1
|
Fu YM, Yang YC, Zhang J, Zhao J, Liu GY, Ling S, Wang C, Wang LW, Yang YT, Wang Y, Yang NN, Liu CZ, Pei W. Preoperative electroacupuncture versus sham electroacupuncture for the treatment of postoperative ileus after laparoscopic surgery for colorectal cancer in China: a study protocol for a multicentre, randomised, sham-controlled trial. BMJ Open 2024; 14:e083460. [PMID: 38969370 PMCID: PMC11227784 DOI: 10.1136/bmjopen-2023-083460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/17/2024] [Indexed: 07/07/2024] Open
Abstract
INTRODUCTION Postoperative ileus (POI) is a postoperative complication that can cause lingering recovery after colorectal resection and a heavy healthcare system burden. Acupuncture aims to prevent postoperative complications, reduce the duration of POI, help recovery and shorten hospital stays. We hypothesise that preoperative electroacupuncture (EA) can promote POI recovery under the enhanced recovery after surgery protocol after laparoscopic surgery in patients with POI. METHODS AND ANALYSIS This is a multicentre, randomised, sham-controlled trial. A total of 80 patients will be enrolled and randomly assigned to the EA or sham electroacupuncture (SA) group. The eligible patients will receive EA or SA for one session per day with treatment frequency starting on preoperative day 1 for four consecutive days. The primary outcome is the time to first defecation. The secondary outcomes include the time to first flatus, length of postoperative hospital stay, time to tolerability of semiliquid and solid food, postoperative nausea, vomiting, pain and extent of abdominal distention, time to first ambulation, preoperative anxiety, 30-day readmission rate, the usage of anaesthetics and analgesics during operation, length of postanaesthesia care unit stay. A mechanistic study by single-cell RNA sequencing in which postintervention normal intestinal tissue samples will be collected. The results of this study will provide evidence of the effects of acupuncture on POI and promote good clinical decision to millions of patients globally every year. ETHICS AND DISSEMINATION This study has been approved by the ethical application of Beijing University of Chinese Medicine (2022BZYLL0401), Beijing Friendship Hospital Affiliated to Capital Medical University(2022-P2-368-02), Cancer Hospital Chinese Academy of Medical Science (23/175-3917), Huanxing Cancer Hospital (2023-002-02). The results will be published in a medical journal. In addition, we plan to present them at scientific conferences. TRIAL REGISTRATION NUMBER ChiCTR2300077633.
Collapse
Affiliation(s)
- Yi-Ming Fu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ying-Chi Yang
- Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Surgery, Huanxing Cancer Hospital, Beijing, China
| | - Jingjie Zhao
- Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Gong-Yong Liu
- Department of Surgery, Huanxing Cancer Hospital, Beijing, China
| | - Shen Ling
- Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chao Wang
- Department of Surgery, Huanxing Cancer Hospital, Beijing, China
| | - Li-Wei Wang
- Department of Surgery, Huanxing Cancer Hospital, Beijing, China
| | - Yu-Tong Yang
- Department of Surgery, Huanxing Cancer Hospital, Beijing, China
| | - Yu Wang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Na-Na Yang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Cun-Zhi Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Pei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Dilixiati S, Yan J, Qingzhuoga D, Song G, Tu L. Exploring Electrical Neuromodulation as an Alternative Therapeutic Approach in Inflammatory Bowel Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:729. [PMID: 38792911 PMCID: PMC11123282 DOI: 10.3390/medicina60050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: This review systematically evaluates the potential of electrical neuromodulation techniques-vagus nerve stimulation (VNS), sacral nerve stimulation (SNS), and tibial nerve stimulation (TNS)-as alternative treatments for inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's Disease (CD). It aims to synthesize current evidence on the efficacy and safety of these modalities, addressing the significant burden of IBD on patient quality of life and the limitations of existing pharmacological therapies. Materials and Methods: We conducted a comprehensive analysis of studies from PubMed, focusing on research published between 1978 and 2024. The review included animal models and clinical trials investigating the mechanisms, effectiveness, and safety of VNS, SNS, and TNS in IBD management. Special attention was given to the modulation of inflammatory responses and its impact on gastrointestinal motility and functional gastrointestinal disorders associated with IBD. Results: Preliminary findings suggest that VNS, SNS, and TNS can significantly reduce inflammatory markers and improve symptoms in IBD patients. These techniques also show potential in treating related gastrointestinal disorders during IBD remission phases. However, the specific mechanisms underlying these benefits remain to be fully elucidated, and there is considerable variability in treatment parameters. Conclusions: Electrical neuromodulation holds promise as a novel therapeutic avenue for IBD, offering an alternative to patients who do not respond to traditional treatments or experience adverse effects. The review highlights the need for further rigorous studies to optimize stimulation parameters, understand long-term outcomes, and integrate neuromodulation effectively into IBD treatment protocols.
Collapse
Affiliation(s)
- Suofeiya Dilixiati
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.D.); (D.Q.)
| | - Jiaxi Yan
- Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH 44109, USA;
| | - De Qingzhuoga
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.D.); (D.Q.)
| | - Gengqing Song
- Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH 44109, USA;
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.D.); (D.Q.)
| |
Collapse
|
3
|
Liu S, Fu W, Fu J, Chen G, He Y, Zheng T, Ma T. Electroacupuncture alleviates intestinal inflammation via a distinct neuro-immune signal pathway in the treatment of postoperative ileus. Biomed Pharmacother 2024; 173:116387. [PMID: 38471276 DOI: 10.1016/j.biopha.2024.116387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The induction of intestinal inflammation as a result of abdominal surgery is an essential factor in postoperative ileus (POI) development. Electroacupuncture (EA) at ST36 has been demonstrated to relieve intestinal inflammation and restore gastrointestinal dysmotility in POI. This study aims to elucidate the neuroimmune pathway involved in the anti-inflammatory properties of EA in POI. METHODS After intestinal manipulation (IM) was performed to induce POI, intestinal inflammation and motility were assessed 24 h post-IM, by evaluating gastrointestinal transit (GIT), cytokines expression, and leukocyte infiltration. Experimental surgery, pharmacological intervention, and genetic knockout mice were used to elucidate the neuroimmune mechanisms of EA. RESULTS EA at ST36 significantly improved GIT and reduced the expression of pro-inflammatory cytokines and leukocyte infiltration in the intestinal muscularis following IM in mice. The anti-inflammatory effectiveness of EA treatment was abolished by sub-diaphragmatic vagotomy, whereas splenectomy did not hinder the anti-inflammatory benefits of EA treatment. The hexamethonium chloride (HEX) administration contributes to a notable reduction in the EA capacity to suppress inflammation and enhance motility dysfunction, and EA is ineffective in α7 nicotinic acetylcholine receptor (α7nAChR) knockout mice. CONCLUSIONS EA at ST36 prevents intestinal inflammation and dysmotility through a neural circuit that requires vagal innervation but is independent of the spleen. Further findings revealed that the process involves enteric neurons mediating the vagal signal and requires the presence of α7nAChR. These findings suggest that utilizing EA at ST36 may represent a possible therapeutic approach for POI and other immune-related gastrointestinal diseases.
Collapse
Affiliation(s)
- Shuchang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Wei Fu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Jingnan Fu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China; Department of Minimally Invasive Surgery, Characteristics Medical Center of Chinese People Armed Police Force, Tianjin 300162, China
| | - Guibing Chen
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China; Department of Gastrointestinal Surgery, Clinical Medical College and The First Affilliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yuxin He
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Ting Zheng
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
4
|
Coverdell TC, Abbott SBG, Campbell JN. Molecular cell types as functional units of the efferent vagus nerve. Semin Cell Dev Biol 2024; 156:210-218. [PMID: 37507330 PMCID: PMC10811285 DOI: 10.1016/j.semcdb.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise "functional units" - neuron populations dedicated to the control of specific vagal reflexes or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.
Collapse
Affiliation(s)
- Tatiana C Coverdell
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - John N Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
5
|
Hesampour F, Bernstein CN, Ghia JE. Brain-Gut Axis: Invasive and Noninvasive Vagus Nerve Stimulation, Limitations, and Potential Therapeutic Approaches. Inflamm Bowel Dis 2024; 30:482-495. [PMID: 37738641 DOI: 10.1093/ibd/izad211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 09/24/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing condition with no known etiology and is characterized by disrupted gut homeostasis, chronic inflammation, and ulcerative lesions. Although current treatments can reduce disease activity, IBD frequently recurs once treatments are discontinued, indicating that treatments are ineffective in providing long-term remission. The lack of responsiveness and reluctance of some affected persons to take medications because of potential adverse effects has enhanced the need for novel therapeutic approaches. The vagus nerve (VN) is likely important in the pathogenesis of IBD, considering the decreased activity of the parasympathetic nervous system, especially the VN, and the impaired interaction between the enteric nervous system and central nervous system in patients with IBD. Vagus nerve stimulation (VNS) has demonstrated anti-inflammatory effects in various inflammatory disorders, including IBD, by inhibiting the production of inflammatory cytokines by immune cells. It has been suggested that stimulating the vagus nerve to induce its anti-inflammatory effects may be a potential therapeutic approach for IBD. Noninvasive techniques for VNS have been developed. Considering the importance of VN function in the brain-gut axis, VNS is a promising treatment option for IBD. This review discusses the potential therapeutic advantages and drawbacks of VNS, particularly the use of noninvasive transcutaneous auricular vagus nerve stimulation.
Collapse
Affiliation(s)
| | - Charles N Bernstein
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Immunology, University of Manitoba, Winnipeg, Canada
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Tokhi AM, George SV, Cabalag CS, Liu DS, Duong CP. Vagal Sparing Gastrectomy: A Systematic Review and Meta-Analysis. Dig Surg 2024; 41:147-160. [PMID: 38412841 DOI: 10.1159/000536472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Radical gastrectomy is associated with significant functional complications. In appropriate patients may be amenable to less invasive resection aimed at preserving the vagal trunks. The aim of this systematic review and meta-analysis was to assess the functional consequences and oncological safety of vagal sparing gastrectomy (VSG) compared to conventional non-vagal sparing gastrectomy (CG). METHODS A systematic review of four databases in accordance with PRISMA guidelines was undertaken for studies published between January 1, 1990, and December 15, 2021, comparing patients who underwent VSG to CG. We meta-analysed the following outcomes: operative time, blood loss, nodal yield, days to flatus, body weight changes, as well as the incidence of post-operative cholelithiasis, diarrhoea, delayed gastric emptying, and dumping syndrome. RESULTS Thirty studies were included in the meta-analysis with a selection of studies qualitatively analysed. VSG was associated with a lower rate of cholelithiasis (OR: 0.25, 95% CI: 0.15-0.41, p < 0.010) and early dumping syndrome (OR: 0.42, 95% CI: 0.21-0.86; p = 0.02), less blood loss (mean difference [MD]: -51 mL, 95% CI: -89.11 to -12.81 mL, p = 0.009), less long-term weight loss (MD: 2.03%, 95% CI: 0.31-3.76%, p = 0.02) and a faster time to flatus (MD: -0.42 days, 95% CI: -0.48 to 0.36, p < 0.001). There was no significant difference in nodal harvest, overall survival, and all other endpoints. CONCLUSION VSG significantly reduces the incidence of post-operative cholelithiasis and dumping syndrome, decreases weight loss, and facilitates an earlier return of gut motility. Although technically more challenging, VSG should be considered for prophylactic surgery.
