMCID: PMC9378364 DOI: 10.1016/j.mam.2022.101083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
Abstract
Non-enzymatic post-translational modifications (nPTMs) of proteins have emerged as novel risk factors for the genesis and progression of various diseases. We now have a variety of experimental and established therapeutic strategies to target harmful nPTMs and potentially improve clinical outcomes. Protein carbamylation and glycation are two common and representative nPTMs that have gained considerable attention lately as favorable therapeutic targets with emerging clinical evidence. Protein carbamylation is associated with the occurrence of cardiovascular disease (CVD) and mortality in patients with chronic kidney disease (CKD); and advanced glycation end products (AGEs), a heterogeneous group of molecules produced in a series of glycation reactions, have been linked to various diabetic complications. Therefore, reducing the burden of protein carbamylation and AGEs is an appealing and promising therapeutic approach. This review chapter summarizes potential anti-nPTM therapy options in CKD, CVD, and diabetes along with clinical implications. Using two prime examples-protein carbamylation and AGEs-we discuss the varied preventative and therapeutic options to mitigate these pathologic nPTMs in detail. We provide in-depth case studies on carbamylation in the setting of kidney disease and AGEs in metabolic disorders, with an emphasis on the relevance to reducing adverse clinical outcomes such as CKD progression, cardiovascular events, and mortality. Overall, whether specific efforts to lower carbamylation and AGE burden will yield definitive clinical improvement in humans remains largely to be seen. However, the scientific rationale for such pursuits is demonstrated herein.
Collapse
|
29
|
Berg AH, Kumar S, Karumanchi SA. Indoxyl sulfate in uremia: an old idea with updated concepts. J Clin Invest 2022; 132:155860. [PMID: 34981787 PMCID: PMC8718144 DOI: 10.1172/jci155860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Patients with end-stage kidney disease (ESKD) have increased vascular disease. While protein-bound molecules that escape hemodialysis may contribute to uremic toxicity, specific contributing toxins remain ambiguous. In this issue of the JCI, Arinze et al. explore the role of tryptophan metabolites in chronic kidney disease–associated (CKD-associated) peripheral arterial disease. The authors used mouse and zebrafish models to show that circulating indoxyl sulfate (IS) blocked endothelial Wnt signaling, which impaired angiogenesis. Plasma levels of IS and other tryptophan metabolites correlated with adverse peripheral vascular disease events in humans. These findings suggest that lowering IS may benefit individuals with CKD and ESKD.
Collapse
Affiliation(s)
| | - Sanjeev Kumar
- Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - S Ananth Karumanchi
- Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Deparment of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Impact of Uremic Toxins on Endothelial Dysfunction in Chronic Kidney Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms23010531. [PMID: 35008960 PMCID: PMC8745705 DOI: 10.3390/ijms23010531] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at a highly increased risk of cardiovascular complications, with increased vascular inflammation, accelerated atherogenesis and enhanced thrombotic risk. Considering the central role of the endothelium in protecting from atherogenesis and thrombosis, as well as its cardioprotective role in regulating vasorelaxation, this study aimed to systematically integrate literature on CKD-associated endothelial dysfunction, including the underlying molecular mechanisms, into a comprehensive overview. Therefore, we conducted a systematic review of literature describing uremic serum or uremic toxin-induced vascular dysfunction with a special focus on the endothelium. This revealed 39 studies analyzing the effects of uremic serum or the uremic toxins indoxyl sulfate, cyanate, modified LDL, the advanced glycation end products N-carboxymethyl-lysine and N-carboxyethyl-lysine, p-cresol and p-cresyl sulfate, phosphate, uric acid and asymmetric dimethylarginine. Most studies described an increase in inflammation, oxidative stress, leukocyte migration and adhesion, cell death and a thrombotic phenotype upon uremic conditions or uremic toxin treatment of endothelial cells. Cellular signaling pathways that were frequently activated included the ROS, MAPK/NF-κB, the Aryl-Hydrocarbon-Receptor and RAGE pathways. Overall, this review provides detailed insights into pathophysiological and molecular mechanisms underlying endothelial dysfunction in CKD. Targeting these pathways may provide new therapeutic strategies reducing increased the cardiovascular risk in CKD.
Collapse
|
31
|
Kalim S, Berg AH, Karumanchi SA, Thadhani R, Allegretti AS, Nigwekar S, Zhao S, Srivastava A, Raj D, Deo R, Frydrych A, Chen J, Sondheimer J, Shafi T, Weir M, Lash JP. Protein carbamylation and chronic kidney disease progression in the Chronic Renal Insufficiency Cohort Study. Nephrol Dial Transplant 2021; 37:139-147. [PMID: 33661286 PMCID: PMC8719615 DOI: 10.1093/ndt/gfaa347] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Protein carbamylation is a post-translational protein modification caused, in part, by exposure to urea's dissociation product cyanate. Carbamylation is linked to cardiovascular outcomes and mortality in dialysis-dependent end-stage kidney disease (ESKD), but its effects in earlier pre-dialysis stages of chronic kidney disease (CKD) are not established. METHODS We conducted two nested case-control studies within the Chronic Renal Insufficiency Cohort Study. First, we matched 75 cases demonstrating CKD progression [50% estimated glomerular filtration rate (eGFR) reduction or reaching ESKD] to 75 controls (matched on baseline eGFR, 24-h proteinuria, age, sex and race). In the second study, we similarly matched 75 subjects who died during follow-up (cases) to 75 surviving controls. Baseline carbamylated albumin levels (C-Alb, a validated carbamylation assay) were compared between cases and controls in each study. RESULTS At baseline, in the CKD progression study, other than blood urea nitrogen (BUN) and smoking status, there were no significant differences in any matched or other parameter. In the mortality group, the only baseline difference was smoking status. Adjusting for baseline differences, the top tertile of C-Alb was associated with an increased risk of CKD progression [odds ratio (OR) = 7.9; 95% confidence interval (CI) 1.9-32.8; P = 0.004] and mortality (OR = 3.4; 95% CI 1.0-11.4; P = 0.05) when compared with the bottom tertile. C-Alb correlated with eGFR but was more strongly correlated with BUN. CONCLUSIONS Our data suggest that protein carbamylation is a predictor of CKD progression, beyond traditional risks including eGFR and proteinuria. Carbamylation's association with mortality was smaller in this limited sample size.
