1
|
Wang H, Zhao B, Huang L, Zhu X, Li N, Huang C, Han Z, Ouyang K. Conditional deletion of IP 3R1 by Islet1-Cre in mice reveals a critical role of IP 3R1 in interstitial cells of Cajal in regulating GI motility. J Gastroenterol 2025; 60:152-165. [PMID: 39476178 DOI: 10.1007/s00535-024-02164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/16/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND AND AIMS Inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) has been proposed to play a physiological role in regulating gastrointestinal (GI) motility, but the underlying cell-dependent mechanism remains unclear. Here, we utilized cell-specific IP3R1 deletion strategies to address this question in mice. METHODS Conditional IP3R1 knockout mice using Wnt1-Cre, Islet1-Cre mice, and smMHC-CreEGFP were generated. Cell lineage tracing was performed to determine where gene deletion occurred in the GI tract. Whole-gut transit assay and isometric tension recording were used to assess GI function in vivo and in vitro. RESULTS In the mouse GI tract, Islet1-Cre targeted smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs), but not enteric neurons. IP3R1 deletion by Islet1-Cre (isR1KO) caused a phenotype of intestinal pseudo-obstruction (IPO), evidenced by prolonged whole-gut transit time, enlarged GI tract, abdominal distention, and early lethality. IP3R1 deletion by Islet1-Cre not only reduced the frequency of spontaneous contractions but also decreased the contractile responses to the muscarinic agonist carbachol (CCh) and electrical field stimulation (EFS) in colonic circular muscles. By contrast, smMHC-CreEGFP only targeted SMCs in the mouse GI tract. Although IP3R1 deletion by smMHC-CreEGFP (smR1KO) also reduced the contractile responses to CCh and EFS in colonic circular muscles, the frequency of spontaneous contractions was less affected, and neither global GI abnormalities nor early lethality was found in smR1KO mice. CONCLUSIONS IP3R1 deletion in both ICCs and SMCs but not in SMCs alone causes an IPO phenotype, suggesting that IP3R1 in ICCs plays an essential role in regulating GI motility in vivo.
Collapse
Affiliation(s)
- Hong Wang
- Central Laboratory, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518036, China
| | - Beili Zhao
- Central Laboratory, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518036, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China.
| | - Kunfu Ouyang
- Central Laboratory, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518036, China.
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China.
| |
Collapse
|
2
|
Saha K, Zhou Y, Turner JR. Tight junction regulation, intestinal permeability, and mucosal immunity in gastrointestinal health and disease. Curr Opin Gastroenterol 2025; 41:46-53. [PMID: 39560621 PMCID: PMC11620928 DOI: 10.1097/mog.0000000000001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
PURPOSE OF REVIEW The contributions of intestinal barrier loss, that is, increased permeability, to multiple disorders, including inflammatory bowel disease (IBD), have been a topic of speculation for many years, and the literature is replete with conclusions based on correlation and speculation. The goal of this article is to critically review recent advances in mechanistic understanding of barrier regulation and the evidence for and against contributions of intestinal barrier loss to disease pathogenesis. RECENT FINDINGS It is now recognized that intestinal permeability reflects the combined effects of two distinct routes across tight junctions, which form selectively permeable seals between adjacent epithelial cells, and mucosal damage that leads to nonselective barrier loss. These are referred to as pore and leak pathways across the tight junction and an unrestricted pathway at sites of damage. Despite advances in phenotypic and mechanistic characterization of three distinct permeability pathways, development of experimental agents that specifically target these pathways, and remarkable efficacy in preclinical models, pathway-targeted therapies have not been tested in human subjects. SUMMARY After decades of speculation, therapeutic interventions that target the intestinal barrier are nearly within reach. More widespread use of available tools and development of new tools that discriminate between pore, leak, and unrestricted pathway permeabilities and underlying regulatory mechanisms will be essential to understanding the local and systemic consequences of intestinal barrier loss.
Collapse
Affiliation(s)
- Kushal Saha
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yin Zhou
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Huang J, Xiong L, Tang S, Zhao J, Zuo L. Balancing Tumor Immunotherapy and Immune-Related Adverse Events: Unveiling the Key Regulators. Int J Mol Sci 2024; 25:10919. [PMID: 39456702 PMCID: PMC11507008 DOI: 10.3390/ijms252010919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Tumor immunotherapy has emerged as a promising approach in cancer treatment in recent years, offering vast potential. This method primarily involves targeting and inhibiting the suppressive checkpoints present in different immune cells to enhance their activation, ultimately leading to tumor regression. However, tumor cells exploit the surrounding immune cells and tissues to establish a tumor microenvironment (TME) that supports their survival and growth. Within the TME, the efficacy of effector immune cells is compromised, as tumor cells exploit inhibitory immune cells to suppress their function. Furthermore, certain immune cells can be co-opted by tumor cells to facilitate tumor growth. While significantly enhancing the body's tumor immunity can lead to tumor regression, it can also result in severe toxic side effects and an inflammatory factor storm. As a consequence, patients often discontinue treatment due to immune-related adverse events (irAEs) or, in extreme cases, succumb to toxic side effects before experiencing tumor regression. In this analysis, we examined several remission regimens for irAEs, each with its own drawbacks, including toxic side effects or suppression of tumor immunotherapy, which is undesirable. A recent research study, specifically aimed at downregulating intestinal epithelial barrier permeability, has shown promising results in reducing the severity of inflammatory bowel disease (IBD) while preserving immune function. This approach effectively reduces the severity of IBD without compromising the levels of TNF-α and IFN-γ, which are crucial for maintaining the efficacy of tumor immunotherapy. Based on the substantial similarities between IBD and ICI colitis (combo immune checkpoint inhibitors-induced colitis), this review proposes that targeting epithelial cells represents a crucial research direction for mitigating irAEs in the future.
Collapse
Affiliation(s)
- Jianshang Huang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Lei Xiong
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Sainan Tang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Junhao Zhao
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Li Zuo
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| |
Collapse
|
4
|
Sukmak P, Kulworasreth P, Treveeravoot S, Arinno A, Anuwongworavet S, Wachiradejkul W, Kulworasreth P, Teansuk N, Thongnak L, Amonlerdpison D, Inchai J, Jakrachai C, Akrimajirachoote N, Aonbangkhen C, Muanprasat C, Poolsri W, Vaddhanaphuti CS, Pongkorpsakol P. Solanum melongena L. Extract Promotes Intestinal Tight Junction Re-Assembly via SIRT-1-Dependent Mechanisms. Mol Nutr Food Res 2024; 68:e2400230. [PMID: 39086054 DOI: 10.1002/mnfr.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Indexed: 08/02/2024]
Abstract
Tight junction disruption can lead to pathogenesis of various diseases without therapeutic strategy to recover intestinal barrier integrity. The main objective of this study is to demonstrate the effect of Solanum melongena L. extract (SMLE) on intestinal tight junction recovery and its underlying mechanism. Intestinal barrier function is attenuated by Ca2+ depletion. SMLE treatment increased TER value across T84 cell monolayers. Permeability assay reveals that Ca2+ depletion promotes 4-kDa FITC-dextran permeability, but not 70-kDa FITC-dextran. SMLE suppresses the rate of 4-kDa FITC-dextran permeability, indicating that SMLE inhibits paracellular leak pathway permeability. SMLE-mediated TER increase and leak pathway suppression are abolished by neither calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) inhibitor nor AMP-activated protein kinase (AMPK) inhibitor. Furthermore, mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) inhibitors have no effects on SMLE-mediated TER increase and leak pathway suppression. Interestingly, SMLE is unable to enhance TER value and diminish leak pathway permeability in T84 cell monolayers pre-treated with sirtuin-1 (SIRT-1) inhibitor. Immunofluorescence staining reveals that SMLE enhances re-assembly of tight junction proteins, including occludin and ZO-1 to intercellular space but this effect is abolished by SIRT-1 inhibitor. These data suggest that SMLE promotes intestinal tight junction re-assembly via SIRT-1-dependent manner.
Collapse
Affiliation(s)
- Pichayapa Sukmak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
| | - Purisha Kulworasreth
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Supisara Treveeravoot
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
| | - Apiwan Arinno
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Wanapas Wachiradejkul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Purit Kulworasreth
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Natnicha Teansuk
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
| | - Laongdao Thongnak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Doungporn Amonlerdpison
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur and Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, Thailand
| | - Jakkapong Inchai
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chaiwet Jakrachai
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | | | - Chutima S Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
| |
Collapse
|
5
|
Wang Y, Jiang ZH, Zhou YW, Qiu TT, Wang H, Zhu MS, Chen X, Zhang XN. Gallbladder dysfunction caused by MYPT1 ablation triggers cholestasis-induced hepatic fibrosis in mice. Hepatol Commun 2024; 8:e0473. [PMID: 38934703 PMCID: PMC11213606 DOI: 10.1097/hc9.0000000000000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The incidence of gallbladder diseases is as high as 20%, but whether gallbladder diseases contribute to hepatic disorders remains unknown. METHODS Here, we established an animal model of gallbladder dysfunction and assessed the role of a diseased gallbladder in cholestasis-induced hepatic fibrosis (CIHF). RESULTS Mice with smooth muscle-specific deletion of Mypt1, the gene encoding the main regulatory subunit of myosin light chain phosphatase (myosin phosphatase target subunit 1 [MYPT1]), had apparent dysfunction of gallbladder motility. This dysfunction was evidenced by abnormal contractile responses, namely, inhibited cholecystokinin 8-mediated contraction and nitric oxide-resistant relaxation. As a consequence, the gallbladder displayed impaired bile filling and biliary tract dilation comparable to the alterations in CIHF. Interestingly, the mutant animals also displayed CIHF features, including necrotic loci by the age of 1 month and subsequently exhibited progressive fibrosis and hyperplastic/dilated bile ducts. This pathological progression was similar to the phenotypes of the animal model with bile duct ligation and patients with CIHF. The characteristic biomarker of CIHF, serum alkaline phosphatase activity, was also elevated in the mice. Moreover, we observed that the myosin phosphatase target subunit 1 protein level was able to be regulated by several reagents, including lipopolysaccharide, exemplifying the risk factors for gallbladder dysfunction and hence CIHF. CONCLUSIONS We propose that gallbladder dysfunction caused by myosin phosphatase target subunit 1 ablation is sufficient to induce CIHF in mice, resulting in impairment of the bile transport system.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Hui Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Yu-Wei Zhou
- Jiangsu Key Laboratory of Molecular Medicine, Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tian-Tian Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Han Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Xue-Na Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jinling Pharmaceutical Co., Ltd., Nanjing, China
| |
Collapse
|
6
|
Thawornkuno C, Srisuksai K, Simanon N, Adisakwattana P, Ampawong S, Boonyuen U, Limpanont Y, Chusongsang P, Chusongsang Y, Kiangkoo N, Reamtong O. A reanalysis and integration of transcriptomics and proteomics datasets unveil novel drug targets for Mekong schistosomiasis. Sci Rep 2024; 14:12969. [PMID: 38839835 PMCID: PMC11153569 DOI: 10.1038/s41598-024-63869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Schistosomiasis, caused by Schistosoma trematodes, is a significant global health concern, particularly affecting millions in Africa and Southeast Asia. Despite efforts to combat it, the rise of praziquantel (PZQ) resistance underscores the need for new treatment options. Protein kinases (PKs) are vital in cellular signaling and offer potential as drug targets. This study focused on focal adhesion kinase (FAK) as a candidate for anti-schistosomal therapy. Transcriptomic and proteomic analyses of adult S. mekongi worms identified FAK as a promising target due to its upregulation and essential role in cellular processes. Molecular docking simulations assessed the binding energy of FAK inhibitors to Schistosoma FAK versus human FAK. FAK inhibitor 14 and PF-03814735 exhibited strong binding to Schistosoma FAK with minimal binding for human FAK. In vitro assays confirmed significant anti-parasitic activity against S. mekongi, S. mansoni, and S. japonicum, comparable to PZQ, with low toxicity in human cells, indicating potential safety. These findings highlight FAK as a promising target for novel anti-schistosomal therapies. However, further research, including in vivo studies, is necessary to validate efficacy and safety before clinical use. This study offers a hopeful strategy to combat schistosomiasis and reduce its global impact.