Collapse
Affiliation(s)
- Ashraf M Tokhi
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sam V George
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Carlos S Cabalag
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Division of Surgery, Anaesthesia, and Procedural Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - David S Liu
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Division of Surgery, Anaesthesia, and Procedural Medicine, Austin Health, Heidelberg, Victoria, Australia
- Department of Surgery, Austin Precinct, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
- Department of Surgery, Austin Precinct, Austin Health, General and Gastrointestinal Surgery Research Group, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Cuong P Duong
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Rahman AA, Stavely R, Pan W, Ott L, Ohishi K, Ohkura T, Han C, Hotta R, Goldstein AM. Optogenetic Activation of Cholinergic Enteric Neurons Reduces Inflammation in Experimental Colitis. Cell Mol Gastroenterol Hepatol 2024; 17:907-921. [PMID: 38272444 PMCID: PMC11026705 DOI: 10.1016/j.jcmgh.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND & AIMS Intestinal inflammation is associated with loss of enteric cholinergic neurons. Given the systemic anti-inflammatory role of cholinergic innervation, we hypothesized that enteric cholinergic neurons similarly possess anti-inflammatory properties and may represent a novel target to treat inflammatory bowel disease. METHODS Mice were fed 2.5% dextran sodium sulfate (DSS) for 7 days to induce colitis. Cholinergic enteric neurons, which express choline acetyltransferase (ChAT), were focally ablated in the midcolon of ChAT::Cre;R26-iDTR mice by local injection of diphtheria toxin before colitis induction. Activation of enteric cholinergic neurons was achieved using ChAT::Cre;R26-ChR2 mice, in which ChAT+ neurons express channelrhodopsin-2, with daily blue light stimulation delivered via an intracolonic probe during the 7 days of DSS treatment. Colitis severity, ENS structure, and smooth muscle contractility were assessed by histology, immunohistochemistry, quantitative polymerase chain reaction, organ bath, and electromyography. In vitro studies assessed the anti-inflammatory role of enteric cholinergic neurons on cultured muscularis macrophages. RESULTS Ablation of ChAT+ neurons in DSS-treated mice exacerbated colitis, as measured by weight loss, colon shortening, histologic inflammation, and CD45+ cell infiltration, and led to colonic dysmotility. Conversely, optogenetic activation of enteric cholinergic neurons improved colitis, preserved smooth muscle contractility, protected against loss of cholinergic neurons, and reduced proinflammatory cytokine production. Both acetylcholine and optogenetic cholinergic neuron activation in vitro reduced proinflammatory cytokine expression in lipopolysaccharide-stimulated muscularis macrophages. CONCLUSIONS These findings show that enteric cholinergic neurons have an anti-inflammatory role in the colon and should be explored as a potential inflammatory bowel disease treatment.
Collapse
Affiliation(s)
- Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Leah Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kensuke Ohishi
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Drug Discovery Laboratory, Wakunaga Pharmaceuticals Company, Ltd, Akitakata, Hiroshima, Japan
| | - Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Wu XD, Yan HJ, Xu YM, Zhao SY, Zhang XD, Lv L, Zhu KL. Effect and mechanism of needleless transcutaneous neuromodulation on gastrointestinal function after pancreaticoduodenectomy. Scand J Gastroenterol 2024; 59:133-141. [PMID: 37752679 DOI: 10.1080/00365521.2023.2261060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Gastrointestinal motility disorders tend to develop after pancreaticoduodenectomy (PD). The objectives of this study were: (1) to investigate the impact of needleless transcutaneous neuromodulation (TN) on the postoperative recuperation following pancreaticoduodenectomy (PD), and (2) to explore the underlying mechanisms by which TN facilitates the recovery of gastrointestinal function after PD. METHODS A total of 41 patients scheduled for PD were randomized into two groups: the TN group (n = 21) and the Sham-TN group (n = 20). TN was performed at acupoints ST-36 and PC-6 twice daily for 1 h from the postoperative day 1 (POD1) to day 7. Sham-TN was performed at non-acupoints. Subsequent assessments incorporated both heart rate variation and dynamic electrogastrography to quantify alterations in vagal activity (HF) and gastric pacing activity. RESULTS 1)TN significantly decreased the duration of the first passage of flatus (p < 0.001) and defecation (p < 0.01) as well as the time required to resume diet (p < 0.001) when compared to sham-TN;2)Compared with sham-TN, TN increased the proportion of regular gastric pacing activity (p < 0.01);3) From POD1 to POD7, there was a discernible augmentation in HF induced by TN stimulation(p < 0.01);4) TN significantly decreased serum IL-6 levels from POD1 to POD7 (p < 0.001);5) TN was an independent predictor of shortened hospital stay(β = - 0.349, p = 0.035). CONCLUSION Needleless TN accelerates the recovery of gastrointestinal function and reduces the risk of delayed gastric emptying in patients after PD by enhancing vagal activity and controlling the inflammatory response.
Collapse
Affiliation(s)
- Xu-Dong Wu
- Hepatopancreatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Huan-Jun Yan
- Hepatopancreatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Yue-Mei Xu
- Gastroenterology, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Shuang-Ying Zhao
- Hepatopancreatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Xiao-Dong Zhang
- Hepatopancreatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Li- Lv
- Department of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke-Lei Zhu
- Hepatopancreatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Fan S, Guo W, Xiao D, Guan M, Liao T, Peng S, Feng A, Wang Z, Yin H, Li M, Chen J, Xiong W. Microbiota-gut-brain axis drives overeating disorders. Cell Metab 2023; 35:2011-2027.e7. [PMID: 37794596 DOI: 10.1016/j.cmet.2023.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Overeating disorders (ODs), usually stemming from dieting history and stress, remain a pervasive issue in contemporary society, with the pathological mechanisms largely unresolved. Here, we show that alterations in intestinal microbiota are responsible for the excessive intake of palatable foods in OD mice and patients with bulimia nervosa (BN). Stress combined with a history of dieting causes significant changes in the microbiota and the intestinal metabolism, which disinhibit the vagus nerve terminals in the gut and thereby lead to a subsequent hyperactivation of the gut-brain axis passing through the vagus, the solitary tract nucleus, and the paraventricular nucleus of the thalamus. The transplantation of a probiotic Faecalibacterium prausnitzii or dietary supplement of key metabolites restores the activity of the gut-to-brain pathway and thereby alleviates the OD symptoms. Thus, our study delineates how the microbiota-gut-brain axis mediates energy balance, unveils the underlying pathogenesis of the OD, and provides potential therapeutic strategies.
Collapse
Affiliation(s)
- Sijia Fan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Weiwei Guo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Dan Xiao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Mengyuan Guan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Tiepeng Liao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Airong Feng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Ziyi Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Hao Yin
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230026, China.
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| |
Collapse
|
10
|
van Baarle L, Stakenborg M, Matteoli G. Enteric neuro-immune interactions in intestinal health and disease. Semin Immunol 2023; 70:101819. [PMID: 37632991 DOI: 10.1016/j.smim.2023.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
The enteric nervous system is an autonomous neuronal circuit that regulates many processes far beyond the peristalsis in the gastro-intestinal tract. This circuit, consisting of enteric neurons and enteric glial cells, can engage in many intercellular interactions shaping the homeostatic microenvironment in the gut. Perhaps the most well documented interactions taking place, are the intestinal neuro-immune interactions which are essential for the fine-tuning of oral tolerance. In the context of intestinal disease, compelling evidence demonstrates both protective and detrimental roles for this bidirectional neuro-immune signaling. This review discusses the different immune cell types that are recognized to engage in neuronal crosstalk during intestinal health and disease. Highlighting the molecular pathways involved in the neuro-immune interactions might inspire novel strategies to target intestinal disease.
Collapse
Affiliation(s)
- Lies van Baarle
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Michelle Stakenborg
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Wang YL, Zhang HX, Chen YQ, Yang LL, Li ZJ, Zhao M, Li WL, Bian YY, Zeng L. Research on Mechanisms of Chinese Medicines in Prevention and Treatment of Postoperative Adhesion. Chin J Integr Med 2023; 29:556-565. [PMID: 37052766 DOI: 10.1007/s11655-023-3735-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 04/14/2023]
Abstract
Postoperative adhesion (PA) is currently one of the most unpleasant complications following surgical procedures. Researchers have developed several new strategies to alleviate the formation of PA to a great extent, but so far, no single measure or treatment can meet the expectations and requirements of clinical patients needing complete PA prevention. Chinese medicine (CM) has been widely used for thousands of years based on its remarkable efficacy and indispensable advantages CM treatments are gradually being accepted by modern medicine. Therefore, this review summarizes the formating process of PA and the efficacy and action mechanism of CM treatments, including their pharmacological effects, therapeutic mechanisms and advantages in PA prevention. We aim to improve the understanding of clinicians and researchers on CM prevention in the development of PA and promote the in-depth development and industrialization process of related drugs.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Xiang Zhang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan-Qi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Li Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zheng-Jun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Lin Li
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao-Yao Bian
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Second Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Zeng
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
12
|
Effect of neuromuscular reversal with neostigmine/glycopyrrolate versus sugammadex on postoperative ileus following colorectal surgery. Tech Coloproctol 2023; 27:217-226. [PMID: 36064986 PMCID: PMC9898426 DOI: 10.1007/s10151-022-02695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Postoperative ileus (POI) is a common complication following colorectal surgery and is mediated in part by the cholinergic anti-inflammatory pathway (CAIP). Neostigmine (acetylcholinesterase inhibitor), co-administered with glycopyrrolate, is frequently given for neuromuscular reversal before tracheal extubation and modulates the CAIP. An alternative reversal agent, sugammadex (selective rocuronium or vecuronium binder), acts independently from the CAIP. The aim of our study was to assess the impact of neuromuscular reversal agents used during anaesthesia on gastrointestinal recovery. METHODS Three hundred thirty-five patients undergoing elective colorectal surgery at the Royal Adelaide Hospital between January 2019 and December 2021 were retrospectively included. The primary outcome was GI-2, a validated composite measure of time to diet tolerance and passage of stool. Demographics, 30-day complications and length of stay were collected. Univariate and multivariate analyses were performed. RESULTS Two hundred twenty-four (66.9%) patients (129 [57.6%] males and 95 [42.4%] females, median age 64 [19-90] years) received neostigmine/glycopyrrolate and 111 (33.1%) received sugammadex (62 [55.9%] males and 49 [44.1%] females, median age 67 [18-94] years). Sugammadex patients achieved GI-2 sooner after surgery (median 3 (0-10) vs. 3 (0-12) days, p = 0.036), and reduced time to first stool (median 2 (0-10) vs. 3 (0-12) days, p = 0.035). Rates of POI, complications and length of stay were similar. On univariate analysis, POI was associated with smoking history, previous abdominal surgery, colostomy formation, increased opioid use and postoperative hypokalaemia (p < 0.05). POI was associated with increased complications, including anastomotic leak and prolonged hospital stay (p < 0.001). On multivariate analysis, neostigmine, bowel anastomoses and increased postoperative opioid use (p < 0.05) remained predictive of time to GI-2. CONCLUSIONS Patients who received sugammadex had a reduced time to achieving first stool and GI-2. Neostigmine use, bowel anastomoses and postoperative opioid use were associated with delayed time to achieving GI-2.