Collapse
Affiliation(s)
- Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anders H Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Ravi Thadhani
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew S Allegretti
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sagar Nigwekar
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophia Zhao
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dominic Raj
- Department of Medicine, Division of Renal Diseases and Hypertension, George Washington University School of Medicine, Washington, DC, USA
| | - Rajat Deo
- Departments of Medicine and Epidemiology and Biostatistics, University of Pennsylvania Philadelphia, PA, USA
| | - Anne Frydrych
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jing Chen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - James Sondheimer
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Tariq Shafi
- Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Matthew Weir
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James P Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
32
|
Steenbeke M, Valkenburg S, Gryp T, Van Biesen W, Delanghe JR, Speeckaert MM, Glorieux G. Gut Microbiota and Their Derived Metabolites, a Search for Potential Targets to Limit Accumulation of Protein-Bound Uremic Toxins in Chronic Kidney Disease. Toxins (Basel) 2021; 13:toxins13110809. [PMID: 34822593 PMCID: PMC8625482 DOI: 10.3390/toxins13110809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by gut dysbiosis with a decrease in short-chain fatty acid (SCFA)-producing bacteria. Levels of protein-bound uremic toxins (PBUTs) and post-translational modifications (PTMs) of albumin increase with CKD, both risk factors for cardiovascular morbidity and mortality. The relationship between fecal metabolites and plasma concentrations of PBUTs in different stages of CKD (n = 103) was explored. Estimated GFR tends to correlate with fecal butyric acid (BA) concentrations (rs = 0.212; p = 0.032), which, in its turn, correlates with the abundance of SCFA-producing bacteria. Specific SCFAs correlate with concentrations of PBUT precursors in feces. Fecal levels of p-cresol correlate with its derived plasma UTs (p-cresyl sulfate: rs = 0.342, p < 0.001; p-cresyl glucuronide: rs = 0.268, p = 0.006), whereas an association was found between fecal and plasma levels of indole acetic acid (rs = 0.306; p = 0.002). Finally, the albumin symmetry factor correlates positively with eGFR (rs = 0.274; p = 0.005). The decreased abundance of SCFA-producing gut bacteria in parallel with the fecal concentration of BA and indole could compromise the intestinal barrier function in CKD. It is currently not known if this contributes to increased plasma levels of PBUTs, potentially playing a role in the PTMs of albumin. Further evaluation of SCFA-producing bacteria and SCFAs as potential targets to restore both gut dysbiosis and uremia is needed.
Collapse
Affiliation(s)
- Mieke Steenbeke
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sophie Valkenburg
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
| | - Tessa Gryp
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Wim Van Biesen
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation Flanders, 1000 Brussels, Belgium
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
33
|
Impact of Posttranslational Modification in Pathogenesis of Rheumatoid Arthritis: Focusing on Citrullination, Carbamylation, and Acetylation. Int J Mol Sci 2021; 22:ijms221910576. [PMID: 34638916 PMCID: PMC8508717 DOI: 10.3390/ijms221910576] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is caused by prolonged periodic interactions between genetic, environmental, and immunologic factors. Posttranslational modifications (PTMs) such as citrullination, carbamylation, and acetylation are correlated with the pathogenesis of RA. PTM and cell death mechanisms such as apoptosis, autophagy, NETosis, leukotoxic hypercitrullination (LTH), and necrosis are related to each other and induce autoantigenicity. Certain microbial infections, such as those caused by Porphyromonasgingivalis, Aggregatibacter actinomycetemcomitans, and Prevotella copri, can induce autoantigens in RA. Anti-modified protein antibodies (AMPA) containing anti-citrullinated protein/peptide antibodies (ACPAs), anti-carbamylated protein (anti-CarP) antibodies, and anti-acetylated protein antibodies (AAPAs) play a role in pathogenesis as well as in prediction, diagnosis, and prognosis. Interestingly, smoking is correlated with both PTMs and AMPAs in the development of RA. However, there is lack of evidence that smoking induces the generation of AMPAs.
Collapse
|
34
|
Zheng F, Xu H, Huang S, Zhang C, Li S, Wang K, Dai W, Zhang X, Tang D, Dai Y. The Landscape and Potential Regulatory Mechanism of Lysine 2-Hydroxyisobutyrylation of Protein in End-Stage Renal Disease. Nephron Clin Pract 2021; 145:760-769. [PMID: 34515164 DOI: 10.1159/000518424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acetylation has a vital role in the pathogenesis of end-stage renal disease (ESRD). Lysine 2-hydroxyisobutyrylation (Khib) is a novel type of acetylation. In this study, we aimed to reveal the key features of Khib in peripheral blood monocytes (PBMCs) of patients with ESRD. METHOD We combined TMT labeling with LC-MS/MS analysis to compare Khib modification of PBMCs between 20 ESRD patients and 20 healthy controls. The pan 2-hydroxyisobutyrylation antibody-based affinity enrichment method was used to reveal the features of Khib, and the bioinformatics analysis was conducted to analyze the pathology of these Khib-modified proteins. RESULT Compared to healthy controls, we identified 440 upregulated proteins and 552 downregulated proteins in PBMCs of ESRD, among which 579 Khib sites on 324 upregulated proteins and 287 Khib sites on 188 downregulated proteins were identified. The site abundance, distribution, and function of the Khib protein were further analyzed. The bioinformatics analysis revealed that the Rho/ROCK signaling pathway was highly enriched in ESRD, suggesting that it might contribute to renal fibrosis in ESRD patients. CONCLUSION In this study, we found that Khib-modified proteins correlated with the occurrence and progression of ESRD.
