1
|
Srinivas AN, Suresh D, Vishwanath PM, Satish S, Santhekadur PK, Koka S, Kumar DP. TACE inhibition: a promising therapeutic intervention against AATF-mediated steatohepatitis to hepatocarcinogenesis. Mol Oncol 2024; 18:1940-1957. [PMID: 38558505 PMCID: PMC11306524 DOI: 10.1002/1878-0261.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/03/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis-driven hepatocellular carcinoma (MASH-HCC) is a global clinical challenge for which there is a limited understanding of disease pathogenesis and a subsequent lack of therapeutic interventions. We previously identified that tumor necrosis factor-alpha (TNF-α) upregulated apoptosis antagonizing transcription factor (AATF) in MASH. Here, we investigated the effect of TNF-α converting enzyme (TACE) inhibition as a promising targeted therapy against AATF-mediated steatohepatitis to hepatocarcinogenesis. A preclinical murine model that recapitulates human MASH-HCC was used in the study. C57Bl/6 mice were fed with chow diet normal water (CD) or western diet sugar water (WD) along with a low dose of carbon tetrachloride (CCl4; 0.2 μL·g-1, weekly) for 24 weeks. TACE activity, TNF-α levels, and AATF expression were measured. The mice were treated with the TACE inhibitor Marimastat for 12 weeks, followed by analyses of liver injury, fibrosis, inflammation, and oncogenic signaling. In vitro experiments using stable clones of AATF control and AATF knockdown were also conducted. We found that AATF expression was upregulated in WD/CCl4 mice, which developed severe MASH at 12 weeks and advanced fibrosis with HCC at 24 weeks. WD/CCl4 mice showed increased TACE activity with reduced hepatic expression of sirtuin 1 (Sirt1) and tissue inhibitor of metalloproteinase 3 (Timp3). The involvement of the SIRT1/TIMP3/TACE axis was confirmed by the release of TNF-α, which upregulated AATF, a key molecular driver of MASH-HCC. Interestingly, TACE inhibition by Marimastat reduced liver injury, dyslipidemia, AATF expression, and oncogenic signaling, effectively preventing hepatocarcinogenesis. Furthermore, Marimastat inhibited the activation of JNK, ERK1/2, and AKT, which are key regulators of tumorigenesis in WD/CCl4 mice and in AATF control cells, but had no effect on AATF knockdown cells. This study shows that TACE inhibition prevents AATF-mediated inflammation, fibrosis, and oncogenesis in MASH-HCC, offering a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Akshatha N. Srinivas
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Diwakar Suresh
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Prashant M. Vishwanath
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Suchitha Satish
- Department of Pathology, JSS Medical College and HospitalJSS Academy of Higher Education and ResearchMysuruIndia
| | - Prasanna K. Santhekadur
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of PharmacyTexas A&M UniversityKingsvilleTXUSA
| | - Divya P. Kumar
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| |
Collapse
|
2
|
Ballanti M, Antonetti L, Mavilio M, Casagrande V, Moscatelli A, Pietrucci D, Teofani A, Internò C, Cardellini M, Paoluzi O, Monteleone G, Lefebvre P, Staels B, Mingrone G, Menghini R, Federici M. Decreased circulating IPA levels identify subjects with metabolic comorbidities: A multi-omics study. Pharmacol Res 2024; 204:107207. [PMID: 38734193 DOI: 10.1016/j.phrs.2024.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
In recent years several experimental observations demonstrated that the gut microbiome plays a role in regulating positively or negatively metabolic homeostasis. Indole-3-propionic acid (IPA), a Tryptophan catabolic product mainly produced by C. Sporogenes, has been recently shown to exert either favorable or unfavorable effects in the context of metabolic and cardiovascular diseases. We performed a study to delineate clinical and multiomics characteristics of human subjects characterized by low and high IPA levels. Subjects with low IPA blood levels showed insulin resistance, overweight, low-grade inflammation, and features of metabolic syndrome compared to those with high IPA. Metabolomics analysis revealed that IPA was negatively correlated with leucine, isoleucine, and valine metabolism. Transcriptomics analysis in colon tissue revealed the enrichment of several signaling, regulatory, and metabolic processes. Metagenomics revealed several OTU of ruminococcus, alistipes, blautia, butyrivibrio and akkermansia were significantly enriched in highIPA group while in lowIPA group Escherichia-Shigella, megasphera, and Desulfovibrio genus were more abundant. Next, we tested the hypothesis that treatment with IPA in a mouse model may recapitulate the observations of human subjects, at least in part. We found that a short treatment with IPA (4 days at 20/mg/kg) improved glucose tolerance and Akt phosphorylation in the skeletal muscle level, while regulating blood BCAA levels and gene expression in colon tissue, all consistent with results observed in human subjects stratified for IPA levels. Our results suggest that treatment with IPA may be considered a potential strategy to improve insulin resistance in subjects with dysbiosis.
Collapse
Affiliation(s)
- Marta Ballanti
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Lorenzo Antonetti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Laboratory of Neuromotor Physiology, Santa Lucia Foundation IRCCS, Rome, 00179, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Adelaide Teofani
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Chiara Internò
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marina Cardellini
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Omero Paoluzi
- Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Via Oxford 81, 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Via Oxford 81, 00133 Rome, Italy
| | - Philippe Lefebvre
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 EGID, Lille France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 EGID, Lille France
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; Diabetes and Nutritional Sciences, Hodgkin Building, Guy's Campus, King's College London, London WC2R 2LS, UK
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Massimo Federici
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
3
|
Casagrande V, Menini S, Internò C, Pugliese G, Federici M, Menghini R. TIMP3 overexpression in myeloid lineage alleviates pancreatic damage and confers resistance to the development of type 1 diabetes in the MLDS -induced model. Front Endocrinol (Lausanne) 2024; 14:1297847. [PMID: 38313841 PMCID: PMC10835381 DOI: 10.3389/fendo.2023.1297847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction Type 1 diabetes mellitus (T1DM) development involves a complex interplay of genetic, environmental, and immunological factors. By modulating the activity of proteases and receptors, the protein tissue inhibitor of metalloproteinase 3 (TIMP3) plays a role in limiting the expression and function of pro-inflammatory cytokines, which have been implicated in the advancement of T1DM. This study was aimed at examining the effect of TIMP3 overexpression in myeloid cells on the development of T1DM. Methods and results Twelve weeks after multiple low doses of streptozotocin (MLDS) treatment, diabetic mice overexpressing TIMP3 specifically in myeloid cells under the CD68 promoter (MacT3 mice) showed improved insulin secretion, islet morphology and vascularization, antioxidant defense system, and regulatory factors of mitochondrial biosynthesis and function. To get mechanistic insights into the origin of this protection, the severity of insulitis and inflammatory parameters were evaluated in pancreatic tissues 11 days after MLSD treatment, showing significantly reduced insulitis and levels of the pro-inflammatory cytokine tumor necrosis factor-α, interleukin -1β, and interferon -γ in MacT3 mice. Discussion The results indicate that TIMP3 is involved in maintaining islet architecture and functions, at least in part, through modulation of pro-inflammatory cytokine production associated with insulitis and may represent a novel therapeutic strategy for T1DM.
Collapse
Affiliation(s)
- Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Chiara Internò
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Center for Atherosclerosis, Department of Medical Sciences, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Saad MI, Jenkins BJ. The protease ADAM17 at the crossroads of disease: revisiting its significance in inflammation, cancer, and beyond. FEBS J 2024; 291:10-24. [PMID: 37540030 DOI: 10.1111/febs.16923] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
The protease A Disintegrin And Metalloproteinase 17 (ADAM17) plays a central role in the pathophysiology of several diseases. ADAM17 is involved in the cleavage and shedding of at least 80 known membrane-tethered proteins, which subsequently modulate several intracellular signaling pathways, and therefore alter cell behavior. Dysregulated expression and/or activation of ADAM17 has been linked to a wide range of autoimmune and inflammatory diseases, cancer, and cardiovascular disease. In this review, we provide an overview of the current state of knowledge from preclinical models and clinical data on the diverse pathophysiological roles of ADAM17, and discuss the mechanisms underlying ADAM17-mediated protein shedding and the potential therapeutic implications of targeting ADAM17 in these diseases.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, SA, Australia
| |
Collapse
|
5
|
Sun Q, Xing X, Wang H, Wan K, Fan R, Liu C, Wang Y, Wu W, Wang Y, Wang R. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed Pharmacother 2024; 170:115586. [PMID: 38042113 DOI: 10.1016/j.biopha.2023.115586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic diseases, featured with dysregulated energy homeostasis, have become major global health challenges. Patients with metabolic diseases have high probability to manifest multiple complications in lipid metabolism, e.g. obesity, insulin resistance and fatty liver. Therefore, targeting the hub genes in lipid metabolism may systemically ameliorate the metabolic diseases, along with the complications. Stearoyl-CoA desaturase 1(SCD1) is a key enzyme that desaturates the saturated fatty acids (SFAs) derived from de novo lipogenesis or diet to generate monounsaturated fatty acids (MUFAs). SCD1 maintains the metabolic and tissue homeostasis by responding to, and integrating the multiple layers of endogenous stimuli, which is mediated by the synthesized MUFAs. It critically regulates a myriad of physiological processes, including energy homeostasis, development, autophagy, tumorigenesis and inflammation. Aberrant transcriptional and epigenetic activation of SCD1 regulates AMPK/ACC, SIRT1/PGC1α, NcDase/Wnt, etc, and causes aberrant lipid accumulation, thereby promoting the progression of obesity, non-alcoholic fatty liver, diabetes and cancer. This review critically assesses the integrative mechanisms of the (patho)physiological functions of SCD1 in metabolic homeostasis, inflammation and autophagy. For translational perspective, potent SCD1 inhibitors have been developed to treat various types of cancer. We thus discuss the multidisciplinary advances that greatly accelerate the development of SCD1 new inhibitors. In conclusion, besides cancer treatment, SCD1 may serve as the promising target to combat multiple metabolic complications simultaneously.
Collapse
Affiliation(s)
- Qin Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaorui Xing
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Huanyu Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Kang Wan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ruobing Fan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Cheng Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yongjian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
6
|
Molière S, Jaulin A, Tomasetto CL, Dali-Youcef N. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism: Insights into Health and Disease. Int J Mol Sci 2023; 24:10649. [PMID: 37445827 DOI: 10.3390/ijms241310649] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-activated peptidases that can be classified into six major classes, including gelatinases, collagenases, stromelysins, matrilysins, membrane type metalloproteinases, and other unclassified MMPs. The activity of MMPs is regulated by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). MMPs are involved in a wide range of biological processes, both in normal physiological conditions and pathological states. While some of these functions occur during development, others occur in postnatal life. Although the roles of several MMPs have been extensively studied in cancer and inflammation, their function in metabolism and metabolic diseases have only recently begun to be uncovered, particularly over the last two decades. This review aims to summarize the current knowledge regarding the metabolic roles of metalloproteinases in physiology, with a strong emphasis on adipose tissue homeostasis, and to highlight the consequences of impaired or exacerbated MMP actions in the development of metabolic disorders such as obesity, fatty liver disease, and type 2 diabetes.