Collapse
|
13
|
Ahmed U, Graf JF, Daytz A, Yaipen O, Mughrabi I, Jayaprakash N, Cotero V, Morton C, Deutschman CS, Zanos S, Puleo C. Ultrasound Neuromodulation of the Spleen Has Time-Dependent Anti-Inflammatory Effect in a Pneumonia Model. Front Immunol 2022; 13:892086. [PMID: 35784337 PMCID: PMC9244783 DOI: 10.3389/fimmu.2022.892086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
Interfaces between the nervous and immune systems have been shown essential for the coordination and regulation of immune responses. Non-invasive ultrasound stimulation targeted to the spleen has recently been shown capable of activating one such interface, the splenic cholinergic anti-inflammatory pathway (CAP). Over the past decade, CAP and other neuroimmune pathways have been activated using implanted nerve stimulators and tested to prevent cytokine release and inflammation. However, CAP studies have typically been performed in models of severe, systemic (e.g., endotoxemia) or chronic inflammation (e.g., collagen-induced arthritis or DSS-induced colitis). Herein, we examined the effects of activation of the splenic CAP with ultrasound in a model of local bacterial infection by lung instillation of 105 CFU of Streptococcus pneumoniae. We demonstrate a time-dependent effect of CAP activation on the cytokine response assay during infection progression. CAP activation-induced cytokine suppression is absent at intermediate times post-infection (16 hours following inoculation), but present during the early (4 hours) and later phases (48 hours). These results indicate that cytokine inhibition associated with splenic CAP activation is not observed at all timepoints following bacterial infection and highlights the importance of further studying neuroimmune interfaces within the context of different immune system and inflammatory states.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - John F. Graf
- General Electric Research, Niskayuna, NY, United States
| | - Anna Daytz
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Omar Yaipen
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ibrahim Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | | | | | - Clifford Scott Deutschman
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Chris Puleo
- General Electric Research, Niskayuna, NY, United States
- *Correspondence: Chris Puleo,
| |
Collapse
|
14
|
Ahmed U, Chang YC, Zafeiropoulos S, Nassrallah Z, Miller L, Zanos S. Strategies for precision vagus neuromodulation. Bioelectron Med 2022; 8:9. [PMID: 35637543 PMCID: PMC9150383 DOI: 10.1186/s42234-022-00091-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
The vagus nerve is involved in the autonomic regulation of physiological homeostasis, through vast innervation of cervical, thoracic and abdominal visceral organs. Stimulation of the vagus with bioelectronic devices represents a therapeutic opportunity for several disorders implicating the autonomic nervous system and affecting different organs. During clinical translation, vagus stimulation therapies may benefit from a precision medicine approach, in which stimulation accommodates individual variability due to nerve anatomy, nerve-electrode interface or disease state and aims at eliciting therapeutic effects in targeted organs, while minimally affecting non-targeted organs. In this review, we discuss the anatomical and physiological basis for precision neuromodulation of the vagus at the level of nerve fibers, fascicles, branches and innervated organs. We then discuss different strategies for precision vagus neuromodulation, including fascicle- or fiber-selective cervical vagus nerve stimulation, stimulation of vagal branches near the end-organs, and ultrasound stimulation of vagus terminals at the end-organs themselves. Finally, we summarize targets for vagus neuromodulation in neurological, cardiovascular and gastrointestinal disorders and suggest potential precision neuromodulation strategies that could form the basis for effective and safe therapies.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stefanos Zafeiropoulos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Zeinab Nassrallah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Larry Miller
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.
| |
Collapse
|
15
|
Pattanaik B, Hammarlund M, Mjörnstedt F, Ulleryd MA, Zhong W, Uhlén M, Gummesson A, Bergström G, Johansson ME. Polymorphisms in alpha 7 nicotinic acetylcholine receptor gene, CHRNA7, and its partially duplicated gene, CHRFAM7A, associate with increased inflammatory response in human peripheral mononuclear cells. FASEB J 2022; 36:e22271. [PMID: 35344211 DOI: 10.1096/fj.202101898r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 01/16/2023]
Abstract
The vagus nerve can, via the alpha 7 nicotinic acetylcholine receptor (α7nAChR), regulate inflammation. The gene coding for the α7nAChR, CHRNA7, can be partially duplicated, that is, CHRFAM7A, which is reported to impair the anti-inflammatory effect mediated via the α7nAChR. Several single nucleotide polymorphisms (SNPs) have been described in both CHRNA7 and CHRFAM7A, however, the functional role of these SNPs for immune responses remains to be investigated. In the current study, we set out to investigate whether genetic variants of CHRNA7 and CHRFAM7A can influence immune responses. By investigating data available from the Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP) study, in combination with droplet digital PCR and freshly isolated PBMCs from the S3WP participants, challenged with lipopolysaccharide (LPS), we show that CHRNA7 and CHRFAM7A are expressed in human PBMCs, with approximately four times higher expression of CHRFAM7A compared with CHRNA7. One SNP in CHRFAM7A, rs34007223, is positively associated with hsCRP in healthy individuals. Furthermore, gene ontology (GO)-terms analysis of plasma proteins associated with gene expression of CHRNA7 and CHRFAM7A demonstrated an involvement for these genes in immune responses. This was further supported by in vitro data showing that several SNPs in both CHRNA7 and CHRFAM7A are significantly associated with cytokine response. In conclusion, genetic variants of CHRNA7 and CHRFAM7A alters cytokine responses. Furthermore, given that CHRFAM7A SNP rs34007223 is associated with inflammatory marker hsCRP in healthy individuals suggests that CHRFAM7A may have a more pronounced role in regulating inflammatory processes in humans than previously been recognized.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hammarlund
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Filip Mjörnstedt
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus A Ulleryd
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Wen Zhong
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Yang A, Liu B, Inoue T. Role of autonomic system imbalance in neurogenic pulmonary oedema. Eur J Neurosci 2022; 55:1645-1657. [PMID: 35277906 DOI: 10.1111/ejn.15648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023]
Abstract
Neurogenic pulmonary oedema (NPE) is a life-threatening complication that develops rapidly and dramatically after an injury to the central nervous system (CNS). The autonomic system imbalance produced by severe brain damage may play an important role in the development of NPE. Activation of the sympathetic nervous system and inhibition of the vagus nerve system are essential prerequisites for autonomic system imbalance. The more severe the damage, the more pronounced the phenomenon. Sympathetic hyperactivity is associated with increased release of catecholamines from peripheral sympathetic nerve endings, which can cause dramatic changes in haemodynamics and cause pulmonary oedema. On the other hand, the abnormal inflammatory response caused by vagus nerve inhibition may also play an important role in the pathogenesis of NPE. The perspective of autonomic system imbalance seems to perfectly integrate the existing pathogenesis of NPE and can explain the entire development progression of NPE.
Collapse
Affiliation(s)
- Aobing Yang
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Bin Liu
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
17
|
Brandlhuber M, Benhaqi P, Brandlhuber B, Koliogiannis V, Kasparek MS, Mueller MH, Kreis ME. The role of vagal innervation on the early development of postoperative ileus in mice. Neurogastroenterol Motil 2022; 34:e14308. [PMID: 34962331 DOI: 10.1111/nmo.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/30/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Postoperative ileus (POI) involves an intestinal inflammatory response that is modulated by afferent and efferent vagal activation. We aimed to identify the potential influence of the vagus nerve on POI by tracking central vagal activation and its role for peripheral inflammatory changes during the early hours after surgery. METHODS C57BL6 mice were vagotomized (V) 3-4 days prior to experiments, while control animals received sham vagotomy (SV). Subgroups underwent either laparotomy (sham operation; S-POI) or laparotomy followed by standardized small bowel manipulation to induce postoperative ileus (POI). Three hours and 9 h later, respectively, a jejunal segment was harvested and infiltration of inflammatory cells in intestinal muscularis was evaluated by fluorescein isothiocyanate (FITC) avidin and myeloperoxidase (MPO) staining. Moreover, the brain stem was harvested, and central nervous activation was investigated by Fos immunochemistry in both the nucleus of the solitary tract (NTS) and the area postrema (AP). Data are presented as mean ± SEM, and a p < 0.05 was considered statistically significant. KEY RESULTS Three hour experiments revealed no significant differences between all experimental groups, except MPO staining: 3 h after abdominal surgery, there were significantly more MPO-positive cells in vagotomized S-POI animals compared to sham-vagotomized S-POI animals (26.7 ± 7.1 vs. 5.1 ± 2.4, p < 0.01). Nine hour postoperatively intramuscular mast cells (IMMC) were significantly decreased in the intestinal muscularis of V/POI animals compared to SV/POI animals (1.5 ± 0.3 vs. 5.9 ± 0.2, p < 0.05), while MPO-positive cells were increased in V/POI animals compared to SV/POI animals (713.2 ± 99.4 vs. 46.9 ± 5.8, p < 0.05). There were less Fos-positive cells in the NTS of V/POI animals compared to SV/POI animals (64.7 ± 7.8 vs. 132.8 ± 23.9, p < 0.05) and more Fos-positive cells in the AP of V/POI animals compared to SV/POI animals 9 h postoperatively (38.0 ± 2.0 vs. 13.7 ± 0.9, p < 0.001). CONCLUSIONS AND INTERFERENCES Afferent nerve signaling to the central nervous system during the development of early POI seems to be mediated mainly via the vagus nerve and to a lesser degree via systemic circulation. During the early hours of POI, the intestinal immune response may be attenuated by vagal modulation, suggesting interactions between the central nervous system and the intestine.
Collapse
Affiliation(s)
- Martina Brandlhuber
- Department of Radiology, Grosshadern Clinic, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Petra Benhaqi
- Center for Human Genetics and Laboratory Diagnostics, Medical Labs Martinsried, Martinsried, Germany
| | | | - Vanessa Koliogiannis
- Department of Radiology, Grosshadern Clinic, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Mario H Mueller
- Department of Surgery and Minimal-Invasive Surgery, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Martin E Kreis
- Department of General and Visceral Surgery, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
18
|
Costantini TW, Coimbra R, Weaver JL, Eliceiri BP. Precision targeting of the vagal anti-inflammatory pathway attenuates the systemic inflammatory response to burn injury. J Trauma Acute Care Surg 2022; 92:323-329. [PMID: 34789702 PMCID: PMC8792272 DOI: 10.1097/ta.0000000000003470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The systemic inflammatory response (SIRS) drives late morbidity and mortality after injury. The α7 nicotinic acetylcholine receptor (α7nAchR) expressed on immune cells regulates the vagal anti-inflammatory pathway that prevents an overwhelming SIRS response to injury. Nonspecific pharmacologic stimulation of the vagus nerve has been evaluated as a potential therapeutic to limit SIRS. Unfortunately, the results of clinical trials have been underwhelming. We hypothesized that directly targeting the α7nAchR would more precisely stimulate the vagal anti-inflammatory pathway on immune cells and decrease gut and lung injury after severe burn. METHODS C57BL/6 mice underwent 30% total body surface area steam burn. Mice were treated with an intraperitoneal injection of a selective agonist of the α7nAchR (AR-R17779) at 30 minutes postburn. Intestinal permeability to 4 kDa FITC-dextran was measured at multiple time points postinjury. Lung vascular permeability was measured 6 hours after burn injury. Serial behavioral assessments were performed to quantify activity levels. RESULTS Intestinal permeability peaked at 6 hours postburn. AR-R17779 decreased burn-induced intestinal permeability in a dose-dependent fashion (p < 0.001). There was no difference in gut permeability to 4 kDa FITC-dextran between sham and burn-injured animals treated with 5 mg/kg of AR-R17779. While burn injury increased lung permeability 10-fold, AR-R17779 prevented burn-induced lung permeability with no difference compared with sham (p < 0.01). Postinjury activity levels were significantly improved in burned animals treated with AR-R17779. CONCLUSION Directly stimulating the α7nAchR prevents burn-induced gut and lung injury. Directly targeting the α7nAChR that mediates the cholinergic anti-inflammatory response may be an improved strategy compared with nonspecific vagal agonists.