Collapse
Affiliation(s)
- Charin Thawornkuno
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Krittika Srisuksai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nattapon Simanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nuttapohn Kiangkoo
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
7
|
Wang Y, Xiao J, Wei S, Su Y, Yang X, Su S, Lan L, Chen X, Huang T, Shan Q. Protective effect of zinc gluconate on intestinal mucosal barrier injury in antibiotics and LPS-induced mice. Front Microbiol 2024; 15:1407091. [PMID: 38855764 PMCID: PMC11157515 DOI: 10.3389/fmicb.2024.1407091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Objective The aim of the study is to investigate the function and mechanism of Zinc Gluconate (ZG) on intestinal mucosal barrier damage in antibiotics and Lipopolysaccharide (LPS)-induced mice. Methods We established a composite mouse model by inducing intestinal mucosal barrier damage using antibiotics and LPS. The animals were divided into five groups: Control (normal and model) and experimental (low, medium, and high-dose ZG treatments). We evaluated the intestinal mucosal barrier using various methods, including monitoring body weight and fecal changes, assessing pathological damage and ultrastructure of the mouse ileum, analyzing expression levels of tight junction (TJ)-related proteins and genes, confirming the TLR4/NF-κB signaling pathway, and examining the structure of the intestinal flora. Results In mice, the dual induction of antibiotics and LPS led to weight loss, fecal abnormalities, disruption of ileocecal mucosal structure, increased intestinal barrier permeability, and disorganization of the microbiota structure. ZG restored body weight, alleviated diarrheal symptoms and pathological damage, and maintained the structural integrity of intestinal epithelial cells (IECs). Additionally, ZG reduced intestinal mucosal permeability by upregulating TJ-associated proteins (ZO-1, Occludin, Claudin-1, and JAM-A) and downregulating MLCK, thereby repairing intestinal mucosal barrier damage induced by dual induction of antibiotics and LPS. Moreover, ZG suppressed the TLR4/NF-κB signaling pathway, demonstrating anti-inflammatory properties and preserving barrier integrity. Furthermore, ZG restored gut microbiota diversity and richness, evidenced by increased Shannon and Observed features indices, and decreased Simpson's index. ZG also modulated the relative abundance of beneficial human gut bacteria (Bacteroidetes, Firmicutes, Verrucomicrobia, Parabacteroides, Lactobacillus, and Akkermansia) and harmful bacteria (Proteobacteria and Enterobacter), repairing the damage induced by dual administration of antibiotics and LPS. Conclusion ZG attenuates the dual induction of antibiotics and LPS-induced intestinal barrier damage and also protects the intestinal barrier function in mice.
Collapse
Affiliation(s)
- Yongcai Wang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Dazhou Central Hospital, Dazhou, China
| | - Juan Xiao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sumei Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiqi Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liancheng Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiuqi Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qingwen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Tang H, Zhou H, Zhang L, Tang T, Li N. Molecular mechanism of MLCK1 inducing 5-Fu resistance in colorectal cancer cells through activation of TNFR2/NF-κB pathway. Discov Oncol 2024; 15:159. [PMID: 38735014 PMCID: PMC11089027 DOI: 10.1007/s12672-024-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND AND AIMS Chemotherapy resistance in colorectal cancer have been faced with significant challenges in recent years. Particular interest is directed to tumor microenvironment function. Recent work has, identified a small molecule named Divertin that prevents myosin light chain kinase 1(MLCK1) recruitment to the perijunctional actomyosin ring(PAMR), restores barrier function after tumor necrosis factor(TNF)-induced barrier loss and prevents disease progression in experimental inflammatory bowel disease. Studies have shown that MLCK is a potential target for affecting intestinal barrier function, as well as for tumor therapy. However, the relative contributions of MLCK expression and chemotherapy resistance in colorectal cancers have not been defined. METHODS Statistical analysis of MYLK gene expression differences in colorectal cancer patients and normal population and prognosis results from The Cancer Genome Atlas(TCGA) data. Cell activity was detected by Cell counting Kit-8. Cell proliferation was detected by monoclonal plate. The apoptosis was detected by flow cytometry and western blot. Determine the role of MLCK1 in inducing 5-Fluorouracil(5-Fu) resistance in colorectal cancer cells was detected by overexpression of MLCK1 and knock-down expression of MLCK1. RESULTS MLCK1 is expressed at different levels in different colorectal cancer cells, high MLCK1 expressing cell lines are less sensitive to 5-Fu, and low MLCK1 expressing cell lines are more sensitive to 5-Fu. MLCK1 high expression enhances resistance to 5-Fu in colorectal cancer cells and the sensitivity to 5-Fu was increased after knocking down the expression of MLCK1, that might be closely correlated to TNFR2/NF-κB pathway. CONCLUSIONS MLCK1 high expression can enhance resistance to 5-Fu in colorectal cancer cells and the sensitivity to 5-Fu was increased after knocking down the expression of MLCK1, that might be closely correlated to TNFR2/NF-κB pathway, which will provide a new method for the treatment of colorectal cancer patients who are resistant to 5-Fu chemotherapy.
Collapse
Affiliation(s)
- Huifen Tang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Hui Zhou
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Liang Zhang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Tingting Tang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Ning Li
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
10
|
Sun Y, Huang Y, Hao Z, Zhang S, Tian Q. MRLC controls apoptotic cell death and functions to regulate epidermal development during planarian regeneration and homeostasis. Cell Prolif 2024; 57:e13524. [PMID: 37357415 PMCID: PMC10771114 DOI: 10.1111/cpr.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Adult stem cells (ASCs) are pluripotent cells with the capacity to self-renew and constantly replace lost cells due to physiological turnover or injury. Understanding the molecular mechanisms of the precise coordination of stem cell proliferation and proper cell fate decision is important to regeneration and organismal homeostasis. The planarian epidermis provides a highly tractable model to study ASC complex dynamic due to the distinct spatiotemporal differentiation stages during lineage development. Here, we identified the myosin regulatory light chain (MRLC) homologue in the Dugesia japonica transcriptome. We found high expression levels of MRLC in wound region during regeneration and also expressed in late epidermal progenitors as an essential regulator of the lineage from neoblasts to mature epidermal cells. We investigated the function of MRLC using in situ hybridization, real-time polymerase chain reaction and double fluorescent and uncovered the potential mechanism. Knockdown of MRLC leads to a remarkable increase in cell death, causes severe abnormalities during regeneration and homeostasis and eventually leads to animal death. The global decrease in epidermal cell in MRLC RNAi animals induces accelerated epidermal proliferation and differentiation. Additionally, we find that MRLC is co-expressed with cdc42 and acts cooperatively to control the epidermal lineage development by affecting cell death. Our results uncover an important role of MRLC, as an inhibitor of apoptosis, involves in epidermal development.
Collapse
Affiliation(s)
- Yujia Sun
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yongding Huang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Zhitai Hao
- Department of Biochemistry and Molecular PharmacologyNew York University, School of MedicineNew YorkUSA
| | - Shoutao Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
- Longhu Laboratory of Advanced ImmunologyZhengzhouHenanChina
| | - Qingnan Tian
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
11
|
Kalra J, Artamonov M, Wang H, Franke A, Markowska Z, Jin L, Derewenda ZS, Ayon RJ, Somlyo A. p90RSK2, a new MLCK mediates contractility in myosin light chain kinase null smooth muscle. Front Physiol 2023; 14:1228488. [PMID: 37781225 PMCID: PMC10533999 DOI: 10.3389/fphys.2023.1228488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction: Phosphorylation of smooth muscle (SM) myosin regulatory light chain (RLC20) is a critical switch leading to SM contraction. The canonical view held that only the short isoform of myosin light chain kinase (MLCK1) catalyzed this reaction. It is now accepted that auxiliary kinases may contribute to vascular SM tone and contractility. We have previously reported that p90 ribosomal S6 kinase (RSK2) functions as such a kinase, in parallel with MLCK1, contributing ∼25% of the maximal myogenic force in resistance arteries. Thus, RSK2 may be instrumental in the regulation of basal vascular tone and blood pressure. Here, we take advantage of a MLCK1 null mouse (mylk1 -/-) to further test our hypothesis that RSK2 can function as an MLCK, playing a significant physiological role in SM contractility. Methods: Using fetal (E14.5-18.5) SM tissues, as embryos die at birth, we investigated the necessity of MLCK for contractility and fetal development and determined the ability of RSK2 kinase to compensate for the lack of MLCK and characterized its signaling pathway in SM. Results and Discussion: Agonists induced contraction and RLC20 phosphorylation in mylk1 -/- SM was attenuated by RSK2 inhibition. The pCa-tension relationships in permeabilized strips of bladder showed no difference in Ca2+ sensitivity in WT vs mylk1 -/- muscles, although the magnitude of force responses was considerably smaller in the absence of MLCK. The magnitude of contractile responses was similar upon addition of GTPγS to activate the RhoA/ROCK pathway or calyculinA to inhibit the myosin phosphatase. The Ca2+-dependent tyrosine kinase, Pyk2, contributed to RSK2-mediated contractility and RLC20 phosphorylation. Proximity-ligation and immunoprecipitation assays demonstrated an association of RSK2, PDK1 and ERK1/2 with MLCK and actin. RSK2, PDK1, ERK1/2 and MLCK formed a signaling complex on the actin filament, positioning them for interaction with adjacent myosin heads. The Ca2+-dependent component reflected the agonist mediated increases in Ca2+, which activated the Pyk2/PDK1/RSK2 signaling cascade. The Ca2+-independent component was through activation of Erk1/2/PDK1/RSK2 leading to direct phosphorylation of RLC20, to increase contraction. Overall, RSK2 signaling constitutes a new third signaling pathway, in addition to the established Ca2+/CaM/MLCK and RhoA/ROCK pathways to regulate SM contractility.
Collapse
Affiliation(s)
- Jaspreet Kalra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Mykhaylo Artamonov
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Hua Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- Sentara Martha Jefferson Hospital, Charlottesville, VA, United States
| | - Aaron Franke
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- Brain Surgery Worldwide, Atlanta, GA, United States
| | - Zaneta Markowska
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Li Jin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- Department of Orthopedics, University of Virginia, Charlottesville, VA, United States
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Ramon J. Ayon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Avril Somlyo
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
12
|
Wei L, Ji L, Miao Y, Han X, Li Y, Wang Z, Fu J, Guo L, Su Y, Zhang Y. Constipation in DM are associated with both poor glycemic control and diabetic complications: Current status and future directions. Biomed Pharmacother 2023; 165:115202. [PMID: 37506579 DOI: 10.1016/j.biopha.2023.115202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Constipation is a major complications of diabetes mellitus. With the accelerating prevalence of diabetes worldwide and an aging population, there is considerable research interest regarding the altered function and structure of the gastrointestinal tract in diabetic patients. Despite current advances in hyperglycemic treatment strategies, the specific pathogenesis of diabetic constipation remains unknown. Patients with constipation, may be reluctant to eat regularly, which may worsen glycemic control and thus worsen symptoms associated with underlying diabetic bowel disease. This paper presents a review of the complex relationship between diabetes and constipation, exploring the morphological alterations and biomechanical remodeling associated with intestinal motility dysfunction, as well as alterations in intestinal neurons, cellular signaling pathways, and oxidative stress. Further studies focusing on new targets that may play a role in the pathogenesis of diabetic constipation may, provide new ideas for the development of novel therapies to treat or even prevent diabetic constipation.