Collapse
Affiliation(s)
- Sébastien Molière
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Department of Radiology, Strasbourg University Hospital, Hôpital de Hautepierre, Avenue Molière, 67200 Strasbourg, France
- Breast and Thyroid Imaging Unit, ICANS-Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Amélie Jaulin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine-Laure Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
| | - Nassim Dali-Youcef
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 67000 Strasbourg, France
| |
Collapse
|
7
|
Guha S, Sesili S, Mir IH, Thirunavukkarasu C. Epigenetics and mitochondrial dysfunction insights into the impact of the progression of non-alcoholic fatty liver disease. Cell Biochem Funct 2023; 41:4-19. [PMID: 36330539 DOI: 10.1002/cbf.3763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
A metabolic problem occurs when regular functions of the body are disrupted due to an undesirable imbalance. Nonalcoholic fatty liver disease (NAFLD) is considered as one of the most common in this category. NAFLD is subclassified and progresses from lipid accumulation to cirrhosis before advancing to hepatocellular cancer. In spite of being a critical concern, the standard treatment is inadequate. Metformin, silymarin, and other nonspecific medications are used in the management of NAFLD. Aside from this available medicine, maintaining a healthy lifestyle has been emphasized as a means of combating this. Epigenetics, which has been attributed to NAFLD, is another essential feature of this disease that has emerged as a result of several sorts of research. The mechanisms by which DNA methylation, noncoding RNA, and histone modification promote NAFLD have been extensively researched. Another organelle, mitochondria, which play a pivotal role in biological processes, contributes to the global threat. Individuals with NAFLD have been documented to have a multitude of alterations and malfunctioning. Mitochondria are mainly concerned with the process of energy production and regulation of the signaling pathway on which the fate of a cell relies. Modulation of mitochondria leads to elevated lipid deposition in the liver. Further, changes in oxidation states result in an impaired balance between the antioxidant system and reactive oxygen species directly linked to mitochondria. Hence mitochondria have a definite role in potentiating NAFLD. In this regard, it is essential to consider the role of epigenetics as well as mitochondrial contribution while developing a medication or therapy with the desired accuracy.
Collapse
Affiliation(s)
- Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Selvam Sesili
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
8
|
Maharjan BR, McLennan SV, Twigg SM, Williams PF. The Effect of TGFβ1 in Adipocyte on Inflammatory and Fibrotic Markers at Different Stages of Adipocyte Differentiation. PATHOPHYSIOLOGY 2022; 29:640-649. [PMID: 36548206 PMCID: PMC9788619 DOI: 10.3390/pathophysiology29040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Transforming growth factor beta (TGFβ) is a versatile cytokine. Although a profibrotic role of TGFβ is well established, its effect on tissue inhibitor of metalloproteinase (TIMPs) and inflammatory mediators are incompletely described. This study investigates the profibrotic and pro-inflammatory role of TGFβ1 during adipocyte differentiation. NIH3T3L1 cells were used for the in vitro study and were differentiated by adding a standard differentiation mix either with rosiglitazone (R-Diff) or without (S-Diff). Recombinant TGFβ1 (2 ng/mL) was added to the undifferentiated preadipocyte during the commitment stage and at the terminal differentiation stage. TGFβ1 treatment significantly decreased adiponectin mRNA at both early commitment (>300 fold) and terminal differentiated cells [S-Diff (~33%) or R-Diff (~20%)]. TGFβ1 upregulated collagen VI mRNA and its regulators connective tissue growth factor (CCN2/CTGF), TIMP1 and TIMP3 mRNA levels in undifferentiated preadipocytes and adipocytes at commitment stage. But in the terminal differentiated adipocytes, changes in mRNA and protein of collagen VI and TIMP3 mRNA were not observed despite an increase in CCN2/CTGF, TIMP1 mRNA. Although TGFβ1 upregulated interleukin-6 (IL6) and monocyte chemoattractant protein-1 (MCP1) mRNA at all stages of differentiation, decreased tumor necrosis factor-α (TNFα) mRNA was observed early in adipocyte differentiation. This study highlights the complex role of TGFβ1 on extracellular matrix (ECM) remodeling and inflammatory markers in stimulating both synthetic and inhibitory markers of fibrosis at different stages of adipocyte differentiation.
Collapse
Affiliation(s)
- Babu Raja Maharjan
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- School of Medicine, Department of Biochemistry, Patan Academy of Health Sciences, Lalitpur 44700, Nepal
- Correspondence: (B.R.M.); (P.F.W.); Tel.: +61-2-8627-1889 (B.R.M. & P.F.W.)
| | - Susan V. McLennan
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- New South Wales Health Pathology, Sydney, NSW 2050, Australia
| | - Stephen M. Twigg
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2006, Australia
| | - Paul F. Williams
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (B.R.M.); (P.F.W.); Tel.: +61-2-8627-1889 (B.R.M. & P.F.W.)
| |
Collapse
|
9
|
Chen R, Zhang Y, Zhao C. CHOP Increases TRIB3-Dependent miR-208 Expression to Potentiate Vascular Smooth Muscle Cell Proliferation and Migration by Downregulating TIMP3 in Atherosclerosis. Cardiovasc Drugs Ther 2022; 36:575-588. [PMID: 33856595 DOI: 10.1007/s10557-021-07154-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND C/EBP homologous protein (CHOP) has been identified as a suitable therapeutic target to combat atherosclerosis but the mechanism has not been fully studied. Here, we sought to define the role and underlying mechanism of CHOP in atherosclerosis. METHODS Mouse models of atherosclerosis in ApoE-/- mice were established by high-fat feeding, where miR-208 expression was determined. Then atherosclerotic plaque tissues were isolated from the model mice. Loss- and gain-function assays were performed on trypsinized vascular smooth muscle cells (VSMCs) to test the in vitro effect of CHOP in controlling the tribbles homologue 3 (TRIB3)/microRNA-208 (miR-208)/tissue inhibitor of metalloproteinases-3 (TIMP3) axis in atherosclerosis by determining cell proliferation and migration as well as blood lipid levels. Moreover, expression of α-smooth muscle actin (α-SMA) and type I collagen expression was determined using immunofluorescence staining to assess plaque stability in mice. RESULTS miR-208 expression was elevated in atherosclerosis samples and miR-208 overexpression promoted proliferation and migration of VSMCs but diminished plaque stability in mice. TIMP3 was targeted by miR-208, which could be abrogated by upregulation of TIMP3. In addition, CHOP increased TRIB3 expression to upregulate miR-208 and to downregulate TIMP3, which potentiated VSMC proliferation and migration in vitro and in vivo. CONCLUSION Taken together, inhibition of CHOP may inhibit the proliferation and migration of VSMCs as well as reduce the levels of TC, TG, and LDL-C but increase the level of HDL-C through the TRIB3/miR-208/TIMP3 axis, thereby inhibiting the progression of atherosclerosis.
Collapse
Affiliation(s)
- Rui Chen
- Department of Physiology, College of Basic Medical Sciences, Jilin University, No. 126, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China
| | - Yan Zhang
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chunyan Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, No. 126, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China.
| |
Collapse
|
10
|
Tissue Inhibitor of Metalloproteases 3 (TIMP-3): In Vivo Analysis Underpins Its Role as a Master Regulator of Ectodomain Shedding. MEMBRANES 2022; 12:membranes12020211. [PMID: 35207132 PMCID: PMC8878240 DOI: 10.3390/membranes12020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/06/2023]
Abstract
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, especially the disintegrin metalloproteases (ADAMs) and the membrane-type matrix metalloproteases (MT-MMPs), which are considered to be canonical sheddases for their membrane-anchored topology and for the large number of proteins that they can release. The unique ability of TIMP-3 to inhibit different families of metalloproteases, including the canonical sheddases (ADAMs and MT-MMPs), renders it a master regulator of ectodomain shedding. This review provides an overview of the different functions of TIMP-3 in health and disease, with a major focus on the functional consequences in vivo related to its ability to control ectodomain shedding. Furthermore, herein we describe a collection of mass spectrometry-based approaches that have been used in recent years to identify new functions of sheddases and TIMP-3. These methods may be used in the future to elucidate the pathological mechanisms triggered by the Sorsby’s fundus dystrophy variants of TIMP-3 or to identify proteins released by less well characterized TIMP-3 target sheddases whose substrate repertoire is still limited, thus providing novel insights into the physiological and pathological functions of the inhibitor.
Collapse
|
11
|
Endothelial ADAM17 Expression in the Progression of Kidney Injury in an Obese Mouse Model of Pre-Diabetes. Int J Mol Sci 2021; 23:ijms23010221. [PMID: 35008648 PMCID: PMC8745741 DOI: 10.3390/ijms23010221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Disintegrin and metalloproteinase domain 17 (ADAM17) activates inflammatory and fibrotic processes through the shedding of various molecules such as Tumor Necrosis Factor-α (TNF-α) or Transforming Growht Factor-α (TGF-α). There is a well-recognised link between TNF-α, obesity, inflammation, and diabetes. In physiological situations, ADAM17 is expressed mainly in the distal tubular cell while, in renal damage, its expression increases throughout the kidney including the endothelium. The aim of this study was to characterize, for the first time, an experimental mouse model fed a high-fat diet (HFD) with a specific deletion of Adam17 in endothelial cells and to analyse the effects on different renal structures. Endothelial Adam17 knockout male mice and their controls were fed a high-fat diet, to induce obesity, or standard rodent chow, for 22 weeks. Glucose tolerance, urinary albumin-to-creatinine ratio, renal histology, macrophage infiltration, and galectin-3 levels were evaluated. Results showed that obese mice presented higher blood glucose levels, dysregulated glucose homeostasis, and higher body weight compared to control mice. In addition, obese wild-type mice presented an increased albumin-to-creatinine ratio; greater glomerular size and mesangial matrix expansion; and tubular fibrosis with increased galectin-3 expression. Adam17 deletion decreased the albumin-to-creatinine ratio, glomerular mesangial index, and tubular galectin-3 expression. Moreover, macrophage infiltration in the glomeruli of obese Adam17 knockout mice was reduced as compared to obese wild-type mice. In conclusion, the expression of ADAM17 in endothelial cells impacted renal inflammation, modulating the renal function and histology in an obese pre-diabetic mouse model.
Collapse
|
12
|
Maharjan BR, McLennan SV, Yee C, Twigg SM, Williams PF. The Effect of a Sustained High-Fat Diet on the Metabolism of White and Brown Adipose Tissue and Its Impact on Insulin Resistance: A Selected Time Point Cross-Sectional Study. Int J Mol Sci 2021; 22:ijms222413639. [PMID: 34948432 PMCID: PMC8706763 DOI: 10.3390/ijms222413639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
(1) Background: studies on the long-term dynamic changes in fat depot metabolism in response to a high-fat diet (HFD) on hepatic lipid deposition and insulin resistance are sparse. This study investigated the dynamic changes produced by HFD and the production of dysfunctional fat depots on insulin resistance and liver lipid metabolism. (2) Methods: mice fed a chow or HFD (45% kcal fat) diet had three fat depots, liver, and blood collected at 6, 10, 20, and 30 weeks. Anthropometric changes and gene markers for adipogenesis, thermogenesis, ECM remodeling, inflammation, and tissue insulin resistance were measured. (3) Results: early responses to the HFD were increased body weight, minor deposition of lipid in liver, increased adipocyte size, and adipogenesis. Later changes were dysfunctional adipose depots, increased liver fat, insulin resistance (shown by changes in ITT) accompanied by increased inflammatory markers, increased fibrosis (fibrosis > 2-fold, p < 0.05 from week 6), and the presence of crown cells in white fat depots. Later, changes did not increase thermogenic markers in response to the increased calories and decreased UCP1 and PRDM16 proteins in WAT. (4) Conclusions: HFD feeding initially increased adipocyte diameter and number, but later changes caused adipose depots to become dysfunctional, restricting adipose tissue expansion, changing the brown/beige ratios in adipose depots, and causing ectopic lipid deposition and insulin resistance.
Collapse
Affiliation(s)
- Babu Raja Maharjan
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (S.V.M.); (C.Y.); (S.M.T.)
- Department of Biochemistry, School of Medicine, Patan Academy of Health Sciences, Lalitpur 44700, Nepal
- Correspondence: (B.R.M.); (P.F.W.); Tel.: +61-2-8627-1889 (B.R.M.)
| | - Susan V. McLennan
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (S.V.M.); (C.Y.); (S.M.T.)
- New South Wales Health Pathology, Sydney, NSW 2050, Australia
| | - Christine Yee
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (S.V.M.); (C.Y.); (S.M.T.)
| | - Stephen M. Twigg
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (S.V.M.); (C.Y.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2006, Australia
| | - Paul F. Williams
- Greg Brown Diabetes & Endocrinology Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (S.V.M.); (C.Y.); (S.M.T.)