Collapse
Affiliation(s)
- Todd W. Costantini
- Department of Surgery, Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, UC San Diego School of Medicine, San Diego, CA
| | - Raul Coimbra
- Comparative Effectiveness and Clinical Outcomes Research Center, Riverside University Health System, Loma Linda University School of Medicine, Riverside, CA
| | - Jessica L. Weaver
- Department of Surgery, Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, UC San Diego School of Medicine, San Diego, CA
| | - Brian P. Eliceiri
- Department of Surgery, Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, UC San Diego School of Medicine, San Diego, CA
| |
Collapse
|
19
|
Kanauchi Y, Yamamoto T, Yoshida M, Zhang Y, Lee J, Hayashi S, Kadowaki M. Cholinergic anti-inflammatory pathway ameliorates murine experimental Th2-type colitis by suppressing the migration of plasmacytoid dendritic cells. Sci Rep 2022; 12:54. [PMID: 34997096 PMCID: PMC8742068 DOI: 10.1038/s41598-021-04154-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease. Several studies have demonstrated that α7 nicotinic acetylcholine receptors (α7nAChRs) exert anti-inflammatory effects on immune cells and nicotine suppress UC onset and relapse. Plasmacytoid dendritic cells (pDCs) reportedly accumulate in the colon of UC patients. Therefore, we investigated the pathophysiological roles of α7nAChRs on pDCs in the pathology of UC using oxazolone (OXZ)-induced Th2-type colitis with BALB/c mice. 2-deoxy-D-glucose, a central vagal stimulant suppressed OXZ colitis, and nicotine also ameliorated OXZ colitis with suppressing Th2 cytokines, which was reversed by α7nAChR antagonist methyllycaconitine. Additionally, α7nAChRs were expressed on pDCs, which were located very close to cholinergic nerve fibers in the colon of OXZ mice. Furthermore, nicotine suppressed CCL21-induced bone marrow-derived pDC migration due to Rac 1 inactivation, which was reversed by methyllycaconitine, a JAK2 inhibitor AG490 or caspase-3 inhibitor AZ-10417808. CCL21 was mainly expressed in the isolated lymphoid follicles (ILFs) of the colon during OXZ colitis. The therapeutic effect of cholinergic pathway on OXZ colitis probably through α7nAChRs on pDCs were attributed to the suppression of pDC migration toward the ILFs. Therefore, the activation of α7nAChRs has innovative therapeutic potential for the treatment of UC.
Collapse
Affiliation(s)
- Yuya Kanauchi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Minako Yoshida
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yue Zhang
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jaemin Lee
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
20
|
Transcutaneous vagal nerve simulation to reduce a systemic inflammatory response syndrome and the associated intestinal failure: study protocol of a prospective, two-armed, sham-controlled, double-blinded trial in healthy subjects (the NeuroSIRS-Study). Int J Colorectal Dis 2022; 37:259-270. [PMID: 34599686 PMCID: PMC8760201 DOI: 10.1007/s00384-021-04034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE Surgery initiates pro-inflammatory mediator cascades leading to a variably pronounced sterile inflammation (SIRS). SIRS is associated with intestinal paralysis and breakdown of intestinal barrier and might result in abdominal sepsis. Technological progress led to the development of a neurostimulator for transcutaneous auricular vagal nerve stimulation (taVNS), which is associated with a decline in inflammatory parameters and peristalsis improvement in rodents and healthy subjects via activation of the cholinergic anti-inflammatory pathway. Therefore, taVNS might be a strategy for SIRS prophylaxis. METHODS The NeuroSIRS-Study is a prospective, randomized two-armed, sham-controlled, double-blind clinical trial. The study is registered at DRKS00016892 (09.07.2020). A controlled endotoxemia is used as a SIRS-mimicking model. 2 ng/kg bodyweight lipopolysaccharide (LPS) will be administered after taVNS or sham stimulation. The primary objective is a reduction of clinical symptoms of SIRS after taVNS compared to sham stimulation. Effects of taVNS on release of inflammatory cytokines, intestinal function, and vital parameters will be analyzed. DISCUSSION TaVNS is well-tolerated, with little to no side effects. Despite not fully mimicking postoperative inflammation, LPS challenge is the most used experimental tool to imitate SIRS and offers standardization and reproducibility. The restriction to healthy male volunteers exerts a certain bias limiting generalizability to the surgical population. Still, this pilot study aims to give first insights into taVNS as a prophylactic treatment in postoperative inflammation to pave the way for further clinical trials in patients at risk for SIRS. This would have major implications for future therapeutic approaches.
Collapse
|
21
|
Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol 2022; 15:27-39. [PMID: 34471248 PMCID: PMC8732275 DOI: 10.1038/s41385-021-00443-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Abstract
The enteric nervous system (ENS) of the gastrointestinal (GI) tract interacts with the local immune system bidirectionally. Recent publications have demonstrated that such interactions can maintain normal GI functions during homeostasis and contribute to pathological symptoms during infection and inflammation. Infection can also induce long-term changes of the ENS resulting in the development of post-infectious GI disturbances. In this review, we discuss how the ENS can regulate and be regulated by immune responses and how such interactions control whole tissue physiology. We also address the requirements for the proper regeneration of the ENS and restoration of GI function following the resolution of infection.
Collapse
|
22
|
The Regulation Effect of α7nAChRs and M1AChRs on Inflammation and Immunity in Sepsis. Mediators Inflamm 2021; 2021:9059601. [PMID: 34776789 PMCID: PMC8580654 DOI: 10.1155/2021/9059601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
The inflammatory storm in the early stage and immunosuppression in the late stage are responsible for the high mortality rates and multiple organ dysfunction in sepsis. In recent years, studies have found that the body's cholinergic system can spontaneously and dynamically regulate inflammation and immunity in sepsis according to the needs of the body. Firstly, the vagus nerve senses and regulates local or systemic inflammation by means of the Cholinergic Anti-inflammatory Pathway (CAP) and activation of α7-nicotinic acetylcholine receptors (α7nAChRs); thus, α7nAChRs play important roles for the central nervous system (CNS) to modulate peripheral inflammation; secondly, the activation of muscarinic acetylcholine receptors 1 (M1AChRs) in the forebrain can affect the neurons of the Medullary Visceral Zone (MVZ), the core of CAP, to regulate systemic inflammation and immunity. Based on the critical role of these two cholinergic receptor systems in sepsis, it is necessary to collect and analyze the related findings in recent years to provide ideas for further research studies and clinical applications. By consulting the related literature, we draw some conclusions: MVZ is the primary center for the nervous system to regulate inflammation and immunity. It coordinates not only the sympathetic system and vagus system but also the autonomic nervous system and neuroendocrine system to regulate inflammation and immunity; α7nAChRs are widely expressed in immune cells, neurons, and muscle cells; the activation of α7nAChRs can suppress local and systemic inflammation; the expression of α7nAChRs represents the acute or chronic inflammatory state to a certain extent; M1AChRs are mainly expressed in the advanced centers of the brain and regulate systemic inflammation; neuroinflammation of the MVZ, hypothalamus, and forebrain induced by sepsis not only leads to their dysfunctions but also underlies the regulatory dysfunction on systemic inflammation and immunity. Correcting the neuroinflammation of these regulatory centers and adjusting the function of α7nAChRs and M1AChRs may be two key strategies for the treatment of sepsis in the future.
Collapse
|
23
|
Hellstrom EA, Ziegler AL, Blikslager AT. Postoperative Ileus: Comparative Pathophysiology and Future Therapies. Front Vet Sci 2021; 8:714800. [PMID: 34589533 PMCID: PMC8473635 DOI: 10.3389/fvets.2021.714800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Postoperative ileus (POI), a decrease in gastrointestinal motility after surgery, is an important problem facing human and veterinary patients. 37.5% of horses that develop POI following small intestinal (SI) resection will not survive to discharge. The two major components of POI pathophysiology are a neurogenic phase which is then propagated by an inflammatory phase. Perioperative care has been implicated, namely the use of opioid therapy, inappropriate fluid therapy and electrolyte imbalances. Current therapy for POI variably includes an early return to feeding to induce physiological motility, reducing the inflammatory response with agents such as non-steroidal anti-inflammatory drugs (NSAIDs), and use of prokinetic therapy such as lidocaine. However, optimal management of POI remains controversial. Further understanding of the roles of the gastrointestinal microbiota, intestinal barrier function, the post-surgical inflammatory response, as well as enteric glial cells, a component of the enteric nervous system, in modulating postoperative gastrointestinal motility and the pathogenesis of POI may provide future targets for prevention and/or therapy of POI.
Collapse
Affiliation(s)
| | | | - Anthony T. Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
24
|
Dudi-Venkata NN, Kroon HM, Bedrikovetski S, Traeger L, Lewis M, Lawrence MJ, Hunter RA, Moore JW, Thomas ML, Sammour T. PyRICo-Pilot: pyridostigmine to reduce the duration of postoperative ileus after colorectal surgery - a phase II study. Colorectal Dis 2021; 23:2154-2160. [PMID: 34021689 DOI: 10.1111/codi.15748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 02/05/2023]
Abstract
AIM Postoperative ileus (POI) is a major problem after colorectal surgery. Acetylcholinesterase inhibitors such as pyridostigmine increase gastrointestinal (GI) motility through a cholinergic anti-inflammatory pathway. The purpose of this phase II pilot study is to determine the safety of oral pyridostigmine after elective colorectal surgery. METHOD This is a Stage 2b safety study (IDEAL framework). All adult patients undergoing elective colorectal resection or formation or reversal of stoma at the Royal Adelaide Hospital between September 2020 and January 2021 were eligible. The primary outcomes were 30-day postoperative complications, reported adverse events and GI-2 - a validated composite outcome measure of recovery of GI function after surgery, defined as the interval from surgery until first passage of stool and tolerance of a solid intake for 24 h (in whole days) in the absence of vomiting. RESULTS Fifteen patients were included in the study. The median age was 58 (range 50-82) years and seven (47%) were men. Most participants had an American Society of Anesthesiologists grade ≥2 (53%) and the median body mass index was 27 (24-35) kg/m2 . There were 13 postoperative complications [seven were Clavien-Dindo (CD) 1, five CD 2 and one CD 3]. None appeared directly related to pyridostigmine administration, and none of the patients had any overt symptoms of excessive parasympathetic activity. Median GI-2 was 2 (1-4) days. CONCLUSION Oral pyridostigmine appears to be safe to use after elective colorectal surgery in a select group of patients. However, considering this is a pilot study with a small sample size, larger controlled studies are needed to confirm this finding and establish efficacy for prevention of POI.
Collapse
Affiliation(s)
- Nagendra N Dudi-Venkata
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Hidde M Kroon
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sergei Bedrikovetski
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Luke Traeger
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark Lewis
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Matthew J Lawrence
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Ronald A Hunter
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - James W Moore
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Michelle L Thomas
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Tarik Sammour
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
Duan H, Cai X, Luan Y, Yang S, Yang J, Dong H, Zeng H, Shao L. Regulation of the Autonomic Nervous System on Intestine. Front Physiol 2021; 12:700129. [PMID: 34335306 PMCID: PMC8317205 DOI: 10.3389/fphys.2021.700129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Intestine is composed of various types of cells including absorptive epithelial cells, goblet cells, endocrine cells, Paneth cells, immunological cells, and so on, which play digestion, absorption, neuroendocrine, immunological function. Intestine is innervated with extrinsic autonomic nerves and intrinsic enteric nerves. The neurotransmitters and counterpart receptors are widely distributed in the different intestinal cells. Intestinal autonomic nerve system includes sympathetic and parasympathetic nervous systems, which regulate cellular proliferation and function in intestine under physiological and pathophysiological conditions. Presently, distribution and functional characteristics of autonomic nervous system in intestine were reviewed. How autonomic nervous system regulates intestinal cell proliferation was discussed. Function of autonomic nervous system on intestinal diseases was extensively reviewed. It might be helpful to properly manipulate autonomic nervous system during treating different intestinal diseases.