Collapse
Affiliation(s)
- Fengping Zheng
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China, .,Department of Clinical Medical Research Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China,
| | - Huixuan Xu
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Shaoying Huang
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Cantong Zhang
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Shanshan Li
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Kang Wang
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Weier Dai
- College of Natural Science, the University of Texas at Austin, Austin, Texas, USA
| | - Xinzhou Zhang
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| | - Yong Dai
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China.,Department of Clinical Medical Research Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
35
|
de Araújo Lira AL, de Fátima Mello Santana M, de Souza Pinto R, Minanni CA, Iborra RT, de Lima AMS, Correa-Giannella ML, Passarelli M, Queiroz MS. Serum albumin modified by carbamoylation impairs macrophage cholesterol efflux in diabetic kidney disease. J Diabetes Complications 2021; 35:107969. [PMID: 34183248 DOI: 10.1016/j.jdiacomp.2021.107969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Abnormalities in lipid metabolism, accumulation of uremic toxins and advanced glycation end products may contribute to worsening atherosclerosis. This study characterized the glycation and carbamoylation profile of serum albumin isolated from individuals with diabetic kidney disease and its influence on cholesterol efflux. MATERIAL AND METHODS 49 patients with type 2 diabetes (T2DM) and different eGFR evaluated glycation and carbamoylation profile by measurement of carboxymethyl lysine (CML) and carbamoylated proteins (CBL) in plasma by ELISA, homocitrulline (HCit) in plasma by colorimetry. In the isolated albumins, we quantified CBL (ELISA) and total AGE and pentosidine by fluorescence. Macrophages were treated with albumin isolated, and 14C-Cholesterol efflux mediated by HDL2 or HDL3 was measured. Kruskal-Wallis test, Jonckheere-Terpstra test and Brunner's posttest were used for comparisons among groups. RESULTS Determination of CML, HCit, CBL in plasma, as total AGE and pentosidine in albumins, did not differ between groups; however, CBL in the isolated albumins was higher in the more advanced stages of CKD (p=0.0414). There was reduction in the 14C-cholesterol efflux after treatment for 18h with albumin isolated from patients with eGFR<60mL/min/1.73m2 compared with control group mediated by HDL2 (p=0.0288) and HDL3 (p<0.0001), as well as when compared with eGFR ≥60mL/min/1.73m2 per HDL2 (p=0.0001) and HDL3 (p<0.0001). Treatment for 48h showed that eGFR<15mL/min/1.73m2 had a lower percentage of 14C-cholesterol efflux mediated by HDL2 compared to control and other CKD groups (p=0.0274). CONCLUSIONS Albumins isolated from individuals with T2DM and eGFR<60mL/min/1.73m2 suffer greater carbamoylation, and they impair the cholesterol efflux mediated by HDL2 and HDL3. In turn, this could promote lipids accumulation in macrophages and disorders in reverse cholesterol transport.
Collapse
Affiliation(s)
| | | | - Raphael de Souza Pinto
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil
| | - Carlos André Minanni
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil
| | - Rodrigo Tallada Iborra
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil; Sao Judas Tadeu University, Sao Paulo, Brazil
| | - Adriana Machado Saldiba de Lima
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil; Sao Judas Tadeu University, Sao Paulo, Brazil
| | - Maria Lúcia Correa-Giannella
- Laboratory of Carbohydrates and Radioimuneassays (LIM 18), Clinical Hospital, Medical School, University of Sao Paulo, Sao Paulo, Brazil; Department of Graduation in Medicine, Nove de Julho University (Uninove), Sao Paulo, Brazil
| | - Marisa Passarelli
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil; Department of Graduation in Medicine, Nove de Julho University (Uninove), Sao Paulo, Brazil
| | - Márcia Silva Queiroz
- Endocrinology Division, Internal Medicine Department, University of Sao Paulo Medical School, Sao Paulo, Brazil; Department of Graduation in Medicine, Nove de Julho University (Uninove), Sao Paulo, Brazil.
| |
Collapse
|
36
|
Mikhailova NA. The value of a low-protein diet and ketoanalogues of essential amino acids in the сontrol of protein carbamylation and toxic effects of urea in chronic kidney disease. TERAPEVT ARKH 2021; 93:729-735. [DOI: 10.26442/00403660.2021.06.200915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 11/22/2022]
Abstract
Chronic kidney disease (CKD) is characterized by high mortality from cardiovascular diseases, the development of which is facilitated by traditional risk factors (typical for the general population) and by nontraditional ones (specific to patients with CKD) as well. These factors include also uremic toxins, for which a causal relationship has been established with specific pathological processes in patients with CKD, comprising the development of vascular dysfunction and accelerated progression of atherosclerosis. Urea has long been considered not as a uremic toxin, but as a marker of metabolic imbalance or dialysis efficiency (Kt/V) in CKD patients. In recent years, more and more publications have appeared on the study of the toxic effects of urea with the development of toxic-uremic complications and the phenotype of premature aging, common in CKD. It was found that an increase in urea levels in uremic syndrome causes damage to the intestinal epithelial barrier with translocation of bacterial toxins into the bloodstream and the development of systemic inflammation, provokes apoptosis of vascular smooth muscle cells, as well as endothelial dysfunction, which directly contributes to the development of cardiovascular complications. The indirect effects of increased urea levels are associated with carbamylation reactions, when isocyanic acid (a product of urea catabolism) changes the structure and function of proteins in the body. Carbamylation of proteins in CKD patients is associated with the development of renal fibrosis, atherosclerosis and anemia. Thus, urea is now regarded as an important negative agent in the pathogenesis of complications in CKD. Studies on a low-protein diet with using ketoanalogues of essential amino acids to minimize the accumulation of urea and other uremic toxins demonstrate the clinical benefit of such an intervention in slowing the progression of CKD and the development of cardiovascular complications.
Collapse
|
37
|
Roumeliotis A, Roumeliotis S, Chan C, Pierratos A. Cardiovascular Benefits of Extended-Time Nocturnal Hemodialysis. Curr Vasc Pharmacol 2021; 19:21-33. [PMID: 32234001 DOI: 10.2174/1570161118666200401112106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/09/2023]
Abstract
Hemodialysis (HD) remains the most utilized treatment for End-Stage Kidney Disease (ESKD) globally, mainly as conventional HD administered in 4 h sessions thrice weekly. Despite advances in HD delivery, patients with ESKD carry a heavy cardiovascular morbidity and mortality burden. This is associated with cardiac remodeling, left ventricular hypertrophy (LVH), myocardial stunning, hypertension, decreased heart rate variability, sleep apnea, coronary calcification and endothelial dysfunction. Therefore, intensive HD regimens closer to renal physiology were developed. They include longer, more frequent dialysis or both. Among them, Nocturnal Hemodialysis (NHD), carried out at night while asleep, provides efficient dialysis without excessive interference with daily activities. This regimen is closer to the physiology of the native kidneys. By providing increased clearance of small and middle molecular weight molecules, NHD can ameliorate uremic symptoms, control hyperphosphatemia and improve quality of life by allowing a liberal diet and free time during the day. Lastly, it improves reproductive biology leading to successful pregnancies. Conversion from conventional to NHD is followed by improved blood pressure control with fewer medications, regression of LVH, improved LV function, improved sleep apnea, and stabilization of coronary calcifications. These beneficial effects have been associated, among others, with better extracellular fluid volume control, improved endothelial- dependent vasodilation, decreased total peripheral resistance, decreased plasma norepinephrine levels and restoration of heart rate variability. Some of these effects represent improvements in outcomes used as surrogates of hard outcomes related to cardiovascular morbidity and mortality. In this review, we consider the cardiovascular effects of NHD.