- Correspondence: (B.R.M.); (P.F.W.); Tel.: +61-2-8627-1889 (B.R.M.)
| |
Collapse
|
13
|
Ruggiero AD, Key CCC, Kavanagh K. Adipose Tissue Macrophage Polarization in Healthy and Unhealthy Obesity. Front Nutr 2021; 8:625331. [PMID: 33681276 PMCID: PMC7925825 DOI: 10.3389/fnut.2021.625331] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over 650 million adults are obese (body mass index ≥ 30 kg/m2) worldwide. Obesity is commonly associated with several comorbidities, including cardiovascular disease and type II diabetes. However, compiled estimates suggest that from 5 to 40% of obese individuals do not experience metabolic or cardiovascular complications. The existence of the metabolically unhealthy obese (MUO) and the metabolically healthy obese (MHO) phenotypes suggests that underlying differences exist in both tissues and overall systemic function. Macrophage accumulation in white adipose tissue (AT) in obesity is typically associated with insulin resistance. However, as plastic cells, macrophages respond to stimuli in their microenvironments, altering their polarization between pro- and anti-inflammatory phenotypes, depending on the state of their surroundings. The dichotomous nature of MHO and MUO clinical phenotypes suggests that differences in white AT function dictate local inflammatory responses by driving changes in macrophage subtypes. As obesity requires extensive AT expansion, we posit that remodeling capacity with adipose expansion potentiates favorable macrophage profiles in MHO as compared with MUO individuals. In this review, we discuss how differences in adipogenesis, AT extracellular matrix deposition and breakdown, and AT angiogenesis perpetuate altered AT macrophage profiles in MUO compared with MHO. We discuss how non-autonomous effects of remote organ systems, including the liver, gastrointestinal tract, and cardiovascular system, interact with white adipose favorably in MHO. Preferential AT macrophage profiles in MHO stem from sustained AT function and improved overall fitness and systemic health.
Collapse
Affiliation(s)
- Alistaire D Ruggiero
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Chia-Chi Chuang Key
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kylie Kavanagh
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.,Department of Biomedicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
14
|
Ma L, Li H, Hu J, Zheng J, Zhou J, Botchlett R, Matthews D, Zeng T, Chen L, Xiao X, Athrey G, Threadgill D, Li Q, Glaser S, Francis H, Meng F, Li Q, Alpini G, Wu C. Indole Alleviates Diet-Induced Hepatic Steatosis and Inflammation in a Manner Involving Myeloid Cell 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3. Hepatology 2020; 72:1191-1203. [PMID: 31953865 PMCID: PMC7365739 DOI: 10.1002/hep.31115] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Indole is a microbiota metabolite that exerts anti-inflammatory responses. However, the relevance of indole to human non-alcoholic fatty liver disease (NAFLD) is not clear. It also remains largely unknown whether and how indole acts to protect against NAFLD. The present study sought to examine the association between the circulating levels of indole and liver fat content in human subjects and explore the mechanisms underlying indole actions in mice with diet-induced NAFLD. APPROACH AND RESULTS In a cohort of 137 subjects, the circulating levels of indole were reversely correlated with body mass index. In addition, the circulating levels of indole in obese subjects were significantly lower than those in lean subjects and were accompanied with increased liver fat content. At the whole-animal level, treatment of high-fat diet (HFD)-fed C57BL/6J mice with indole caused significant decreases in the severity of hepatic steatosis and inflammation. In cultured cells, indole treatment stimulated the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a master regulatory gene of glycolysis, and suppressed macrophage proinflammatory activation in a PFKFB3-dependent manner. Moreover, myeloid cell-specific PFKFB3 disruption exacerbated the severity of HFD-induced hepatic steatosis and inflammation and blunted the effect of indole on alleviating diet-induced NAFLD phenotype. CONCLUSIONS Taken together, our results demonstrate that indole is relevant to human NAFLD and capable of alleviating diet-induced NAFLD phenotypes in mice in a myeloid cell PFKFB3-dependent manner. Therefore, indole mimetic and/or macrophage-specific PFKFB3 activation may be the viable preventive and/or therapeutic approaches for inflammation-associated diseases including NAFLD.
Collapse
Affiliation(s)
- Linqiang Ma
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA, Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China, Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Honggui Li
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Jinbo Hu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Juan Zheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Zhou
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Rachel Botchlett
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Destiny Matthews
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Tianshu Zeng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lulu Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoqiu Xiao
- Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Giri Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - David Threadgill
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX, 76504, USA
| | - Heather Francis
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center, and Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fanyin Meng
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center, and Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China, Corresponding addresses: Chaodong Wu, MD, PhD, College Station, TX 77843, ; Gianfranco Alpini, PhD, Indianapolis, IN 46202, ; or Qifu Li, MD, PhD, Chongqing 400016, China,
| | - Gianfranco Alpini
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center, and Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202., Corresponding addresses: Chaodong Wu, MD, PhD, College Station, TX 77843, ; Gianfranco Alpini, PhD, Indianapolis, IN 46202, ; or Qifu Li, MD, PhD, Chongqing 400016, China,
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA, Corresponding addresses: Chaodong Wu, MD, PhD, College Station, TX 77843, ; Gianfranco Alpini, PhD, Indianapolis, IN 46202, ; or Qifu Li, MD, PhD, Chongqing 400016, China,
| |
Collapse
|
15
|
Wang S, Xu Z, Cai B, Chen Q. Berberine as a Potential Multi-Target Agent for Metabolic Diseases: A Review of Investigations for Berberine. Endocr Metab Immune Disord Drug Targets 2020; 21:971-979. [PMID: 32914727 DOI: 10.2174/1871530320666200910105612] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
Berberine (BBR) is a botanic alkaloid extracted from Coptis chinensis (Huanglian), which has various properties, compassing anti-hyperglycemia, anti-obesity, anti-inflammation, and improves insulin resistance, etc. Several researches have confirmed that BBR has effective actions in treating glycolipid metabolic abnormalities. BBR is also beneficial in regulating intestinal flora. Metabolic diseases are strongly associated with metabolic disorders, which are growing in the population and dramatically impacting human health, which also have been considered as a leading cause of diseases and death globally. This review is to evaluate the metabolic properties of BBR, and its potential application to the treatment of metabolic diseases by its effective actions on metabolic disorders.
Collapse
Affiliation(s)
- Shengju Wang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Zhang Xu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Baochao Cai
- Endocrinology Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
16
|
Maekawa M, Tadaki H, Tomimoto D, Okuma C, Sano R, Ishii Y, Katsuda Y, Yoshiuchi H, Kakefuda R, Ohta T, Sasase T. A Novel TNF-α Converting Enzyme (TACE) Selective Inhibitor JTP-96193 Prevents Insulin Resistance in KK-A y Type 2 Diabetic Mice and Diabetic Peripheral Neuropathy in Type 1 Diabetic Mice. Biol Pharm Bull 2020; 42:1906-1912. [PMID: 31685773 DOI: 10.1248/bpb.b19-00526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor-α (TNF-α) converting enzyme/a disintegrin and metalloproteinase domain-containing protein 17 (TACE/ADAM17) is a key sheddase that releases TNF-α from its inactive precursor and is thought as a new drug target to inhibit TNF-α production. In the present study, pharmacological effects of a novel TACE selective inhibitor, JTP-96193, on type 2 diabetes and diabetic peripheral neuropathy (DPN) as its major complication was examined. Enzyme inhibitory activity of JTP-96193 on TACE and other ADAMs was measured in in vitro. High fat-induced obese mice and type 2 diabetic KK-Ay mice were used to evaluate the effect of JTP-96193 on insulin resistance. Finally, streptozotocin (STZ)-induced diabetic mice were treated with JTP-96193 to evaluate the sciatic motor nerve conduction velocities (MNCV). JTP-96193 selectively inhibited human TACE activity with IC50 value of 5.4 nM and showed more than 1800-fold selectivity against other matrix metalloproteinases. In mouse models of obesity and diabetes, JTP-96193 reduced the TNF-α release from the fat tissue and prevented development of diabetes and improved insulin resistance, respectively. Furthermore, JTP-96193 prevented delay of sciatic MNCV without any effects on blood glucose or insulin levels in STZ-induced diabetic mice. TACE inhibitor is effective on insulin resistance and DPN independent from glucose-lowering effect. These pharmacological properties of JTP-96193 may be helpful to treat type 2 diabetes accompanied by its microvascular complications.
Collapse
Affiliation(s)
- Mariko Maekawa
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Hironobu Tadaki
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Daisuke Tomimoto
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Chihiro Okuma
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Ryuhei Sano
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Yukihito Ishii
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Yoshiaki Katsuda
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Hiromi Yoshiuchi
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Reina Kakefuda
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| | - Tomohiko Sasase
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| |
Collapse
|
17
|
Rizza S, Rossini V, Cardellini M, Luzi A, Longo S, Piciucchi G, Coppeta L, Federici M. Diabetes influences cancer risk in patients with increased carotid atherosclerosis burden. Nutr Metab Cardiovasc Dis 2020; 30:652-655. [PMID: 32007331 DOI: 10.1016/j.numecd.2019.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis and cancer share several risk factors suggesting that at least in part their pathogenesis is sustained by common mechanisms. To investigate this relation we followed a group of subjects with carotid atherosclerosis at baseline up for malignancy development. METHODS AND RESULTS we carried out an observational study exploring cancer incidence (study endpoint) in subjects with known carotid atherosclerosis at baseline (n = 766) without previous cancer or carotid vascular procedures. During the follow-up (160 ± 111 weeks) 24 cancer occurred, corresponding to an overall annual incidence rate of 0.11%. 10 diagnosis of cancer occurred in individuals with a carotid stenosis >50% (n = 90) whereas 14 in patients with a carotid stenosis <50% patients (n = 676) (p < 0.001). Respect to patients without cancer, diabetes was markedly more common in subjects with cancer diagnosis during the FU (37.3%vs75.0%, p < 0.001). After controlling for classic risk factors, carotid stenosis >50% (HR = 2.831, 95%CI = 1.034-5.714; p = 0.036) and diabetes (HR = 4.831, 95%CI = 1.506-15.501; p = 0.008) remained significantly associated with cancer diagnosis. CONCLUSIONS to our knowledge this is the first study reporting a significant risk of cancer development in subjects with diabetes and high risk of cerebrovascular events, highlighting the need of a carefully clinical screening for cancer in diabetic patients with overt carotid atherosclerosis.
Collapse
Affiliation(s)
- Stefano Rizza
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Valerio Rossini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marina Cardellini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessio Luzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Longo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giacomo Piciucchi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca Coppeta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
18
|
Santamaria S. ADAMTS-5: A difficult teenager turning 20. Int J Exp Pathol 2020; 101:4-20. [PMID: 32219922 DOI: 10.1111/iep.12344] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/28/2019] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
A Disintegrin And Metalloproteinase with ThromboSpondin motif (ADAMTS)-5 was identified in 1999 as one of the enzymes responsible for cleaving aggrecan, the major proteoglycan in articular cartilage. Studies in vitro, ex vivo and in vivo have validated ADAMTS-5 as a target in osteoarthritis (OA), a disease characterized by extensive degradation of aggrecan. For this reason, it attracted the interest of many research groups aiming to develop a therapeutic treatment for OA patients. However, ADAMTS-5 proteoglycanase activity is not only involved in the dysregulated aggrecan proteolysis, which occurs in OA, but also in the physiological turnover of other related proteoglycans. In particular, versican, a major ADAMTS-5 substrate, plays an important structural role in heart and blood vessels and its proteolytic processing by ADAMTS-5 must be tightly regulated. On the occasion of the 20th anniversary of the discovery of ADAMTS-5, this review looks at the evidence for its detrimental role in OA, as well as its physiological turnover of cardiovascular proteoglycans. Moreover, the other potential functions of this enzyme are highlighted. Finally, challenges and emerging trends in ADAMTS-5 research are discussed.
