1
|
Venglovecz V, Hegyi P. GPR30 is a potential player between islet cells and ductal HCO 3- secretion. Cell Calcium 2024; 123:102922. [PMID: 38924880 DOI: 10.1016/j.ceca.2024.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
The primary role of pancreatic ductal HCO3- secretion is to prevent premature activation of digestive enzymes and to provide a vehicle for the delivery of enzymes to the duodenum. In addition, HCO3-is responsible for the neutralization of gastric juice and protect against the formation of protein plugs and viscous mucus. Due to this multifaceted role of HCO3- in the pancreas, its altered functioning can greatly contribute to the development of various exocrine diseases. It is well known that the exocrine and endocrine pancreas interact lively with each other, but not all details of this relationship are known. An interesting finding of a recent study by Jo-Watanabe et al. is that the G protein-coupled oestrogen receptor, GPR30, which is expressed in the endocrine pancreas, can be also activated by HCO3-. This raises the possibility that ductal cells play a key role not only in the exocrine pancreas, but presumably also in endocrine function through HCO3- secretion.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary; Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Pancreatic Disorders, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Venglovecz V, Grassalkovich A, Tóth E, Ébert A, Gál E, Korsós MM, Maléth J, Rakonczay Z, Galla Z, Monostori P, Hegyi P. Restoring CFTR function with Orkambi decreases the severity of alcohol-induced acute pancreatitis. J Physiol 2024; 602:6153-6170. [PMID: 39418107 DOI: 10.1113/jp287289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Heavy alcohol intake is one of the most common causes of acute pancreatitis (AP). We have previously shown that ethanol (EtOH) decreases the expression and activity of the cystic fibrosis transmembrane conductance regulator (CFTR), which plays a key role in alcohol-induced AP development. The prescription drug, Orkambi (a combination of ivacaftor and lumacaftor) can correct impaired CFTR function and expression in cystic fibrosis (CF) patients. Thus, the present study aimed to investigate whether Orkambi can mitigate alcohol-induced AP. Intact guinea-pig pancreatic ducts were pre-treated with different concentrations of ethanol (EtOH; 30, 50 and 100 mm) for 12 h alone or in combination with ivacaftor (VX770) and/or lumacaftor (VX-809), and CFTR expression and activity were evaluated by immunostaining and by the patch clamp technique, respectively. Alcoholic AP was induced in Orkambi-treated guinea-pigs, and standard laboratory and histological parameters were measured. Ivacaftor and lumacaftor alone or in combination dose-dependently restored the apical expression and activity of CFTR after EtOH treatment in vitro. Oral administration of Orkambi reduced the severity of alcohol-induced AP and restored impaired CFTR activity and expression. Orkambi is able to restore the CFTR defect caused by EtOH and decreases the severity of alcohol-induced pancreatitis. This is the first in vivo pre-clinical evidence of Orkambi efficacy in the treatment of alcohol-induced AP. KEY POINTS: Acute pancreatitis is one of the leading causes of hospital admission among gastrointestinal diseases in which the lack of a specific drug therapy plays a crucial role. The cystic fibrosis transmembrane conductance regulator (CFTR) plays an essential role in pancreatic ductal HCO3 - secretion; inappropriate CFTR function, as seen in heavy alcohol consumption, increases the risk of pancreatitis development. CFTR modulators are able to prevent the inhibitory effect of ethanol and reduce pancreatic ductal injury and the severity of alcohol-induced pancreatitis. CFTR modulators present a novel option in the pharmacotherapy of alcohol-induced pancreatitis by enhancing pancreatic functions or preventing recurrence.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Anna Grassalkovich
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Emese Tóth
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Health Sciences, Department of Theoretical and Integrative Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Attila Ébert
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | - József Maléth
- Department of Medicine, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
- ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zsolt Galla
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - Péter Monostori
- Metabolic and Newborn Screening Laboratory, Department of Paediatrics, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Chvanov M, Voronina S, Jefferson M, Mayer U, Sutton R, Criddle DN, Wileman T, Tepikin AV. Deletion of the WD40 domain of ATG16L1 exacerbates acute pancreatitis, abolishes LAP-like non-canonical autophagy and slows trypsin degradation. Autophagy 2024:1-13. [PMID: 39216469 DOI: 10.1080/15548627.2024.2392478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The WD40 domain (WDD) of ATG16L1 plays a pivotal role in non-canonical autophagy. This study examined the role of recently identified LAP-like non-canonical autophagy (LNCA) in acute pancreatitis. LNCA involves rapid single-membrane LC3 conjugation to endocytic vacuoles in pancreatic acinar cells. The rationale for this study was the previously observed presence of trypsin in the organelles undergoing LNCA; aberrant trypsin formation is an important factor in pancreatitis development. Here we report that the deletion of WDD (attained in ATG16L1[E230] mice) eliminated LNCA, aggravated caerulein-induced acute pancreatitis and suppressed the fast trypsin degradation observed in both a rapid caerulein-induced disease model and in caerulein-treated isolated pancreatic acinar cells. These experiments indicate that LNCA is a WDD-dependent mechanism and suggest that it plays not an activating but a protective role in acute pancreatitis. Furthermore, palmitoleic acid, another inducer of experimental acute pancreatitis, strongly inhibited LNCA, suggesting a novel mechanism of pancreatic lipotoxicity.Abbreviation: AMY: amylase; AP: acute pancreatitis; CASM: conjugation of Atg8 to single membranes; CCK: cholecystokinin; FAEE model: fatty acid and ethanol model; IL6: interleukin 6; LA: linoleic acid; LAP: LC3-associated phagocytosis; LMPO: lung myeloperoxidase; LNCA: LAP-like non-canonical autophagy; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MPO: myeloperoxidase; PMPO: pancreatic myeloperoxidase; POA: palmitoleic acid; WDD: WD40 domain; WT: wild type.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Jefferson
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Robert Sutton
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - David N Criddle
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alexei V Tepikin
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Pallagi P, Tóth E, Görög M, Venglovecz V, Madácsy T, Varga Á, Molnár T, Papp N, Szabó V, Kúthy-Sutus E, Molnár R, Ördög A, Borka K, Schnúr A, Kéri A, Kajner G, Csekő K, Ritter E, Csupor D, Helyes Z, Galbács G, Szentesi A, Czakó L, Rakonczay Z, Takács T, Maléth J, Hegyi P. Heavy metals in cigarette smoke strongly inhibit pancreatic ductal function and promote development of chronic pancreatitis. Clin Transl Med 2024; 14:e1733. [PMID: 38877637 PMCID: PMC11178517 DOI: 10.1002/ctm2.1733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND AIMS Smoking is recognised as an independent risk factor in the development of chronic pancreatitis (CP). Cystic fibrosis transmembrane conductance regulator (CFTR) function and ductal fluid and bicarbonate secretion are also known to be impaired in CP, so it is crucial to understand the relationships between smoking, pancreatic ductal function and the development of CP. METHODS We measured sweat chloride (Cl-) concentrations in patients with and without CP, both smokers and non-smokers, to assess CFTR activity. Serum heavy metal levels and tissue cadmium concentrations were determined by mass spectrometry in smoking and non-smoking patients. Guinea pigs were exposed to cigarette smoke, and cigarette smoke extract (CSE) was prepared to characterise its effects on pancreatic HCO3 - and fluid secretion and CFTR function. We administered cerulein to both the smoking and non-smoking groups of mice to induce pancreatitis. RESULTS Sweat samples from smokers, both with and without CP, exhibited elevated Cl- concentrations compared to those from non-smokers, indicating a decrease in CFTR activity due to smoking. Pancreatic tissues from smokers, regardless of CP status, displayed lower CFTR expression than those from non-smokers. Serum levels of cadmium and mercury, as well as pancreatic tissue cadmium, were increased in smokers. Smoking, CSE, cadmium, mercury and nicotine all hindered fluid and HCO3 - secretion and CFTR activity in pancreatic ductal cells. These effects were mediated by sustained increases in intracellular calcium ([Ca2+]i), depletion of intracellular ATP (ATPi) and mitochondrial membrane depolarisation. CONCLUSION Smoking impairs pancreatic ductal function and contributes to the development of CP. Heavy metals, notably cadmium, play a significant role in the harmful effects of smoking. KEY POINTS Smoking and cigarette smoke extract diminish pancreatic ductal fluid and HCO3 - secretion as well as the expression and function of CFTR Cd and Hg concentrations are significantly higher in the serum samples of smokers Cd accumulates in the pancreatic tissue of smokers.