Collapse
Affiliation(s)
- Luge Wei
- Tianjin University of Traditional Chinese Medicine, China.
| | - Lanqi Ji
- Tianjin University of Traditional Chinese Medicine, China
| | - Yulu Miao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xu Han
- Tianjin University of Traditional Chinese Medicine, China
| | - Ying Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhe Wang
- Tianjin University of Traditional Chinese Medicine, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, China
| | - Liuli Guo
- Tianjin University of Traditional Chinese Medicine, China
| | - Yuanyuan Su
- Tianjin University of Traditional Chinese Medicine, China
| | - Yanjun Zhang
- Tianjin University of Traditional Chinese Medicine, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
13
|
Li K, Wu J, Xu S, Li X, Zhang Y, Gao XJ. Rosmarinic acid alleviates intestinal inflammatory damage and inhibits endoplasmic reticulum stress and smooth muscle contraction abnormalities in intestinal tissues by regulating gut microbiota. Microbiol Spectr 2023; 11:e0191423. [PMID: 37594285 PMCID: PMC10654191 DOI: 10.1128/spectrum.01914-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
The host-bacterial interactions play the key role in inflammatory bowel disease (IBD). Dysbiosis of the intestinal flora can lead to pathological changes in the intestine. Rosmarinic acid (RA) is a natural phenolic acid compound with antioxidant, anti-cancer, anti-inflammatory, anti-apoptotic, anti-fibrotic, and anti-bacterial activities that has a palliative effect on acute IBD. We have established an in vivo model for mice. Histological staining was performed to directly observe RA alterations in the intestinal tract. The alteration of RA on mouse intestinal flora was observed by 16S rRNA high-throughput sequencing, and the effect of RA on intestinal mechanism of action was detected by qPCR and western blot. The results showed that RA had a significant protective effect on the intestine. RA upregulated the abundance of Lactobacillus johnsonii and Candidatus Arthromitus sp SFB-mouse-NL and downregulated the abundance of Bifidobacterium pseudolongum, Escherichia coli, and Romboutsia ilealis. RA downregulated the expressions of ROCK, RhoA, CaM, MLC, MLCK, ZEB1, ZO-1, ZO-2, occludin, E-cadherin, IL-1β, IL-6, TNF-α, GRP78, PERK, IRE1, ATF6, CHOP, Caspase12, Caspase9, Caspase3, Bax, Cytc, RIPK1, RIPK3, MLKL, and upregulated the expression of IL-10 and Bcl-2. These results displayed that RA inhibited the inflammation, which is caused by tight junction damage, by repairing intestinal flora dysbiosis, relieved endoplasmic reticulum stress, inhibited cell death, and corrected smooth muscle contractile dysregulation. The results of this study revealed RA could have a protective effect on the small intestine of mice by regulating intestinal flora. IMPORTANCE Inflammatory bowel disease (IBD) is a chronic, relapsing, remitting disorder of the gastrointestinal system. In this study, we investigated the protective effects of rosmarinic acid on the intestinal tract. The results showed that RA was effective in reducing inflammatory damage, endoplasmic reticulum stress, smooth muscle contraction abnormalities, and regulating intestinal flora disorders.
Collapse
Affiliation(s)
- Kan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Jiawei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Shuang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xueying Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Yanhe Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xue-jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
He X, Dong K, Shen J, Hu G, Mintz JD, Atawia RT, Zhao J, Chen X, Caldwell RW, Xiang M, Stepp DW, Fulton DJ, Zhou J. The Long Noncoding RNA Cardiac Mesoderm Enhancer-Associated Noncoding RNA (Carmn) Is a Critical Regulator of Gastrointestinal Smooth Muscle Contractile Function and Motility. Gastroenterology 2023; 165:71-87. [PMID: 37030336 PMCID: PMC10330198 DOI: 10.1053/j.gastro.2023.03.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND & AIMS Visceral smooth muscle cells (SMCs) are an integral component of the gastrointestinal (GI) tract that regulate GI motility. SMC contraction is regulated by posttranslational signaling and the state of differentiation. Impaired SMC contraction is associated with significant morbidity and mortality, but the mechanisms regulating SMC-specific contractile gene expression, including the role of long noncoding RNAs (lncRNAs), remain largely unexplored. Herein, we reveal a critical role of Carmn (cardiac mesoderm enhancer-associated noncoding RNA), an SMC-specific lncRNA, in regulating visceral SMC phenotype and contractility of the GI tract. METHODS Genotype-Tissue Expression and publicly available single-cell RNA sequencing (scRNA-seq) data sets from embryonic, adult human, and mouse GI tissues were interrogated to identify SMC-specific lncRNAs. The functional role of Carmn was investigated using novel green fluorescent protein (GFP) knock-in (KI) reporter/knock-out (KO) mice. Bulk RNA-seq and single nucleus RNA sequencing (snRNA-seq) of colonic muscularis were used to investigate underlying mechanisms. RESULTS Unbiased in silico analyses and GFP expression patterns in Carmn GFP KI mice revealed that Carmn is highly expressed in GI SMCs in humans and mice. Premature lethality was observed in global Carmn KO and inducible SMC-specific KO mice due to GI pseudo-obstruction and severe distension of the GI tract, with dysmotility in cecum and colon segments. Histology, GI transit, and muscle myography analysis revealed severe dilation, significantly delayed GI transit, and impaired GI contractility in Carmn KO vs control mice. Bulk RNA-seq of GI muscularis revealed that loss of Carmn promotes SMC phenotypic switching, as evidenced by up-regulation of extracellular matrix genes and down-regulation of SMC contractile genes, including Mylk, a key regulator of SMC contraction. snRNA-seq further revealed SMC Carmn KO not only compromised myogenic motility by reducing contractile gene expression but also impaired neurogenic motility by disrupting cell-cell connectivity in the colonic muscularis. These findings may have translational significance, because silencing CARMN in human colonic SMCs significantly attenuated contractile gene expression, including MYLK, and decreased SMC contractility. Luciferase reporter assays showed that CARMN enhances the transactivation activity of the master regulator of SMC contractile phenotype, myocardin, thereby maintaining the GI SMC myogenic program. CONCLUSIONS Our data suggest that Carmn is indispensable for maintaining GI SMC contractile function in mice and that loss of function of CARMN may contribute to human visceral myopathy. To our knowledge this is the first study showing an essential role of lncRNA in the regulation of visceral SMC phenotype.
Collapse
Affiliation(s)
- Xiangqin He
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Kunzhe Dong
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia; Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jian Shen
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoqing Hu
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - James D Mintz
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Reem T Atawia
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Juanjuan Zhao
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xiuxu Chen
- Department of Pathology and Laboratory Medicine, Loyola University Health System, Maywood, Illinois
| | - Robert W Caldwell
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David W Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David J Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia; Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jiliang Zhou
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
15
|
Choi NR, Jung D, Kim SC, Park JW, Choi WG, Kim BJ. Analysis of Network Pharmacological Efficacy and Therapeutic Effectiveness in Animal Models for Functional Dyspepsia of Foeniculi fructus. Nutrients 2023; 15:2644. [PMID: 37375548 DOI: 10.3390/nu15122644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
For centuries, Foeniculi fructus (F. fructus) has been used as a traditional herbal medicine in China and Europe and is widely used as a natural therapy for digestive disorders, including indigestion, flatulence, and bloating. The mechanism of F. fructus that alleviates functional dyspepsia was analyzed through network pharmacology, and its therapeutic effect on an animal model of functional dyspepsia were investigated. The traditional Chinese medicine systems pharmacology (TCMSP) database was used to investigate the compounds, targets, and associated diseases of F. fructus. Information on the target genes was classified using the UniProtdatabase. Using the Cytoscape 3.9.1 software, a network was constructed, and the Cytoscape string application was employed to examine genes associated with functional dyspepsia. The efficacy of F. fructus on functional dyspepsia was confirmed by treatment with its extract in a mouse model of loperamide-induced functional dyspepsia. Seven compounds targeted twelve functional dyspepsia-associated genes. When compared to the control group, F. fructus exhibited significant suppression of symptoms in a mouse model of functional dyspepsia. The results of our animal studies indicated a close association between the mechanism of action of F. fructus and gastrointestinal motility. Based on animal experimental results, the results showed that F. fructus provided a potential means to treat functional dyspepsia, suggesting that its medical mechanism for functional dyspepsia could be described by the relationship between seven key compounds of F. fructus, including oleic acid, β-sitosterol, and 12 functional dyspepsia-related genes.
Collapse
Affiliation(s)
- Na-Ri Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Daehwa Jung
- Department of Pharmaceutical Engineering, Daegu Hanny University, Gyeongsan 38610, Republic of Korea
| | - Sang-Chan Kim
- College of Oriental Medicine, Daegu Hanny University, Gyeongsan 38610, Republic of Korea
| | - Jae-Woo Park
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Byung-Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
16
|
Wen T, Duan Y, Gao D, Zhang X, Zhang X, Liang L, Yang Z, Zhang P, Zhang J, Sun J, Feng Y, Zheng Q, Han H, Yan X. miR-342-5p promotes vascular smooth muscle cell phenotypic transition through a negative-feedback regulation of Notch signaling via targeting FOXO3. Life Sci 2023:121828. [PMID: 37270171 DOI: 10.1016/j.lfs.2023.121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
AIM Under various pathological conditions such as cancer, vascular smooth muscle cells (vSMCs) transit their contractile phenotype into phenotype(s) characterized by proliferation and secretion, a process called vSMC phenotypic transition (vSMC-PT). Notch signaling regulates vSMC development and vSMC-PT. This study aims to elucidate how the Notch signal is regulated. MAIN METHODS Gene-modified mice with a SM22α-CreERT2 transgene were generated to activate/block Notch signaling in vSMCs. Primary vSMCs and MOVAS cells were cultured in vitro. RNA-seq, qRT-PCR and Western blotting were used to evaluated gene expression level. EdU incorporation, Transwell and collagen gel contraction assays were conducted to determine the proliferation, migration and contraction, respectively. KEY FINDINGS Notch activation upregulated, while Notch blockade downregulated, miR-342-5p and its host gene Evl in vSMCs. However, miR-342-5p overexpression promoted vSMC-PT as shown by altered gene expression profile, increased migration and proliferation, and decreased contraction, while miR-342-5p blockade exhibited the opposite effects. Moreover, miR-342-5p overexpression significantly suppressed Notch signaling, and Notch activation partially abolished miR-342-5p-induced vSMC-PT. Mechanically, miR-342-5p directly targeted FOXO3, and FOXO3 overexpression rescued miR-342-5p-induced Notch repression and vSMC-PT. In a simulated tumor microenvironment, miR-342-5p was upregulated by tumor cell-derived conditional medium (TCM), and miR-342-5p blockade abrogated TCM-induced vSMC-PT. Meanwhile, conditional medium from miR-342-5p-overexpressing vSMCs significantly enhanced tumor cell proliferation, while miR-342-5p blockade had the opposite effects. Consistently, in a co-inoculation tumor model, miR-342-5p blockade in vSMCs significantly delayed tumor growth. SIGNIFICANCE miR-342-5p promotes vSMC-PT through a negative-feedback regulation of Notch signaling via downregulating FOXO3, which could be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Ting Wen
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yanyan Duan
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Dan Gao
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Xinxin Zhang
- College of Pulmonary and Critical Care Medicine, The 8th Medical Centre of Chinese PLA General Hospital, Beijing 100091, China
| | - Xiaoyan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Peiran Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jiayulin Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jiaxing Sun
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yixuan Feng
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
17
|
Kalra J, Artamonov M, Wang H, Franke A, Markowska Z, Jin L, Derewenda ZS, Ayon R, Somlyo A. p90RSK2, a new MLCK, rescues contractility in myosin light chain kinase null smooth muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541840. [PMID: 37292593 PMCID: PMC10245941 DOI: 10.1101/2023.05.22.541840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Phosphorylation of smooth muscle (SM) myosin regulatory light chain (RLC 20 ) is a critical switch leading to contraction or cell migration. The canonical view held that the only kinase catalyzing this reaction is the short isoform of myosin light chain kinase (MLCK1). Auxiliary kinases may be involved and play a vital role in blood pressure homeostasis. We have previously reported that p90 ribosomal S6 kinase (RSK2) functions as such a kinase, in parallel with the classical MLCK1, contributing ∼25% of the maximal myogenic force in resistance arteries and regulating blood pressure. Here, we take advantage of a MLCK1 null mouse to further test our hypothesis that RSK2 can function as an MLCK, playing a significant physiological role in SM contractility. Methods Fetal (E14.5-18.5) SM tissues were used as embryos die at birth. We investigated the necessity of MLCK for contractility, cell migration and fetal development and determined the ability of RSK2 kinase to compensate for the lack of MLCK and characterized it's signaling pathway in SM. Results Agonists induced contraction and RLC 20 phosphorylation in mylk1 -/- SM, that was inhibited by RSK2 inhibitors. Embryos developed and cells migrated in the absence of MLCK. The pCa-tension relationships in WT vs mylk1 -/- muscles demonstrated a Ca 2+ -dependency due to the Ca 2+ -dependent tyrosine kinase Pyk2, known to activate PDK1 that phosphorylates and fully activates RSK2. The magnitude of contractile responses was similar upon addition of GTPγS to activate the RhoA/ROCK pathway. The Ca 2+ -independent component was through activation of Erk1/2/PDK1/RSK2 leading to direct phosphorylation of RLC 20 , to increase contraction. RSK2, PDK1, Erk1/2 and MLCK formed a signaling complex on the actin filament, optimally positioning them for interaction with adjacent myosin heads. Conclusions RSK2 signaling constitutes a new third signaling pathway, in addition to the established Ca 2+ /CAM/MLCK and RhoA/ROCK pathways to regulate SM contractility and cell migration.