Collapse
|
19
|
Rai GP, Baird SK. Tissue inhibitor of matrix metalloproteinase-3 has both anti-metastatic and anti-tumourigenic properties. Clin Exp Metastasis 2020; 37:69-76. [PMID: 31894441 DOI: 10.1007/s10585-019-10017-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
TIMP-3 is one of four tissue inhibitors of matrix metalloproteinases, the endogenous inhibitors of the matrix metalloproteinase enzymes. These enzymes have an important role in metastasis, in the invasion of cancer cells through the basement membrane and extracellular matrix. TIMP-1, -2 and -4 both promote and inhibit tumour development, in a context-dependent manner, however TIMP-3 is consistently anti-tumourigenic. TIMP-3 is also the only insoluble member of the family, being either bound to the extracellular matrix or the low density lipoprotein-related protein-1, through which it can be endocytosed. Levels of TIMP-3 have also been shown to be regulated by micro RNAs and promoter hypermethylation, resulting in frequent silencing in many tumour types, to the extent that its expression has been suggested as a prognostic marker in some tumours, being associated with lower levels of metastasis, or better response to treatment. TIMP-3 has been shown to have anti-metastatic effects, both through inhibition of matrix metalloproteinases and ADAM family members and downregulation of angiogenesis. This occurs via interactions with receptors including VEGF, via modulation of signaling pathways and due to protease inhibition. TIMP-3 has also been shown to reduce tumour growth rate, most often by inducing apoptosis by stabilisation of death receptors. A number of successful mechanisms of delivery of TIMP-3 to tumour or inflammatory sites have been investigated in vitro or in animal studies. It may therefore be worthwhile further exploring the use of TIMP-3 as a potential anti-metastatic or anti-tumorigenic therapy for many tumour types.
Collapse
Affiliation(s)
- Geetanjali P Rai
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Sarah K Baird
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
20
|
Casagrande V, Mauriello A, Anemona L, Mavilio M, Iuliani G, De Angelis L, D'Onofrio M, Arisi I, Federici M, Menghini R. Timp3 deficiency affects the progression of DEN-related hepatocellular carcinoma during diet-induced obesity in mice. Acta Diabetol 2019; 56:1265-1274. [PMID: 31292722 DOI: 10.1007/s00592-019-01382-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/15/2019] [Indexed: 12/19/2022]
Abstract
AIM Obesity and low-grade inflammation are associated with an increased risk of hepatocellular carcinoma (HCC), a leading cause of cancer-related death worldwide. The tissue inhibitor of metalloproteinase (TIMP) 3, an endogenous inhibitor of protease activity that represents a key mediator of inflammation, is reduced in inflammatory metabolic disorders and cancer. In contrast, Timp3-deficient mice (Timp3-/-) are highly resistant to developing HCC in response to a diethylnitrosamine (DEN); therefore, we aimed to elucidate the biological role of genetic loss of Timp3 in obesity-related hepatocarcinogenesis. METHODS Fourteen-day-old male wild-type (wt) and Timp3-/- mice were injected with 25 mg/kg DEN or an equal volume of saline. After 4 weeks, mice were randomized into two dietary groups and fed either normal or high-fat diet and allowed to grow until 32 weeks of age. Liver histological features were analyzed, and differentially expressed genes in the liver were quantified. RESULTS In Timp3-/- mice fed with the obesogenic diet, despite the increase in liver steatosis and inflammation, both the number of tumors and the total tumor size are significantly reduced 30 weeks post-DEN injection, compared to control mice. Moreover, Timp3 deletion in hepatocarcinogenesis during obesity is associated with a reduction in FoxM1 transcriptional activity through H19/miR-675/p53 pathway. CONCLUSIONS This study suggests that Timp3 ablation leads to cell cycle perturbation, at least in part by repressing FoxM1 transcriptional activity through H19/miR-675/p53 pathway.
Collapse
Affiliation(s)
- Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
- Research Unit of Diabetes and Endocrine Diseases and 2 Unit of Biostatistics, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
- Unit of Biostatistics, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Alessandro Mauriello
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Lucia Anemona
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Giulia Iuliani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Lorenzo De Angelis
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Mara D'Onofrio
- European Brain Research Institute (EBRI) "Rita Levi-Montalcini", 00161, Rome, Italy
- Institute of Translational Pharmacology (IFT), CNR, 00133, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute (EBRI) "Rita Levi-Montalcini", 00161, Rome, Italy
- Institute of Translational Pharmacology (IFT), CNR, 00133, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
21
|
Ruiz-Ojeda FJ, Méndez-Gutiérrez A, Aguilera CM, Plaza-Díaz J. Extracellular Matrix Remodeling of Adipose Tissue in Obesity and Metabolic Diseases. Int J Mol Sci 2019; 20:ijms20194888. [PMID: 31581657 PMCID: PMC6801592 DOI: 10.3390/ijms20194888] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is a network of different proteins and proteoglycans that controls differentiation, migration, repair, survival, and development, and it seems that its remodeling is required for healthy adipose tissue expansion. Obesity drives an excessive lipid accumulation in adipocytes, which provokes immune cells infiltration, fibrosis (an excess of deposition of ECM components such as collagens, elastin, and fibronectin) and inflammation, considered a consequence of local hypoxia, and ultimately insulin resistance. To understand the mechanism of this process is a challenge to treat the metabolic diseases. This review is focused at identifying the putative role of ECM in adipose tissue, describing its structure and components, its main tissue receptors, and how it is affected in obesity, and subsequently the importance of an appropriate ECM remodeling in adipose tissue expansion to prevent metabolic diseases.
Collapse
Affiliation(s)
- Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- RG Adipocytes and metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany.
| | - Andrea Méndez-Gutiérrez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Concepción María Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
| |
Collapse
|
22
|
Zhou J, Li H, Cai Y, Ma L, Matthews D, Lu B, Zhu B, Chen Y, Qian X, Xiao X, Li Q, Guo S, Huo Y, Zhao L, Tian Y, Li Q, Wu C. Mice lacking adenosine 2A receptor reveal increased severity of MCD-induced NASH. J Endocrinol 2019; 243:JOE-19-0198.R1. [PMID: 31505462 PMCID: PMC7050433 DOI: 10.1530/joe-19-0198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
Adenosine 2A receptor (A2AR) exerts a protective role in obesity-related non-alcoholic fatty liver disease. Here, we examined whether A2AR protects against non-alcoholic steatohepatitis (NASH). In C57BL/6J mice, feeding a methionine- and choline-deficient diet (MCD) resulted in significant weight loss, overt hepatic steatosis, and massive aggregation of macrophages in the liver compared with mice fed a chow diet. MCD feeding also significantly increased the numbers of A2AR-positive macrophages/Kupffer cells in liver sections although decreasing A2AR amount in liver lysates compared with chow diet feeding. Next, MCD-induced NASH phenotype was examined in A2AR-disrupted mice and control mice. Upon MCD feeding, A2AR-disruptd mice and control mice displayed comparable decreases in body weight and fat mass. However, MCD-fed A2AR-disrupted mice revealed greater liver weight and increased severity of hepatic steatosis compared with MCD-fed control mice. Moreover, A2AR-disupted mice displayed increased severity of MCD-induced liver inflammation, indicated by massive aggregation of macrophages and increased phosphorylation states of Jun-N terminal kinase (JNK) p46 and nuclear factor kappa B (NFκB) p65 and mRNA levels of tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6. In vitro, incubation with MCD-mimicking media increased lipopolysaccharide (LPS)-induced phosphorylation states of JNK p46 and/or NFκB p65 and cytokine mRNAs in control macrophages and RAW264.7 cells, but not primary hepatocytes. Additionally, MCD-mimicking media significantly increased lipopolysaccharide-induced phosphorylation states of p38 and NFκB p65 in A2AR-deficient macrophages, but insignificantly decreased lipopolysaccharide-induced phosphorylation states of JNK p46 and NFκB p65 in A2AR-deficient hepatocytes. Collectively, these results suggest that A2AR disruption exacerbates MCD-induced NASH, which is attributable to, in large part, increased inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Honggui Li
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Yuli Cai
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Department of Endocrinology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, China
| | - Linqiang Ma
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Destiny Matthews
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Bangchao Lu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Department of Geriatrics, the Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangshu 211166, USA
| | - Bilian Zhu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Department of Endocrinology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yanming Chen
- Department of Endocrinology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiaoxian Qian
- Department of Cardiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiaoqiu Xiao
- Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shaodong Guo
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Liang Zhao
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Zhu F, Wu H, Chen J, Han B, Guo Y. Dysregulation of microRNA‐181b and TIMP3 is functionally involved in the pathogenesis of diabetic nephropathy. J Cell Physiol 2019; 234:18963-18969. [PMID: 30937907 DOI: 10.1002/jcp.28536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Fu‐Xiang Zhu
- Department of Nephrology First Affiliated Hospital of Jiaxing University, Jiaxing Zhejiang China
| | - Heng‐Lan Wu
- Department of Nephrology First Affiliated Hospital of Jiaxing University, Jiaxing Zhejiang China
| | - Jian‐Xiang Chen
- Department of Nephrology First Affiliated Hospital of Jiaxing University, Jiaxing Zhejiang China
| | - Bin Han
- Department of Nephrology First Affiliated Hospital of Jiaxing University, Jiaxing Zhejiang China
| | - Yin‐Feng Guo
- Department of Nephrology First Affiliated Hospital of Jiaxing University, Jiaxing Zhejiang China
| |
Collapse
|
24
|
Liang XQ, Liang J, Zhao XF, Wang XY, Deng X. Integrated network analysis of transcriptomic and protein-protein interaction data in taurine-treated hepatic stellate cells. World J Gastroenterol 2019; 25:1067-1079. [PMID: 30862995 PMCID: PMC6406182 DOI: 10.3748/wjg.v25.i9.1067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies show that the antifibrotic mechanism of taurine may involve its inhibition of the activation and proliferation of hepatic stellate cells (HSCs). Since the molecular mechanism of taurine-mediated antifibrotic activity has not been fully unveiled and is little studied, it is imperative to use “omics” methods to systematically investigate the molecular mechanism by which taurine inhibits liver fibrosis.
AIM To establish a network including transcriptomic and protein-protein interaction data to elucidate the molecular mechanism of taurine-induced HSC apoptosis.
METHODS We used microarrays, bioinformatics, protein-protein interaction (PPI) network, and sub-modules to investigate taurine-induced changes in gene expression in human HSCs (LX-2). Subsequently, all of the differentially expressed genes (DEGs) were subjected to gene ontology function and Kyoto encyclopedia of genes and genomes pathway enrichment analysis. Furthermore, the interactions of DEGs were explored in a human PPI network, and sub-modules of the DEGs interaction network were analyzed using Cytoscape software.
RESULTS A total of 635 DEGs were identified in taurine-treated HSCs when compared with the controls. Of these, 304 genes were statistically significantly up-regulated, and 331 down-regulated. Most of these DEGs were mainly located on the membrane and extracellular region, and are involved in the biological processes of signal transduction, cell proliferation, positive regulation of extracellular regulated protein kinases 1 (ERK1) and ERK2 cascade, extrinsic apoptotic signaling pathway and so on. Fifteen significantly enriched pathways with DEGs were identified, including mitogen-activated protein kinase (MAPK) signaling pathway, peroxisome proliferators-activated receptor signaling pathway, estrogen signaling pathway, Th1 and Th2 cell differentiation, cyclic adenosine monophosphate signaling pathway and so on. By integrating the transcriptomics and human PPI data, nine critical genes, including MMP2, MMP9, MMP21, TIMP3, KLF10, CX3CR1, TGFB1, VEGFB, and EGF, were identified in the PPI network analysis.
CONCLUSION Taurine promotes the apoptosis of HSCs via up-regulating TGFB1 and then activating the p38 MAPK-JNK-Caspase9/8/3 pathway. These findings enhance the understanding of the molecular mechanism of taurine-induced HSC apoptosis and provide references for liver disorder therapy.