Collapse
Affiliation(s)
- Petra Pallagi
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Emese Tóth
- Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Theoretical and Integrative Health Sciences, University of Debrecen, Szeged, Hungary
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
| | - Marietta Görög
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tamara Madácsy
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Árpád Varga
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Tünde Molnár
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Noémi Papp
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Szabó
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Enikő Kúthy-Sutus
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Réka Molnár
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Andrea Schnúr
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Albert Kéri
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Gyula Kajner
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory of Drug Research and Development (Pharmalab), Budapest, Hungary
| | - Emese Ritter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory of Drug Research and Development (Pharmalab), Budapest, Hungary
| | - Dezső Csupor
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory of Drug Research and Development (Pharmalab), Budapest, Hungary
- Eötvös Loránd Research Network Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - Gábor Galbács
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Andrea Szentesi
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - László Czakó
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- Center of Translational Medicine and Institute of Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Angyal D, Kleinfelder K, Ciciriello F, Groeneweg TA, De Marchi G, de Pretis N, Bernardoni L, Rodella L, Tomba F, De Angelis P, Surace C, Pintani E, Alghisi F, de Jonge HR, Melotti P, Sorio C, Lucidi V, Bijvelds MJC, Frulloni L. CFTR function is impaired in a subset of patients with pancreatitis carrying rare CFTR variants. Pancreatology 2024; 24:394-403. [PMID: 38493004 DOI: 10.1016/j.pan.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Many affected by pancreatitis harbor rare variants of the cystic fibrosis (CF) gene, CFTR, which encodes an epithelial chloride/bicarbonate channel. We investigated CFTR function and the effect of CFTR modulator drugs in pancreatitis patients carrying CFTR variants. METHODS Next-generation sequencing was performed to identify CFTR variants. Sweat tests and nasal potential difference (NPD) assays were performed to assess CFTR function in vivo. Intestinal current measurement (ICM) was performed on rectal biopsies. Patient-derived intestinal epithelial monolayers were used to evaluate chloride and bicarbonate transport and the effects of a CFTR modulator combination: elexacaftor, tezacaftor and ivacaftor (ETI). RESULTS Of 32 pancreatitis patients carrying CFTR variants, three had CF-causing mutations on both alleles and yielded CF-typical sweat test, NPD and ICM results. Fourteen subjects showed a more modest elevation in sweat chloride levels, including three that were provisionally diagnosed with CF. ICM indicated impaired CFTR function in nine out of 17 non-CF subjects tested. This group of nine included five carrying a wild type CFTR allele. In epithelial monolayers, a reduction in CFTR-dependent chloride transport was found in six out of 14 subjects tested, whereas bicarbonate secretion was reduced in only one individual. In epithelial monolayers of four of these six subjects, ETI improved CFTR function. CONCLUSIONS CFTR function is impaired in a subset of pancreatitis patients carrying CFTR variants. Mutations outside the CFTR locus may contribute to the anion transport defect. Bioassays on patient-derived intestinal tissue and organoids can be used to detect such defects and to assess the effect of CFTR modulators.
Collapse
Affiliation(s)
- Dora Angyal
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Karina Kleinfelder
- Department of Medicine, University of Verona, Division of General Pathology, Verona, Italy
| | - Fabiana Ciciriello
- Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Tessa A Groeneweg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Giulia De Marchi
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Nicolò de Pretis
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Laura Bernardoni
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Luca Rodella
- Endoscopy Surgery Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37126, Verona, Italy
| | - Francesco Tomba
- Endoscopy Surgery Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37126, Verona, Italy
| | - Paola De Angelis
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cecilia Surace
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Emily Pintani
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Federico Alghisi
- Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Claudio Sorio
- Department of Medicine, University of Verona, Division of General Pathology, Verona, Italy
| | - Vincenzina Lucidi
- Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands.
| | - Luca Frulloni
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
6
|
Angyal D, Groeneweg TA, Leung A, Desain M, Dulla K, de Jonge HR, Bijvelds MJC. Pro-inflammatory cytokines stimulate CFTR-dependent anion secretion in pancreatic ductal epithelium. Cell Mol Biol Lett 2024; 29:18. [PMID: 38262945 PMCID: PMC10807165 DOI: 10.1186/s11658-024-00537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Loss of CFTR-dependent anion and fluid secretion in the ducts of the exocrine pancreas is thought to contribute to the development of pancreatitis, but little is known about the impact of inflammation on ductal CFTR function. Here we used adult stem cell-derived cell cultures (organoids) obtained from porcine pancreas to evaluate the effects of pro-inflammatory cytokines on CFTR function. METHODS Organoids were cultured from porcine pancreas and used to prepare ductal epithelial monolayers. Monolayers were characterized by immunocytochemistry. Epithelial bicarbonate and chloride secretion, and the effect of IL-1β, IL-6, IFN-γ, and TNF-α on CFTR function was assessed by electrophysiology. RESULTS Immunolocalization of ductal markers, including CFTR, keratin 7, and zonula occludens 1, demonstrated that organoid-derived cells formed a highly polarized epithelium. Stimulation by secretin or VIP triggered CFTR-dependent anion secretion across epithelial monolayers, whereas purinergic receptor stimulation by UTP, elicited CFTR-independent anion secretion. Most of the anion secretory response was attributable to bicarbonate transport. The combination of IL-1β, IL-6, IFN-γ, and TNF-α markedly enhanced CFTR expression and anion secretion across ductal epithelial monolayers, whereas these cytokines had little effect when tested separately. Although TNF-α triggered apoptotic signaling, epithelial barrier function was not significantly affected by cytokine exposure. CONCLUSIONS Pro-inflammatory cytokines enhance CFTR-dependent anion secretion across pancreatic ductal epithelium. We propose that up-regulation of CFTR in the early stages of the inflammatory response, may serve to promote the removal of pathogenic stimuli from the ductal tree, and limit tissue injury.
Collapse
Affiliation(s)
- Dora Angyal
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Tessa A Groeneweg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Anny Leung
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Max Desain
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Kalyan Dulla
- Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Strasse 173, 55216, Ingelheim Am Rhein, Germany
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Hu Z, Wang D, Gong J, Li Y, Ma Z, Luo T, Jia X, Shi Y, Song Z. MSCs Deliver Hypoxia-Treated Mitochondria Reprogramming Acinar Metabolism to Alleviate Severe Acute Pancreatitis Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207691. [PMID: 37409821 PMCID: PMC10477874 DOI: 10.1002/advs.202207691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/18/2023] [Indexed: 07/07/2023]
Abstract
Mitochondrial function impairment due to abnormal opening of the mitochondrial permeability transition pore (MPTP) is considered the central event in acute pancreatitis; however, therapeutic choices for this condition remain controversial. Mesenchymal stem cells (MSCs) are a family member of stem cells with immunomodulatory and anti-inflammatory capabilities that can mitigate damage in experimental pancreatitis. Here, it is shown that MSCs deliver hypoxia-treated functional mitochondria to damaged pancreatic acinar cells (PACs) via extracellular vesicles (EVs), which reverse the metabolic function of PACs, maintain ATP supply, and exhibit an excellent injury-inhibiting effect. Mechanistically, hypoxia inhibits superoxide accumulation in the mitochondria of MSCs and upregulates the membrane potential, which is internalized into PACs via EVs, thus, remodeling the metabolic state. In addition, cargocytes constructed via stem cell denucleation as mitochondrial vectors are shown to exert similar therapeutic effects to MSCs. These findings reveal an important mechanism underlying the role of mitochondria in MSC therapy and offer the possibility of applying mitochondrial therapy to patients with severe acute pancreatitis.