Collapse
Affiliation(s)
- Hongyi Duan
- Medical College of Nanchang University, Nanchang, China
| | - Xueqin Cai
- Medical College of Nanchang University, Nanchang, China
| | - Yingying Luan
- Medical College of Nanchang University, Nanchang, China
| | - Shuo Yang
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Juan Yang
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Hui Dong
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Lijian Shao
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Meroni E, Stakenborg N, Gomez-Pinilla PJ, Stakenborg M, Aguilera-Lizarraga J, Florens M, Delfini M, de Simone V, De Hertogh G, Goverse G, Matteoli G, Boeckxstaens GE. Vagus Nerve Stimulation Promotes Epithelial Proliferation and Controls Colon Monocyte Infiltration During DSS-Induced Colitis. Front Med (Lausanne) 2021; 8:694268. [PMID: 34307422 PMCID: PMC8292675 DOI: 10.3389/fmed.2021.694268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background: We previously showed increased susceptibility to dextran sulfate sodium (DSS)-induced colitis in vagotomized mice. Here, we evaluated whether vagus nerve stimulation (VNS) is able to reduce the severity of DSS colitis and aimed to unravel the mechanism involved. Methods: Colitis was induced in wild type mice by 2.5% DSS administration in drinking water for 5 days. VNS (5 Hz, 1 ms, 1 mA) was applied 1 day prior to and after 4 days of DSS administration to evaluate changes in epithelial integrity and inflammatory response, respectively. Epithelial integrity was assessed using TUNEL and Ki67 staining. Monocytes, immature and mature macrophages were sorted from colonic samples and gene expression levels of pro-inflammatory cytokines were studied. Results: VNS applied prior to DSS administration (i.e., prophylactic VNS) reduced disease activity index (VNS 0.8 ± 0.6 vs. sham 2.8 ± 0.7, p < 0.001, n = 5) and tended to improve histology score. Prophylactic VNS significantly increased epithelial cell proliferation and diminished apoptosis compared to sham stimulation. VNS applied at day 4 during DSS administration (i.e., therapeutic VNS) decreased the influx of monocytes, monocyte-derived macrophages and neutrophils, and significantly reduced pro-inflammatory cytokine expression (i.e., Tnfα and Cxcl1) in immature macrophages compared to sham stimulation. Conclusions: A single period of VNS applied prior to DSS exposure reduced DSS-induced colitis by an improvement in epithelial integrity. On the other hand, VNS applied during the inflammatory phase of DSS colitis reduced cytokine expression in immature macrophages. Our data further underscores the potential of VNS as novel therapeutic approach for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Elisa Meroni
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Pedro J Gomez-Pinilla
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Michelle Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Javier Aguilera-Lizarraga
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Morgane Florens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Marcello Delfini
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Veronica de Simone
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Gera Goverse
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Gharishvandi F, Shafaroodi H, Mohammad Jafari R, Abdollahi A, Pasalar P, Dehpour AR. The protective effect of α7-nACh receptor and its interaction with 5-HT1B/1D receptors in acute intestinal ischemia-reperfusion injury in rats. Fundam Clin Pharmacol 2021; 36:100-113. [PMID: 34061415 DOI: 10.1111/fcp.12705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/08/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Over the past decades, great attention has been given to the nervous system modulating effects on the immune response in inflammation-associated injuries, such as acute intestinal ischemia-reperfusion (IR). Recently, we proved the anti-inflammatory and antioxidant effects of 5-hydroxytryptamine (5-HT)1B/1D receptors in intestinal IR injury in rats. Also, the alpha7 nicotinic acetylcholine (α7-nACh) receptor has anti-inflammatory effects in different inflammation-associated injuries. Starting from these premises, we aimed to examine the function of the α7-nACh receptors and the functional interactions between the anti-inflammatory and antioxidant effects of α7-nACh and 5-HT1B/1D receptors in acute intestinal IR injury. To confirm the expression and localization of α7-nACh receptors on the ileum nerves, an immunofluorescence-based method was applied. Then, intestinal IR injury was induced by 30-min occlusion of superior mesenteric artery and reperfusion for 2 h in rats. Acute systemic administration of α7-nACh receptor agonist PNU-282987 and antagonist methyllycaconitine, and 5-HT1B/1D receptors agonist (sumatriptan) and antagonist (GR127, 935) were used in the model of intestinal IR injury. Finally, biochemical and histological parameters were assessed. Α7-nACh receptors were expressed by 9% on the ileum nerves. Likewise, activation of the α7-nACh receptor showed anti-inflammatory and antioxidant effects in intestinal IR injury but not as well as 5-HT1B/1D receptors. Interestingly, 5-HT1B/1D receptors via attenuation of glutamate (Glu) release indirectly activated the α7-nACh receptor and its protective effects against inflammation and oxidative stress. The protective effect of the α7-nACh receptor on intestinal IR injury was activated indirectly through the 5-HT1B/1D receptors' modulatory impact on Glu release.
Collapse
Affiliation(s)
- Fatemeh Gharishvandi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Imam Hospital Complex, Tehran, Iran
| | - Parvin Pasalar
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Injury Repair Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Dal Buono A, Caldirola D, Allocca M. Genetic susceptibility to inflammatory bowel disease: should we be looking to the hypothalamus? Expert Rev Clin Immunol 2021; 17:803-806. [PMID: 34047240 DOI: 10.1080/1744666x.2021.1933443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Arianna Dal Buono
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Hospital - IRCCS, Milan, Italy
| | - Daniela Caldirola
- Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Mariangela Allocca
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Hospital - IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
29
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
30
|
Mughrabi IT, Hickman J, Jayaprakash N, Thompson D, Ahmed U, Papadoyannis ES, Chang YC, Abbas A, Datta-Chaudhuri T, Chang EH, Zanos TP, Lee SC, Froemke RC, Tracey KJ, Welle C, Al-Abed Y, Zanos S. Development and characterization of a chronic implant mouse model for vagus nerve stimulation. eLife 2021; 10:e61270. [PMID: 33821789 PMCID: PMC8051950 DOI: 10.7554/elife.61270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
Vagus nerve stimulation (VNS) suppresses inflammation and autoimmune diseases in preclinical and clinical studies. The underlying molecular, neurological, and anatomical mechanisms have been well characterized using acute electrophysiological stimulation of the vagus. However, there are several unanswered mechanistic questions about the effects of chronic VNS, which require solving numerous technical challenges for a long-term interface with the vagus in mice. Here, we describe a scalable model for long-term VNS in mice developed and validated in four research laboratories. We observed significant heart rate responses for at least 4 weeks in 60-90% of animals. Device implantation did not impair vagus-mediated reflexes. VNS using this implant significantly suppressed TNF levels in endotoxemia. Histological examination of implanted nerves revealed fibrotic encapsulation without axonal pathology. This model may be useful to study the physiology of the vagus and provides a tool to systematically investigate long-term VNS as therapy for chronic diseases modeled in mice.
Collapse
Affiliation(s)
- Ibrahim T Mughrabi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Jordan Hickman
- Departments of Neurosurgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Dane Thompson
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
- The Elmezzi Graduate School of Molecular MedicineManhassetUnited States
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Eleni S Papadoyannis
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Neuroscience and Physiology, Neuroscience Institute, Center for Neural Science, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Otolaryngology, New York University School of Medicine, New York UniversityNew YorkUnited States
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, New York UniversityNew YorkUnited States
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Adam Abbas
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Eric H Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Sunhee C Lee
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Neuroscience and Physiology, Neuroscience Institute, Center for Neural Science, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Otolaryngology, New York University School of Medicine, New York UniversityNew YorkUnited States
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, New York UniversityNew YorkUnited States
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Cristin Welle
- Departments of Neurosurgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| |
Collapse
|
31
|
Bonaz B, Sinniger V, Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Front Neurosci 2021; 15:650971. [PMID: 33828455 PMCID: PMC8019822 DOI: 10.3389/fnins.2021.650971] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The vagus nerve is a mixed nerve, comprising 80% afferent fibers and 20% efferent fibers. It allows a bidirectional communication between the central nervous system and the digestive tract. It has a dual anti-inflammatory properties via activation of the hypothalamic pituitary adrenal axis, by its afferents, but also through a vago-vagal inflammatory reflex involving an afferent (vagal) and an efferent (vagal) arm, called the cholinergic anti-inflammatory pathway. Indeed, the release of acetylcholine at the end of its efferent fibers is able to inhibit the release of tumor necrosis factor (TNF) alpha by macrophages via an interneuron of the enteric nervous system synapsing between the efferent vagal endings and the macrophages and releasing acetylcholine. The vagus nerve also synapses with the splenic sympathetic nerve to inhibit the release of TNF-alpha by splenic macrophages. It can also activate the spinal sympathetic system after central integration of its afferents. This anti-TNF-alpha effect of the vagus nerve can be used in the treatment of chronic inflammatory bowel diseases, represented by Crohn’s disease and ulcerative colitis where this cytokine plays a key role. Bioelectronic medicine, via vagus nerve stimulation, may have an interest in this non-drug therapeutic approach as an alternative to conventional anti-TNF-alpha drugs, which are not devoid of side effects feared by patients.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Valérie Sinniger
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Sonia Pellissier
- Laboratoire Inter-Universitaire de Psychologie Personnalité, Cognition, Changement Social, University Grenoble Alpes, University Savoie Mont Blanc, Grenoble, France
| |
Collapse
|
32
|
Nicotinic Acetylcholine Receptor Involvement in Inflammatory Bowel Disease and Interactions with Gut Microbiota. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031189. [PMID: 33572734 PMCID: PMC7908252 DOI: 10.3390/ijerph18031189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
The gut-brain axis describes a complex interplay between the central nervous system and organs of the gastrointestinal tract. Sensory neurons of dorsal root and nodose ganglia, neurons of the autonomic nervous system, and immune cells collect and relay information about the status of the gut to the brain. A critical component in this bi-directional communication system is the vagus nerve which is essential for coordinating the immune system’s response to the activities of commensal bacteria in the gut and to pathogenic strains and their toxins. Local control of gut function is provided by networks of neurons in the enteric nervous system also called the ‘gut-brain’. One element common to all of these gut-brain systems is the expression of nicotinic acetylcholine receptors. These ligand-gated ion channels serve myriad roles in the gut-brain axis including mediating fast synaptic transmission between autonomic pre- and postganglionic neurons, modulation of neurotransmitter release from peripheral sensory and enteric neurons, and modulation of cytokine release from immune cells. Here we review the role of nicotinic receptors in the gut-brain axis with a focus on the interplay of these receptors with the gut microbiome and their involvement in dysregulation of gut function and inflammatory bowel diseases.
Collapse
|
33
|
Cheng J, Shen H, Chowdhury R, Abdi T, Selaru F, Chen JDZ. Potential of Electrical Neuromodulation for Inflammatory Bowel Disease. Inflamm Bowel Dis 2020; 26:1119-1130. [PMID: 31782957 DOI: 10.1093/ibd/izz289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a common chronic inflammatory disease of the digestive tract that is often debilitating. It affects patients' quality of life and imposes a financial burden. Despite advances in treatment with medications such as biologics, a large proportion of patients do not respond to medical therapy or develop adverse events. Therefore, alternative treatment options such as electrical neuromodulation are currently being investigated. Electrical neuromodulation, also called bioelectronic medicine, is emerging as a potential new treatment for IBD. Over the past decade, advancements have been made in electrical neuromodulation. A number of electrical neuromodulation methods, such as vagus nerve stimulation, sacral nerve stimulation, and tibial nerve stimulation, have been tested to treat IBD. A series of animal and clinical trials have been performed to evaluate efficacy with promising results. Although the exact underlying mechanisms of action for electrical neuromodulation remain to be explored, this modality is promising. Further randomized controlled trials and basic experiments are needed to investigate efficacy and clarify intrinsic mechanisms.