Collapse
|
18
|
Zuo L, Kuo WT, Cao F, Chanez-Paredes SD, Zeve D, Mannam P, Jean-François L, Day A, Vallen Graham W, Sweat YY, Shashikanth N, Breault DT, Turner JR. Tacrolimus-binding protein FKBP8 directs myosin light chain kinase-dependent barrier regulation and is a potential therapeutic target in Crohn's disease. Gut 2023; 72:870-881. [PMID: 35537812 PMCID: PMC9977574 DOI: 10.1136/gutjnl-2021-326534] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/11/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Intestinal barrier loss is a Crohn's disease (CD) risk factor. This may be related to increased expression and enzymatic activation of myosin light chain kinase 1 (MLCK1), which increases intestinal paracellular permeability and correlates with CD severity. Moreover, preclinical studies have shown that MLCK1 recruitment to cell junctions is required for tumour necrosis factor (TNF)-induced barrier loss as well as experimental inflammatory bowel disease progression. We sought to define mechanisms of MLCK1 recruitment and to target this process pharmacologically. DESIGN Protein interactions between FK506 binding protein 8 (FKBP8) and MLCK1 were assessed in vitro. Transgenic and knockout intestinal epithelial cell lines, human intestinal organoids, and mice were used as preclinical models. Discoveries were validated in biopsies from patients with CD and control subjects. RESULTS MLCK1 interacted specifically with the tacrolimus-binding FKBP8 PPI domain. Knockout or dominant negative FKBP8 expression prevented TNF-induced MLCK1 recruitment and barrier loss in vitro. MLCK1-FKBP8 binding was blocked by tacrolimus, which reversed TNF-induced MLCK1-FKBP8 interactions, MLCK1 recruitment and barrier loss in vitro and in vivo. Biopsies of patient with CD demonstrated increased numbers of MLCK1-FKBP8 interactions at intercellular junctions relative to control subjects. CONCLUSION Binding to FKBP8, which can be blocked by tacrolimus, is required for MLCK1 recruitment to intercellular junctions and downstream events leading to immune-mediated barrier loss. The observed increases in MLCK1 activity, MLCK1 localisation at cell junctions and perijunctional MLCK1-FKBP8 interactions in CD suggest that targeting this process may be therapeutic in human disease. These new insights into mechanisms of disease-associated barrier loss provide a critical foundation for therapeutic exploitation of FKBP8-MLCK1 interactions.
Collapse
Affiliation(s)
- Li Zuo
- Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Wei-Ting Kuo
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Graduate Institute of Oral Biology, National Taiwan University, Taipei, Taiwan
| | - Feng Cao
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Otorhinolaryngology Head and Neck Surgery, Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Sandra D Chanez-Paredes
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Daniel Zeve
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Prabhath Mannam
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Léa Jean-François
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anne Day
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - W Vallen Graham
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Yan Y Sweat
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nitesh Shashikanth
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - David T Breault
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jerrold R Turner
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00766-3. [PMID: 37186118 PMCID: PMC10127193 DOI: 10.1038/s41575-023-00766-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Arie Horowitz
- UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xenia Haest
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Cai H, Xiao Y, Chen S, Lu Y, Du J, You Y, Zhu J, Zhou J, Cai W, Wang Y. Heterozygous Actg2 R257C mice mimic the phenotype of megacystis microcolon intestinal hypoperistalsis syndrome. Neurogastroenterol Motil 2023; 35:e14472. [PMID: 36264152 DOI: 10.1111/nmo.14472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 09/08/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a rare and serious congenital disorder with poor outcomes, where a heterozygous missense mutation is present in the ACTG2 gene. Here, we aimed to investigate the pathogenesis of ACTG2 in MMIHS. METHODS A cohort with 20 patients with MMIHS was screened. Actg2R257C heterozygous mutant mice were generated using the CRISPR/Cas9 system. Gastrointestinal (GI) motility, voluntary urination, collagen gel contraction, and G-actin/F-actin analysis were performed. KEY RESULTS The R257C variant of ACTG2 most frequently occurred in patients with MMIHS and demonstrated the typical symptoms of MMIHS. Actg2R257C heterozygous mutant mice had dilated intestines and bladders. The functional assay showed a prolonged total time of GI transit and decreased urine spot area. Collagen gel contraction assay and G-actin/F-actin analysis indicated that mutant mice showed reduced area of contraction of smooth muscle cells (SMCs) and impaired actin polymerization. CONCLUSIONS & INFERENCES A mouse model demonstrating MMIHS-like symptoms was generated. The Actg2R257C heterozygous variant impairs SMCs contraction by interfering with actin polymerization, leading to GI motility disorders.
Collapse
Affiliation(s)
- Hui Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongtao Xiao
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Shanshan Chen
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Jun Du
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yaying You
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhu
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Jie Zhou
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
21
|
Saavedra-Alvarez A, Pereyra KV, Toledo C, Iturriaga R, Del Rio R. Vascular dysfunction in HFpEF: Potential role in the development, maintenance, and progression of the disease. Front Cardiovasc Med 2022; 9:1070935. [PMID: 36620616 PMCID: PMC9810809 DOI: 10.3389/fcvm.2022.1070935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex, heterogeneous disease characterized by autonomic imbalance, cardiac remodeling, and diastolic dysfunction. One feature that has recently been linked to the pathology is the presence of macrovascular and microvascular dysfunction. Indeed, vascular dysfunction directly affects the functionality of cardiomyocytes, leading to decreased dilatation capacity and increased cell rigidity, which are the outcomes of the progressive decline in myocardial function. The presence of an inflammatory condition in HFpEF produced by an increase in proinflammatory molecules and activation of immune cells (i.e., chronic low-grade inflammation) has been proposed to play a pivotal role in vascular remodeling and endothelial cell death, which may ultimately lead to increased arterial elastance, decreased myocardium perfusion, and decreased oxygen supply to the tissue. Despite this, the precise mechanism linking low-grade inflammation to vascular alterations in the setting of HFpEF is not completely known. However, the enhanced sympathetic vasomotor tone in HFpEF, which may result from inflammatory activation of the sympathetic nervous system, could contribute to orchestrate vascular dysfunction in the setting of HFpEF due to the exquisite sympathetic innervation of both the macro and microvasculature. Accordingly, the present brief review aims to discuss the main mechanisms that may be involved in the macro- and microvascular function impairment in HFpEF and the potential role of the sympathetic nervous system in vascular dysfunction.
Collapse
Affiliation(s)
- Andrea Saavedra-Alvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherine V. Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile,Facultad de la Salud, Centro de Investigación en Fisiología y Medicina de Altura (MedAlt), Universidad de Antofagasta, Antofagasta, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile,Facultad de la Salud, Centro de Investigación en Fisiología y Medicina de Altura (MedAlt), Universidad de Antofagasta, Antofagasta, Chile,*Correspondence: Rodrigo Del Rio
| |
Collapse
|
22
|
Warthi G, Faulkner JL, Doja J, Ghanam AR, Gao P, Yang AC, Slivano OJ, Barris CT, Kress TC, Zawieja SD, Griffin SH, Xie X, Ashworth A, Christie CK, Bryant WB, Kumar A, Davis MJ, Long X, Gan L, de Chantemèle EJB, Lyu Q, Miano JM. Generation and Comparative Analysis of an Itga8-CreER T2 Mouse with Preferential Activity in Vascular Smooth Muscle Cells. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1084-1100. [PMID: 36424917 PMCID: PMC9681021 DOI: 10.1038/s44161-022-00162-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022]
Abstract
All current smooth muscle cell (SMC) Cre mice similarly recombine floxed alleles in vascular and visceral SMCs. Here, we present an Itga8-CreER T2 knock-in mouse and compare its activity with a Myh11-CreER T2 mouse. Both Cre drivers demonstrate equivalent recombination in vascular SMCs. However, Myh11-CreER T2 mice, but not Itga8-CreER T2 mice, display high activity in visceral SMC-containing tissues such as intestine, show early tamoxifen-independent activity, and produce high levels of CreERT2 protein. Whereas Myh11-CreER T2 -mediated knockout of serum response factor (Srf) causes a lethal intestinal phenotype precluding analysis of the vasculature, loss of Srf with Itga8-CreER T2 (Srf Itga8 ) yields viable mice with no evidence of intestinal pathology. Male and female Srf Itga8 mice exhibit vascular contractile incompetence, and angiotensin II causes elevated blood pressure in wild type, but not Srf Itga8 , male mice. These findings establish the Itga8-CreER T2 mouse as an alternative to existing SMC Cre mice for unfettered phenotyping of vascular SMCs following selective gene loss.