Collapse
Affiliation(s)
- Zhengyu Hu
- Department of Hepatopancreatobiliary SurgeryShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230032China
| | - Dongyan Wang
- Department of GastroenterologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Jian Gong
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Yan Li
- Department of GastroenterologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Zhilong Ma
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
| | - Tingyi Luo
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Xuyang Jia
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Yihai Shi
- Department of GastroenterologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Zhenshun Song
- Department of Hepatopancreatobiliary SurgeryShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| |
Collapse
|
8
|
Varga Á, Madácsy T, Görög M, Kiss A, Susánszki P, Szabó V, Jójárt B, Dudás K, Farkas G, Szederkényi E, Lázár G, Farkas A, Ayaydin F, Pallagi P, Maléth J. Human pancreatic ductal organoids with controlled polarity provide a novel ex vivo tool to study epithelial cell physiology. Cell Mol Life Sci 2023; 80:192. [PMID: 37380797 DOI: 10.1007/s00018-023-04836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023]
Abstract
Epithelial ion and fluid secretion determine the physiological functions of a broad range of organs, such as the lung, liver, or pancreas. The molecular mechanism of pancreatic ion secretion is challenging to investigate due to the limited access to functional human ductal epithelia. Patient-derived organoids may overcome these limitations, however direct accessibility of the apical membrane is not solved. In addition, due to the vectorial transport of ions and fluid the intraluminal pressure in the organoids is elevated, which may hinder the study of physiological processes. To overcome these, we developed an advanced culturing method for human pancreatic organoids based on the removal of the extracellular matrix that induced an apical-to-basal polarity switch also leading to reversed localization of proteins with polarized expression. The cells in the apical-out organoids had a cuboidal shape, whereas their resting intracellular Ca2+ concentration was more consistent compared to the cells in the apical-in organoids. Using this advanced model, we demonstrated the expression and function of two novel ion channels, the Ca2+ activated Cl- channel Anoctamin 1 (ANO1) and the epithelial Na+ channel (ENaC), which were not considered in ductal cells yet. Finally, we showed that the available functional assays, such as forskolin-induced swelling, or intracellular Cl- measurement have improved dynamic range when performed with apical-out organoids. Taken together our data suggest that polarity-switched human pancreatic ductal organoids are suitable models to expand our toolset in basic and translational research.
Collapse
Affiliation(s)
- Árpád Varga
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Tamara Madácsy
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Marietta Görög
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
| | - Aletta Kiss
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
| | - Petra Susánszki
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Szabó
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Boldizsár Jójárt
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Krisztina Dudás
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Gyula Farkas
- Department of Surgery, University of Szeged, Szeged, Hungary
| | | | - György Lázár
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - Attila Farkas
- HCEMM-USZ Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | - Ferhan Ayaydin
- HCEMM-USZ Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Szeged, Hungary.
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary.
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.
| |
Collapse
|
9
|
Gerasimenko JV, Gerasimenko OV. The role of Ca 2+ signalling in the pathology of exocrine pancreas. Cell Calcium 2023; 112:102740. [PMID: 37058923 PMCID: PMC10840512 DOI: 10.1016/j.ceca.2023.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Exocrine pancreas has been the field of many successful studies in pancreatic physiology and pathology. However, related disease - acute pancreatitis (AP) is still takes it toll with more than 100,000 related deaths worldwide per year. In spite of significant scientific progress and several human trials currently running for AP, there is still no specific treatment in the clinic. Studies of the mechanism of initiation of AP have identified two crucial conditions: sustained elevations of cytoplasmic calcium concentration (Ca2+ plateau) and significantly reduced intracellular energy (ATP depletion). These hallmarks are interdependent, i.e., Ca2+ plateau increase energy demand for its clearance while energy production is greatly affected by the pathology. Result of long standing Ca2+ plateau is destabilisation of the secretory granules and premature activation of the digestive enzymes leading to necrotic cell death. Main attempts so far to break the vicious circle of cell death have been concentrated on reduction of Ca2+ overload or reduction of ATP depletion. This review will summarise these approaches, including recent developments of potential therapies for AP.
Collapse
Affiliation(s)
- Julia V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, CF10 3AX, United Kingdom.
| | - Oleg V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, CF10 3AX, United Kingdom
| |
Collapse
|
10
|
Hegyi P, Seidler U, Kunzelmann K. CFTR-beyond the airways: Recent findings on the role of the CFTR channel in the pancreas, the intestine and the kidneys. J Cyst Fibros 2023; 22 Suppl 1:S17-S22. [PMID: 36621373 DOI: 10.1016/j.jcf.2022.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
With increased longevity of patients suffering from cystic fibrosis, and widespread lung transplantation facilities, the sequelae of defective CFTR in other organs than the airways come to the fore. This minireview highlights recent scientific progress in the understanding of CFTR function in the pancreas, the intestine and the kidney, and explores potential therapeutic strategies to combat defective CFTR function in these organs.
Collapse
Affiliation(s)
- Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; Center for Translational Medicine and Institute of Pancreatic Diseases, Semmelweis University, 1085 Budapest, Hungary; Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation, University of Szeged, 6725 Szeged, Hungary
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, 30625 Hannover, Germany.
| | - Karl Kunzelmann
- Institute of Physiology, Regensburg University, 93040 Regensburg, Germany
| |
Collapse
|
11
|
Thiopurines impair the apical plasma membrane expression of CFTR in pancreatic ductal cells via RAC1 inhibition. Cell Mol Life Sci 2023; 80:31. [PMID: 36609875 PMCID: PMC9825359 DOI: 10.1007/s00018-022-04662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS Thiopurine-induced acute pancreatitis (TIP) is one of the most common adverse events among inflammatory bowel disease patients treated with azathioprine (AZA), representing a significant clinical burden. Previous studies focused on immune-mediated processes, however, the exact pathomechanism of TIP is essentially unclear. METHODS To model TIP in vivo, we triggered cerulein-induced experimental pancreatitis in mice receiving a daily oral dose of 1.5 mg/kg AZA. Also, freshly isolated mouse pancreatic cells were exposed to AZA ex vivo, and acinar cell viability, ductal and acinar Ca2+ signaling, ductal Cl- and HCO3- secretion, as well as cystic fibrosis transmembrane conductance regulator (CFTR) expression were assessed using microscopy techniques. Ras-related C3 botulinum toxin substrate (RAC1) activity was measured with a G-LISA assay. Super-resolution microscopy was used to determine protein colocalization. RESULTS We demonstrated that AZA treatment increases tissue damage in the early phase of cerulein-induced pancreatitis in vivo. Also, both per os and ex vivo AZA exposure impaired pancreatic fluid and ductal HCO3- and Cl- secretion, but did not affect acinar cells. Furthermore, ex vivo AZA exposure also inhibited RAC1 activity in ductal cells leading to decreased co-localization of CFTR and the anchor protein ezrin, resulting in impaired plasma membrane localization of CFTR. CONCLUSIONS AZA impaired the ductal HCO3- and Cl- secretion through the inhibition of RAC1 activity leading to diminished ezrin-CFTR interaction and disturbed apical plasma membrane expression of CFTR. We report a novel direct toxic effect of AZA on pancreatic ductal cells and suggest that the restoration of ductal function might help to prevent TIP in the future.
Collapse
|
12
|
Shimosegawa T. Between early and established chronic pancreatitis: A proposal of "acinar-ductal hybrid mechanism". Pancreatology 2022; 22:831-837. [PMID: 36163223 DOI: 10.1016/j.pan.2022.09.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES The recently proposed "new mechanistic definition of chronic pancreatitis (CP)" categorized early CP as a reversible condition. However, there is no clear explanation regarding the pathological condition of early CP, the reason for the development of the disease in only a small portion of the patients with risk factors, and the mechanism for transition from a reversible pathological condition to an irreversible one. METHODS Based on the available information, a mechanism that could provide answers to the queries associated with CP was proposed. RESULTS Acinar-ductal coordination is very important for the physiological secretion of pancreatic juice. Inflammation originating from acinar cells undermines the function of proximal ducts and leads to a vicious cycle of sustained inflammation by increasing the viscosity and decreasing the alkalinity of pancreatic juice. Persistent elevation of ductal pressure due to stagnation of pancreatic juice caused by protein plugs, stones, or fibrous scar of ducts converts the reversible pathological condition of early CP to an irreversible one. Diagnostic criteria for early CP proposed by Japanese researchers have enabled to the recognition of patients showing a progression from early to established CP. However, most patients diagnosed with early CP do not experience progression of the disease, suggesting the inadequate specificity of the criteria. CONCLUSION The "acinar-ductal hybrid mechanism" may explain the pathological condition and progression of early CP. To diagnose early CP more accurately, it is essential to discover specific biomarkers that can discriminate "early CP" from "acute pancreatitis (AP)/recurrent acute pancreatitis (RAP)" and "established CP." Therapeutic intervention in clinical practices through various new approaches is expected to improve the prognosis of patients with CP.