Collapse
Affiliation(s)
- Jiafei Cheng
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Division of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Division of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Reezwana Chowdhury
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tsion Abdi
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Florin Selaru
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Hosic S, Lake W, Stas E, Koppes R, Breault DT, Murthy SK, Koppes AN. Cholinergic Activation of Primary Human Derived Intestinal Epithelium Does Not Ameliorate TNF-α Induced Injury. Cell Mol Bioeng 2020; 13:487-505. [PMID: 33184579 DOI: 10.1007/s12195-020-00633-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction The intestinal epithelium contains specialized cells including enterocytes, goblet, Paneth, enteroendocrine, and stem cells. Impaired barrier integrity in Inflammatory Bowel Disease is characterized by elevated levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α). Prior studies in immortalized lines such as Caco-2, without native epithelial heterogeneity, demonstrate the amelioration of TNF-α compromised barrier integrity via nicotinic (nAChR) or muscarinic (mAChR) acetylcholine receptor activation. Methods A tissue-engineered model of primary human small intestinal epithelium was derived from dissociated organoids cultured on collagen-coated Transwells. Differentiation was accomplished with serum-containing media and compared to Caco-2 and HT-29 regarding alkaline phosphatase expression, transepithelial electrical resistance (TEER), and IL-8 secretion. Inflammation was modeled via basal stimulation with TNF-α (25 ng/mL) with or without nicotine (nAChR agonist) or bethanechol (mAChR agonist). Apoptosis, density (cells/cm2), TEER, lucifer yellow permeability, 70 kDa dextran transport, cell morphology, and IL-8 secretion were characterized. Results Primary intestinal epithelium demonstrates significant functional differences compared to immortalized cells, including increased barrier integrity, IL-8 expression, mucus production, and the presence of absorptive and secretory cells. Exposure to TNF-α impaired barrier integrity, increased apoptosis, altered morphology, and increased secretion of IL-8. Stimulation of nAChR with nicotine did not ameliorate TNF-α induced permeability nor alter 70 kDa dextran transport. However, stimulation of mAChR with bethanechol decreased transport of 70 kDa dextran but did not ameliorate TNF-α induced paracellular permeability. Conclusions A primary model of intestinal inflammation was evaluated, demonstrating nAChR or mAChR activation does not have the same protective effects compared to immortalized epithelium. Inclusion of other native stromal support cells are underway.
Collapse
Affiliation(s)
- Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Will Lake
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Eric Stas
- Division of Endocrinology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Ryan Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA.,Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA.,Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA 02138 USA
| | - Shashi K Murthy
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA.,Department of Biology, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| |
Collapse
|
35
|
Yang NN, Ye Y, Tian ZX, Ma SM, Zheng Y, Huang J, Yang JW, Shao JK, Liu CZ. Effects of electroacupuncture on the intestinal motility and local inflammation are modulated by acupoint selection and stimulation frequency in postoperative ileus mice. Neurogastroenterol Motil 2020; 32:e13808. [PMID: 32114712 DOI: 10.1111/nmo.13808] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/29/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Electroacupuncture (EA) is widely used in various gastrointestinal diseases around the world, including POI. Here, we investigated different therapeutic effects of EA using lower limb and abdomen acupoints. METHODS Intestinal manipulation was performed in 88 mice, and eight mice underwent a sham operation. Forty mice were randomly divided into model group and four EA groups receiving stimulation at ST36 (2, 10, 30, 100 Hz). The most effective frequency was then used in the following experiments. Forty-eight mice were randomly divided into six groups receiving EA treatment at ST37, ST39, ST25, CV4, CV12, and a non-acupuncture point. Gastrointestinal motility and plasma TNF-α, IL-6 were evaluated in all mice. The local immune response and α-smooth muscle actin (α-SMA) expression were assessed by immunofluorescence, ELISA, and HE staining. RESULTS ST36 stimulated with 10 or 30 Hz EA significantly increased the gastrointestinal motility and attenuated peripheral inflammation; however, ST36 stimulated with 2 or 100 Hz did not induce any effect. The therapeutic effects on motility and inflammation of 10 Hz EA in the ST36 group were similar in the ST36, ST37, ST39, or CV4 groups, but when applied to ST25, CV12 or non-acupoint had no significant differences. EA at ST36, ST37, ST39, or CV4 significantly inhibited local MPO activity, immune cells infiltration, and increased α-SMA. CONCLUSIONS EA at lower limb and abdomen acupoints with the same stimulation parameters had different therapeutic effects on postoperative dysmotility and inflammation. Furthermore, EA protected SMC to improve gastrointestinal transit by reducing local inflammation in the intestinal musculature in POI.
Collapse
Affiliation(s)
- Na-Na Yang
- School of Acupuncture-Moxibustion and Tunia, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Ye
- Peking University, Beijing, China
| | - Zhong-Xue Tian
- School of Acupuncture-Moxibustion and Tunia, Beijing University of Chinese Medicine, Beijing, China
| | - Si-Ming Ma
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Yang Zheng
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Jin Huang
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Jing-Wen Yang
- School of Acupuncture-Moxibustion and Tunia, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Kai Shao
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Cun-Zhi Liu
- School of Acupuncture-Moxibustion and Tunia, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Sinagra E, Utzeri E, Morreale GC, Fabbri C, Pace F, Anderloni A. Microbiota-gut-brain axis and its affect inflammatory bowel disease: Pathophysiological concepts and insights for clinicians. World J Clin Cases 2020; 8:1013-1025. [PMID: 32258072 PMCID: PMC7103973 DOI: 10.12998/wjcc.v8.i6.1013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 02/05/2023] Open
Abstract
Despite the bi-directional interaction between gut microbiota and the brain not being fully understood, there is increasing evidence arising from animal and human studies that show how this intricate relationship may facilitate inflammatory bowel disease (IBD) pathogenesis, with consequent important implications on the possibility to improve the clinical outcomes of the diseases themselves, by acting on the different components of this system, mainly by modifying the microbiota. With the emergence of precision medicine, strategies in which patients with IBD might be categorized other than for standard gut symptom complexes could offer the opportunity to tailor therapies to individual patients. The aim of this narrative review is to elaborate on the concept of the gut-brain-microbiota axis and its clinical significance regarding IBD on the basis of recent scientific literature, and finally to focus on pharmacological therapies that could allow us to favorably modify the function of this complex system.
Collapse
Affiliation(s)
- Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, Cefalù 90015, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo 90100, Italy
| | - Erika Utzeri
- Nuova Casa di Cura di Decimomannu, Cagliari 09100, Italy
| | | | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena, Azienda USL Romagna, Forlì 47121, Italy
| | - Fabio Pace
- Unit of Gastroenterology, Bolognini Hospital, Bergamo 24100, Italy
| | - Andrea Anderloni
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, Rozzano 20089, Italy
| |
Collapse
|
37
|
Jakob MO, Murugan S, Klose CSN. Neuro-Immune Circuits Regulate Immune Responses in Tissues and Organ Homeostasis. Front Immunol 2020; 11:308. [PMID: 32265899 PMCID: PMC7099652 DOI: 10.3389/fimmu.2020.00308] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The dense innervation of the gastro-intestinal tract with neuronal networks, which are in close proximity to immune cells, implies a pivotal role of neurons in modulating immune functions. Neurons have the ability to directly sense danger signals, adapt immune effector functions and integrate these signals to maintain tissue integrity and host defense strategies. The expression pattern of a large set of immune cells in the intestine characterized by receptors for neurotransmitters and neuropeptides suggest a tight neuronal hierarchical control of immune functions in order to systemically control immune reactions. Compelling evidence implies that targeting neuro-immune interactions is a promising strategy to dampen immune responses in autoimmune diseases such as inflammatory bowel diseases or rheumatoid arthritis. In fact, electric stimulation of vagal fibers has been shown to be an extremely effective treatment strategy against overwhelming immune reactions, even after exhausted conventional treatment strategies. Such findings argue that the nervous system is underestimated coordinator of immune reactions and underline the importance of neuro-immune crosstalk for body homeostasis. Herein, we review neuro-immune interactions with a special focus on disease pathogenesis throughout the gastro-intestinal tract.
Collapse
Affiliation(s)
- Manuel O. Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Group of Visceral Surgery and Medicine, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Shaira Murugan
- Group of Visceral Surgery and Medicine, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Christoph S. N. Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
38
|
Jarczyk J, Yard BA, Hoeger S. The Cholinergic Anti-Inflammatory Pathway as a Conceptual Framework to Treat Inflammation-Mediated Renal Injury. Kidney Blood Press Res 2020; 44:435-448. [PMID: 31307039 DOI: 10.1159/000500920] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/12/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway, positioned at the interface of the nervous and immune systems, is the efferent limb of the "inflammatory reflex" which mainly signals through the vagus nerve. As such, the brain can modulate peripheral inflammatory responses by the activation of vagal efferent fibers. Importantly, immune cells in the spleen express most cholinergic system components such as acetylcholine (ACh), choline acetyltransferase, acetylcholinesterase, and both muscarinic and nicotinic ACh receptors, making communication between both systems possible. In general, this communication down-regulates the inflammation, achieved through different mechanisms and depending on the cells involved. SUMMARY With the awareness that the cholinergic anti-inflammatory pathway serves to prevent or limit inflammation in peripheral organs, vagus nerve stimulation has become a promising strategy in the treatment of several inflammatory conditions. Both pharmacological and non-pharmacological methods have been used in many studies to limit organ injury as a consequence of inflammation. Key Messages: In this review, we will highlight our current knowledge of the cholinergic anti-inflammatory pathway, with emphasis on its potential clinical use in the treatment of inflammation-triggered kidney injury.