Collapse
Affiliation(s)
- Athanasios Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christopher Chan
- University Health Network, Toronto General Hospital, Toronto, Canada
| | | |
Collapse
|
38
|
Lui DTW, Cheung CL, Lee ACH, Wong Y, Shiu SWM, Tan KCB. Carbamylated HDL and Mortality Outcomes in Type 2 Diabetes. Diabetes Care 2021; 44:804-809. [PMID: 33402368 DOI: 10.2337/dc20-2186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Carbamylation is part of the aging process and causes adverse changes in the structure and function of proteins. Lipoproteins are subjected to carbamylation. We investigated the usefulness of carbamylated HDL as a prognostic indicator of survival in patients with type 2 diabetes and the association with mortality outcomes. RESEARCH DESIGN AND METHODS Baseline plasma carbamylated HDL was measured by ELISA in a cohort of 1,517 patients with type 2 diabetes. The primary outcome was all-cause mortality, and the secondary outcomes were cause-specific deaths, including cardiovascular, renal, infection, and cancer related. RESULTS Over a median follow-up of 14 years, 292 patients died, and the mortality rate was 14.5 per 1,000 person-years. Plasma carbamylated HDL level was higher in those with a fatal outcome (46.1 ± 17.8 µg/mL vs. 32.9 ± 10.7; P < 0.01). Patients in the third (hazard ratio [HR] 2.11; 95% CI 1.40-3.17; P < 0.001) and fourth quartiles (HR 6.55; 95% CI 4.67-9.77; P < 0.001) of carbamylated HDL had increased mortality risk. After adjustment for conventional risk factors, elevated carbamylated HDL was independently associated with all-cause mortality (HR 1.39; 95% CI 1.28-1.52; P < 0.001) as well as with all the cause-specific mortalities. Adding plasma carbamylated HDL level improved the power of the multivariable models for predicting all-cause mortality, with significant increments in C index (from 0.78 to 0.80; P < 0.001), net reclassification index, and integrated discrimination improvement. CONCLUSIONS Carbamylation of HDL renders HDL dysfunctional, and carbamylated HDL is independently associated with mortality outcomes in patients with type 2 diabetes.
Collapse
Affiliation(s)
- David T W Lui
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| | - Alan C H Lee
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Ying Wong
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Sammy W M Shiu
- Department of Medicine, University of Hong Kong, Hong Kong
| | | |
Collapse
|
39
|
Yadav SPS, Sandoval RM, Zhao J, Huang Y, Wang E, Kumar S, Campos-Bilderback SB, Rhodes G, Mechref Y, Molitoris BA, Wagner MC. Mechanism of how carbamylation reduces albumin binding to FcRn contributing to increased vascular clearance. Am J Physiol Renal Physiol 2021; 320:F114-F129. [PMID: 33283642 PMCID: PMC7847050 DOI: 10.1152/ajprenal.00428.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease results in high serum urea concentrations leading to excessive protein carbamylation, primarily albumin. This is associated with increased cardiovascular disease and mortality. Multiple methods were used to address whether carbamylation alters albumin metabolism. Intravital two-photon imaging of the Munich Wistar Frömter (MWF) rat kidney and liver allowed us to characterize filtration and proximal tubule uptake and liver uptake. Microscale thermophoresis enabled quantification of cubilin (CUB7,8 domain) and FcRn binding. Finally, multiple biophysical methods including dynamic light scattering, small-angle X-ray scattering, LC-MS/MS and in silico analyses were used to identify the critical structural alterations and amino acid modifications of rat albumin. Carbamylation of albumin reduced binding to CUB7,8 and FcRn in a dose-dependent fashion. Carbamylation markedly increased vascular clearance of carbamylated rat serum albumin (cRSA) and altered distribution of cRSA in both the kidney and liver at 16 h post intravenous injection. By evaluating the time course of carbamylation and associated charge, size, shape, and binding parameters in combination with in silico analysis and mass spectrometry, the critical binding interaction impacting carbamylated albumin's reduced FcRn binding was identified as K524. Carbamylation of RSA had no effect on glomerular filtration or proximal tubule uptake. These data indicate urea-mediated time-dependent carbamylation of albumin lysine K524 resulted in reduced binding to CUB7,8 and FcRn that contribute to altered albumin transport, leading to increased vascular clearance and increased liver and endothelial tissue accumulation.