Collapse
Affiliation(s)
- Xing-Qiu Liang
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Jian Liang
- College of Medical, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Fang Zhao
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Xin-Yuan Wang
- School of Basic Sciences, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| | - Xin Deng
- School of Basic Sciences, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
25
|
Pei Y, Li H, Cai Y, Zhou J, Luo X, Ma L, McDaniel K, Zeng T, Chen Y, Qian X, Huo Y, Glaser S, Meng F, Alpini G, Chen L, Wu C. Regulation of adipose tissue inflammation by adenosine 2A receptor in obese mice. J Endocrinol 2018; 239:365-376. [PMID: 30400017 PMCID: PMC6226050 DOI: 10.1530/joe-18-0169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/25/2022]
Abstract
Adenosine 2A receptor (A2AR) exerts anti-inflammatory effects. However, the role of A2AR in obesity-associated adipose tissue inflammation remains to be elucidated. The present study examined the expression of A2AR in adipose tissue of mice with diet-induced obesity and determined the effect of A2AR disruption on the status of obesity-associated adipose tissue inflammation. WT C57BL/6J mice and A2AR-disrupted mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity and adipose tissue inflammation. In vitro, bone marrow-derived macrophages from A2AR-disrupted mice and WT control mice were treated with palmitate and examined for macrophage proinflammatory activation. Compared with that of low-fat diet (LFD)-fed WT mice, A2AR expression in adipose tissue of HFD-fed WT mice was increased significantly and was present predominantly in adipose tissue macrophages. The increase in adipose tissue A2AR expression in HFD-fed mice was accompanied with increased phosphorylation states of c-Jun N-terminal kinase 1 p46 and nuclear factor kappa B p65 and mRNA levels of interleukin (Il)-1beta, Il6 and tumor necrosis factor alpha. In A2AR-disrupted mice, HFD feeding induced significant increases in adipose tissue inflammation, indicated by enhanced proinflammatory signaling and increased proinflammatory cytokine expression, and adipose tissue insulin resistance, indicated by a decrease in insulin-stimulated Akt phosphorylation relative to those in WT mice. Lastly, A2AR disruption enhanced palmitate-induced macrophage proinflammatory activation. Taken together, these results suggest that A2AR plays a protective role in obesity-associated adipose tissue inflammation, which is attributable to, in large part, A2AR suppression of macrophage proinflammatory activation.
Collapse
Affiliation(s)
- Ya Pei
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Honggui Li
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Yuli Cai
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Zhou
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Xianjun Luo
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Linqiang Ma
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Department of Medical Physiology, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanming Chen
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Department of Medical Physiology, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Department of Medical Physiology, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Department of Medical Physiology, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
26
|
Jiang X, Jiang L, Shan A, Su Y, Cheng Y, Song D, Ji H, Ning G, Wang W, Cao Y. Targeting hepatic miR-221/222 for therapeutic intervention of nonalcoholic steatohepatitis in mice. EBioMedicine 2018; 37:307-321. [PMID: 30316865 PMCID: PMC6284352 DOI: 10.1016/j.ebiom.2018.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Effective targeting therapies for common chronic liver disease nonalcoholic steatohepatitis (NASH) are in urgent need. MicroRNA-targeted therapeutics would be potentially an effective treatment strategy of hepatic diseases. Here we investigated the functional role of miR-221/222 and the therapeutic effects of antimiRs-221/222 in NASH mouse models. Methods We generated the miR-221/222flox/flox mice on a C57BL/6 J background and the hepatic miR-221/222 knockout (miR-221/222-LKO) mice. The mice were challenged with the methionine and choline deficient diet (MCDD) or chronic carbon tetrachloride (CCl4) treatment to generate experimental steatohepatitis models. Adenovirus-mediated re-expression of miR-221/222 was performed on the MCDD-fed miR-221/222-LKO mice. The MCDD and control diet-fed mice were treated with locked nucleic acid (LNA)-based antimiRs of miR-221/222 to evaluate the therapeutic effects. Histological analysis, RNA-seq, quantitative PCR and Western blot of liver tissues were carried out to study the hepatic lipid accumulation, inflammation and collagen deposition in mouse models. Findings Hepatic deletion of miR-221/222 resulted in significant reduction of liver fibrosis, lipid deposition and inflammatory infiltration in the MCDD-fed and CCl4-treated mouse models. The hepatic steatosis and fibrosis were dramatically aggravated by miR-221/222 re-expression in MCDD-fed miR-221/222-LKO mice. AntimiRs of miR-221/222 could effectively reduce the MCDD-mediated hepatic steatosis and fibrosis. Systematically mechanistic study revealed that hepatic miR-221/222 controlled the expression of target gene Timp3 and promoted the progression of NASH. Interpretation Our findings demonstrate that miR-221/222 are crucial for the regulation of lipid metabolism, inflammation and fibrosis in the liver. LNA-antimiRs targeted miR-221/222 could reduce steatohepatitis with prominent antifibrotic effect in NASH mice. Fund This work is supported by the Natural Science Foundation of China (81530020, 81390352 to Dr. Ning and 81522032 to Dr. Cao and 81670793 to Dr. Jiang); National Key Research and Development Program (No. 2016YFC0905001 and 2017YFC0909703 to Dr. Cao); the Shanghai Rising-Star Program (15QA1402900 to Dr. Cao); Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant (20171905 to Dr. Jiang).
Collapse
Affiliation(s)
- Xiuli Jiang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Lei Jiang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Aijing Shan
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Yutong Su
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Yulong Cheng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Dalong Song
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - He Ji
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China; Laboratory of Endocrinology and Metabolism, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China.
| | - Weiqing Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China.
| | - Yanan Cao
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
27
|
Mortezaee K. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and liver fibrosis: A review. Cell Biochem Funct 2018; 36:292-302. [PMID: 30028028 DOI: 10.1002/cbf.3351] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are key producer of reactive oxygen species in liver cells. Hepatic stellate cells (HSCs) and Kupffer cells (KCs) are the two key cells for expression of NOX in liver. KCs produce only NOX2, while HSCs produce NOX1, 2, and 4, all of which play essential roles in the process of fibrogenesis within liver. These NOX subtypes are contributed to induction of liver fibrosis by acting through multiple pathways including induction of HSC activation, proliferation, survival and migration, stimulation of hepatocyte apoptosis, enhancement of fibrogenic mediators, and mediation of an inflammatory cascade in both KCs and HSCs. SIGNIFICANCE KCs and HSCs are two key cells for production of NOX in liver in relation to the pathology of liver fibrosis. NOX subtypes 1, 2, and 4 are inducers of fibrogenesis in liver. NOX activation favors hepatocyte apoptosis, HSC activation, and KC-mediated inflammatory cascade in liver, all of which are responsible for generation of liver fibrosis.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
28
|
Cai Y, Li H, Liu M, Pei Y, Zheng J, Zhou J, Luo X, Huang W, Ma L, Yang Q, Guo S, Xiao X, Li Q, Zeng T, Meng F, Francis H, Glaser S, Chen L, Huo Y, Alpini G, Wu C. Disruption of adenosine 2A receptor exacerbates NAFLD through increasing inflammatory responses and SREBP1c activity. Hepatology 2018; 68:48-61. [PMID: 29315766 PMCID: PMC6033664 DOI: 10.1002/hep.29777] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/15/2017] [Accepted: 12/29/2018] [Indexed: 01/04/2023]
Abstract
UNLABELLED Adenosine 2A receptor (A2A R) exerts protective roles in endotoxin- and/or ischemia-induced tissue damage. However, the role for A2A R in nonalcoholic fatty liver disease (NAFLD) remains largely unknown. We sought to examine the effects of global and/or myeloid cell-specific A2A R disruption on the aspects of obesity-associated NAFLD and to elucidate the underlying mechanisms. Global and/or myeloid cell-specific A2A R-disrupted mice and control mice were fed a high-fat diet (HFD) to induce NAFLD. In addition, bone marrow-derived macrophages and primary mouse hepatocytes were examined for inflammatory and metabolic responses. Upon feeding an HFD, both global A2A R-disrupted mice and myeloid cell-specific A2A R-defcient mice revealed increased severity of HFD-induced hepatic steatosis and inflammation compared with their respective control mice. In in vitro experiments, A2A R-deficient macrophages exhibited increased proinflammatory responses, and enhanced fat deposition of wild-type primary hepatocytes in macrophage-hepatocyte cocultures. In primary hepatocytes, A2A R deficiency increased the proinflammatory responses and enhanced the effect of palmitate on stimulating fat deposition. Moreover, A2A R deficiency significantly increased the abundance of sterol regulatory element-binding protein 1c (SREBP1c) in livers of fasted mice and in hepatocytes upon nutrient deprivation. In the absence of A2A R, SREBP1c transcription activity was significantly increased in mouse hepatocytes. CONCLUSION Taken together, our results demonstrate that disruption of A2A R in both macrophage and hepatocytes accounts for increased severity of NAFLD, likely through increasing inflammation and through elevating lipogenic events due to stimulation of SREBP1c expression and transcription activity. (Hepatology 2018;68:48-61).
Collapse
Affiliation(s)
- Yuli Cai
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA,Department of Endocrinology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, China
| | - Honggui Li
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Mengyang Liu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Ya Pei
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Juan Zheng
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA,Department of Endocrinology, Union Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jing Zhou
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Xianjun Luo
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenya Huang
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Linqiang Ma
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA,Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qiuhua Yang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA,Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shaodong Guo
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoqiu Xiao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Texas A&M University College of Medicine, Temple, TX 76504, USA,Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX 76504, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Texas A&M University College of Medicine, Temple, TX 76504, USA,Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX 76504, USA
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Texas A&M University College of Medicine, Temple, TX 76504, USA,Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX 76504, USA
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA,Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Texas A&M University College of Medicine, Temple, TX 76504, USA,Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX 76504, USA,Contact information: Chaodong Wu, MD, PhD, College Station, TX 77843, Fax: 979 458 3129, ; or Gianfranco Alpini, PhD, Temple, TX 76504, ; Tel: 254 743 1041
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA,Contact information: Chaodong Wu, MD, PhD, College Station, TX 77843, Fax: 979 458 3129, ; or Gianfranco Alpini, PhD, Temple, TX 76504, ; Tel: 254 743 1041
| |
Collapse
|
29
|
Zhu T, Hu X, Wei P, Shan G. Molecular background of the regional lymph node metastasis of gastric cancer. Oncol Lett 2018; 15:3409-3414. [PMID: 29556271 DOI: 10.3892/ol.2018.7813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the deadliest types of cancer in the world. Lymph node (LN) metastasis is a complex and malignant behavior of GC, involving a sequence of biological processes, including decreased adherence to adjacent cells, extracellular matrix (ECM) degradation and lymphatic channel permeation. LN metastasis is directly associated with the treatment response, local recurrence and long-term survival of patients with GC. Therefore, the molecular mechanisms of LN metastasis in GC development require further investigation. Recently, a large number of clinical studies have focused on the molecular mechanisms and biological markers of tumor invasion and metastasis. However, few articles have broadly summarized LN metastasis in GC, and the molecular mechanisms of LN metastasis are not yet fully understood. In the present review, the molecular mechanisms of LN metastasis in GC will be discussed, including the following aspects: Cell adhesion and movement, ECM degradation, new vessel formation, and molecular pattern differences between metastatic LNs and the primary tumor. This review may lead to a better understanding of LN metastasis in GC, and the identification of new diagnostic markers.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Xueqian Hu
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| | - Pinkang Wei
- Department of Traditional Chinese Medicine, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Guangzhi Shan
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
30
|
Chen HJ, Liu J. Actein ameliorates hepatic steatosis and fibrosis in high fat diet-induced NAFLD by regulation of insulin and leptin resistant. Biomed Pharmacother 2017; 97:1386-1396. [PMID: 29156528 DOI: 10.1016/j.biopha.2017.09.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/03/2017] [Accepted: 09/18/2017] [Indexed: 02/05/2023] Open
Abstract
Insulin and leptin resistance are highly involved in metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Presently, no approved treatment is available. Actein is isolated from the rthizomes of Cimicifuga foetida, a triterpene glycoside, exhibiting important biological properties, such as anti-inflammatory, anti-cancer, and anti-oxidant activity. However, its effects on metabolic syndrome are poorly understood. The aims of the study were mainly to investigate the molecular mechanisms regulating insulin and leptin resistance, and lipogenic action of actein in high fat diet-fed mice. Our data indicated that actein-treated mice displayed lower body weight, epididymal and subcutaneous fat mass, as well as serum lipid levels. Also, improved insulin and leptin resistance were observed in actein-treated groups. Liver inflammation and fibrosis triggered by high fat diet were decreased for actein administration. Moreover, hepatic lipid accumulation was also reduced by actein along with reductions of hepatic de novo lipogenesis-linked signals in actein-treated rodents with high fat diet. High fat diet-induced activation of insulin receptor substrate 1/Forkhead box protein O1 (IRS1/FOXO1), Janus kinase 2 gene/signal transducer and activator of transcription (JAK2/STAT3) and Protein Kinase B/Glycogen synthase kinase 3 beta (AKT/GSK3β) pathways in liver was inhibited by actein, a potential mechanism by which hyperinsulinemia, hyperleptindemia and dyslipidemia were attenuated. Thus, the findings above might be of nutritional and therapeutic importance for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hong-Jun Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
31
|
Hepatocyte specific TIMP3 expression prevents diet dependent fatty liver disease and hepatocellular carcinoma. Sci Rep 2017; 7:6747. [PMID: 28751722 PMCID: PMC5532242 DOI: 10.1038/s41598-017-06439-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of conditions, ranging from non-progressive bland steatosis to hepatocarcinoma. Tissue inhibitor of metalloproteinase 3 (Timp3) has a role in the pathogenesis of fatty liver disease associated with obesity and is silenced during metabolic disorders and liver cancer. We generated an hepatocyte-specific TIMP3 'gain-of-function' mouse model under the control of the Albumin promoter (AlbT3) and investigated its effects during high-fat diet (HFD). After 16 weeks of HFD, TIMP3 overexpression significantly improved glucose metabolism, hepatic fatty acid oxidation and cholesterol homeostasis. In AlbT3 mice CYP7A1, MDR3 and MRP2 gene expressions were observed, consistent with higher bile acid synthesis and export. Next, to evaluate the role of A Disintegrin and Metalloproteinase 17 (ADAM17), a crucial target of TIMP3, in these processes, we created mice deficient in Adam17 specifically in hepatocyte (A17LKO) or in myeloid lineage (A17MKO), founding that only A17LKO showed improvement in liver steatosis induced by HFD. Moreover, both, AlbT3 and A17LKO significantly reduced diethylnitrosamine-initiated, HFD-promoted hepatic tumorigenesis assessed by tumor multiplicity and total tumor area. Taken together, these data indicate that hepatic TIMP3 can slow progression of NAFLD, and tumorigenesis, at least in part, through the regulation of ADAM17 activity.