Collapse
Affiliation(s)
- Jonas Jarczyk
- Department of Urology, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Benito A Yard
- Vth Medical Department, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Simone Hoeger
- Vth Medical Department, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany, .,Bioassay GmbH, Heidelberg, Germany,
| |
Collapse
|
39
|
Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020; 11:509681. [PMID: 33262709 PMCID: PMC7685985 DOI: 10.3389/fpsyt.2020.509681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in the absence of an organic, metabolic or systemic cause that readily explains these complaints. Their pathophysiology is still not fully elucidated and animal models have been of great value to improve the understanding of the complex biological mechanisms. Over the last decades, many animal models have been developed to further unravel FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on stress-related models, starting with the different perinatal stress models, including the stress of the dam, followed by a discussion on neonatal stress such as the maternal separation model. We also describe the most commonly used stress models in adult animals which brought valuable insights on the brain-gut axis in stress-related disorders. In the second part, we focus more on models studying peripheral, i.e., gastrointestinal, mechanisms, either induced by an infection or another inflammatory trigger. In this section, we also introduce more recent models developed around food-related metabolic disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking FGID as a secondary effect of medical interventions and spontaneous models sharing characteristics of GI and anxiety-related disorders. The latter are powerful models for brain-gut axis dysfunction and bring new insights about FGID and their comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Alison Accarie
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Hasegawa S, Inoue T, Inagi R. Neuroimmune interactions and kidney disease. Kidney Res Clin Pract 2019; 38:282-294. [PMID: 31422643 PMCID: PMC6727900 DOI: 10.23876/j.krcp.19.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 12/15/2022] Open
Abstract
The autonomic nervous system plays critical roles in maintaining homeostasis in humans, directly regulating inflammation by altering the activity of the immune system. The cholinergic anti-inflammatory pathway is a well-studied neuroimmune interaction involving the vagus nerve. CD4-positive T cells expressing β2 adrenergic receptors and macrophages expressing the alpha 7 subunit of the nicotinic acetylcholine receptor in the spleen receive neurotransmitters such as norepinephrine and acetylcholine and are key mediators of the cholinergic anti-inflammatory pathway. Recent studies have demonstrated that vagus nerve stimulation, ultrasound, and restraint stress elicit protective effects against renal ischemia-reperfusion injury. These protective effects are induced primarily via activation of the cholinergic anti-inflammatory pathway. In addition to these immunological roles, nervous systems are directly related to homeostasis of renal physiology. Whole-kidney three-dimensional visualization using the tissue clearing technique CUBIC (clear, unobstructed brain/body imaging cocktails and computational analysis) has illustrated that renal sympathetic nerves are primarily distributed around arteries in the kidneys and denervated after ischemia-reperfusion injury. In contrast, artificial renal sympathetic denervation has a protective effect against kidney disease progression in murine models. Further studies are needed to elucidate how neural networks are involved in progression of kidney disease.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Division of CKD Pathophysiology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoue
- Division of CKD Pathophysiology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Bonaz B, Sinniger V, Pellissier S. Vagus Nerve Stimulation at the Interface of Brain-Gut Interactions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034199. [PMID: 30201788 DOI: 10.1101/cshperspect.a034199] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vagus nerve, a key component of the cross-communication between the gut and the brain, is a major element of homeostasis sensing the "milieu intérieur" and boosting the nervous and endocrine responses to maintain the gastrointestinal health status. This nerve has anti-inflammatory properties regulating the gut through the activation of the hypothalamic-pituitary-adrenal axis and the release of cortisol and through a vagovagal reflex, which has an anti-tumor necrosis factor (TNF) effect called the cholinergic anti-inflammatory pathway. Stimulating this nerve is an interesting tool as a nondrug therapy for the treatment of gastrointestinal diseases in which brain-gut communication is dysfunctional, such as inflammatory bowel disorders and others. This review presents the rationale of vagal gastrointestinal physiology and diseases and the most recent advances in vagus nerve stimulation. It also highlights the main issues to be addressed in the future to improve this bioelectronic therapy for gastrointestinal disorders.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Grenoble University Hospital, 38043 Grenoble Cedex 09, France.,U1216, INSERM, GIN, Grenoble Institute of Neurosciences, University Grenoble Alpes, Grenoble, France
| | - Valérie Sinniger
- Division of Hepato-Gastroenterology, Grenoble University Hospital, 38043 Grenoble Cedex 09, France.,U1216, INSERM, GIN, Grenoble Institute of Neurosciences, University Grenoble Alpes, Grenoble, France
| | - Sonia Pellissier
- University Grenoble Alpes, University Savoie Mont Blanc, 38000 Grenoble, France
| |
Collapse
|
42
|
Stakenborg N, Labeeuw E, Gomez-Pinilla PJ, De Schepper S, Aerts R, Goverse G, Farro G, Appeltans I, Meroni E, Stakenborg M, Viola MF, Gonzalez-Dominguez E, Bosmans G, Alpizar YA, Wolthuis A, D’Hoore A, Van Beek K, Verheijden S, Verhaegen M, Derua R, Waelkens E, Moretti M, Gotti C, Augustijns P, Talavera K, Vanden Berghe P, Matteoli G, Boeckxstaens GE. Preoperative administration of the 5-HT4 receptor agonist prucalopride reduces intestinal inflammation and shortens postoperative ileus via cholinergic enteric neurons. Gut 2019; 68:1406-1416. [PMID: 30472681 PMCID: PMC6691854 DOI: 10.1136/gutjnl-2018-317263] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Vagus nerve stimulation (VNS), most likely via enteric neurons, prevents postoperative ileus (POI) by reducing activation of alpha7 nicotinic receptor (α7nAChR) positive muscularis macrophages (mMφ) and dampening surgery-induced intestinal inflammation. Here, we evaluated if 5-HT4 receptor (5-HT4R) agonist prucalopride can mimic this effect in mice and human. DESIGN Using Ca2+ imaging, the effect of electrical field stimulation (EFS) and prucalopride was evaluated in situ on mMφ activation evoked by ATP in jejunal muscularis tissue. Next, preoperative and postoperative administration of prucalopride (1-5 mg/kg) was compared with that of preoperative VNS in a model of POI in wild-type and α7nAChR knockout mice. Finally, in a pilot study, patients undergoing a Whipple procedure were preoperatively treated with prucalopride (n=10), abdominal VNS (n=10) or sham/placebo (n=10) to evaluate the effect on intestinal inflammation and clinical recovery of POI. RESULTS EFS reduced the ATP-induced Ca2+ response of mMφ, an effect that was dampened by neurotoxins tetrodotoxin and ω-conotoxin and mimicked by prucalopride. In vivo, prucalopride administered before, but not after abdominal surgery reduced intestinal inflammation and prevented POI in wild-type, but not in α7nAChR knockout mice. In humans, preoperative administration of prucalopride, but not of VNS, decreased Il6 and Il8 expression in the muscularis externa and improved clinical recovery. CONCLUSION Enteric neurons dampen mMφ activation, an effect mimicked by prucalopride. Preoperative, but not postoperative treatment with prucalopride prevents intestinal inflammation and shortens POI in both mice and human, indicating that preoperative administration of 5-HT4R agonists should be further evaluated as a treatment of POI. TRIAL REGISTRATION NUMBER NCT02425774.
Collapse
Affiliation(s)
- Nathalie Stakenborg
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Evelien Labeeuw
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Pedro J Gomez-Pinilla
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Sebastiaan De Schepper
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Raymond Aerts
- Department of Abdominal Surgery, University Hospital of Leuven, Leuven, Belgium
| | - Gera Goverse
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Laboratory for Mucosal Immunology, University of Leuven, Leuven, Belgium
| | - Giovanna Farro
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Iris Appeltans
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Elisa Meroni
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Michelle Stakenborg
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Laboratory for Mucosal Immunology, University of Leuven, Leuven, Belgium
| | - Maria Francesca Viola
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Erika Gonzalez-Dominguez
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Goele Bosmans
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Yeranddy A Alpizar
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Albert Wolthuis
- Department of Abdominal Surgery, University Hospital of Leuven, Leuven, Belgium
| | - Andre D’Hoore
- Department of Abdominal Surgery, University Hospital of Leuven, Leuven, Belgium
| | - Kim Van Beek
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Simon Verheijden
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| | - Marleen Verhaegen
- Department of Anesthesiology, University Hospital of Leuven, Leuven, Belgium
| | - Rita Derua
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, Universitiy of Leuven, Leuven, Belgium
| | - Etienne Waelkens
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, Universitiy of Leuven, Leuven, Belgium
| | - Milena Moretti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Drug Delivery and Disposition, University of Leuven, Leuven, Belgium
| | - Karel Talavera
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Pieter Vanden Berghe
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Laboratory for Enteric Neuroscience, University of Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Laboratory for Mucosal Immunology, University of Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GastroIntestinal Disorders, Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium
| |
Collapse
|
43
|
De-Pu Z, Li-Sha G, Guang-Yi C, Xiaohong G, Chao X, Cheng Z, Wen-Wu Z, Jia L, Jia-Feng L, Maoping C, Yue-Chun L. The cholinergic anti-inflammatory pathway ameliorates acute viral myocarditis in mice by regulating CD4 + T cell differentiation. Virulence 2019; 9:1364-1376. [PMID: 30176160 PMCID: PMC6141146 DOI: 10.1080/21505594.2018.1482179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many studies have found that abnormalities in the proportion and differentiation of CD4+ T cells (Th cells) are closely related to the pathogenesis of viral myocarditis (VMC). Our previous research indicates that the cholinergic anti-inflammatory pathway (CAP) attenuates the inflammatory response of VMC and downregulates the expression of cytokines in Th1 and Th17 cells. This suggests that the cholinergic anti-inflammatory pathway likely attenuates the inflammatory response in VMC by altering Th cell differentiation. The aim of this study is to investigate the effect of CAP on CD4+ T cell differentiation in VMC mice. CD4+ T cells in the spleen of VMC mice were obtained and cultured in the presence of nicotine or methyllycaconitine (MLA). Cells were harvested and analyzed for the percentage of each Th cell subset by flow cytometry and transcription factor release by Western blot. Then, we detected the effect of CAP on the differentiation of Th cells in vivo. Nicotine or MLA was used to activate and block CAP, respectively, in acute virus-induced myocarditis. Nicotine treatment increased the proportion of Th2 and Treg cells, decreased the proportion of Th1 and Th17 cells in the spleen, reduced the level of proinflammatory cytokines, and attenuated the severity of myocardium lesions and cellular infiltration in viral myocarditis. MLA administration had the opposite effect. Our result demonstrated that CAP effectively protects the myocardium from virus infection, which may be attributable to the regulation of Th cell differentiation.
Collapse
Affiliation(s)
- Zhou De-Pu
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Ge Li-Sha
- b Department of Pediatric Emergency , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Chen Guang-Yi
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Gu Xiaohong
- c Children's Heart Center and Department of Pediatrics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xing Chao
- d Department of Clinical Laboratory , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zheng Cheng
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zhang Wen-Wu
- e Department of Intensive Care Unit , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Li Jia
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Lin Jia-Feng
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Chu Maoping
- c Children's Heart Center and Department of Pediatrics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Li Yue-Chun
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
44
|
Neural anti-inflammatory action mediated by two types of acetylcholine receptors in the small intestine. Sci Rep 2019; 9:5887. [PMID: 30971711 PMCID: PMC6458176 DOI: 10.1038/s41598-019-41698-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal prokinetic agents function as serotonin-4 receptor (5-HT4R) agonists to activate myenteric plexus neurons to release acetylcholine (ACh), which then induce anti-inflammatory action. Details of this pathway, however, remain unknown. The aim of this study is to clarify the anti-inflammatory mechanism underlying the 5-HT4R agonist, mosapride citrate (MOS)-induced anti-inflammatory action on postoperative ileus (POI). POI models were generated from wild-type C57BL6/J (WT), 5-HT4R knock-out (S4R KO), α7 nicotinic AChR KO (α7 R KO), and M2 muscarinic ACh receptor KO (M2R KO) mice. MOS attenuated leukocyte infiltration in WT. MOS-induced anti-inflammatory action was completely abolished in both S4R KO and S4R KO mice upon wild-type bone marrow transplantation. MOS-induced anti-inflammatory action against macrophage infiltration, but not neutrophil infiltration, was attenuated in α7 R KO mice. Selective α7nAChR agonists (PNU-282987 and AR-R17779) also inhibited only macrophage infiltration in POI. MOS-mediated inhibition of neutrophil infiltration was diminished by atropine, M2AChR antagonist, methoctramine, and in M2R KO mice. Stimulation with 5-HT4R inhibits leukocyte infiltration in POI, possibly through myenteric plexus activation. Released ACh inhibited macrophage and neutrophil infiltration likely by activation of α7nAChR on macrophages and M2AChR. Thus, macrophage and neutrophil recruitment into inflamed sites is regulated by different types of AChR in the small intestine.
Collapse
|
45
|
Souza ACP, Souza CM, Amaral CL, Lemes SF, Santucci LF, Milanski M, Torsoni AS, Torsoni MA. Short-Term High-Fat Diet Consumption Reduces Hypothalamic Expression of the Nicotinic Acetylcholine Receptor α7 Subunit (α7nAChR) and Affects the Anti-inflammatory Response in a Mouse Model of Sepsis. Front Immunol 2019; 10:565. [PMID: 30967878 PMCID: PMC6438922 DOI: 10.3389/fimmu.2019.00565] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 03/04/2019] [Indexed: 01/01/2023] Open
Abstract
Sepsis is one of the leading causes of death in hospitalized patients and the chronic and low-grade inflammation observed in obesity seems to worsen susceptibility and morbidity of infections. However, little is known with respect to a short-term high-fat diet (HFD) and its role in the development of sepsis. Here, we show for the first time, that short-term HFD consumption impairs early nicotinic acetylcholine receptor α7 subunit (α7nAChR)- mediated signaling, one of the major components of the cholinergic anti-inflammatory pathway, with a focus on hypothalamic inflammation and innate immune response. Mice were randomized to a HFD or standard chow (SC) for 3 days, and sepsis was subsequently induced by a lethal intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) or by cecal ligation and puncture (CLP) surgery. In a separate experiment, both groups received LPS (i.p.) or LPS (i.p.) in conjunction with the selective α7nAChR agonist, PNU-282987 (i.p. or intracerebroventricular; i.c.v.), and were sacrificed 2 h after the challenge. Short-term HFD consumption significantly reduced the α7nAChR mRNA and protein levels in the hypothalamus and liver (p < 0.05). Immunofluorescence microscopy demonstrated lower cholinergic receptor nicotinic α7 subunit (α7nAChR)+ cells in the arcuate nucleus (ARC) (α7nAChR+ cells in SC = 216 and HFD = 84) and increased F4/80+ cells in the ARC (2.6-fold) and median eminence (ME) (1.6-fold), which can contribute to neuronal damage. Glial fibrillary acidic protein (GFAP)+ cells and neuronal nuclear antigen (NeuN)+ cells were also increased following consumption of HFD. The HFD-fed mice died quickly after a lethal dose of LPS or following CLP surgery (2-fold compared with SC). The LPS challenge raised most cytokine levels in both groups; however, higher levels of TNF-α (Spleen and liver), IL-1β and IL-6 (in all tissues evaluated) were observed in HFD-fed mice. Moreover, PNU-282987 administration (i.p. or i.c.v.) reduced the levels of inflammatory markers in the hypothalamus following LPS injection. Nevertheless, when the i.c.v. injection of PNU-282987 was performed the anti-inflammatory effect was much smaller in HFD-fed mice than SC-fed mice. Here, we provide evidence that a short-term HFD impairs early α7nAChR expression in central and peripheral tissues, contributing to a higher probability of death in sepsis.