Collapse
Affiliation(s)
- Ganesh Warthi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Jessica L. Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Jaser Doja
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Amr R. Ghanam
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Pan Gao
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Allison C. Yang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Orazio J. Slivano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Candee T. Barris
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Taylor C. Kress
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Scott D. Zawieja
- Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Susan H. Griffin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Xiaoling Xie
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158
| | - Christine K. Christie
- Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - William B. Bryant
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Ajay Kumar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Michael J. Davis
- Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Xiaochun Long
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Lin Gan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | | | - Qing Lyu
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
- Biomedical and Health Institute, Chongqing Institute of Green and Intelligence Technology, Chongqing, China 400714
- Chongqing General Hospital, Chongqing, China 401147
| | - Joseph M. Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| |
Collapse
|
23
|
Chevalier NR. Physical organogenesis of the gut. Development 2022; 149:276365. [DOI: 10.1242/dev.200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The gut has been a central subject of organogenesis since Caspar Friedrich Wolff’s seminal 1769 work ‘De Formatione Intestinorum’. Today, we are moving from a purely genetic understanding of cell specification to a model in which genetics codes for layers of physical–mechanical and electrical properties that drive organogenesis such that organ function and morphogenesis are deeply intertwined. This Review provides an up-to-date survey of the extrinsic and intrinsic mechanical forces acting on the embryonic vertebrate gut during development and of their role in all aspects of intestinal morphogenesis: enteric nervous system formation, epithelium structuring, muscle orientation and differentiation, anisotropic growth and the development of myogenic and neurogenic motility. I outline numerous implications of this biomechanical perspective in the etiology and treatment of pathologies, such as short bowel syndrome, dysmotility, interstitial cells of Cajal-related disorders and Hirschsprung disease.
Collapse
Affiliation(s)
- Nicolas R. Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057 , 10 rue Alice Domon et Léonie Duquet, 75013 Paris , France
| |
Collapse
|
24
|
Liu L, Kryvokhyzha D, Rippe C, Jacob A, Borreguero-Muñoz A, Stenkula KG, Hansson O, Smith CWJ, Fisher SA, Swärd K. Myocardin regulates exon usage in smooth muscle cells through induction of splicing regulatory factors. Cell Mol Life Sci 2022; 79:459. [PMID: 35913515 PMCID: PMC9343278 DOI: 10.1007/s00018-022-04497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
AbstractDifferentiation of smooth muscle cells (SMCs) depends on serum response factor (SRF) and its co-activator myocardin (MYOCD). The role of MYOCD for the SMC program of gene transcription is well established. In contrast, the role of MYOCD in control of SMC-specific alternative exon usage, including exon splicing, has not been explored. In the current work we identified four splicing factors (MBNL1, RBPMS, RBPMS2, and RBFOX2) that correlate with MYOCD across human SMC tissues. Forced expression of MYOCD family members in human coronary artery SMCs in vitro upregulated expression of these splicing factors. For global profiling of transcript diversity, we performed RNA-sequencing after MYOCD transduction. We analyzed alternative transcripts with three different methods. Exon-based analysis identified 1637 features with differential exon usage. For example, usage of 3´ exons in MYLK that encode telokin increased relative to 5´ exons, as did the 17 kDa telokin to 130 kDa MYLK protein ratio. Dedicated event-based analysis identified 239 MYOCD-driven splicing events. Events involving MBNL1, MCAM, and ACTN1 were among the most prominent, and this was confirmed using variant-specific PCR analyses. In support of a role for RBPMS and RBFOX2 in MYOCD-driven splicing we found enrichment of their binding motifs around differentially spliced exons. Moreover, knockdown of either RBPMS or RBFOX2 antagonized splicing events stimulated by MYOCD, including those involving ACTN1, VCL, and MBNL1. Supporting an in vivo role of MYOCD-SRF-driven splicing, we demonstrate altered Rbpms expression and splicing in inducible and SMC-specific Srf knockout mice. We conclude that MYOCD-SRF, in part via RBPMS and RBFOX2, induce a program of differential exon usage and alternative splicing as part of the broader program of SMC differentiation.
Collapse
|
25
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? NATURE REVIEWS. GASTROENTEROLOGY & HEPATOLOGY 2022. [PMID: 35440774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? Nat Rev Gastroenterol Hepatol 2022; 19:493-507. [PMID: 35440774 DOI: 10.1038/s41575-022-00604-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
27
|
Zhao W, Sun J, Yao LY, Hang D, Li YQ, Chen CP, Zhou YW, Chen X, Tao T, Wei LS, Zheng YY, Ge X, Li CJ, Xin ZC, Pan Y, Wang XZ, He WQ, Zhang XN, Yao B, Zhu MS. MYPT1 reduction is a pathogenic factor of erectile dysfunction. Commun Biol 2022; 5:744. [PMID: 35879418 PMCID: PMC9314386 DOI: 10.1038/s42003-022-03716-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Erectile dysfunction (ED) is closely associated with smooth muscle dysfunction, but its underlying mechanisms remains incompletely understood. We here reported that the reduced expression of myosin phosphatase target subunit 1 (MYPT1), the main regulatory unit of myosin light chain phosphatase, was critical for the development of vasculogenic ED. Male MYPT1 knockout mice had reduced fertility and the penises displayed impaired erections as evidenced by reduced intracavernous pressure (ICP). The penile smooth muscles of the knockout mice displayed enhanced response to G-Protein Couple Receptor agonism and depolarization contractility and resistant relaxation. We further identified a natural compound lotusine that increased the MYPT1 expression by inhibiting SIAH1/2 E3 ligases-mediated protein degradation. This compound sufficiently restored the ICP and improved histological characters of the penile artery of Mypt1 haploinsufficiency mice. In diabetic ED mice (db/db), the decreased expression of MYPT1 was measured, and ICP was improved by lotusine treatment. We conclude that the reduction of MYPT1 is the major pathogenic factor of vasculogenic ED. The restoration of MYPT1 by lotusine improved the function of injured penile smooth muscles, and could be a novel strategy for ED therapy.
Collapse
Affiliation(s)
- Wei Zhao
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Jie Sun
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Liang-Yu Yao
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dong Hang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ye-Qiong Li
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Cai-Ping Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu-Wei Zhou
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xin Chen
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Tao Tao
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Li-Sha Wei
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yan-Yan Zheng
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xie Ge
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Chao-Jun Li
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhong-Cheng Xin
- Andrology Center, Peking University First Hospital, Peking University, Beijing, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Zhu Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Qi He
- Cambridge-Suda (CAM-SU) Genomic Resource Center, Soochow University, Suzhou, China
| | - Xue-Na Zhang
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Bing Yao
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Min-Sheng Zhu
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
28
|
Foong D, Liyanage L, Zhou J, Zarrouk A, Ho V, O'Connor MD. Single-cell RNA sequencing predicts motility networks in purified human gastric interstitial cells of Cajal. Neurogastroenterol Motil 2022; 34:e14303. [PMID: 34913225 DOI: 10.1111/nmo.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Gastrointestinal (GI) motility disorders affect millions of people worldwide, yet they remain poorly treated in part due to insufficient knowledge of the molecular networks controlling GI motility. Interstitial cells of Cajal (ICC) are critical GI pacemaker cells, and abnormalities in ICC are implicated in GI motility disorders. Two cell surface proteins, KIT and ANO1, are used for identifying ICC. However, difficulties accessing human tissue and the low frequency of ICC in GI tissues have meant human ICC are insufficiently characterized. Here, a range of characterization assays including single-cell RNA sequencing (scRNA-seq) was performed using KIT+ CD45- CD11B- primary human gastric ICC to better understand networks controlling human ICC biology. METHODS Excess sleeve gastrectomy tissues were dissected; ICC were analyzed by immunofluorescence, fluorescence-activated cell sorting (FACSorting), real-time PCR, mass spectrometry, and scRNA-seq. KEY RESULTS Immunofluorescence identified ANO1+ /KIT+ cells throughout the gastric muscle. Compared to the FACSorted negative cells, PCR showed the KIT+ CD45- CD11B- ICC were enriched 28-fold in ANO1 expression (p < 0.01). scRNA-seq analysis of the KIT- CD45+ CD11B+ and KIT+ CD45- CD11B- ICC revealed separate clusters of immune cells and ICC (respectively); cells in the ICC cluster expressed critical GI motility genes (eg, CAV1 and PRKG1). The scRNA-seq data for these two cell clusters predicted protein interaction networks consistent with immune cell and ICC biology, respectively. CONCLUSIONS & INFERENCES The single-cell transcriptome of purified KIT+ CD45- CD11B- human gastric ICC presented here provides new molecular insights and hypotheses into evolving models of GI motility. This knowledge will provide an improved framework to investigate targeted therapies for GI motility disorders.
Collapse
Affiliation(s)
- Daphne Foong
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Liwan Liyanage
- School of Computing, Data and Mathematical Sciences, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Ali Zarrouk
- Campbelltown Private Hospital, Campbelltown, New South Wales, Australia
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.,Campbelltown Private Hospital, Campbelltown, New South Wales, Australia
| | - Michael D O'Connor
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| |
Collapse
|
29
|
Tas2R activation relaxes airway smooth muscle by release of Gα t targeting on AChR signaling. Proc Natl Acad Sci U S A 2022; 119:e2121513119. [PMID: 35737832 PMCID: PMC9245679 DOI: 10.1073/pnas.2121513119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Both chronic obstructive pulmonary disease (COPD) and asthma are severe respiratory diseases. Bitter receptor-mediated bronchodilation is a potential therapy for asthma, but the mechanism underlying the agonistic relaxation of airway smooth muscle (ASM) is not well defined. By exploring the ASM relaxation mechanism of bitter substances, we observed that pretreatment with the bitter substances nearly abolished the methacholine (MCh)-induced increase in the ASM cell (ASMC) calcium concentration, thereby suppressing the calcium-induced contraction release. The ASM relaxation was significantly inhibited by simultaneous deletion of three Gαt proteins, suggesting an interaction between Tas2R and AChR signaling cascades in the relaxation process. Biochemically, the Gαt released by Tas2R activation complexes with AChR and blocks the Gαq cycling of AChR signal transduction. More importantly, a bitter substance, kudinoside A, not only attenuates airway constriction but also significantly inhibits pulmonary inflammation and tissue remodeling in COPD rats, indicating its modulation of additional Gαq-associated pathological processes. Thus, our results suggest that Tas2R activation may be an ideal strategy for halting multiple pathological processes of COPD.
Collapse
|
30
|
Bhave S, Ho WLN, Cheng K, Omer M, Bousquet N, Guyer RA, Hotta R, Goldstein AM. Tamoxifen administration alters gastrointestinal motility in mice. Neurogastroenterol Motil 2022; 34:e14357. [PMID: 35279902 DOI: 10.1111/nmo.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Tamoxifen is widely used for Cre-estrogen receptor-mediated genomic recombination in transgenic mouse models to mark cells for lineage tracing and to study gene function. However, recent studies have highlighted off-target effects of tamoxifen in various tissues and cell types when used for induction of Cre recombination. Despite the widespread use of these transgenic Cre models to assess gastrointestinal (GI) function, the effect of tamoxifen exposure on GI motility has not been described. METHODS We examined the effects of tamoxifen on GI motility by measuring total GI transit, gastric emptying, small intestinal transit, and colonic contractility in wild-type adult mice. KEY RESULTS We observed a significant delay in total GI transit in tamoxifen-treated mice, with unaltered gastric emptying, accelerated small intestinal transit, and abnormal colonic motility. CONCLUSION Our findings highlight the importance of considering GI motility alterations induced by tamoxifen when designing protocols that utilize tamoxifen as a Cre-driver for studying GI function.