Collapse
MESH Headings
- Animals
- Chromatography, Liquid
- Disease Models, Animal
- Glomerular Filtration Rate
- Histocompatibility Antigens Class I/metabolism
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/physiopathology
- Liver/metabolism
- Lysine
- Male
- Microscopy, Fluorescence, Multiphoton
- Protein Binding
- Protein Carbamylation
- Rats, Inbred Strains
- Rats, Sprague-Dawley
- Receptors, Cell Surface/metabolism
- Receptors, Fc/metabolism
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Scattering, Small Angle
- Serum Albumin/metabolism
- Tandem Mass Spectrometry
- Time Factors
- X-Ray Diffraction
- Rats
Collapse
Affiliation(s)
- Shiv Pratap S Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ruben M Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Exing Wang
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Sudhanshu Kumar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Silvia B Campos-Bilderback
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Rhodes
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark C Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
40
|
Hsu S, Zelnick LR, Lin YS, Best CM, Kestenbaum B, Thummel KE, Rose LM, Hoofnagle AN, de Boer IH. Differences in 25-Hydroxyvitamin D Clearance by eGFR and Race: A Pharmacokinetic Study. J Am Soc Nephrol 2021; 32:188-198. [PMID: 33115916 PMCID: PMC7894669 DOI: 10.1681/asn.2020050625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/08/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Conversion of 25-hydroxyvitamin D (25[OH]D) to the active form of vitamin D occurs primarily in the kidney. Observational studies suggest 25(OH)D clearance from the circulation differs by kidney function and race. However, these potential variations have not been tested using gold-standard methods. METHODS We administered intravenous, deuterated 25(OH)D3 (d-25[OH]D3) in a pharmacokinetic study of 87 adults, including 43 with normal eGFR (≥60 ml/min per 1.73 m2), 24 with nondialysis CKD (eGFR <60 ml/min per 1.73 m2), and 20 with ESKD treated with hemodialysis. We measured concentrations of d-25(OH)D3 and deuterated 24,25-dihydroxyvitamin D3 at 5 minutes and 4 hours after administration, and at 1, 4, 7, 14, 21, 28, 42, and 56 days postadministration. We calculated 25(OH)D clearance using noncompartmental analysis of d-25(OH)D3 concentrations over time. We remeasured 25(OH)D clearance in a subset of 18 participants after extended oral vitamin-D3 supplementation. RESULTS The mean age of the study cohort was 64 years; 41% were female, and 30% were Black. Mean 25(OH)D clearances were 360 ml/d, 313 ml/d, and 263 ml/d in participants with normal eGFR, CKD, and kidney failure, respectively (P=0.02). After adjustment for age, sex, race, and estimated blood volume, lower eGFR was associated with reduced 25(OH)D clearance (β=-17 ml/d per 10 ml/min per 1.73 m2 lower eGFR; 95% CI, -21 to -12). Black race was associated with higher 25(OH)D clearance in participants with normal eGFR, but not in those with CKD or kidney failure (P for interaction=0.05). Clearance of 25(OH)D before versus after vitamin-D3 supplementation did not differ. CONCLUSIONS Using direct pharmacokinetic measurements, we show that 25(OH)D clearance is reduced in CKD and may differ by race. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Clearance of 25-hydroxyvitamin D in Chronic Kidney Disease (CLEAR), NCT02937350; Clearance of 25-hydroxyvitamin D3 During Vitamin D3 Supplementation (CLEAR-PLUS), NCT03576716.
Collapse
Affiliation(s)
- Simon Hsu
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Leila R. Zelnick
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Yvonne S. Lin
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Cora M. Best
- Kidney Research Institute, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Bryan Kestenbaum
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Kenneth E. Thummel
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Lynn M. Rose
- Department of Pharmacy, University of Washington, Seattle, Washington
| | - Andrew N. Hoofnagle
- Kidney Research Institute, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Ian H. de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, University of Washington, Seattle, Washington
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| |
Collapse
|
41
|
Holmar J, de la Puente-Secades S, Floege J, Noels H, Jankowski J, Orth-Alampour S. Uremic Toxins Affecting Cardiovascular Calcification: A Systematic Review. Cells 2020; 9:cells9112428. [PMID: 33172085 PMCID: PMC7694747 DOI: 10.3390/cells9112428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular calcification is highly prevalent and associated with increased morbidity in chronic kidney disease (CKD). This review examines the impact of uremic toxins, which accumulate in CKD due to a failing kidney function, on cardiovascular calcification. A systematic literature search identified 41 uremic toxins that have been studied in relation to cardiovascular calcification. For 29 substances, a potentially causal role in cardiovascular calcification was addressed in in vitro or animal studies. A calcification-inducing effect was revealed for 16 substances, whereas for three uremic toxins, namely the guanidino compounds asymmetric and symmetric dimethylarginine, as well as guanidinosuccinic acid, a calcification inhibitory effect was identified in vitro. At a mechanistic level, effects of uremic toxins on calcification could be linked to the induction of inflammation or oxidative stress, smooth muscle cell osteogenic transdifferentiation and/or apoptosis, or alkaline phosphatase activity. For all middle molecular weight and protein-bound uremic toxins that were found to affect cardiovascular calcification, an increasing effect on calcification was revealed, supporting the need to focus on an increased removal efficiency of these uremic toxin classes in dialysis. In conclusion, of all uremic toxins studied with respect to calcification regulatory effects to date, more uremic toxins promote rather than reduce cardiovascular calcification processes. Additionally, it highlights that only a relatively small part of uremic toxins has been screened for effects on calcification, supporting further investigation of uremic toxins, as well as of associated post-translational modifications, on cardiovascular calcification processes.
Collapse
Affiliation(s)
- Jana Holmar
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
| | - Sofia de la Puente-Secades
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
| | - Jürgen Floege
- Division of Nephrology, RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany;
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: (J.J.); (S.O.-A.); Tel.: +49-241-80-80580 (J.J. & S.O.-A.)
| | - Setareh Orth-Alampour
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
- Correspondence: (J.J.); (S.O.-A.); Tel.: +49-241-80-80580 (J.J. & S.O.-A.)
| |
Collapse
|
42
|
O'Neil LJ, Barrera-Vargas A, Sandoval-Heglund D, Merayo-Chalico J, Aguirre-Aguilar E, Aponte AM, Ruiz-Perdomo Y, Gucek M, El-Gabalawy H, Fox DA, Katz JD, Kaplan MJ, Carmona-Rivera C. Neutrophil-mediated carbamylation promotes articular damage in rheumatoid arthritis. SCIENCE ADVANCES 2020; 6:6/44/eabd2688. [PMID: 33115748 PMCID: PMC7608797 DOI: 10.1126/sciadv.abd2688] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/11/2020] [Indexed: 05/22/2023]
Abstract
Formation of autoantibodies to carbamylated proteins (anti-CarP) is considered detrimental in the prognosis of erosive rheumatoid arthritis (RA). The source of carbamylated antigens and the mechanisms by which anti-CarP antibodies promote bone erosion in RA remain unknown. Here, we find that neutrophil extracellular traps (NETs) externalize carbamylated proteins and that RA subjects develop autoantibodies against carbamylated NET (cNET) antigens that, in turn, correlate with levels of anti-CarP. Transgenic mice expressing the human RA shared epitope (HLADRB1* 04:01) immunized with cNETs develop antibodies to citrullinated and carbamylated proteins. Furthermore, anti-carbamylated histone antibodies correlate with radiographic bone erosion in RA subjects. Moreover, anti-carbamylated histone-immunoglobulin G immune complexes promote osteoclast differentiation and potentiate osteoclast-mediated matrix resorption. These results demonstrate that carbamylated proteins present in NETs enhance pathogenic immune responses and bone destruction, which may explain the association between anti-CarP and erosive arthritis in RA.