Collapse
Affiliation(s)
- Tooru Shimosegawa
- Department of Gastroenterology, South-Miyagi Medical Center, 38-1 Aza-nishi, Ohgawara, Shibata-gun, Miyagi, 989-1253, Japan; Department of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, Miyagi, 980-8574, Japan.
| |
Collapse
|
13
|
Voronina S, Chvanov M, De Faveri F, Mayer U, Wileman T, Criddle D, Tepikin A. Autophagy, Acute Pancreatitis and the Metamorphoses of a Trypsinogen-Activating Organelle. Cells 2022; 11:cells11162514. [PMID: 36010591 PMCID: PMC9406838 DOI: 10.3390/cells11162514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Recent studies have highlighted the importance of autophagy and particularly non-canonical autophagy in the development and progression of acute pancreatitis (a frequent disease with considerable morbidity and significant mortality). An important early event in the development of acute pancreatitis is the intrapancreatic activation of trypsinogen, (i.e., formation of trypsin) leading to the autodigestion of the organ. Another prominent phenomenon associated with the initiation of this disease is vacuolisation and specifically the formation of giant endocytic vacuoles in pancreatic acinar cells. These organelles develop in acinar cells exposed to several inducers of acute pancreatitis (including taurolithocholic acid and high concentrations of secretagogues cholecystokinin and acetylcholine). Notably, early trypsinogen activation occurs in the endocytic vacuoles. These trypsinogen-activating organelles undergo activation, long-distance trafficking, and non-canonical autophagy. In this review, we will discuss the role of autophagy in acute pancreatitis and particularly focus on the recently discovered LAP-like non-canonical autophagy (LNCA) of endocytic vacuoles.
Collapse
Affiliation(s)
- Svetlana Voronina
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael Chvanov
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Francesca De Faveri
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Tom Wileman
- Quadram Institute Bioscience and Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - David Criddle
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Alexei Tepikin
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence:
| |
Collapse
|
14
|
Freeman AJ. The impact of modulator therapies on pancreatic exocrine function: The good, the bad and the potentially ugly. J Cyst Fibros 2022; 21:560-561. [PMID: 35780040 DOI: 10.1016/j.jcf.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Affiliation(s)
- A Jay Freeman
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, 1400 Tullie Road NE, Atlanta, GA 30329, United States.
| |
Collapse
|
15
|
Pallagi P, Görög M, Papp N, Madácsy T, Varga Á, Crul T, Szabó V, Molnár M, Dudás K, Grassalkovich A, Szederkényi E, Lázár G, Venglovecz V, Hegyi P, Maléth J. Bile acid- and ethanol-mediated activation of Orai1 damages pancreatic ductal secretion in acute pancreatitis. J Physiol 2022; 600:1631-1650. [PMID: 35081662 DOI: 10.1113/jp282203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sustained intracellular Ca2+ overload in pancreatic acinar and ductal cells is a hallmark of biliary and alcohol-induced acute pancreatitis, which leads to impaired ductal ion and fluid secretion. Orai1 is a plasma membrane Ca2+ channel that mediates extracellular Ca2+ influx upon endoplasmic reticulum Ca2+ depletion. Our results showed that Orai1 is expressed on the luminal plasma membrane of the ductal cells and selective Orai1 inhibition impaired Stim1-dependent extracellular Ca2+ influx evoked by bile acids or ethanol combined with non-oxidative ethanol metabolites. The prevention of sustained extracellular Ca2+ influx protected ductal cell secretory functions in in vitro models and maintained exocrine pancreatic secretion in in vivo AP models. Orai1 inhibition prevents the bile acid-, and alcohol-induced damage of the pancreatic ductal secretion and holds the potential of improving the outcome of acute pancreatitis. ABSTRACT Regardless of its etiology, sustained intracellular Ca2+ overload is a well-known hallmark of acute pancreatitis (AP). Toxic Ca2+ elevation induces pancreatic ductal cell damage characterized by impaired ion- and fluid secretion -essential to wash out the protein-rich fluid secreted by acinar cells while maintaining the alkaline intra-ductal pH under physiological conditions- and mitochondrial dysfunction. While prevention of ductal cell injury decreases the severity of AP, no specific drug target has yet been identified in the ductal cells. Although Orai1 -a store operated Ca2+ influx channel- is known to contribute to sustained Ca2+ overload in acinar cells, details concerning its expression and function in ductal cells are currently lacking. In this study, we demonstrate that functionally active Orai1 channels reside dominantly in the apical plasma membrane of pancreatic ductal cells. Selective CM5480-mediated Orai1 inhibition impairs Stim1-dependent extracellular Ca2+ influx evoked by bile acids or ethanol combined with non-oxidative ethanol metabolites. Furthermore, prevention of sustained extracellular Ca2+ influx protects ductal cell secretory function in vitro and decrease pancreatic ductal cell death. Finally, Orai1-inhibition partially restores and maintains proper exocrine pancreatic secretion in in vivo AP models. In conclusion, our results indicate that Orai1 inhibition prevents AP-related ductal cell function impairment and holds the potential of improving disease outcome. Abstract figure legend This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Petra Pallagi
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Marietta Görög
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Noémi Papp
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Tamara Madácsy
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Árpád Varga
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Tim Crul
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Viktória Szabó
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Melinda Molnár
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Krisztina Dudás
- Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | | | | | - György Lázár
- Department of Surgery, University of Szeged, Szeged
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Department of Medicine, University of Szeged, Szeged, Hungary.,Hungary Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.,Institute for Translational Medicine and First Department Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - József Maléth
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Department of Medicine, University of Szeged, Szeged, Hungary.,ELKH-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
16
|
Márta K, Gede N, Szakács Z, Solymár M, Hegyi PJ, Tél B, Erőss B, Vincze Á, Arvanitakis M, Boškoski I, Bruno MJ, Hegyi P. Combined use of indomethacin and hydration is the best conservative approach for post-ERCP pancreatitis prevention: A network meta-analysis. Pancreatology 2021; 21:1247-1255. [PMID: 34353727 DOI: 10.1016/j.pan.2021.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Post-ERCP pancreatitis (PEP) is a life-threatening complication. Given the lack of a causative treatment for pancreatitis, it is of vital importance to minimize this risk of PEP. Multi-target preventive therapy may be the best choice for PEP prevention as disease development is multifactorial. AIM We aimed to assess the efficacy of a combination of indomethacin and hydration - type and amount - for PEP prevention via a network meta-analysis. METHODS Through a systematic search in three databases, we searched all randomized controlled trials involving hydration and indomethacin and ranked the PEP preventive efficacy with a Bayesian network meta-analysis using the PRISMA for Network Meta-Analyses (PRISMA-NMA) guideline. The RoB2 tool was used for risk of bias assessment, surface under the cumulative ranking curve (SUCRA) for ranking and PROSPERO for the study protocol [reg. no. CRD42018112698]. We used risk ratios (RR) for dichotomous data with 95% credible intervals (95% CrI). RESULTS The quantitative analysis included 7559 patients from 24 randomized controlled trials. Based on the SUCRA values, a combination of lactated Ringer's and indomethacin is more effective than single therapy with a 94% certainty. The percent relative risk ratios estimate preventive efficacy 70-99% higher for combinations than single therapies. Aggressive hydration with indomethacin (SUCRA 100%) is also significantly more effective than all other interventions (percent relative effect 94.3-98.1%). CONCLUSIONS A one-hit-on-each-target therapeutic approach is recommended in PEP prevention with an easily accessible combination of indomethacin and aggressive hydration for all average and high-risk patients without contraindication.