Collapse
Affiliation(s)
- Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wing Lam N Ho
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Katarina Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meredith Omer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole Bousquet
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Chen Y, Zhang T, Xian M, Zhang R, Yang W, Su B, Yang G, Sun L, Xu W, Xu S, Gao H, Xu L, Gao X, Li J. A draft genome of Drung cattle reveals clues to its chromosomal fusion and environmental adaptation. Commun Biol 2022; 5:353. [PMID: 35418663 PMCID: PMC9008013 DOI: 10.1038/s42003-022-03298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Drung cattle (Bos frontalis) have 58 chromosomes, differing from the Bos taurus 2n = 60 karyotype. To date, its origin and evolution history have not been proven conclusively, and the mechanisms of chromosome fusion and environmental adaptation have not been clearly elucidated. Here, we assembled a high integrity and good contiguity genome of Drung cattle with 13.7-fold contig N50 and 4.1-fold scaffold N50 improvements over the recently published Indian mithun assembly, respectively. Speciation time estimation and phylogenetic analysis showed that Drung cattle diverged from Bos taurus into an independent evolutionary clade. Sequence evidence of centromere regions provides clues to the breakpoints in BTA2 and BTA28 centromere satellites. We furthermore integrated a circulation and contraction-related biological process involving 43 evolutionary genes that participated in pathways associated with the evolution of the cardiovascular system. These findings may have important implications for understanding the molecular mechanisms of chromosome fusion, alpine valleys adaptability and cardiovascular function.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Tianliu Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Ming Xian
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Rui Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Weifei Yang
- 1 Gene Co., Ltd, 310051, Hangzhou, P.R. China
- Annoroad Gene Technology (Beijing) Co., Ltd, 100176, Beijing, P.R. China
| | - Baqi Su
- Drung Cattle Conservation Farm in Jiudang Wood, Drung and Nu Minority Autonomous County, Gongshan, 673500, Kunming, Yunnan, P.R. China
| | - Guoqiang Yang
- Livestock and Poultry Breed Improvement Center, Nujiang Lisu Minority Autonomous Prefecture, 673199, Kunming, Yunnan, P.R. China
| | - Limin Sun
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Wenkun Xu
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Shangzhong Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| |
Collapse
|
32
|
Dridi H, Santulli G, Gambardella J, Jankauskas SS, Yuan Q, Yang J, Reiken S, Wang X, Wronska A, Liu X, Lacampagne A, Marks AR. IP3 receptor orchestrates maladaptive vascular responses in heart failure. J Clin Invest 2022; 132:e152859. [PMID: 35166236 PMCID: PMC8843748 DOI: 10.1172/jci152859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
Patients with heart failure (HF) have augmented vascular tone, which increases cardiac workload, impairing ventricular output and promoting further myocardial dysfunction. The molecular mechanisms underlying the maladaptive vascular responses observed in HF are not fully understood. Vascular smooth muscle cells (VSMCs) control vasoconstriction via a Ca2+-dependent process, in which the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) on the sarcoplasmic reticulum (SR) plays a major role. To dissect the mechanistic contribution of intracellular Ca2+ release to the increased vascular tone observed in HF, we analyzed the remodeling of IP3R1 in aortic tissues from patients with HF and from controls. VSMC IP3R1 channels from patients with HF and HF mice were hyperphosphorylated by both serine and tyrosine kinases. VSMCs isolated from IP3R1VSMC-/- mice exhibited blunted Ca2+ responses to angiotensin II (ATII) and norepinephrine compared with control VSMCs. IP3R1VSMC-/- mice displayed significantly reduced responses to ATII, both in vivo and ex vivo. HF IP3R1VSMC-/- mice developed significantly less afterload compared with HF IP3R1fl/fl mice and exhibited significantly attenuated progression toward decompensated HF and reduced interstitial fibrosis. Ca2+-dependent phosphorylation of the MLC by MLCK activated VSMC contraction. MLC phosphorylation was markedly increased in VSMCs from patients with HF and HF mice but reduced in VSMCs from HF IP3R1VSMC-/- mice and HF WT mice treated with ML-7. Taken together, our data indicate that VSMC IP3R1 is a major effector of increased vascular tone, which contributes to increased cardiac afterload and decompensation in HF.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Vasoconstriction
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Gaetano Santulli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Jessica Gambardella
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- International Translational Research and Medical Education (ITME) Consortium, Department of Advanced Biomedical Science, “Federico II” University, Naples, Italy
| | - Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jingyi Yang
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
33
|
Ju C, Liang J, Zhang M, Zhao J, Li L, Chen S, Zhao J, Gao X. The mouse resource at National Resource Center for Mutant Mice. Mamm Genome 2022; 33:143-156. [PMID: 35138443 DOI: 10.1007/s00335-021-09940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Mouse models are essential for dissecting disease mechanisms and defining potential drug targets. There are more than 18,500 mouse strains available for research communities in National Resource Center for Mutant Mice (NRCMM) of China, affiliated with Model Animal Research Center of Nanjing University and Gempharmatech Company. In 2019, Gempharmatech launched the Knockout All Project (KOAP) aiming to generate null mutants and gene floxed strains for all protein-coding genes in mouse genome within 5 years. So far, KOAP has generated 8,004 floxed strains and 9,769 KO (knockout) strains (updated to Oct, 2021). NRCMM also created hundreds of Cre transgenic lines, mutant knock-in models, immuno-deficient models, and humanized mouse models. As a member of the international mouse phenotyping consortium (IMPC), NRCMM provides comprehensive phenotyping services for mouse models. In summary, NRCMM will continue to support biomedical community with new mouse models as well as related services.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuai Chen
- Model Animal Research Center of Nanjing University, Nanjing, China.,Nanjing Biomedical Research Institute of Nanjing University, Nanjing, China
| | - Jing Zhao
- GemPharmatech Co., Ltd, Nanjing, China.
| | - Xiang Gao
- National Resource Center for Mutant Mice, Nanjing, China. .,GemPharmatech Co., Ltd, Nanjing, China. .,Model Animal Research Center of Nanjing University, Nanjing, China.
| |
Collapse
|
34
|
Xu M, Li J, Zhang Z, Liu L, Wan F, Tang Z, Lan L. Mas-related G protein-coupled receptor D is involved in modulation of murine gastrointestinal motility. Exp Physiol 2021; 106:2502-2516. [PMID: 34647371 DOI: 10.1113/ep089958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the central question of this study? The physiological function of Mas-related G protein-coupled receptor D (MrgprD) in gastrointestinal motility is unknown. The aim of this study was to assess the effects of MrgprD and its receptor agonists on murine gastrointestinal motility. What is the main finding and its importance? Mrgprd deficiency improved murine gastrointestinal motility in vivo but had no effects on the spontaneous contractions of murine intestinal rings ex vivo. Systemic administration of the MrgprD ligand, either β-alanine or alamandine, delayed gastrointestinal transit in vivo and attenuated the spontaneous contractions of isolated intestinal rings ex vivo. ABSTRACT Mas-related G protein-coupled receptor D (MrgprD) was first identified in sensory neurons of mouse dorsal root ganglion and has been demonstrated to be involved in sensations of pain and itch. Although expression of MrgprD has recently been found in the gastrointestinal (GI) tract, its physiological role in GI motility is unknown. To address this question, we used Mrgprd knockout (Mrgprd-/- ) mice and MrgprD agonists to examine the effects of Mrgprd gene deletion and MrgprD signalling activation, respectively, on murine intestinal motility, both in vivo and ex vivo. We observed that the deletion of Mrgprd accelerated the transmission of charcoal through the mouse GI tract. But Mrgprd deficiency did not affect the mean amplitudes and frequencies of spontaneous contractions in ileum ex vivo. Colonic motor complexes in the proximal and the distal colon were recorded from wild-type and Mrgprd-/- mice, but their control frequencies were not different. Moreover, in wild-type mice, systemic administration of an MrgprD agonist, either β-alanine or alamandine, delayed GI transit in vivo and suppressed spontaneous contractions in the ileum and colonic motor complexes in the colon ex vivo. Our results suggest that MrgprD and its agonist are involved in the modulation of GI motility in mice.
Collapse
Affiliation(s)
- Min Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Jia Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Zhudi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Lin Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zongxiang Tang
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Lei Lan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, PR China
| |
Collapse
|
35
|
Sun Y, Oami T, Liang Z, Miniet AA, Burd EM, Ford ML, Coopersmith CM. Membrane Permeant Inhibitor of Myosin Light Chain Kinase Worsens Survival in Murine Polymicrobial Sepsis. Shock 2021; 56:621-628. [PMID: 33606476 PMCID: PMC8368082 DOI: 10.1097/shk.0000000000001759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABSTRACT Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Genetic deletion of myosin light chain kinase (MLCK) reverses intestinal hyperpermeability and improves survival in a murine model of intra-abdominal sepsis. In an attempt to determine whether these findings could be translated using a more clinically relevant strategy, this study aimed to determine if pharmacologic inhibition of MLCK using the membrane permeant inhibitor of MLCK (PIK) improved gut barrier function and survival following sepsis. C57BL/6 mice underwent cecal ligation and puncture to induce sepsis and were then randomized to receive either PIK or vehicle. Unexpectedly, PIK significantly worsened 7-day survival following sepsis (24% vs. 62%). The three pathways of intestinal permeability were then interrogated by orally gavaging septic mice with creatinine (6Å), FD-4 (28Å), and rhodamine70 (120Å) and assaying their appearance in the bloodstream. PIK led to increased permeability in the leak pathway with higher levels of FD-4 in the bloodstream compared to septic mice given vehicle. In contrast, no differences were detected in the pore or unrestricted pathways of permeability. Examination of jejunal tight junctions for potential mechanisms underlying increased leak permeability revealed that mice that received PIK had increased phosphorylated MLC without alterations in occludin, ZO-1, or JAM-A. PIK administration was not associated with significant differences in systemic or peritoneal bacterial burden, cytokines, splenic or Peyer's Patches immune cells or intestinal integrity. These results demonstrate that pharmacologic inhibition of MLCK unexpectedly increases mortality, associated with worsened intestinal permeability through the leak pathway, and suggest caution is required in targeting the gut barrier as a potential therapy in sepsis.
Collapse
Affiliation(s)
- Yini Sun
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Takehiko Oami
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia
| | - Ashley A Miniet
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
36
|
Asian Mouse Mutagenesis Resource Association (AMMRA): mouse genetics and laboratory animal resources in the Asia Pacific. Mamm Genome 2021; 33:192-202. [PMID: 34482437 PMCID: PMC8418786 DOI: 10.1007/s00335-021-09912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
The Asian Mouse Mutagenesis Resource Association (AMMRA) is a non-profit organization consisting of major resource and research institutions with rodent expertise from within the Asia Pacific region. For more than a decade, aiming to support biomedical research and stimulate international collaboration, AMMRA has always been a friendly and passionate ally of Asian and Australian member institutions devoted to sharing knowledge, exchanging resources, and promoting biomedical research. AMMRA is also missioned to global connection by working closely with the consortiums such as the International Mouse Phenotyping Consortium and the International Mouse Strain Resource. This review discusses the emergence of AMMRA and outlines its many roles and responsibilities in promoting, assisting, enriching research, and ultimately enhancing global life science research quality.
Collapse
|
37
|
Wang J, Feng J, Deng S, Bao B, Meng F, Dai H, Xu H, Wang S, Wang B, Li H. Network Pharmacology Analysis of the Effects of Achyranthis Bidentatae Radix Plus Semen Vaccariae on Migraine-Induced Erectile Dysfunction. Comb Chem High Throughput Screen 2021; 25:1474-1487. [PMID: 34182905 DOI: 10.2174/1386207324666210628105233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Achyranthis Bidentatae Radix plus Semen Vaccariae are traditional Chinese medicines, which have been widely applied in the treatment of migraine and erectile dysfunction (ED) for many years. The aim of this study is to verify the effect of Achyranthis Bidentatae Radix plus Semen Vaccariae in improving migraine-induced ED and explore its potential mechanism. METHODS Key targets and signaling pathways of Achyranthis Bidentatae Radix plus Semen Vaccariae in migraine-induced erectile dysfunction treatment were predicted by network pharmacology. A rat model of migraine was established by nitroglycerin injection. Apomorphine was injected into rats to screen the migraine-induced erectile dysfunction model, Achyranthis Bidentatae Radix-Semen Vaccariae granule suspension administered, and erectile function evaluated. Hematoxylin and eosin staining was used to compare the histological structure of the penile tissue, while RT-qPCR and Western blotting were used to determine mRNA and protein levels, respectively. RESULTS Screening allowed us to identify common targets for migraine and ED; the signaling pathway exhibiting the greatest change the Myosin light chain kinase- Calcium (MLCK-CaM) signal pathway. From Western blotting and RT-qPCR, we found that the levels of MLCK mRNA and protein in rats from Group B rats were significantly higher (P<0.05) than those in Groups A and C. Furthermore, the mRNA and protein levels of CaM were significantly higher in Group B (P<0.05) than in Groups A and C. CONCLUSION Data indicate that the regulatory effects of Achyranthis Bidentatae Radix plus Semen Vaccariae on migraine-induced ED in a rat model are mediated by the MLCK-CaM signaling pathway.