Collapse
Affiliation(s)
- Liam J O'Neil
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ana Barrera-Vargas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Medicas y de la Nutricion, Salvador Zubiran, Mexico City, Mexico
| | - Donavon Sandoval-Heglund
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Javier Merayo-Chalico
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Medicas y de la Nutricion, Salvador Zubiran, Mexico City, Mexico
| | - Eduardo Aguirre-Aguilar
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Medicas y de la Nutricion, Salvador Zubiran, Mexico City, Mexico
| | - Angel M Aponte
- Proteomic Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanira Ruiz-Perdomo
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marjan Gucek
- Proteomic Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hani El-Gabalawy
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - James D Katz
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Podkowińska A, Formanowicz D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants (Basel) 2020; 9:E752. [PMID: 32823917 PMCID: PMC7463588 DOI: 10.3390/antiox9080752] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Generating reactive oxygen species (ROS) is necessary for both physiology and pathology. An imbalance between endogenous oxidants and antioxidants causes oxidative stress, contributing to vascular dysfunction. The ROS-induced activation of transcription factors and proinflammatory genes increases inflammation. This phenomenon is of crucial importance in patients with chronic kidney disease (CKD), because atherosclerosis is one of the critical factors of their cardiovascular disease (CVD) and increased mortality. The effect of ROS disrupts the excretory function of each section of the nephron. It prevents the maintenance of intra-systemic homeostasis and leads to the accumulation of metabolic products. Renal regulatory mechanisms, such as tubular glomerular feedback, myogenic reflex in the supplying arteriole, and the renin-angiotensin-aldosterone system, are also affected. It makes it impossible for the kidney to compensate for water-electrolyte and acid-base disturbances, which progress further in the mechanism of positive feedback, leading to a further intensification of oxidative stress. As a result, the progression of CKD is observed, with a spectrum of complications such as malnutrition, calcium phosphate abnormalities, atherosclerosis, and anemia. This review aimed to show the role of oxidative stress and inflammation in renal impairment, with a particular emphasis on its influence on the most common disturbances that accompany CKD.
Collapse
Affiliation(s)
| | - Dorota Formanowicz
- Department of Clinical Biochemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| |
Collapse
|
44
|
Xie T, Chen C, Peng Z, Brown BC, Reisz JA, Xu P, Zhou Z, Song A, Zhang Y, Bogdanov MV, Kellems RE, D'Alessandro A, Zhang W, Xia Y. Erythrocyte Metabolic Reprogramming by Sphingosine 1-Phosphate in Chronic Kidney Disease and Therapies. Circ Res 2020; 127:360-375. [PMID: 32284030 DOI: 10.1161/circresaha.119.316298] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Hypoxia promotes renal damage and progression of chronic kidney disease (CKD). The erythrocyte is the only cell type for oxygen (O2) delivery. Sphingosine 1-phosphate (S1P)-a highly enriched biolipid in erythrocytes-is recently reported to be induced under high altitude in normal humans to enhance O2 delivery. However, nothing is known about erythrocyte S1P in CKD. OBJECTIVE To investigate the function and metabolic basis of erythrocyte S1P in CKD with a goal to explore potential therapeutics. METHODS AND RESULTS Using erythrocyte-specific SphK1 (sphingosine kinase 1; the only enzyme to produce S1P in erythrocytes) knockout mice (eSphK1-/-) in an experimental model of hypertensive CKD with Ang II (angiotensin II) infusion, we found severe renal hypoxia, hypertension, proteinuria, and fibrosis in Ang II-infused eSphk1-/- mice compared with controls. Untargeted metabolomics profiling and in vivo U-13C6 isotopically labeled glucose flux analysis revealed that SphK1 is required for channeling glucose metabolism toward glycolysis versus pentose phosphate pathway, resulting in enhanced erythroid-specific Rapoport-Luebering shunt in Ang II-infused mice. Mechanistically, increased erythrocyte S1P functioning intracellularly activates AMPK (AMP-activated protein kinase) 1α and BPGM (bisphosphoglycerate mutase) by reducing ceramide/S1P ratio and inhibiting PP2A (protein phosphatase 2A), leading to increased 2,3-bisphosphoglycerate (an erythrocyte-specific metabolite negatively regulating Hb [hemoglobin]-O2-binding affinity) production and thus more O2 delivery to counteract kidney hypoxia and progression to CKD. Preclinical studies revealed that an AMPK agonist or a PP2A inhibitor rescued the severe CKD phenotype in Ang II-infused eSphK1-/- mice and prevented development of CKD in the control mice by inducing 2,3-bisphosphoglycerate production and thus enhancing renal oxygenation. Translational research validated mouse findings in erythrocytes of hypertensive CKD patients and cultured human erythrocytes. CONCLUSIONS Our study elucidates the beneficial role of eSphk1-S1P in hypertensive CKD by channeling glucose metabolism toward Rapoport-Luebering shunt and inducing 2,3-bisphosphoglycerate production and O2 delivery via a PP2A-AMPK1α signaling pathway. These findings reveal the metabolic and molecular basis of erythrocyte S1P in CKD and new therapeutic avenues.
Collapse
Affiliation(s)
- Tingting Xie
- From the Rheumatology and Immunology (T.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China.,Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Changhan Chen
- Otolaryngology Head and Neck Surgery (C.C.), Xiangya Hospital, Central South University, Changsha, Hunan, China.,Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Zhangzhe Peng
- Nephrology (Z.P.), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Benjamin C Brown
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (B.C.B., J.A.R., A.D.)
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (B.C.B., J.A.R., A.D.)
| | - Ping Xu
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Zhen Zhou
- Division of Medical Genetics, Department of Internal Medicine (Z.Z.), University of Texas McGovern Medical School at Houston
| | - Anren Song
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Yujin Zhang
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Mikhail V Bogdanov
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Rodney E Kellems
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston.,MDAnderson-UTHealth Graduate School of Biomedical Science, Houston, TX (R.E.K., Y.X.)