Collapse
|
32
|
Sakamuri SSVP, Watts R, Takawale A, Wang X, Hernandez-Anzaldo S, Bahitham W, Fernandez-Patron C, Lehner R, Kassiri Z. Absence of Tissue Inhibitor of Metalloproteinase-4 (TIMP4) ameliorates high fat diet-induced obesity in mice due to defective lipid absorption. Sci Rep 2017; 7:6210. [PMID: 28740132 PMCID: PMC5524827 DOI: 10.1038/s41598-017-05951-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/07/2017] [Indexed: 01/09/2023] Open
Abstract
Tissue inhibitor of metalloproteases (TIMPs) are inhibitors of matrix metalloproteinases (MMPs) that regulate tissue extracellular matrix (ECM) turnover. TIMP4 is highly expressed in adipose tissue, its levels are further elevated following high-fat diet, but its role in obesity is unknown. Eight-week old wild-type (WT) and Timp4-knockout (Timp4 -/-) mice received chow or high fat diet (HFD) for twelve weeks. Timp4 -/- mice exhibited a higher food intake but lower body fat gain. Adipose tissue of Timp4 -/- -HFD mice showed reduced hypertrophy and fibrosis compared to WT-HFD mice. Timp4 -/- -HFD mice were also protected from HFD-induced liver and skeletal muscle triglyceride accumulation and dyslipidemia. Timp4 -/--HFD mice exhibited reduced basic metabolic rate and energy expenditure, but increased respiratory exchange ratio. Increased free fatty acid excretion was detected in Timp4 -/--HFD compared to WT-HFD mice. CD36 protein, the major fatty acid transporter in the small intestine, increased with HFD in WT but not in Timp4 -/- mice, despite a similar rise in Cd36 mRNA in both genotypes. Consistently, HFD increased enterocyte lipid content only in WT but not in Timp4 -/- mice. Our study reveals that absence of TIMP4 can impair lipid absorption and the high fat diet-induced obesity in mice possibly by regulating the proteolytic processing of CD36 protein in the intestinal enterocytes.
Collapse
Affiliation(s)
- Siva S V P Sakamuri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Abhijit Takawale
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xiuhua Wang
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Samuel Hernandez-Anzaldo
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wesam Bahitham
- Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
33
|
Lai KKY, Kweon SM, Chi F, Hwang E, Kabe Y, Higashiyama R, Qin L, Yan R, Wu RP, Lai K, Fujii N, French S, Xu J, Wang JY, Murali R, Mishra L, Lee JS, Ntambi JM, Tsukamoto H. Stearoyl-CoA Desaturase Promotes Liver Fibrosis and Tumor Development in Mice via a Wnt Positive-Signaling Loop by Stabilization of Low-Density Lipoprotein-Receptor-Related Proteins 5 and 6. Gastroenterology 2017; 152:1477-1491. [PMID: 28143772 PMCID: PMC5406249 DOI: 10.1053/j.gastro.2017.01.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Stearoyl-CoA desaturase (SCD) synthesizes monounsaturated fatty acids (MUFAs) and has been associated with the development of metabolic syndrome, tumorigenesis, and stem cell characteristics. We investigated whether and how SCD promotes liver fibrosis and tumor development in mice. METHODS Rodent primary hepatic stellate cells (HSCs), mouse liver tumor-initiating stem cell-like cells (TICs), and human hepatocellular carcinoma (HCC) cell lines were exposed to Wnt signaling inhibitors and changes in gene expression patterns were analyzed. We assessed the functions of SCD by pharmacologic and conditional genetic manipulation in mice with hepatotoxic or cholestatic induction of liver fibrosis, orthotopic transplants of TICs, or liver tumors induced by administration of diethyl nitrosamine. We performed bioinformatic analyses of SCD expression in HCC vs nontumor liver samples collected from patients, and correlated levels with HCC stage and patient mortality. We performed nano-bead pull-down assays, liquid chromatography-mass spectrometry, computational modeling, and ribonucleoprotein immunoprecipitation analyses to identify MUFA-interacting proteins. We examined the effects of SCD inhibition on Wnt signaling, including the expression and stability of low-density lipoprotein-receptor-related proteins 5 and 6 (LRP5 and LRP6), by immunoblot and quantitative polymerase chain reaction analyses. RESULTS SCD was overexpressed in activated HSC and HCC cells from patients; levels of SCD messenger RNA (mRNA) correlated with HCC stage and patient survival time. In rodent HSCs and TICs, the Wnt effector β-catenin increased sterol regulatory element binding protein 1-dependent transcription of Scd, and β-catenin in return was stabilized by MUFAs generated by SCD. This loop required MUFA inhibition of binding of Ras-related nuclear protein 1 (Ran1) to transportin 1 and reduced nuclear import of elav-like protein 1 (HuR), increasing cytosolic levels of HuR and HuR-mediated stabilization of mRNAs encoding LRP5 and LRP6. Genetic disruption of Scd and pharmacologic inhibitors of SCD reduced HSC activation and TIC self-renewal and attenuated liver fibrosis and tumorigenesis in mice. Conditional disruption of Scd2 in activated HSCs prevented growth of tumors from TICs and reduced the formation of diethyl nitrosamine-induced liver tumors in mice. CONCLUSIONS In rodent HSCs and TICs, we found SCD expression to be regulated by Wnt-β-catenin signaling, and MUFAs produced by SCD provided a forward loop to amplify Wnt signaling via stabilization of Lrp5 and Lrp6 mRNAs, contributing to liver fibrosis and tumor growth. SCD expressed by HSCs promoted liver tumor development in mice. Components of the identified loop linking HSCs and TICs might be therapeutic targets for liver fibrosis and tumors.
Collapse
Affiliation(s)
- Keane K Y Lai
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Soo-Mi Kweon
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Feng Chi
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Edward Hwang
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Reiichi Higashiyama
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Lan Qin
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Rui Yan
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Raymond P Wu
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Keith Lai
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Samuel French
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California; Harbor-University of California Los Angeles Medical Center, Torrance, California
| | - Jun Xu
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California
| | - Jian-Ying Wang
- Departments of Surgery and Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ramachandran Murali
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lopa Mishra
- Department of Surgery and Cancer Center, George Washington University, Washington, District of Columbia
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Los Angeles, California; Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, California.
| |
Collapse
|
34
|
Dhar-Mascareno M, Rozenberg I, Iqbal J, Hussain MM, Beckles D, Mascareno E. Hexim1 heterozygosity stabilizes atherosclerotic plaque and decreased steatosis in ApoE null mice fed atherogenic diet. Int J Biochem Cell Biol 2017; 83:56-64. [PMID: 28013147 DOI: 10.1016/j.biocel.2016.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/13/2023]
Abstract
Hexim-1 is an inhibitor of RNA polymerase II transcription elongation. Decreased Hexim-1 expression in animal models of chronic diseases such as left ventricular hypertrophy, obesity and cancer triggered significant changes in adaptation and remodeling. The main aim of this study was to evaluate the role of Hexim1 in lipid metabolism focused in the progression of atherosclerosis and steatosis. We used the C57BL6 apolipoprotein E (ApoE null) crossed bred to C57BL6Hexim1 heterozygous mice to obtain ApoE null - Hexim1 heterozygous mice (ApoE-HT). Both ApoE null backgrounds were fed high fat diet for twelve weeks. Then, we evaluated lipid metabolism, atherosclerotic plaque formation and liver steatosis. In order to understand changes in the transcriptome of both backgrounds during the progression of steatosis, we performed Affymetrix mouse 430 2.0 microarray. After 12 weeks of HFD, ApoE null and ApoE-HT showed similar increase of cholesterol and triglycerides in plasma. Plaque composition was altered in ApoE-HT. Additionally, liver triglycerides and steatosis were decreased in ApoE-HT mice. Affymetrix analysis revealed that decreased steatosis might be due to impaired inducible SOCS3 expression in ApoE-HT mice. In conclusion, decreased Hexim-1 expression does not alter cholesterol metabolism in ApoE null background after HFD. However, it promotes stable atherosclerotic plaque and decreased steatosis by promoting the anti-inflammatory TGFβ pathway and blocking the expression of the inducible and pro-inflammatory expression of SOCS3 respectively.