Collapse
Affiliation(s)
- Katalin Márta
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Noémi Gede
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary; Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Szakács
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Jenő Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary; First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Bálint Tél
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary; First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Áron Vincze
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Marianna Arvanitakis
- Gastroenterology Department, Gastrointestinal Cancer Unit, Erasme Hospital University, Brussels, Belgium
| | - Ivo Boškoski
- Centre for Endoscopic Research Therapeutics and Training (CERTT), Università Cattolica del Sacro Cuore, Italy
| | - Marco J Bruno
- Department of Gastroenterology & Hepatology, Erasmus Medical Center, University Medical Center Rotterdam, the Netherlands
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
17
|
Fűr G, Bálint ER, Orján EM, Balla Z, Kormányos ES, Czira B, Szűcs A, Kovács DP, Pallagi P, Maléth J, Venglovecz V, Hegyi P, Kiss L, Rakonczay Z. Mislocalization of CFTR expression in acute pancreatitis and the beneficial effect of VX-661 + VX-770 treatment on disease severity. J Physiol 2021; 599:4955-4971. [PMID: 34587656 DOI: 10.1113/jp281765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) has an essential role in maintaining pancreatic ductal function. Impaired CFTR function can trigger acute pancreatitis (AP) and exacerbate disease severity. We aimed to investigate the localization and expression of CFTR during AP, and determined the effects of a CFTR corrector (VX-661) and potentiator (VX-770) on disease severity. AP was induced in FVB/n mice by 6-10 hourly intraperitoneal injections of 50 μg/kg cerulein. Some mice were pre-treated with five to six daily injections of 2 mg/kg VX-661 + VX-770. Control animals were administered physiological saline instead of cerulein and dimethyl sulfoxide instead of VX compounds. AP severity was determined by measuring laboratory and histological parameters; CFTR and CK19 expression was measured. Activity of ion transporters was followed by intracellular pH or fluid secretion measurement of isolated pancreatic intra-/interlobular ducts. Cerulein-induced AP severity was greatest between 12 and 24 h. CFTR mRNA expression was significantly increased 24 h after AP induction. Immunohistochemistry demonstrated disturbed staining morphology of CFTR and CK19 proteins in AP. Mislocalization of CFTR protein was observed from 6 h, while expression increased at 24 h compared to control. Ductal HCO3 - transport activity was significantly increased 6 h after AP induction. AP mice pre-treatment with VX-661 + VX-770 significantly reduced the extent of tissue damage by about 20-30%, but other parameters were unchanged. Interestingly, VX-661 + VX-770 in vitro administration significantly increased the fluid secretion of ducts derived from AP animals. This study described the course of the CFTR expression and mislocalization in cerulein-induced AP. Our results suggest that the beneficial effects of CFTR correctors and potentiators should be further investigated in AP. KEY POINTS: Cystic fibrosis transmembrane conductance regulator (CFTR) is an important ion channel in epithelial cells. Its malfunction has several serious consequences, like developing or aggravating acute pancreatitis (AP). Here, the localization and expression of CFTR during cerulein-induced AP in mice were investigated and the effects of CFTR corrector (VX-661) and a potentiator (VX-770) on disease severity were determined. CFTR mRNA expression was significantly increased and mislocalization of CFTR protein was observed in AP compared to the control group. Interestingly, pre-treatment of AP mice with VX-661 + VX-770 significantly reduced the extent of pancreatic tissue damage by 20-30%. In vitro administration of VX-661 + VX-770 significantly increased the fluid secretion of ducts derived from AP animals. Based on these results, the utilization of CFTR correctors and potentiators should be further investigated in AP.
Collapse
Affiliation(s)
- Gabriella Fűr
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Emese Réka Bálint
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Erik Márk Orján
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | | | - Beáta Czira
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Attila Szűcs
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | | | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine and First Department of Medicine, University of Pécs, Pécs, Hungary.,Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Lóránd Kiss
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
Genetic Risk Factors in Early-Onset Nonalcoholic Chronic Pancreatitis: An Update. Genes (Basel) 2021; 12:genes12050785. [PMID: 34065437 PMCID: PMC8160726 DOI: 10.3390/genes12050785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic pancreatitis (CP) is a progressive, irreversible inflammatory disorder of the pancreas, which results from interrelations between different genetic and environmental factors. Genetic variants are the primary cause of the disease in early-onset nonalcoholic CP patients. Novel CP-associated genes are continuously emerging from genetic studies on CP cohorts, providing important clues for distinct mechanisms involved in CP development. On the basis of functional studies, the genetic alterations have been sub-grouped into CP-driving pathological pathways. This review focuses on the concept of CP as a complex disease driven by multiple genetic factors. We will discuss only well-defined genetic risk factors and distinct functional pathways involved in CP development, especially in the context of the early-onset nonalcoholic CP group. The diagnostic implications of the genetic testing will be addressed as well.
Collapse
|
19
|
Trapp S, Aghdassi AA, Glaubitz J, Sendler M, Weiss FU, Kühn JP, Kromrey ML, Mahajan UM, Pallagi P, Rakonczay Z, Venglovecz V, Lerch MM, Hegyi P, Mayerle J. Pancreatitis severity in mice with impaired CFTR function but pancreatic sufficiency is mediated via ductal and inflammatory cells-Not acinar cells. J Cell Mol Med 2021; 25:4658-4670. [PMID: 33682322 PMCID: PMC8107082 DOI: 10.1111/jcmm.16404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) are an established risk factor for cystic fibrosis (CF) and chronic pancreatitis. Whereas patients with CF usually develop complete exocrine pancreatic insufficiency, pancreatitis patients with CFTR mutations have mostly preserved exocrine pancreatic function. We therefore used a strain of transgenic mice with significant residual CFTR function (CFTRtm1HGU ) to induce pancreatitis experimentally by serial caerulein injections. Protease activation and necrosis were investigated in isolated acini, disease severity over 24h, pancreatic function by MRI, isolated duct stimulation and faecal chymotrypsin, and leucocyte function by ex vivo lipopolysaccharide (LPS) stimulation. Pancreatic and lung injury were more severe in CFTRtm1HGU but intrapancreatic trypsin and serum enzyme activities higher than in wild-type controls only at 8h, a time interval previously attributed to leucocyte infiltration. CCK-induced trypsin activation and necrosis in acini from CFTRtm1HGU did not differ from controls. Fluid and bicarbonate secretion were greatly impaired, whereas faecal chymotrypsin remained unchanged. LPS stimulation of splenocytes from CFTRtm1HGU resulted in increased INF-γ and IL-6, but decreased IL-10 secretion. CFTR mutations that preserve residual pancreatic function significantly increase the severity of experimental pancreatitis-mostly via impairing duct cell function and a shift towards a pro-inflammatory phenotype, not by rendering acinar cells more susceptible to pathological stimuli.
Collapse
Affiliation(s)
- Simon Trapp
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Juliane Glaubitz
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Jens Peter Kühn
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Marie-Luise Kromrey
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Ujjwal M Mahajan
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany.,Department of Medicine II, Ludwig-Maximilians University Munich, Munich, Germany
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Peter Hegyi
- Department of Translational Medicine/First Department of Medicine, Medical School, Institute for Translational Medicine, Pécs, Hungary
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany.,Department of Medicine II, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
20
|
Barreto SG, Habtezion A, Gukovskaya A, Lugea A, Jeon C, Yadav D, Hegyi P, Venglovecz V, Sutton R, Pandol SJ. Critical thresholds: key to unlocking the door to the prevention and specific treatments for acute pancreatitis. Gut 2021; 70:194-203. [PMID: 32973069 PMCID: PMC7816970 DOI: 10.1136/gutjnl-2020-322163] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis (AP), an acute inflammatory disorder of the exocrine pancreas, is one of the most common gastrointestinal diseases encountered in emergency departments with no specific treatments. Laboratory-based research has formed the cornerstone of endeavours to decipher the pathophysiology of AP, because of the limitations of such study in human beings. While this has provided us with substantial understanding, we cannot answer several pressing questions. These are: (a) Why is it that only a minority of individuals with gallstones, or who drink alcohol excessively, or are exposed to other causative factors develop AP? (b) Why do only some develop more severe manifestations of AP with necrosis and/or organ failure? (c) Why have we been unable to find an effective therapeutic for AP? This manuscript provides a state-of-the-art review of our current understanding of the pathophysiology of AP providing insights into the unanswered clinical questions. We describe multiple protective factors operating in most people, and multiple stressors that in a minority induce AP, independently or together, via amplification loops. We present testable hypotheses aimed at halting progression of severity for the development of effective treatments for this common unpredictable disease.