Collapse
Affiliation(s)
- Jisheng Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Junlong Feng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Sheng Deng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Binghao Bao
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Fanchao Meng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Hengheng Dai
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Hongsheng Xu
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Shizhen Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, BJ,100029, China
| | - Bin Wang
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, BJ,100700, China
| | - Haisong Li
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, BJ,100700, China
| |
Collapse
|
38
|
Mfge8 attenuates human gastric antrum smooth muscle contractions. J Muscle Res Cell Motil 2021; 42:219-231. [PMID: 34085177 PMCID: PMC8332633 DOI: 10.1007/s10974-021-09604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 12/02/2022]
Abstract
Coordinated gastric smooth muscle contraction is critical for proper digestion and is adversely affected by a number of gastric motility disorders. In this study we report that the secreted protein Mfge8 (milk fat globule-EGF factor 8) inhibits the contractile responses of human gastric antrum muscles to cholinergic stimuli by reducing the inhibitory phosphorylation of the MYPT1 (myosin phosphatase-targeting subunit (1) subunit of MLCP (myosin light chain phosphatase), resulting in reduced LC20 (smooth muscle myosin regulatory light chain (2) phosphorylation. Mfge8 reduced the agonist-induced increase in the F-actin/G-actin ratios of β-actin and γ-actin1. We show that endogenous Mfge8 is bound to its receptor, α8β1 integrin, in human gastric antrum muscles, suggesting that human gastric antrum muscle mechanical responses are regulated by Mfge8. The regulation of gastric antrum smooth muscles by Mfge8 and α8 integrin functions as a brake on gastric antrum mechanical activities. Further studies of the role of Mfge8 and α8 integrin in regulating gastric antrum function will likely reveal additional novel aspects of gastric smooth muscle motility mechanisms.
Collapse
|
39
|
Hashmi SK, Ceron RH, Heuckeroth RO. Visceral myopathy: clinical syndromes, genetics, pathophysiology, and fall of the cytoskeleton. Am J Physiol Gastrointest Liver Physiol 2021; 320:G919-G935. [PMID: 33729000 PMCID: PMC8285581 DOI: 10.1152/ajpgi.00066.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Visceral smooth muscle is a crucial component of the walls of hollow organs like the gut, bladder, and uterus. This specialized smooth muscle has unique properties that distinguish it from other muscle types and facilitate robust dilation and contraction. Visceral myopathies are diseases where severe visceral smooth muscle dysfunction prevents efficient movement of air and nutrients through the bowel, impairs bladder emptying, and affects normal uterine contraction and relaxation, particularly during pregnancy. Disease severity exists along a spectrum. The most debilitating defects cause highly dysfunctional bowel, reduced intrauterine colon growth (microcolon), and bladder-emptying defects requiring catheterization, a condition called megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). People with MMIHS often die early in childhood. When the bowel is the main organ affected and microcolon is absent, the condition is known as myopathic chronic intestinal pseudo-obstruction (CIPO). Visceral myopathies like MMIHS and myopathic CIPO are most commonly caused by mutations in contractile apparatus cytoskeletal proteins. Here, we review visceral myopathy-causing mutations and normal functions of these disease-associated proteins. We propose molecular, cellular, and tissue-level models that may explain clinical and histopathological features of visceral myopathy and hope these observations prompt new mechanistic studies.
Collapse
Affiliation(s)
- Sohaib Khalid Hashmi
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania,2Department of Bioengineering, The University of Pennsylvania School of Engineering and Applied Science, Philadelphia, Pennsylvania
| | - Rachel Helen Ceron
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania,3Department of Physiology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Cahill T, da Silveira WA, Renaud L, Williamson T, Wang H, Chung D, Overton I, Chan SSL, Hardiman G. Induced Torpor as a Countermeasure for Low Dose Radiation Exposure in a Zebrafish Model. Cells 2021; 10:906. [PMID: 33920039 PMCID: PMC8071006 DOI: 10.3390/cells10040906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022] Open
Abstract
The development of the Artemis programme with the goal of returning to the moon is spurring technology advances that will eventually take humans to Mars and herald a new era of interplanetary space travel. However, long-term space travel poses unique challenges including exposure to ionising radiation from galactic cosmic rays and potential solar particle events, exposure to microgravity and specific nutritional challenges arising from earth independent exploration. Ionising radiation is one of the major obstacles facing future space travel as it can generate oxidative stress and directly damage cellular structures such as DNA, in turn causing genomic instability, telomere shortening, extracellular-matrix remodelling and persistent inflammation. In the gastrointestinal tract (GIT) this can lead to leaky gut syndrome, perforations and motility issues, which impact GIT functionality and affect nutritional status. While current countermeasures such as shielding from the spacecraft can attenuate harmful biological effects, they produce harmful secondary particles that contribute to radiation exposure. We hypothesised that induction of a torpor-like state would confer a radioprotective effect given the evidence that hibernation extends survival times in irradiated squirrels compared to active controls. To test this hypothesis, a torpor-like state was induced in zebrafish using melatonin treatment and reduced temperature, and radiation exposure was administered twice over the course of 10 days. The protective effects of induced-torpor were assessed via RNA sequencing and qPCR of mRNA extracted from the GIT. Pathway and network analysis were performed on the transcriptomic data to characterise the genomic signatures in radiation, torpor and torpor + radiation groups. Phenotypic analyses revealed that melatonin and reduced temperature successfully induced a torpor-like state in zebrafish as shown by decreased metabolism and activity levels. Genomic analyses indicated that low dose radiation caused DNA damage and oxidative stress triggering a stress response, including steroidal signalling and changes to metabolism, and cell cycle arrest. Torpor attenuated the stress response through an increase in pro-survival signals, reduced oxidative stress via the oxygen effect and detection and removal of misfolded proteins. This proof-of-concept model provides compelling initial evidence for utilizing an induced torpor-like state as a potential countermeasure for radiation exposure.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Tucker Williamson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; (T.W.); (S.S.L.C.)
| | - Hao Wang
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Ian Overton
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Sherine S. L. Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; (T.W.); (S.S.L.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
41
|
Zhang F, Wang F, He J, Lian N, Wang Z, Shao J, Ding H, Tan S, Chen A, Zhang Z, Wang S, Zheng S. Regulation of hepatic stellate cell contraction and cirrhotic portal hypertension by Wnt/β-catenin signalling via interaction with Gli1. Br J Pharmacol 2021; 178:2246-2265. [PMID: 33085791 DOI: 10.1111/bph.15289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/05/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Portal hypertension is a lethal complication of cirrhosis. Its mechanism and therapeutic targets remain largely unknown. Hepatic stellate cell (HSC) contraction increases intrahepatic vascular resistance contributing to portal hypertension. We investigated how HSC contraction was regulated by Wnt signalling and the therapeutic implications. EXPERIMENTAL APPROACH Liver tissues from cirrhotic patients were examined. Cirrhotic mice with genetic or pharmacological treatments were used for in vivo assessments, and their primary cells were isolated. Cellular functions and signalling pathways were analysed in human HSC-LX2 cells using real-time PCR, Western blotting, siRNA, luciferase reporter assay, chromatin immunoprecipitation, co-immunoprecipitation and site-directed mutagenesis. KEY RESULTS Wnt/β-catenin correlated with HSC contraction in human cirrhotic liver. Wnt3a stimulated Smo-independent Gli1 nuclear translocation followed by LARG-mediated RhoA activation leading to HSC contraction. Suppressor of fused (Sufu) negatively mediated Wnt3a-induced Gli1 nuclear translocation. Wnt/β-catenin repressed transcription of Sufu dependent on β-catenin/TCF4 interaction and TCF4 binding to Sufu promoter. Molecular simulation and site-directed mutagenesis identified the β-catenin residues Lys312 and Lys435 critically involved in this interaction. TCF4 binding to the sequence CACACCTTCC at Sufu promoter was required for transrepression of Sufu. In cirrhotic mice, short-term liver-targeting β-catenin deficiency or acute treatment with β-catenin inhibitors reduced portal pressure via restriction of HSC contraction rather than inhibiting HSC activation. Long-term deficiency or treatments also ameliorated liver injury, fibrosis and inflammation. CONCLUSION AND IMPLICATIONS Interaction between Wnt/β-catenin and Smo-independent Gli1 pathways promoted HSC contraction via TCF4-dependent transrepression of Sufu. HSC-specific inhibition of β-catenin may have therapeutic benefits for cirrhotic portal hypertension.
Collapse
Affiliation(s)
- Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianlin He
- The Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Naqi Lian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenyi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai Ding
- Department of Integrated TCM & Western Medicine in Hepatology, The Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanzhong Tan
- Department of Integrated TCM & Western Medicine in Hepatology, The Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Wang
- Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
42
|
Li R, Li X, Hagood J, Zhu MS, Sun X. Myofibroblast contraction is essential for generating and regenerating the gas-exchange surface. J Clin Invest 2021; 130:2859-2871. [PMID: 32338642 DOI: 10.1172/jci132189] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/13/2020] [Indexed: 01/05/2023] Open
Abstract
A majority (~95%) of the gas-exchange surface area is generated through septa formation during alveologenesis. Disruption of this process leads to alveolar simplification and bronchopulmonary dysplasia (BPD), a prevalent disorder in premature infants. Although several models have been proposed, the mechanism of septa formation remains under debate. Here we show that inactivation of myosin light chain kinase (MLCK), a key factor required for myofibroblast contraction, disrupted septa formation, supporting the myofibroblast contraction model of alveologenesis. The alveoli simplification phenotype was accompanied by decreased yes-associated protein (YAP), a key effector in the Hippo mechanotransduction pathway. Expression of activated YAP in Mlck-mutant lungs led to partial reversal of alveolar simplification. In the adult, although Mlck inactivation did not lead to simplification, it prevented reseptation during compensatory regrowth in the pneumonectomy model. These findings revealed that myofibroblast reactivation and contraction are requisite steps toward regenerating the gas-exchange surface in diseases such as BPD and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA
| | - Xiaoping Li
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA
| | - James Hagood
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.,Division of Pulmonology, Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology.,Model Animal Research Center, and.,MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Xin Sun
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.,Division of Biological Sciences, UCSD, La Jolla, California, USA
| |
Collapse
|
43
|
Sang YJ, Wang Q, Zheng F, Hua Y, Wang XY, Zhang JZ, Li K, Wang HQ, Zhao Y, Zhu MS, Sun HX, Li CJ. Ggps1 deficiency in the uterus results in dystocia by disrupting uterine contraction. J Mol Cell Biol 2020; 13:116-127. [PMID: 33340314 PMCID: PMC8104943 DOI: 10.1093/jmcb/mjaa066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 12/01/2022] Open
Abstract
Dystocia is a serious problem for pregnant women, and it increases the cesarean section rate. Although uterine dysfunction has an unknown etiology, it is responsible for cesarean delivery and clinical dystocia, resulting in neonatal morbidity and mortality; thus, there is an urgent need for novel therapeutic agents. Previous studies indicated that statins, which inhibit the mevalonate (MVA) pathway of cholesterol synthesis, can reduce the incidence of preterm birth, but the safety of statins for pregnant women has not been thoroughly evaluated. Therefore, to unambiguously examine the function of the MVA pathway in pregnancy and delivery, we employed a genetic approach by using myometrial cell-specific deletion of geranylgeranyl pyrophosphate synthase (Ggps1) mice. We found that Ggps1 deficiency in myometrial cells caused impaired uterine contractions, resulting in disrupted embryonic placing and dystocia. Studies of the underlying mechanism suggested that Ggps1 is required for uterine contractions to ensure successful parturition by regulating RhoA prenylation to activate the RhoA/Rock2/p-MLC pathway. Our work indicates that perturbing the MVA pathway might result in problems during delivery for pregnant females, but modifying protein prenylation with supplementary farnesyl pyrophosphate or geranylgeranyl pyrophosphate might be a strategy to avoid side effects.