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (B.C.B., J.A.R., A.D.)
| | - Weiru Zhang
- General Medicine (W.Z.), Xiangya Hospital, Central South University, Changsha, Hunan, China.,Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Yang Xia
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston.,MDAnderson-UTHealth Graduate School of Biomedical Science, Houston, TX (R.E.K., Y.X.)
| |
Collapse
|
45
|
Tan KCB, Cheung CL, Lee ACH, Lam JKY, Wong Y, Shiu SWM. Carbamylated Lipoproteins and Progression of Diabetic Kidney Disease. Clin J Am Soc Nephrol 2020; 15:359-366. [PMID: 32075807 PMCID: PMC7057307 DOI: 10.2215/cjn.11710919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/07/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Protein carbamylation is a consequence of uremia and carbamylated lipoproteins contribute to atherogenesis in CKD. Proteins can also be carbamylated by a urea-independent mechanism, and whether carbamylated lipoproteins contribute to the progression of CKD has not been investigated. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A case-control study was performed to determine whether there were changes in plasma levels of carbamylated lipoproteins in individuals with type 2 diabetes with eGFR >60 ml/min per 1.73 m2 compared with a group of age- and sex-matched healthy controls. A cohort of 1320 patients with type 2 diabetes with baseline eGFR ≥30 ml/min per 1.73 m2 was longitudinally followed up to evaluate the association between carbamylated lipoproteins and progression of CKD. The primary kidney outcome was defined as doubling of serum creatinine and/or initiation of KRT during follow-up. Plasma carbamylated LDLs and HDLs was measured by ELISA. RESULTS In individuals with diabetes with eGFR >60 ml/min per 1.73 m2, both plasma carbamylated LDL and HDL levels were higher compared with healthy controls (P<0.001). After a mean follow-up of 9 years of the diabetic cohort, individuals in the top quartile of carbamylated LDL (hazard ratio, 2.21; 95% confidence interval, 1.42 to 3.46; P<0.001) and carbamylated HDL (hazard ratio, 4.53; 95% confidence interval, 2.87 to 7.13; P<0.001) had higher risk of deterioration of kidney function compared with those in the lowest quartile. On multivariable Cox regression analysis, plasma carbamylated LDL was no longer associated with kidney outcome after adjusting for baseline eGFR and potential confounding factors. However, the association between plasma carbamylated HDL and kidney outcome remained significant and was independent of HDL cholesterol. CONCLUSIONS Plasma carbamylated HDL but not carbamylated LDL was independently associated with progression of CKD in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Kathryn C B Tan
- Department of Medicine, University of Hong Kong, Hong Kong, China and
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Alan C H Lee
- Department of Medicine, University of Hong Kong, Hong Kong, China and
| | - Joanne K Y Lam
- Department of Medicine, University of Hong Kong, Hong Kong, China and
| | - Ying Wong
- Department of Medicine, University of Hong Kong, Hong Kong, China and
| | - Sammy W M Shiu
- Department of Medicine, University of Hong Kong, Hong Kong, China and
| |
Collapse
|
46
|
Querfeld U, Schaefer F. Cardiovascular risk factors in children on dialysis: an update. Pediatr Nephrol 2020; 35:41-57. [PMID: 30382333 DOI: 10.1007/s00467-018-4125-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is a life-limiting comorbidity in patients with chronic kidney disease (CKD). In childhood, imaging studies have demonstrated early phenotypic characteristics including increases in left ventricular mass, carotid artery intima-media thickness, and pulse wave velocity, which occur even in young children with early stages of CKD. Vascular calcifications are the signature of an advanced phenotype and are mainly found in adolescents and young adults treated with dialysis. Association studies have provided valuable information regarding the significance of a multitude of risk factors in promoting CVD in children with CKD by using intermediate endpoints of measurements of surrogate parameters of CVD. Dialysis aggravates pre-existing risk factors and accelerates the progression of CVD with additional dialysis-related risk factors. Coronary artery calcifications in children and young adults with CKD accumulate in a time-dependent manner on dialysis. Identification of risk factors has led to improved understanding of principal mechanisms of CKD-induced damage to the cardiovascular system. Treatment strategies include assessment and monitoring of individual risk factor load, optimization of treatment of modifiable risk factors, and intensified hemodialysis if early transplantation is not possible.
Collapse
Affiliation(s)
- Uwe Querfeld
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Franz Schaefer
- Pediatric Nephrology Division, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
47
|
Metabolomic biomarkers are associated with mortality in patients with cirrhosis caused by primary biliary cholangitis or primary sclerosing cholangitis. Future Sci OA 2019; 6:FSO441. [PMID: 32025330 PMCID: PMC6997913 DOI: 10.2144/fsoa-2019-0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To assess the ability of signature metabolites alone, or in combination with the model for end-stage liver disease-Na (MELD-Na) score to predict mortality in patients with cirrhosis caused by primary biliary cholangitis or primary sclerosing cholangitis. Materials & methods: Plasma metabolites were detected using ultrahigh-performance liquid chromatography/tandem mass spectrometry in 39 patients with cirrhosis caused by primary biliary cholangitis or primary sclerosing cholangitis. Mortality was predicted using Cox proportional hazards regression and time-dependent receiver operating characteristic curve analyses. Results: The top five metabolites with significantly greater accuracy than the MELD-Na score (area under the receiver operating characteristic curve [AUROC] = 0.7591) to predict 1-year mortality were myo-inositol (AUROC = 0.9537), N-acetylputrescine (AUROC = 0.9018), trans-aconitate (AUROC = 0.8880), erythronate (AUROC = 0.8345) and N6-carbamoylthreonyladenosine (AUROC = 0.8055). Several combined MELD-Na-metabolite models increased the accuracy of predicted 1-year mortality substantially (AUROC increased from 0.7591 up to 0.9392). Conclusion: Plasma metabolites have the potential to enhance the accuracy of mortality predictions, minimize underestimates of mortality in patients with cirrhosis and low MELD-Na scores, and promote equitable allocation of donor livers. To receive a liver transplant, patients with cirrhosis need to be listed on the US liver transplant waiting list based on a score called the model for end-stage liver disease-Na (MELD-Na) score that is expected to accurately rank the patients based on urgency for a liver transplant. However, MELD-Na score is not sufficiently accurate to identify many patients with cirrhosis with the highest urgency, and this results in longer waiting times on the liver transplant list, and therefore higher death rates. We identified several metabolomic biomarkers that can increase the accuracy of the MELD-Na score, and optimize the allocation of donor livers for transplantation of patients with cirrhosis.