Collapse
Affiliation(s)
- Savio George Barreto
- Division of Surgery and Perioperative Medicine, Flinders Medical Center, Bedford Park, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Anna Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
- Department of Medicine, West Los Angeles VA Healthcare Center, Los Angeles, California, USA
| | - Aurelia Lugea
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christie Jeon
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dhiraj Yadav
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Peter Hegyi
- First Department of Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine and First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Robert Sutton
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
21
|
De Faveri F, Chvanov M, Voronina S, Moore D, Pollock L, Haynes L, Awais M, Beckett AJ, Mayer U, Sutton R, Criddle DN, Prior IA, Wileman T, Tepikin AV. LAP-like non-canonical autophagy and evolution of endocytic vacuoles in pancreatic acinar cells. Autophagy 2020; 16:1314-1331. [PMID: 31651224 PMCID: PMC7469629 DOI: 10.1080/15548627.2019.1679514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/30/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022] Open
Abstract
Activation of trypsinogen (formation of trypsin) inside the pancreas is an early pathological event in the development of acute pancreatitis. In our previous studies we identified the activation of trypsinogen within endocytic vacuoles (EVs), cellular organelles that appear in pancreatic acinar cells treated with the inducers of acute pancreatitis. EVs are formed as a result of aberrant compound exocytosis and subsequent internalization of post-exocytic structures. These organelles can be up to 12 μm in diameter and can be actinated (i.e. coated with F-actin). Notably, EVs can undergo intracellular rupture and fusion with the plasma membrane, providing trypsin with access to cytoplasmic and extracellular targets. Unraveling the mechanisms involved in cellular processing of EVs is an interesting cell biological challenge with potential benefits for understanding acute pancreatitis. In this study we have investigated autophagy of EVs and discovered that it involves a non-canonical LC3-conjugation mechanism, reminiscent in its properties to LC3-associated phagocytosis (LAP); in both processes LC3 was recruited to single, outer organellar membranes. Trypsinogen activation peptide was observed in approximately 55% of LC3-coated EVs indicating the relevance of the described process to the early cellular events of acute pancreatitis. We also investigated relationships between actination and non-canonical autophagy of EVs and concluded that these processes represent sequential steps in the evolution of EVs. Our study expands the known roles of LAP and indicates that, in addition to its well-established functions in phagocytosis and macropinocytosis, LAP is also involved in the processing of post-exocytic organelles in exocrine secretory cells. ABBREVIATIONS AP: acute pancreatitis; CCK: cholecystokinin; CLEM: correlative light and electron microscopy; DPI: diphenyleneiodonium; EV: endocytic vacuole; LAP: LC3-associate phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PACs: pancreatic acinar cells; PFA: paraformaldehyde; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; Res: resveratrol; TAP: trypsinogen activation peptide; TEM: transmission electron microscopy; TLC-S: taurolithocholic acid 3-sulfate; TRD: Dextran Texas Red 3000 MW Neutral; ZGs: zymogen granules.
Collapse
Affiliation(s)
- Francesca De Faveri
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Michael Chvanov
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Danielle Moore
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Liam Pollock
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Lee Haynes
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Muhammad Awais
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Alison J. Beckett
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Ulrike Mayer
- Bio-Medical Research Centre, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Robert Sutton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - David N. Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Ian A. Prior
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Tom Wileman
- Bio-Medical Research Centre, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Alexei V. Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca 2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020; 21:ijms21114005. [PMID: 32503336 PMCID: PMC7312053 DOI: 10.3390/ijms21114005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Intracellular Ca2+ signalling is a major signal transductional pathway in non-excitable cells, responsible for the regulation of a variety of physiological functions. In the secretory epithelial cells of the exocrine pancreas, such as acinar and ductal cells, intracellular Ca2+ elevation regulates digestive enzyme secretion in acini or fluid and ion secretion in ductal cells. Although Ca2+ is a uniquely versatile orchestrator of epithelial physiology, unregulated global elevation of the intracellular Ca2+ concentration is an early trigger for the development of acute pancreatitis (AP). Regardless of the aetiology, different forms of AP all exhibit sustained intracellular Ca2+ elevation as a common hallmark. The release of endoplasmic reticulum (ER) Ca2+ stores by toxins (such as bile acids or fatty acid ethyl esters (FAEEs)) or increased intrapancreatic pressure activates the influx of extracellular Ca2+ via the Orai1 Ca2+ channel, a process known as store-operated Ca2+ entry (SOCE). Intracellular Ca2+ overload can lead to premature activation of trypsinogen in pancreatic acinar cells and impaired fluid and HCO3- secretion in ductal cells. Increased and unbalanced reactive oxygen species (ROS) production caused by sustained Ca2+ elevation further contributes to cell dysfunction, leading to mitochondrial damage and cell death. Translational studies of AP identified several potential target molecules that can be modified to prevent intracellular Ca2+ overload. One of the most promising drugs, a selective inhibitor of the Orai1 channel that has been shown to inhibit extracellular Ca2+ influx and protect cells from injury, is currently being tested in clinical trials. In this review, we will summarise the recent advances in the field, with a special focus on the translational aspects of the basic findings.
Collapse
Affiliation(s)
- Petra Pallagi
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Tamara Madácsy
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Árpád Varga
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
- Correspondence: or ; Tel.: +36-(62)-342-877 or +36-70-41-66500
| |
Collapse
|
23
|
Sendler M, Lerch MM. The Complex Role of Trypsin in Pancreatitis. Gastroenterology 2020; 158:822-826. [PMID: 31911102 DOI: 10.1053/j.gastro.2019.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
24
|
Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A, Botelho MF, Tralhão JG. Multifactorial Scores and Biomarkers of Prognosis of Acute Pancreatitis: Applications to Research and Practice. Int J Mol Sci 2020; 21:E338. [PMID: 31947993 PMCID: PMC6982212 DOI: 10.3390/ijms21010338] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis (AP) is a severe inflammation of the pancreas presented with sudden onset and severe abdominal pain with a high morbidity and mortality rate, if accompanied by severe local and systemic complications. Numerous studies have been published about the pathogenesis of AP; however, the precise mechanism behind this pathology remains unclear. Extensive research conducted over the last decades has demonstrated that the first 24 h after symptom onset are critical for the identification of patients who are at risk of developing complications or death. The identification of these subgroups of patients is crucial in order to start an aggressive approach to prevent mortality. In this sense and to avoid unnecessary overtreatment, thereby reducing the financial implications, the proper identification of mild disease is also important and necessary. A large number of multifactorial scoring systems and biochemical markers are described to predict the severity. Despite recent progress in understanding the pathophysiology of AP, more research is needed to enable a faster and more accurate prediction of severe AP. This review provides an overview of the available multifactorial scoring systems and biochemical markers for predicting severe AP with a special focus on their advantages and limitations.
Collapse
Affiliation(s)
- Pedro Silva-Vaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- General Surgery Department, Hospital Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.A.); (M.F.B.); (J.G.T.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-348 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - António Gouveia
- General Surgery Department, Hospital Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.A.); (M.F.B.); (J.G.T.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-348 Coimbra, Portugal
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.A.); (M.F.B.); (J.G.T.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-348 Coimbra, Portugal
- Surgery Department, Centro Hospitalar e Universitário de Coimbra (CHUC), University Hospital, Faculty of Medicine, 3000-075 Coimbra, Portugal
| |
Collapse
|
25
|
Mouse pancreatic ductal organoid culture as a relevant model to study exocrine pancreatic ion secretion. J Transl Med 2020; 100:84-97. [PMID: 31409889 DOI: 10.1038/s41374-019-0300-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic exocrine secretory processes are challenging to investigate on primary epithelial cells. Pancreatic organoid cultures may help to overcome shortcomings of the current models, however the ion secretory processes in pancreatic organoids-and therefore their physiological relevance or their utility in disease modeling-are not known. To answer these questions, we provide side-by-side comparison of gene expression, morphology, and function of epithelial cells in primary isolated pancreatic ducts and organoids. We used mouse pancreatic ductal fragments for experiments or were grown in Matrigel to obtain organoid cultures. Using PCR analysis we showed that gene expression of ion channels and transporters remarkably overlap in primary ductal cells and organoids. Morphological analysis with scanning electron microscopy revealed that pancreatic organoids form polarized monolayers with brush border on the apical membrane. Whereas the expression and localization of key proteins involved in ductal secretion (cystic fibrosis transmembrane conductance regulator, Na+/H+ exchanger 1 and electrogenic Na+/HCO3- cotransporter 1) are equivalent to the primary ductal fragments. Measurements of intracellular pH and Cl- levels revealed no significant difference in the activities of the apical Cl-/HCO3- exchange, or in the basolateral Na+ dependent HCO3- uptake. In summary we found that ion transport activities in the mouse pancreatic organoids are remarkably similar to those observed in freshly isolated primary ductal fragments. These results suggest that organoids can be suitable and robust model to study pancreatic ductal epithelial ion transport in health and diseases and facilitate drug development for secretory pancreatic disorders like cystic fibrosis, or chronic pancreatitis.