Collapse
Affiliation(s)
- Manya Dhar-Mascareno
- Department of Biological Sciences, State University of New York, College at Old Westbury, Old Westbury, New York 11568, USA
| | - Inna Rozenberg
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Jahangir Iqbal
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - M Mahmood Hussain
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Daniel Beckles
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA; Departments of Surgery, Medicine and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Eduardo Mascareno
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA.
| |
Collapse
|
35
|
Bauters D, Spincemaille P, Geys L, Cassiman D, Vermeersch P, Bedossa P, Scroyen I, Lijnen HR. ADAMTS5 deficiency protects against non-alcoholic steatohepatitis in obesity. Liver Int 2016; 36:1848-1859. [PMID: 27254774 DOI: 10.1111/liv.13181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Increased prevalence of obesity is paralleled by an increase in non-alcoholic steatohepatitis (NASH). We previously found that the expression of ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin type 1 motifs; member 5) is enhanced in expanding adipose tissue. However, no information is available on a potential role in liver pathology. We studied the effect of ADAMTS5 deficiency on NASH in mice. METHODS Wild-type (Adamts5+/+ ) and deficient (Adamts5-/- ) mice were kept on a standard- or high-fat diet (HFD) for 15 weeks. Alternatively, steatohepatitis was induced with methionine/choline-deficient (MCD) diet. RESULTS HFD feeding resulted in comparable body weights for both genotypes, but Adamts5-/- mice had approximately 40% lower liver weight (P = 0.0004). In the Adamts5-/- mice, the HFD as well as the MCD diet consistently induced less NASH with less fibrosis. The deteriorating effect of ADAMTS5 on the liver during diet-induced obesity may be due, at least in part, to proteolytic cleavage of the matrix components syndecan-1 and versican, thereby enhancing hepatic triglyceride clearance from the circulation. Plasma lipid levels were elevated in obese Adamts5-/- mice. There was no clear effect of ADAMTS5 deficiency on glycaemia or glucose tolerance, whereas insulin sensitivity was somewhat improved. Furthermore, Adamts5-/- mice were protected from hepatic mitochondrial dysfunction, as indicated by increased mitochondrial respiratory chain complex activity, higher ATP levels and higher expression of antioxidant enzymes. CONCLUSIONS Absence of ADAMTS5 preserves liver integrity in a diet-induced obesity model. Selective targeting of ADAMTS5 could provide a new therapeutic strategy for treatment/prevention of NASH.
Collapse
Affiliation(s)
- Dries Bauters
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Pieter Spincemaille
- Lab of Hepatology, University of Leuven, Leuven, Belgium.,Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Lotte Geys
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Pierre Bedossa
- Department of Pathology, Hôpital Beaujon, Clichy, France
| | - Ilse Scroyen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Henri R Lijnen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Mavilio M, Marchetti V, Fabrizi M, Stöhr R, Marino A, Casagrande V, Fiorentino L, Cardellini M, Kappel B, Monteleone I, Garret C, Mauriello A, Monteleone G, Farcomeni A, Burcelin R, Menghini R, Federici M. A Role for Timp3 in Microbiota-Driven Hepatic Steatosis and Metabolic Dysfunction. Cell Rep 2016; 16:731-43. [PMID: 27373162 DOI: 10.1016/j.celrep.2016.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/23/2016] [Accepted: 06/03/2016] [Indexed: 01/09/2023] Open
Abstract
The effect of gut microbiota on obesity and insulin resistance is now recognized, but the underlying host-dependent mechanisms remain poorly undefined. We find that tissue inhibitor of metalloproteinase 3 knockout (Timp3(-/-)) mice fed a high-fat diet exhibit gut microbiota dysbiosis, an increase in branched chain and aromatic (BCAA) metabolites, liver steatosis, and an increase in circulating soluble IL-6 receptors (sIL6Rs). sIL6Rs can then activate inflammatory cells, such as CD11c(+) cells, which drive metabolic inflammation. Depleting the microbiota through antibiotic treatment significantly improves glucose tolerance, hepatic steatosis, and systemic inflammation, and neutralizing sIL6R signaling reduces inflammation, but only mildly impacts glucose tolerance. Collectively, our results suggest that gut microbiota is the primary driver of the observed metabolic dysfunction, which is mediated, in part, through IL-6 signaling. Our findings also identify an important role for Timp3 in mediating the effect of the microbiota in metabolic diseases.
Collapse
Affiliation(s)
- Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valentina Marchetti
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marta Fabrizi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; Research Unit for Multi-Factorial Diseases, Obesity and Diabetes Scientific Directorate, Bambino Gesù Children Hospital, 00146 Rome, Italy
| | - Robert Stöhr
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany
| | - Arianna Marino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Loredana Fiorentino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marina Cardellini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ben Kappel
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00173 Rome, Italy
| | - Celine Garret
- INSERM U1048, Université Paul Sabatier, IMC, 31432 Toulouse, France
| | - Alessandro Mauriello
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00173 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessio Farcomeni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy
| | - Remy Burcelin
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
37
|
Serum microRNA panels as potential biomarkers for early detection of hepatocellular carcinoma on top of HCV infection. Tumour Biol 2016; 37:12273-12286. [PMID: 27271989 DOI: 10.1007/s13277-016-5097-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/22/2016] [Indexed: 12/22/2022] Open
Abstract
The identification of new high-sensitivity and high-specificity markers for hepatocellular carcinoma (HCC) is essential. We aimed at identifying serum microRNAs (miRNAs) as potential biomarkers for early detection of HCC on top hepatitis C virus (HCV) infection. We investigated serum expression of 13 miRNAs in 384 patients with HCV-related chronic liver disease (192 with HCC, 96 with liver cirrhosis (LC), and 96 with chronic hepatitis C (CHC)) in addition to 96 healthy participants enrolled as a control group. The miRNA expression was performed using real-time quantitative PCR-based SYBR Green custom miRNA arrays. The area under the receiver operating characteristic curve (AUC) was used to evaluate the diagnostic performance of miRNA panels for early detection of HCC. Using miRNA panel of miR-122, miR-885-5p, and miR-29b with alpha fetoprotein (AFP) provided high diagnostic accuracy (AUC = 1) for early detection of HCC in normal population while using miRNA panel of miR-122, miR-885-5p, miR-221, and miR-22 with AFP provided high diagnostic accuracy (AUC = 0.982) for early detection of HCC in LC patients. However, using miRNA panel of miR-22 and miR-199a-3p with AFP provided high diagnostic accuracy (AUC = 0.988) for early detection of HCC in CHC patients. We identified serum miRNA panels that could have a considerable clinical use in early detection of HCC in both normal population and high-risk patients.
Collapse
|
38
|
Microenvironmental Control of Adipocyte Fate and Function. Trends Cell Biol 2016; 26:745-755. [PMID: 27268909 DOI: 10.1016/j.tcb.2016.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
The properties of tissue-specific microenvironments vary widely in the human body and demonstrably influence the structure and function of many cell types. Adipocytes are no exception, responding to cues in specialized niches to perform vital metabolic and endocrine functions. The adipose microenvironment is remodeled during tissue expansion to maintain the structural and functional integrity of the tissue and disrupted remodeling in obesity contributes to the progression of metabolic syndrome, breast cancer, and other malignancies. The increasing incidence of these obesity-related diseases and the recent focus on improved in vitro models of human tissue biology underscore growing interest in the regulatory role of adipocyte microenvironments in health and disease.
Collapse
|
39
|
Lin D, Chun TH, Kang L. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol 2016; 119:8-16. [PMID: 27179976 DOI: 10.1016/j.bcp.2016.05.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- De Lin
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | - Tae-Hwa Chun
- Division of Metabolism, Endocrinology & Diabetes (MEND), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Li Kang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
40
|
Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution. PLoS One 2016; 11:e0151736. [PMID: 26998606 PMCID: PMC4801190 DOI: 10.1371/journal.pone.0151736] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/03/2016] [Indexed: 12/25/2022] Open
Abstract
Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies.
Collapse
|
41
|
Berberine Ameliorates Hepatic Steatosis and Suppresses Liver and Adipose Tissue Inflammation in Mice with Diet-induced Obesity. Sci Rep 2016; 6:22612. [PMID: 26936230 PMCID: PMC4776174 DOI: 10.1038/srep22612] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence demonstrates that berberine (BBR) is beneficial for obesity-associated non-alcoholic fatty liver disease (NAFLD). However, it remains to be elucidated how BBR improves aspects of NAFLD. Here we revealed an AMP-activated protein kinase (AMPK)-independent mechanism for BBR to suppress obesity-associated inflammation and improve hepatic steatosis. In C57BL/6J mice fed a high-fat diet (HFD), treatment with BBR decreased inflammation in both the liver and adipose tissue as indicated by reduction of the phosphorylation state of JNK1 and the mRNA levels of proinflammatory cytokines. BBR treatment also decreased hepatic steatosis, as well as the expression of acetyl-CoA carboxylase and fatty acid synthase. Interestingly, treatment with BBR did not significantly alter the phosphorylation state of AMPK in both the liver and adipose tissue of HFD-fed mice. Consistently, BBR treatment significantly decreased the phosphorylation state of JNK1 in both hepatoma H4IIE cells and mouse primary hepatocytes in both dose-dependent and time-dependent manners, which was independent of AMPK phosphorylation. BBR treatment also caused a decrease in palmitate-induced fat deposition in primary mouse hepatocytes. Taken together, these results suggest that BBR actions on improving aspects of NAFLD are largely attributable to BBR suppression of inflammation, which is independent of AMPK.
Collapse
|
42
|
Balbaa M, El-Zeftawy M, Ghareeb D, Taha N, Mandour AW. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2492107. [PMID: 27579151 PMCID: PMC4989085 DOI: 10.1155/2016/2492107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/20/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
The black cumin (Nigella sativa) "NS" or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO) in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride) and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.
Collapse
Affiliation(s)
- Mahmoud Balbaa
- 1Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- *Mahmoud Balbaa:
| | - Marwa El-Zeftawy
- 2Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa Ghareeb
- 1Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Nabil Taha
- 2Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Abdel Wahab Mandour
- 2Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
43
|
Adissu HA, McKerlie C, Di Grappa M, Waterhouse P, Xu Q, Fang H, Khokha R, Wood GA. Timp3 loss accelerates tumour invasion and increases prostate inflammation in a mouse model of prostate cancer. Prostate 2015; 75:1831-43. [PMID: 26332574 DOI: 10.1002/pros.23056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Altered expression and activity of proteases is implicated in inflammation and cancer progression. An important negative regulator of protease activity is TIMP3 (tissue inhibitor of metalloproteinase 3). TIMP3 expression is lacking in many cancers including advanced prostate cancer, and this may facilitate invasion and metastasis by allowing unrestrained protease activity. METHODS To investigate the role of TIMP3 in prostate cancer progression, we crossed TIMP3-deficient mice (Timp3(-/-)) to mice with prostate-specific deletion of the tumor suppressor Pten (Pten(-/-)), a well-established mouse model of prostate cancer. Tumor growth and progression were compared between Pten(-/-), Timp3(-/-) and control (Pten(-/-), Timp3(+/+)) mice at 16 weeks of age by histopathology and markers of proliferation, vascularity, and tumor invasion. Metalloproteinase activity within the tumors was assessed by gelatin zymography. Inflammatory infiltrates were assessed by immunohistochemistry for macrophages and lymphocytes whereas expression of cytokines and other inflammatory mediators was assessed by quantitative real time PCR and multiplex ELISA. RESULTS Increased tumor growth, proliferation index, increased microvascular density, and invasion was observed in Pten(-/-), Timp3(-/-) prostate tumors compared to Pten(-/-), Timp3(+/+) tumors. Tumor cell invasion in Pten(-/-), Timp3(-/-) mice was associated with increased expression of matrix metalloprotease (MMP)-9 and activation of MMP-2. There was markedly increased inflammatory cell infiltration into the TIMP3-deficient prostate tumors along with increased expression of monocyte chemoattractant protein-1, cyclooxygenase-2, TNF-α, and interleukin-1β; all of which are implicated in inflammation and cancer. CONCLUSIONS This study provides important insights into the role of altered protease activity in promoting prostate cancer invasion and implicates prostate inflammation as an important promoting factor in prostate cancer progression.