Collapse
Affiliation(s)
- Yong-Juan Sang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Qiang Wang
- Department of Neurosurgery, Jingling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Feng Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Yue Hua
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Xin-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Jing-Zi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Kang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Hai-Quan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Hai-Xiang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
44
|
Sun J, Qiao YN, Tao T, Zhao W, Wei LS, Li YQ, Wang W, Wang Y, Zhou YW, Zheng YY, Chen X, Pan HC, Zhang XN, Zhu MS. Distinct Roles of Smooth Muscle and Non-muscle Myosin Light Chain-Mediated Smooth Muscle Contraction. Front Physiol 2020; 11:593966. [PMID: 33424621 PMCID: PMC7793928 DOI: 10.3389/fphys.2020.593966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Both smooth muscle (SM) and non-muscle (NM) myosin II are expressed in hollow organs such as the bladder and uterus, but their respective roles in contraction and corresponding physiological functions remain to be determined. In this report, we assessed their roles by analyzing mice deficient of Myl9, a gene encoding the SM myosin regulatory light chain (SM RLC). We find that global Myl9-deficient bladders contracted with an apparent sustained phase, despite no initial phase. This sustained contraction was mediated by NM myosin RLC (NM RLC) phosphorylation by myosin light chain kinase (MLCK). NM myosin II was expressed abundantly in the uterus and young mice bladders, of which the force was accordingly sensitive to NM myosin inhibition. Our findings reveal distinct roles of SM RLC and NM RLC in SM contraction.
Collapse
Affiliation(s)
- Jie Sun
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Yan-Ning Qiao
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Tao Tao
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Zhao
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Li-Sha Wei
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Ye-Qiong Li
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Wang
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Ye Wang
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Yu-Wei Zhou
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Yan-Yan Zheng
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Xin Chen
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Hong-Chun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xue-Na Zhang
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Min-Sheng Zhu
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
45
|
Wei L, Zheng YY, Sun J, Wang P, Tao T, Li Y, Chen X, Sang Y, Chong D, Zhao W, Zhou Y, Wang Y, Jiang Z, Qiu T, Li CJ, Zhu MS, Zhang X. GGPP depletion initiates metaflammation through disequilibrating CYB5R3-dependent eicosanoid metabolism. J Biol Chem 2020; 295:15988-16001. [PMID: 32913122 DOI: 10.1074/jbc.ra120.015020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
Metaflammation is a primary inflammatory complication of metabolic disorders characterized by altered production of many inflammatory cytokines, adipokines, and lipid mediators. Whereas multiple inflammation networks have been identified, the mechanisms by which metaflammation is initiated have long been controversial. As the mevalonate pathway (MVA) produces abundant bioactive isoprenoids and abnormal MVA has a phenotypic association with inflammation/immunity, we speculate that isoprenoids from the MVA may provide a causal link between metaflammation and metabolic disorders. Using a line with the MVA isoprenoid producer geranylgeranyl diphosphate synthase (GGPPS) deleted, we find that geranylgeranyl pyrophosphate (GGPP) depletion causes an apparent metaflammation as evidenced by abnormal accumulation of fatty acids, eicosanoid intermediates, and proinflammatory cytokines. We also find that GGPP prenylate cytochrome b 5 reductase 3 (CYB5R3) and the prenylated CYB5R3 then translocate from the mitochondrial to the endoplasmic reticulum (ER) pool. As CYB5R3 is a critical NADH-dependent reductase necessary for eicosanoid metabolism in ER, we thus suggest that GGPP-mediated CYB5R3 prenylation is necessary for metabolism. In addition, we observe that pharmacological inhibition of the MVA pathway by simvastatin is sufficient to inhibit CYB5R3 translocation and induces smooth muscle death. Therefore, we conclude that the dysregulation of MVA intermediates is an essential mechanism for metaflammation initiation, in which the imbalanced production of eicosanoid intermediates in the ER serve as an important pathogenic factor. Moreover, the interplay of MVA and eicosanoid metabolism as we reported here illustrates a model for the coordinating regulation among metabolite pathways.
Collapse
Affiliation(s)
- Lisha Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yan-Yan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yeqiong Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yongjuan Sang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Danyang Chong
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuwei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhihui Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tiantian Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Xuena Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
46
|
Yao Y, Feng Q, Shen J. Myosin light chain kinase regulates intestinal permeability of mucosal homeostasis in Crohn's disease. Expert Rev Clin Immunol 2020; 16:1127-1141. [PMID: 33183108 DOI: 10.1080/1744666x.2021.1850269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Researchers have investigated the potential role of intestinal permeability in Crohn's disease pathogenesis. Intestinal permeability is usually mediated by cytoskeleton and intercellular junctions. The myosin light chain kinase (MLCK) is an enzyme that activates the myosin light chain to exert its function related to cytoskeleton contraction and tight junction regulation. The correlation between MLCK and Crohn's disease pathogenesis has been consistently proven. Areas covered: This study aims to expand the understanding of the regulation and function of MLCK in Crohn's disease. An extensive literature search in the MEDLINE database (via PubMed) has been performed up to Oct. 2020. The roles of MLCK in tight junction activation, intestinal permeability enhancement, and cell signal regulation are comprehensively discussed. Expert opinion: Targeting the MLCK-related pathways such as TNF-α in CD treatment has been put into clinical use. More accurate targeting such as MLCK and TNFR2 has been proposed to reduce side effects. MLCK may also have the potential to become biomarkers in fields like CD activity. With the application of cutting age research methods and tools, the MLCK research could be accelerated.
Collapse
Affiliation(s)
- Yiran Yao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| | - Qi Feng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
47
|
Zhang Y, Zeng F, Han X, Weng J, Gao Y. Lineage tracing: technology tool for exploring the development, regeneration, and disease of the digestive system. Stem Cell Res Ther 2020; 11:438. [PMID: 33059752 PMCID: PMC7559019 DOI: 10.1186/s13287-020-01941-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Lineage tracing is the most widely used technique to track the migration, proliferation, and differentiation of specific cells in vivo. The currently available gene-targeting technologies have been developing for decades to study organogenesis, tissue injury repairing, and tumor progression by tracing the fates of individual cells. Recently, lineage tracing has expanded the platforms available for disease model establishment, drug screening, cell plasticity research, and personalized medicine development in a molecular and cellular biology perspective. Lineage tracing provides new views for exploring digestive organ development and regeneration and techniques for digestive disease causes and progression. This review focuses on the lineage tracing technology and its application in digestive diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Fanhong Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xu Han
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China. .,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China. .,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| |
Collapse
|
48
|
Zhuge Y, Zhang J, Qian F, Wen Z, Niu C, Xu K, Ji H, Rong X, Chu M, Jia C. Role of smooth muscle cells in Cardiovascular Disease. Int J Biol Sci 2020; 16:2741-2751. [PMID: 33110393 PMCID: PMC7586427 DOI: 10.7150/ijbs.49871] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Normally, smooth muscle cells (SMCs) are localized in the tunica media of the vasculature, where they take responsibility for vascular contraction and extracellular matrix (ECM) generation. SMCs also play a significant role in obedience and elastic rebound of the artery in response to the haemodynamic condition. However, under pathological or stressed conditions, phenotype switching from contractile to synthetic state or other cell types will occur in SMCs to positively or negatively contribute to disease progression. Various studies demonstrated that functional changes of SMCs are implicated in several cardiovascular diseases. In this review, we present the function of vascular SMCs (VSMCs) and the involved molecular mechanisms about phenotype switching, and summarize the roles of SMCs in atherosclerosis, hypertension, arterial aneurysms and myocardial infarction, hoping to obtain potential therapeutic targets against cardiovascular disease in the clinical practices.
Collapse
Affiliation(s)
- Yingzhi Zhuge
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jian Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fanyu Qian
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhengwang Wen
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Hao Ji
- The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
49
|
SM22α + vascular mural cells are essential for vessel stability in tumors and undergo phenotype transition regulated by Notch signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:124. [PMID: 32616053 PMCID: PMC7331127 DOI: 10.1186/s13046-020-01630-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022]
Abstract
Background Malformation of blood vessels represents a hallmark of cancers, but the role and regulation of vascular mural cells (vMCs), including vascular smooth muscle cells (vSMCs) and pericytes, in tumors has not been fully understood. SM22α has been identified as a marker of vSMCs. This study aims at elucidating the function and regulation of SM22α+ mural cells (SM22-MCs) in tumor stroma. Methods Gene-modified mice with a SM22α-CreERT2 transgene were employed to deplete SM22-MCs or activate/block Notch signaling in these cells. vSMCs from mouse dorsal aorta (vSMCs-DA) were cultured in vitro. RNA-seq was used to compare gene expression profiles. qRT-PCR and western blotting were used to determine gene expression level. Immunofluorescence was used to observe morphological alterations in tumors. Results SM22-MCs are essential for stabilizing tumor vasculature. Notch signaling was downregulated in tumor-derived SM22-MCs and vSMCs-DA treated with cancer cell-derived conditioned medium. Notch activation in SM22-MCs normalized tumor vasculature and repressed tumor growth. On the other hand, Notch disruption aggravated abnormal tumor vasculature and promoted growth and metastasis. Gene expression profiling of vSMCs-DA showed that Notch activation enhances their contractile phenotype and suppresses their secretory phenotype, further attenuating the invasion and proliferation of tumor cells. In contrast, Notch blockade in vSMCs-DA mitigated their contractile phenotype while strengthened the secretory phenotype. Conclusion SM22-MCs facilitate vessel stability in tumors, and they gain a secretory phenotype and promote tumor malignancy in the absence of Notch signaling.
Collapse
|
50
|
Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. Cell Mol Gastroenterol Hepatol 2020; 10:327-340. [PMID: 32304780 PMCID: PMC7326733 DOI: 10.1016/j.jcmgh.2020.04.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Defective epithelial barrier function is present in maladies including epidermal burn injury, environmental lung damage, renal tubular disease, and a range of immune-mediated and infectious intestinal disorders. When the epithelial surface is intact, the paracellular pathway between cells is sealed by the tight junction. However, permeability of tight junctions varies widely across tissues and can be markedly impacted by disease. For example, tight junctions within the skin and urinary bladder are largely impermeant and their permeability is not regulated. In contrast, tight junctions of the proximal renal tubule and intestine are selectively permeable to water and solutes on the basis of their biophysical characteristics and, in the gut, can be regulated by the immune system with remarkable specificity. Conversely, modulation of tight junction barrier conductance, especially within the gastrointestinal tract, can impact immune homeostasis and diverse pathologies. Thus, tight junctions are both effectors and targets of immune regulation. Using the gastrointestinal tract as an example, this review explores current understanding of this complex interplay between tight junctions and immunity.
Collapse
|