Collapse
|
26
|
Liu M, Zhou J, He Y, Cai Z, Ge Y, Zhou J, Song G. ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Mikrochim Acta 2019; 186:770. [DOI: 10.1007/s00604-019-3945-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
|
27
|
CFTR IVS8 Poly-T Variation Affects Severity of Acute Pancreatitis in Women. J Gastrointest Surg 2019; 23:975-981. [PMID: 30132293 DOI: 10.1007/s11605-018-3913-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/01/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cystic fibrosis transmembrane conductance regulator (CFTR) is important for normal pancreatic function. Its coding gene is polymorphic, and the variations have been associated with the increased risk for acute pancreatitis. However, their impact on the disease severity is still unknown. Therefore, the aim of our study was to determine the functional importance of common cystic fibrosis transmembrane conductance regulator variations IVS8-poly T, R117H, and M470V for the severity of acute pancreatitis. METHOD The study involved 98 acute pancreatitis patients. The severity of the disease was determined based on the Atlanta Classification system. IVS8-poly T, R117H, and M470V genotyping was performed using PCR-RFLP method. RESULTS IVS8-5T, IVS8-7T, IVS8-9T, and M470V alleles were found at the frequencies of 5.7, 75.5, 18.9, and 55.7%, respectively, while R117H was not observed. Among women, the severe form of the disease was more frequent in carriers of at least one IVS8 9T allele (RR for 9T/9T + 9T/non-9T vs. non-9T/non-9T: 2.115; 95% CI: 1.241-3.605). This association was not detected in men and was not affected by M470V. In addition, co-morbidities increased the severity of acute pancreatitis (p = 0.022). CONCLUSION Our study reveals that IVS8 poly-T variation affects severity of acute pancreatitis in women and that existent co-morbidities worsen the clinical course of the disease.
Collapse
|
28
|
Abu-El-Haija M, Gukovskaya AS, Andersen DK, Gardner TB, Hegyi P, Pandol SJ, Papachristou GI, Saluja AK, Singh VK, Uc A, Wu BU. Accelerating the Drug Delivery Pipeline for Acute and Chronic Pancreatitis: Summary of the Working Group on Drug Development and Trials in Acute Pancreatitis at the National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2019; 47:1185-1192. [PMID: 30325856 PMCID: PMC6692135 DOI: 10.1097/mpa.0000000000001175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A workshop was sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases to focus on research gaps and opportunities on drug development for pancreatitis. This conference was held on July 25, 2018, and structured into 3 working groups (WG): acute pancreatitis (AP) WG, recurrent AP WG, and chronic pancreatitis WG. This article reports the outcome of the work accomplished by the AP WG to provide the natural history, epidemiology, and current management of AP; inform about the role of preclinical models in therapy selection; and discuss clinical trial designs with clinical and patient-reported outcomes to test new therapies.
Collapse
Affiliation(s)
- Maisam Abu-El-Haija
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Anna S. Gukovskaya
- Department of Medicine, University of California, Los Angeles
- Pancreatic Research Group, UCLA/VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Timothy B. Gardner
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Darmouth University, Hanover, NH
| | - Peter Hegyi
- MTA-SZTE Translational Gastroenterology Research Group, University of Szeged, Szeged
- Institute for Translational Medicine and First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Georgios I. Papachristou
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center
- Division of Gastroenterology and Hepatology, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA
| | - Ashok K. Saluja
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
| | - Vikesh K. Singh
- Division of Gastroenterology, Department of Medicine, University of John’s Hopkins, Baltimore, MD
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Bechien U. Wu
- Center for Pancreatic Care, Department of Gastroenterology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA
| |
Collapse
|
29
|
Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2019; 98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells line the entire surface of the gastrointestinal tract and its accessory organs where they primarily function in transporting digestive enzymes, nutrients, electrolytes, and fluid to and from the luminal contents. At the same time, epithelial cells are responsible for forming a physical and biochemical barrier that prevents the entry into the body of harmful agents, such as bacteria and their toxins. Dysregulation of epithelial transport and barrier function is associated with the pathogenesis of a number of conditions throughout the intestine, such as inflammatory bowel disease, chronic diarrhea, pancreatitis, reflux esophagitis, and cancer. Driven by discovery of specific receptors on intestinal epithelial cells, new insights into mechanisms that control their synthesis and enterohepatic circulation, and a growing appreciation of their roles as bioactive bacterial metabolites, bile acids are currently receiving a great deal of interest as critical regulators of epithelial function in health and disease. This review aims to summarize recent advances in this field and to highlight how bile acids are now emerging as exciting new targets for disease intervention.
Collapse
Affiliation(s)
- Peter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Joszef Maléth
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Julian R Walters
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Alan F Hofmann
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Stephen J Keely
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
30
|
Madácsy T, Pallagi P, Maleth J. Cystic Fibrosis of the Pancreas: The Role of CFTR Channel in the Regulation of Intracellular Ca 2+ Signaling and Mitochondrial Function in the Exocrine Pancreas. Front Physiol 2018; 9:1585. [PMID: 30618777 PMCID: PMC6306458 DOI: 10.3389/fphys.2018.01585] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disorder that causes a significant damage in secretory epithelial cells due to the defective ion flux across the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Pancreas is one of the organs most frequently damaged by the disease leading to pancreatic insufficiency, abdominal pain and an increased risk of acute pancreatitis in CF patients causing a significant decrease in the quality of life. CFTR plays a central role in the pancreatic ductal secretory functions by carrying Cl- and HCO3 - ions across the apical membrane. Therefore pathophysiological studies in CF mostly focused on the effects of impaired ion secretion by pancreatic ductal epithelial cells leading to exocrine pancreatic damage. However, several studies indicated that CFTR has a central role in the regulation of intracellular signaling processes and is now more widely considered as a signaling hub in epithelial cells. In contrast, elevated intracellular Ca2+ level was observed in the lack of functional CFTR in different cell types including airway epithelial cells. In addition, impaired CFTR expression has been correlated with damaged mitochondrial function in epithelial cells. These alterations of intracellular signaling in CF are not well characterized in the exocrine pancreas yet. Therefore in this review we would like to summarize the complex role of CFTR in the exocrine pancreas with a special focus on the intracellular signaling and mitochondrial function.
Collapse
Affiliation(s)
- Tamara Madácsy
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Jozsef Maleth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, Szeged, Hungary.,Department of Public Health, University of Szeged, Szeged, Hungary
| |
Collapse
|
31
|
Rumbus Z, Toth E, Poto L, Vincze A, Veres G, Czako L, Olah E, Marta K, Miko A, Rakonczay Z, Balla Z, Kaszaki J, Foldesi I, Maleth J, Hegyi P, Garami A. Bidirectional Relationship Between Reduced Blood pH and Acute Pancreatitis: A Translational Study of Their Noxious Combination. Front Physiol 2018; 9:1360. [PMID: 30327613 PMCID: PMC6174522 DOI: 10.3389/fphys.2018.01360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is often accompanied by alterations in the acid-base balance, but how blood pH influences the outcome of AP is largely unknown. We studied the association between blood pH and the outcome of AP with meta-analysis of clinical trials, and aimed to discover the causative relationship between blood pH and AP in animal models. PubMed, EMBASE, and Cochrane Controlled Trials Registry databases were searched from inception to January 2017. Human studies reporting systemic pH status and outcomes (mortality rate, severity scores, and length of hospital stay) of patient groups with AP were included in the analyses. We developed a new mouse model of chronic metabolic acidosis (MA) and induced mild or severe AP in the mice. Besides laboratory blood testing, the extent of pancreatic edema, necrosis, and leukocyte infiltration were assessed in tissue sections of the mice. Thirteen studies reported sufficient data in patient groups with AP (n = 2,311). Meta-analysis revealed markedly higher mortality, elevated severity scores, and longer hospital stay in AP patients with lower blood pH or base excess (P < 0.001 for all studied outcomes). Meta-regression analysis showed significant negative correlation between blood pH and mortality in severe AP. In our mouse model, pre-existing MA deteriorated the pancreatic damage in mild and severe AP and, vice versa, severe AP further decreased the blood pH of mice with MA. In conclusion, MA worsens the outcome of AP, while severe AP augments the decrease of blood pH. The discovery of this vicious metabolic cycle opens up new therapeutic possibilities in AP.