Collapse
Affiliation(s)
- Hibret A Adissu
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
- Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto 1 King's College Circle, Toronto, Ontario, Canada
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Colin McKerlie
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
- Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto 1 King's College Circle, Toronto, Ontario, Canada
| | - Marco Di Grappa
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Paul Waterhouse
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Qiang Xu
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
| | - Hui Fang
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
44
|
Stöhr R, Kappel BA, Carnevale D, Cavalera M, Mavilio M, Arisi I, Fardella V, Cifelli G, Casagrande V, Rizza S, Cattaneo A, Mauriello A, Menghini R, Lembo G, Federici M. TIMP3 interplays with apelin to regulate cardiovascular metabolism in hypercholesterolemic mice. Mol Metab 2015; 4:741-52. [PMID: 26500845 PMCID: PMC4588459 DOI: 10.1016/j.molmet.2015.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Tissue inhibitor of metalloproteinase 3 (TIMP3) is an extracellular matrix (ECM) bound protein, which has been shown to be downregulated in human subjects and experimental models with cardiometabolic disorders, including type 2 diabetes mellitus, hypertension and atherosclerosis. The aim of this study was to investigate the effects of TIMP3 on cardiac energy homeostasis during increased metabolic stress conditions. METHODS ApoE(-/-)TIMP3(-/-) and ApoE(-/-) mice on a C57BL/6 background were subjected to telemetric ECG analysis and experimental myocardial infarction as models of cardiac stress induction. We used Western blot, qRT-PCR, histology, metabolomics, RNA-sequencing and in vivo phenotypical analysis to investigate the molecular mechanisms of altered cardiac energy metabolism. RESULTS ApoE(-/-)TIMP3(-/-) revealed decreased lifespan. Telemetric ECG analysis showed increased arrhythmic episodes, and experimental myocardial infarction by left anterior descending artery (LAD) ligation resulted in increased peri-operative mortality together with increased scar formation, ventricular dilatation and a reduction of cardiac function after 4 weeks in the few survivors. Hearts of ApoE(-/-)TIMP3(-/-) exhibited accumulation of neutral lipids when fed a chow diet, which was exacerbated by a high fat, high cholesterol diet. Metabolomics analysis revealed an increase in circulating markers of oxidative stress with a reduction in long chain fatty acids. Using whole heart mRNA sequencing, we identified apelin as a putative modulator of these metabolic defects. Apelin is a regulator of fatty acid oxidation, and we found a reduction in the levels of enzymes involved in fatty acid oxidation in the left ventricle of ApoE(-/-)TIMP3(-/-) mice. Injection of apelin restored the hitherto identified metabolic defects of lipid oxidation. CONCLUSION TIMP3 regulates lipid metabolism as well as oxidative stress response via apelin. These findings therefore suggest that TIMP3 maintains metabolic flexibility in the heart, particularly during episodes of increased cardiac stress.
Collapse
Affiliation(s)
- Robert Stöhr
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ben Arpad Kappel
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Michele Cavalera
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ivan Arisi
- Genomics Facility, European Brain Research Institute, Rome, Italy
| | - Valentina Fardella
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Giuseppe Cifelli
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Rizza
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Alessandro Mauriello
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Center for Atherosclerosis, Department of Medicine, Policlinico Tor Vergata, 00133 Rome, Italy
- Corresponding author. Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy. Tel.: +39 06 72596889; fax: +39 06 72596890.
| |
Collapse
|
45
|
Williams AS, Kang L, Wasserman DH. The extracellular matrix and insulin resistance. Trends Endocrinol Metab 2015; 26:357-66. [PMID: 26059707 PMCID: PMC4490038 DOI: 10.1016/j.tem.2015.05.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a highly-dynamic compartment that undergoes remodeling as a result of injury and repair. Over the past decade, mounting evidence in humans and rodents suggests that ECM remodeling is associated with diet-induced insulin resistance in several metabolic tissues. In addition, integrin receptors for the ECM have also been implicated in the regulation of insulin action. This review addresses what is currently known about the ECM, integrins, and insulin action in the muscle, liver, and adipose tissue. Understanding how ECM remodeling and integrin signaling regulate insulin action may aid in the development of new therapeutic targets for the treatment of insulin resistance and type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Ashley S Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Li Kang
- Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
46
|
Yu JL, Lv P, Han J, Zhu X, Hong LL, Zhu WY, Wang XB, Wu YC, Li P, Ling ZQ. Methylated TIMP-3 DNA in body fluids is an independent prognostic factor for gastric cancer. Arch Pathol Lab Med 2015; 138:1466-73. [PMID: 25357107 DOI: 10.5858/arpa.2013-0285-oa] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CONTEXT Fluid methylated DNA may be a suitable biomarker for cancer patients. OBJECTIVE To investigate whether circulating methylated tissue inhibitor of metalloproteinase 3 (TIMP-3) DNA in body fluids is a useful prognostic biomarker in gastric cancer (GC). DESIGN TIMP-3 methylation was detected by real-time methylation-specific polymerase chain reaction in tumor tissues, paired preoperative peritoneal washes (PPWs), and paired serum samples from 92 GC patients. RESULTS The frequency of TIMP-3 methylation was significantly elevated in GC tissues (63.04%; 58 of 92) compared with that in paired adjacent normal tissue (4.3%; 4 of 92) (P < .001). TIMP-3 methylation correlated closely with peritoneal metastasis and TNM stage (all P < .001). The frequency of TIMP-3 methylation in preoperative peritoneal washes and serum samples was 53.3% (49 of 92) and 58.7% (54 of 92), respectively. The Aζ values of the receiver operator characteristic curve for methylated TIMP-3 were 0.966 and 0.922 for serum and preoperative peritoneal washes, respectively, compared with those in GC tissues. The patients with elevated methylated TIMP-3 levels in body fluids had poorer disease-free survival rates than those without (all P < .001). Cox regression analysis showed that detection of methylated TIMP-3 DNA in body fluids was an independent risk factor for GC patients, with a remarkable decrease in disease-free survival 30 months after surgical resection of the gastric tumor. CONCLUSION Presence of methylated TIMP-3 DNA in body fluids is a useful biomarker for predicting the progression and prognosis of GC patients.
Collapse
Affiliation(s)
- Jiang-Liu Yu
- From the Zhejiang Cancer Research Institute (Drs Yu, Han, X. Zhu, Wu, Hong, and Ling) and the Department of Surgical Oncology (Dr Wang), Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China; the Department of Surgical Oncology (Dr Lv) and the Central Laboratory (Dr W-Y Zhu), Zhoushan Hospital, Zhoushan, China; and the Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China (Dr Li)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 2014; 7:193-203. [PMID: 24713275 PMCID: PMC3917240 DOI: 10.1242/dmm.012062] [Citation(s) in RCA: 392] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis--a debilitating condition that can occur in most organs - is characterized by excess deposition of a collagen-rich extracellular matrix (ECM). At first sight, the activities of proteinases that can degrade matrix, such as matrix metalloproteinases (MMPs), might be expected to be under-expressed in fibrosis or, if present, could function to resolve the excess matrix. However, as we review here, some MMPs are indeed anti-fibrotic, whereas others can have pro-fibrotic functions. MMPs modulate a range of biological processes, especially processes related to immunity and tissue repair and/or remodeling. Although we do not yet know precisely how MMPs function during fibrosis--that is, the protein substrate or substrates that an individual MMP acts on to effect a specific process--experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover. Rather, data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.
Collapse
|
48
|
TIMP3 controls cell fate to confer hepatocellular carcinoma resistance. Oncogene 2014; 34:4098-108. [PMID: 25347747 DOI: 10.1038/onc.2014.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Inflammation enables human cancers and is a critical promoter of hepatocellular carcinoma (HCC). TIMP3 (Tissue inhibitor of metalloproteinase 3), a natural metalloproteinase inhibitor, controls cytokine and growth factor bioavailability to keep inflammation in check and regulate cell survival in the liver. TIMP3 is also found silenced in human cancers. We therefore tested whether Timp3 affects HCC predisposition. Remarkably, genetic loss of Timp3 protected from carcinogen-induced HCC through the immediate engagement of several tumor suppressor pathways, while tumor necrosis factor (TNF) signaling was dispensable for this protection. All wild-type mice developed HCC by 12 months, whereas HCC incidence was reduced to 33% at 12 months and 57% at 15 months in Timp3 null mice. Upon acute carcinogen treatment the deficient livers exhibited greater cytokine expression, but lower cell death and higher hepatocyte senescence. We found that precocious activation of p53, p38 and Notch preceded senescence and hepatic cell differentiation, and these events were conserved throughout tumorigenesis. Timp3-deficient mouse embryo fibroblasts also responded to carcinogen by favoring senescence over apoptosis. We conclude that Timp3 status determines p53, p38 and Notch coactivation to instruct hepatic cell fate and transformation and uncover mechanisms that are protective even within a pro-inflammatory microenvironment.
Collapse
|
49
|
Matsui Y, Tomaru U, Miyoshi A, Ito T, Fukaya S, Miyoshi H, Atsumi T, Ishizu A. Overexpression of TNF-α converting enzyme promotes adipose tissue inflammation and fibrosis induced by high fat diet. Exp Mol Pathol 2014; 97:354-8. [PMID: 25236578 DOI: 10.1016/j.yexmp.2014.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Obesity is a state in which chronic low-grade inflammation persists in adipose tissues. Pro-inflammatory cytokines, including TNF-α, produced by adipose tissues have been implicated as active participants in the development of obesity-related diseases. Since TNF-α converting enzyme (TACE) is the major factor that induces soluble TNF-α, TACE has been noted as a pivotal regulator in this field. To reveal the role of TACE in adipose tissue inflammation, TACE-transgenic (TACE-Tg) and wild type (WT) mice were fed with high fat diet (HFD) or control diet for 16 weeks. At 13 weeks after the beginning of the diet, serum TNF-α and macrophage-related cytokine/chemokine levels were elevated in TACE-Tg mice fed with HFD (Tg-HFD mice), and the number of the so-called crown-like adipocyte was significantly increased in adipose tissues of Tg-HFD mice at the end of the experiment. Although macrophage infiltration was not detected in the adipose tissues at this time, fibrosis was observed around the crown-like adipocytes. These findings suggested that TACE overexpression induced macrophage infiltration and subsequent fibrosis in adipose tissues under HFD regimen. The collective evidence suggested that TACE could be a therapeutic target of HFD-induced obesity-related adipose tissue inflammation.
Collapse
Affiliation(s)
- Yuki Matsui
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Arina Miyoshi
- Department of Internal Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoki Ito
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinji Fukaya
- Department of Internal Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideaki Miyoshi
- Department of Internal Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Internal Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akihiro Ishizu
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
50
|
Tsai HT, Hsieh MJ, Chiou HL, Lee HL, Hsin MC, Liou YS, Yang CC, Yang SF, Kuo WH. TIMP-3 -1296 T>C and TIMP-4 -55 T>C gene polymorphisms play a role in the susceptibility of hepatocellular carcinoma among women. Tumour Biol 2014; 35:8999-9007. [PMID: 24903383 DOI: 10.1007/s13277-014-2170-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/29/2014] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study was to investigate genetic impact of TIMP-3 -1296 T>C (rs9619311) and TIMP-4 -55 T>C (rs3755724) gene polymorphisms on the susceptibility and clinicopathological characteristics of hepatocellular carcinoma (HCC). A total of 759 subjects, including 530 healthy controls and 229 patients with hepatocellular carcinoma, were recruited in this study. Allelic discrimination of TIMP-3 -1296 T>C (rs9619311) and TIMP-4 -55 T>C (rs3755724) polymorphisms was assessed with the ABI StepOne™ Real-Time PCR System. Among women group, individuals with TC or CC alleles of TIMP-3 -1296 T>C gene polymorphism protected against HCC (AOR = 0.35, 95% confidence interval (CI) = 0.12-0.97; p = 0.04) compared to individuals with TT alleles, after adjusting for other confounders. Also, women with TC alleles and with TC or CC alleles of TIMP-4 -55 T>C polymorphisms had a 2.52-fold risk (95%CI = 1.23-5.13; p = 0.01) and 2.47-fold risk (95%CI = 1.26-4.87; p = 0.008) of developing HCC compared to individuals with TT alleles, after adjusting for other confounders. There was no synergistic effect between gene polymorphism and environmental risk factors, including tobacco and alcohol consumptions and clinical statuses of HCC as well as serum expression of liver-related clinicopathological markers. In conclusion, gene polymorphisms of TIMP-3 -1296 T>C (rs9619311) and TIMP-4 -55 T>C (rs3755724) play a role in the susceptibility of HCC among Taiwan women.
Collapse
Affiliation(s)
- Hsiu-Ting Tsai
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|