Collapse
|
48
|
Lim K, Kalim S. The Role of Nonenzymatic Post-translational Protein Modifications in Uremic Vascular Calcification. Adv Chronic Kidney Dis 2019; 26:427-436. [PMID: 31831121 DOI: 10.1053/j.ackd.2019.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 01/11/2023]
Abstract
Considerable technological advances have enabled the identification and linkage of nonenzymatic post-translationally modified proteins to the pathogenesis of cardiovascular disease (CVD) in patients with kidney failure. Through processes such as the nonenzymatic carbamylation reaction as well as the formation of advanced glycation end products, we now know that protein modifications are invariably associated with the development of CVD beyond a mere epiphenomenon and this has become an important focus of nephrology research in recent years. Although the specific mechanisms by which protein modifications occurring in kidney failure that may contribute to CVD are diverse and include pathways such as inflammation and fibrosis, vascular calcification has emerged as a distinct pathological sequelae of protein modifications. In this review, we consider the biological mechanisms and clinical relevance of protein carbamylation and advanced glycation end products in CVD development with a focus on vascular calcification.
Collapse
|
49
|
Murphy RA, Moore S, Playdon M, Kritchevsky S, Newman AB, Satterfield S, Ayonayon H, Clish C, Gerszten R, Harris TB. Metabolites Associated With Risk of Developing Mobility Disability in the Health, Aging and Body Composition Study. J Gerontol A Biol Sci Med Sci 2019; 74:73-80. [PMID: 29186400 DOI: 10.1093/gerona/glx233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/23/2017] [Indexed: 01/25/2023] Open
Abstract
Background Metabolic pathways that give rise to functional decline and mobility disability in older adults are incompletely understood. Methods To identify metabolic perturbations that may affect functional decline, nontargeted metabolomics was used to measure 350 metabolites in baseline plasma from 313 black men in the Health ABC Study (median age 74 years). Usual gait speed was measured over 20 m. Cross-sectional relationships between gait speed and metabolites were explored with partial correlations adjusted for age, study site, and smoking status. Risk of incident mobility disability (two consecutive reports of severe difficulty walking quarter mile or climb 10 stairs) over 13 years of follow-up was explored with Cox regression models among 307 men who were initially free of mobility disability. Significance was determined at p ≤ .01 and q (false discovery rate) ≤ 0.30. Results Two metabolites were correlated with gait speed: salicylurate (r = -.19) and 2-hydroxyglutarate (r = -.18). Metabolites of amino acids and amino acid degradation (indoxy sulfate; hazard ratio [HR] = 1.48, 95% confidence interval [CI] = 1.09-2.03, symmetric dimethylarginine; HR = 3.58, 95% CI = 1.57-8.15, N-carbamoyl beta-alanine; HR = 1.91, 95% CI = 1.16-3.14, quinolinate; HR = 2.56, 95% CI = 1.65-3.96) and metabolites related to kidney function (aforementioned symmetric dimethylarginine and indoxy sulfate as well as creatinine; HR = 5.91, 95% CI = 2.06-16.9, inositol; HR = 2.70, 95% CI = 1.47-4.97) were among the 23 metabolites associated with incident mobility disability. Conclusions This study highlights the potential role of amino acid derivatives and products and kidney function early in the development of mobility disability and suggests metabolic profiles could help identify individuals at risk of functional decline.
Collapse
Affiliation(s)
- Rachel A Murphy
- Centre of Excellence in Cancer Prevention, School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Steven Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Mary Playdon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Stephen Kritchevsky
- Stitch Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anne B Newman
- Center for Aging and Population Health, Department of Epidemiology, University of Pittsburgh, Pennsylvania
| | - Suzanne Satterfield
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis
| | - Hilsa Ayonayon
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Robert Gerszten
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, Maryland
| |
Collapse
|
50
|
Hu L, Tian K, Zhang T, Fan CH, Zhou P, Zeng D, Zhao S, Li LS, Smith HS, Li J, Ran JH. Cyanate Induces Oxidative Stress Injury and Abnormal Lipid Metabolism in Liver through Nrf2/HO-1. Molecules 2019; 24:E3231. [PMID: 31491954 PMCID: PMC6767610 DOI: 10.3390/molecules24183231] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is problem that has become one of the major issues affecting public health. Extensive clinical data suggests that the prevalence of hyperlipidemia in CKD patients is significantly higher than in the general population. Lipid metabolism disorders can damage the renal parenchyma and promote the occurrence of cardiovascular disease (CVD). Cyanate is a uremic toxin that has attracted widespread attention in recent years. Usually, 0.8% of the molar concentration of urea is converted into cyanate, while myeloperoxidase (MPO) catalyzes the oxidation of thiocyanate to produce cyanate at the site of inflammation during smoking, inflammation, or exposure to environmental pollution. One of the important physiological functions of cyanate is protein carbonylation, a non-enzymatic post-translational protein modification. Carbamylation reactions on proteins are capable of irreversibly changing protein structure and function, resulting in pathologic molecular and cellular responses. In addition, recent studies have shown that cyanate can directly damage vascular tissue by producing large amounts of reactive oxygen species (ROS). Oxidative stress leads to the disorder of liver lipid metabolism, which is also an important mechanism leading to cirrhosis and liver fibrosis. However, the influence of cyanate on liver has remained unclear. In this research, we explored the effects of cyanate on the oxidative stress injury and abnormal lipid metabolism in mice and HL-7702 cells. In results, cyanate induced hyperlipidemia and oxidative stress by influencing the content of total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), superoxide dismutase (SOD), catalase (CAT) in liver. Cyanate inhibited NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and the phosphorylation of adenosine 5'monophosphate-activated protein kinase (AMPK), activated the mTOR pathway. Oxidative stress on the cells reduced significantly by treating with TBHQ, an antioxidant, which is also an activator of Nrf2. The activity of Nrf2 was rehabilitated and phosphorylation of mTOR decreased. In conclusion, cyanate could induce oxidative stress damage and lipid deposition by inhibiting Nrf2/HO-1 pathway, which was rescued by inhibitor of Nrf2.
Collapse
Affiliation(s)
- Ling Hu
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Kuan Tian
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Tao Zhang
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Chun-Hua Fan
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Zhou
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Di Zeng
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Shuang Zhao
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Li-Sha Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Hendrea Shaniqua Smith
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jing Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Jian-Hua Ran
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|