Collapse
Affiliation(s)
- Anelise Cristina Parras Souza
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Camilla Mendes Souza
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Camila Libardi Amaral
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Simone Ferreira Lemes
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Leticia Foglia Santucci
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Marciane Milanski
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Adriana Souza Torsoni
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Marcio Alberto Torsoni
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| |
Collapse
|
46
|
Hong GS, Zillekens A, Schneiker B, Pantelis D, de Jonge WJ, Schaefer N, Kalff JC, Wehner S. Non-invasive transcutaneous auricular vagus nerve stimulation prevents postoperative ileus and endotoxemia in mice. Neurogastroenterol Motil 2019; 31:e13501. [PMID: 30406957 DOI: 10.1111/nmo.13501] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway comprises the perception of peripheral inflammation by afferent sensory neurons and reflex activation of efferent vagus nerve activity to regulate inflammation. Activation of this pathway was shown to reduce the inflammatory response and improve outcome of postoperative ileus (POI) and sepsis in rodents. Herein, we tested if a non-invasive auricular electrical transcutaneous vagus nerve stimulation (tVNS) affects inflammation in models of POI or endotoxemia. METHODS Mice underwent tVNS or sham stimulation before and after induction of either POI by intestinal manipulation (IM) or endotoxemia by lipopolysaccharide administration. Some animals underwent a preoperative right cervical vagotomy. Neuronal activation of the solitary tract nucleus (NTS) and the dorsal motor nucleus of the vagus nerve (DMV) were analyzed by immunohistological detection of c-fos+ cells. Gene and protein expression of IL-6, MCP-1, IL-1β as well as leukocyte infiltration and gastrointestinal transit were analyzed at different time points after IM. IL-6, TNFα, and IL-1β serum levels were analyzed 3 hours after lipopolysaccharide administration. RESULTS tVNS activated the NTS and DMV and reduced intestinal cytokine expression, reduced leukocyte recruitment to the manipulated intestine segment, and improved gastrointestinal transit after IM. Endotoxemia-induced IL-6 and TNF-α release was also reduced by tVNS. The protective effects of tVNS on POI and endotoxemia were abrogated by vagotomy. CONCLUSION tVNS prevents intestinal and systemic inflammation. Activation of the DMV indicates an afferent to efferent central circuitry of the tVNS stimulation and the beneficial effects of tVNS depend on an intact vagus nerve. tVNS may become a non-invasive approach for treatment of POI.
Collapse
Affiliation(s)
- Gun-Soo Hong
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Anne Zillekens
- Department of Surgery, University of Bonn, Bonn, Germany
| | | | | | - Wouter J de Jonge
- Tytgat Institute of Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Nico Schaefer
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Joerg C Kalff
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
47
|
Meroni E, Stakenborg N, Viola MF, Boeckxstaens GE. Intestinal macrophages and their interaction with the enteric nervous system in health and inflammatory bowel disease. Acta Physiol (Oxf) 2019; 225:e13163. [PMID: 29998613 PMCID: PMC6519157 DOI: 10.1111/apha.13163] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
Over the past decades, there has been an increasing understanding of cellular and molecular mechanisms that mediate modulation of the immune system by the autonomic nervous system. The discovery that vagal nerve stimulation (VNS) attenuates endotoxin-induced experimental sepsis paved the way for further studies investigating neuro-immune interaction. In particular, great attention is now given to intestinal macrophages: several studies report the existence of both intrinsic and extrinsic neural mechanisms by which intestinal immune homoeostasis can be regulated in different layers of the intestine, mainly by affecting macrophage activation through neurotransmitter release. Given the important role of inflammation in numerous disease processes, such as inflammatory bowel disease (IBD), cholinergic anti-inflammatory mechanisms are under intense investigation both from a basic and clinical science perspective in immune-mediated diseases such as IBD. This review discusses recent insights on the cross-talk between enteric neurons and the immune system, especially focusing on macrophages, and provides an overview of basic and translational aspects of the cholinergic anti-inflammatory response as therapeutic alternative to reinstall immune homoeostasis in intestinal chronic inflammation.
Collapse
Affiliation(s)
- Elisa Meroni
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research Center for Gastrointestinal Disorders (TARGID)KU Leuven—University of LeuvenLeuvenBelgium
| | - Nathalie Stakenborg
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research Center for Gastrointestinal Disorders (TARGID)KU Leuven—University of LeuvenLeuvenBelgium
| | - Maria Francesca Viola
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research Center for Gastrointestinal Disorders (TARGID)KU Leuven—University of LeuvenLeuvenBelgium
| | - Guy E. Boeckxstaens
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research Center for Gastrointestinal Disorders (TARGID)KU Leuven—University of LeuvenLeuvenBelgium
| |
Collapse
|
48
|
Hong GS, Pintea B, Lingohr P, Coch C, Randau T, Schaefer N, Wehner S, Kalff JC, Pantelis D. Effect of transcutaneous vagus nerve stimulation on muscle activity in the gastrointestinal tract (transVaGa): a prospective clinical trial. Int J Colorectal Dis 2019; 34:417-422. [PMID: 30519842 DOI: 10.1007/s00384-018-3204-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 02/04/2023]
Abstract
PURPOSE Postoperative ileus (POI) is a common complication after abdominal surgery. Invasive stimulation of the cervical vagus nerve is known to reduce inflammatory response and ameliorated POI after surgery in a mouse model. However, the transcutaneous vagus nerve stimulation (tVNS) is a possible non-invasive approach. In this clinical study, we aimed to investigate the effect of tVNS on the activation of the stomach muscle in humans. METHODS Patients requiring open laparotomy were screened for this prospective proof of concept clinical study. After open laparotomy, muscle activity of the stomach was measured by a free running electromyography (EMG) before and during tVNS on the ear. Frequency and amplitude of compound gastric action potentials were the electrophysiological parameters we assessed to reveal the changes in electro motor gastric activity. Gastrin levels as a surrogate marker for vagus nerve activation was analyzed before, 1 and 3 h after tVNS. RESULTS Fourteen patients were included, no severe adverse events and no medical device related adverse events occurred. tVNS led to significant reduction of action potential frequency and significant elevation of action potential amplitude in the stomach compared to control. Gastrin levels were significantly elevated 3 h after tVNS compared to levels before tVNS. CONCLUSION Application of tVNS is a safe and feasible procedure during surgical intervention. Our results provide evidence that tVNS activates efferent visceral vagal fibers. Therefore, this low risk and easy to perform method could be useful to prevent postoperative ileus. CLINICAL TRIAL REGISTER NUMBER DRKS00013340.
Collapse
Affiliation(s)
- Gun-Soo Hong
- Department of Surgery, University Hospital of Bonn, Bonn, Germany.
| | - Bogdan Pintea
- Department of Neurosurgery, University hospital Bonn, Bonn, Germany.,Department of Neurosurgery, BG University hospital of Bochum, Bochum, Germany
| | - Philipp Lingohr
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Christoph Coch
- Clinical Study Core Unit, Study Center Bonn (SZB), University of Bonn, Bonn, Germany
| | - Thomas Randau
- Department of Orthopedics and Trauma Surgery, University Hospital of Bonn, Bonn, Germany
| | - Nico Schaefer
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Joerg C Kalff
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | | |
Collapse
|
49
|
Wu S, Uyama N, Itou RA, Hatano E, Tsutsui H, Fujimoto J. The Effect of Daikenchuto, Japanese Herbal Medicine, on Adhesion Formation Induced by Cecum Cauterization and Cecum Abrasion in Mice. Biol Pharm Bull 2019; 42:179-186. [PMID: 30713250 DOI: 10.1248/bpb.b18-00543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Daikenchuto (DKT) has been widely used for the treatment of postsurgical ileus in Japan. However, its effect on postsurgical adhesion formation has been obscure. In this study, the effect of DKT on postsurgical adhesion formation induced by cecum cauterization or cecum abrasion in mice was investigated. First, the expression of adhesion-related molecules in damaged ceca was investigated by quantitative (q)RT-PCR. During 24 h after surgery, mRNA expressions of interferon-γ (IFN-γ), plasminogen activator inhibitor-1 (PAI-1), interleukin-17 (IL-17), and Substance P (SP) in cauterized ceca and those of PAI-1 and IL-17 in abraded ceca were significantly up-regulated. Next, the effect of DKT on adhesion formation macroscopically evaluated with adhesion scoring standards. DKT (22.5-67.5 mg/d) was administered orally for 7 d during the perioperative period, and DKT did not reduce adhesion scores in either the cauterization model (control : DKT 67.5 mg/d, 4.8 ± 0.2 : 4.8 ± 0.2) or in the abrasion model (control : DKT 67.5 mg/d, 4.9 ± 0.1 : 4.5 ± 0.3). Histologically, collagen deposition and leukocyte accumulation were found at the adhesion areas of control mice in both models, and DKT supplementation did not alleviate them. Last, effect of DKT on expression of proadhesion moleculs was evaluated. DKT also failed to down-regulate mRNA expression levels of them in damaged ceca of both models. In conclusion, PAI-1 and IL-17 may be key molecules of postsurgical adhesion formation. Collagen deposition and leukocytes accumulation are histological characteristic feature of post-surgical adhesion formation. DKT may not have any preventive effect on postsurgical adhesion formation in mice.
Collapse
Affiliation(s)
- Songtao Wu
- Department of Surgery, Division of Hepatobiliary Pancreas Surgery, Hyogo College of Medicine
| | - Naoki Uyama
- Department of Surgery, Division of Hepatobiliary Pancreas Surgery, Hyogo College of Medicine
| | - Rei Atono Itou
- Department of Surgery, Division of Hepatobiliary Pancreas Surgery, Hyogo College of Medicine
| | - Etsuro Hatano
- Department of Surgery, Division of Hepatobiliary Pancreas Surgery, Hyogo College of Medicine
| | - Hiroko Tsutsui
- Department of Surgery, Division of Hepatobiliary Pancreas Surgery, Hyogo College of Medicine
| | - Jiro Fujimoto
- Department of Surgery, Division of Hepatobiliary Pancreas Surgery, Hyogo College of Medicine
| |
Collapse
|
50
|
Fornai M, van den Wijngaard RM, Antonioli L, Pellegrini C, Blandizzi C, de Jonge WJ. Neuronal regulation of intestinal immune functions in health and disease. Neurogastroenterol Motil 2018; 30:e13406. [PMID: 30058092 DOI: 10.1111/nmo.13406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Nerve-mucosa interactions control various elements of gastrointestinal functions, including mucosal host defense, gut barrier function, and epithelial cell growth and differentiation. In both intestinal and extra-intestinal diseases, alterations of autonomic nerve activity have been observed to be concurrent with the disease course, such as in inflammatory and functional bowel diseases, and neurodegenerative diseases. This is relevant as the extrinsic autonomic nervous system is increasingly recognized to modulate gut inflammatory responses. The molecular and cellular mechanisms through which the extrinsic and intrinsic nerve pathways may regulate digestive mucosal functions have been investigated in several pre-clinical and clinical studies. PURPOSE The present review focuses on the involvement of neural pathways in gastrointestinal disease, and addresses the current strategies to intervene with neuronal pathway as a means of treatment.
Collapse
Affiliation(s)
- M Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - R M van den Wijngaard
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - L Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - W J de Jonge
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|