Collapse
Affiliation(s)
- Zoltan Rumbus
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emese Toth
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Laszlo Poto
- Institute of Bioanalysis, Medical School, University of Pecs, Pecs, Hungary
| | - Aron Vincze
- Department of Gastroenterology, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Gabor Veres
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Laszlo Czako
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Emoke Olah
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Marta
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Department of Translational Medicine, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Department of Translational Medicine, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Jozsef Kaszaki
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Imre Foldesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Jozsef Maleth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithel Cell Signaling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,Department of Translational Medicine, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
32
|
Venglovecz V, Pallagi P, Kemény LV, Balázs A, Balla Z, Becskeházi E, Gál E, Tóth E, Zvara Á, Puskás LG, Borka K, Sendler M, Lerch MM, Mayerle J, Kühn JP, Rakonczay Z, Hegyi P. The Importance of Aquaporin 1 in Pancreatitis and Its Relation to the CFTR Cl - Channel. Front Physiol 2018; 9:854. [PMID: 30050452 PMCID: PMC6052342 DOI: 10.3389/fphys.2018.00854] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Aquaporins (AQPs) facilitate the transepithelial water flow involved in epithelial fluid secretion in numerous tissues; however, their function in the pancreas is less characterized. Acute pancreatitis (AP) is a serious disorder in which specific treatment is still not possible. Accumulating evidence indicate that decreased pancreatic ductal fluid secretion plays an essential role in AP; therefore, the aim of this study was to investigate the physiological and pathophysiological role of AQPs in the pancreas. Expression and localization of AQPs were investigated by real-time PCR and immunocytochemistry, whereas osmotic transmembrane water permeability was estimated by the dye dilution technique, in Capan-1 cells. The presence of AQP1 and CFTR in the mice and human pancreas were investigated by immunohistochemistry. Pancreatic ductal HCO3- and fluid secretion were studied on pancreatic ducts isolated from wild-type (WT) and AQP1 knock out (KO) mice using microfluorometry and videomicroscopy, respectively. In vivo pancreatic fluid secretion was estimated by magnetic resonance imaging. AP was induced by intraperitoneal injection of cerulein and disease severity was assessed by measuring biochemical and histological parameters. In the mice, the presence of AQP1 was detected throughout the whole plasma membrane of the ductal cells and its expression highly depends on the presence of CFTR Cl- channel. In contrast, the expression of AQP1 is mainly localized to the apical membrane of ductal cells in the human pancreas. Bile acid treatment dose- and time-dependently decreased mRNA and protein expression of AQP1 and reduced expression of this channel was also demonstrated in patients suffering from acute and chronic pancreatitis. HCO3- and fluid secretion significantly decreased in AQP1 KO versus WT mice and the absence of AQP1 also worsened the severity of pancreatitis. Our results suggest that AQP1 plays an essential role in pancreatic ductal fluid and HCO3- secretion and decreased expression of the channel alters fluid secretion which probably contribute to increased susceptibility of the pancreas to inflammation.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Lajos V Kemény
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Anita Balázs
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Eszter Becskeházi
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Emese Tóth
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Katalin Borka
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany.,Department of Medicine II, Klinikum Grosshadern, Universitätsklinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens-Peter Kühn
- Institute of Radiology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany.,Institute and Policlinic of Radiology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Institute for Translational Medicine and First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
33
|
Hegyi P. Necrotic amplification loop in acute pancreatitis: pancreatic stellate cells and nitric oxide are important players in the development of the disease. J Physiol 2018; 596:2679-2680. [PMID: 29578240 PMCID: PMC6046076 DOI: 10.1113/jp275930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Péter Hegyi
- MTA‐SZTE Translational Gastroenterology Research GroupSzegedHungary
- Institute for Translational Medicine, Medical SchoolUniversity of PécsPécsHungary
- Department of Translational Medicine, First Department of Medicine, Medical SchoolUniversity of PécsPécsHungary
| |
Collapse
|
34
|
Chvanov M, De Faveri F, Moore D, Sherwood MW, Awais M, Voronina S, Sutton R, Criddle DN, Haynes L, Tepikin AV. Intracellular rupture, exocytosis and actin interaction of endocytic vacuoles in pancreatic acinar cells: initiating events in acute pancreatitis. J Physiol 2018; 596:2547-2564. [PMID: 29717784 PMCID: PMC6023832 DOI: 10.1113/jp275879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 12/18/2022] Open
Abstract
Key points Giant trypsin‐containing endocytic vacuoles are formed in pancreatic acinar cells stimulated with inducers of acute pancreatitis. F‐actin envelops endocytic vacuoles and regulates their properties. Endocytic vacuoles can rupture and release their content into the cytosol of acinar cells. Endocytic vacuoles can fuse with the plasma membrane of acinar cells and exocytose their content.
Abstract Intrapancreatic activation of trypsinogen is an early event in and hallmark of the development of acute pancreatitis. Endocytic vacuoles, which form by disconnection and transport of large post‐exocytic structures, are the only resolvable sites of the trypsin activity in live pancreatic acinar cells. In the present study, we characterized the dynamics of endocytic vacuole formation induced by physiological and pathophysiological stimuli and visualized a prominent actin coat that completely or partially surrounded endocytic vacuoles. An inducer of acute pancreatitis taurolithocholic acid 3‐sulphate and supramaximal concentrations of cholecystokinin triggered the formation of giant (more than 2.5 μm in diameter) endocytic vacuoles. We discovered and characterized the intracellular rupture of endocytic vacuoles and the fusion of endocytic vacuoles with basal and apical regions of the plasma membrane. Experiments with specific protease inhibitors suggest that the rupture of endocytic vacuoles is probably not induced by trypsin or cathepsin B. Perivacuolar filamentous actin (observed on the surface of ∼30% of endocytic vacuoles) may play a stabilizing role by preventing rupture of the vacuoles and fusion of the vacuoles with the plasma membrane. The rupture and fusion of endocytic vacuoles allow trypsin to escape the confinement of a membrane‐limited organelle, gain access to intracellular and extracellular targets, and initiate autodigestion of the pancreas, comprising a crucial pathophysiological event. Giant trypsin‐containing endocytic vacuoles are formed in pancreatic acinar cells stimulated with inducers of acute pancreatitis. F‐actin envelops endocytic vacuoles and regulates their properties. Endocytic vacuoles can rupture and release their content into the cytosol of acinar cells. Endocytic vacuoles can fuse with the plasma membrane of acinar cells and exocytose their content.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Francesca De Faveri
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Danielle Moore
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Mark W Sherwood
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Muhammad Awais
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Robert Sutton
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - David N Criddle
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Lee Haynes
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Alexei V Tepikin
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| |
Collapse
|
35
|
Balázs A, Balla Z, Kui B, Maléth J, Rakonczay Z, Duerr J, Zhou-Suckow Z, Schatterny J, Sendler M, Mayerle J, Kühn JP, Tiszlavicz L, Mall MA, Hegyi P. Ductal Mucus Obstruction and Reduced Fluid Secretion Are Early Defects in Chronic Pancreatitis. Front Physiol 2018; 9:632. [PMID: 29896115 PMCID: PMC5987707 DOI: 10.3389/fphys.2018.00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Objective: Defective mucus production in the pancreas may be an important factor in the initiation and progression of chronic pancreatitis (CP), therefore we aimed to (i) investigate the qualitative and quantitative changes of mucus both in human CP and in an experimental pancreatitis model and (ii) to correlate the mucus phenotype with epithelial ion transport function. Design: Utilizing human tissue samples and a murine model of cerulein induced CP we measured pancreatic ductal mucus content by morphometric analysis and the relative expression of different mucins in health and disease. Pancreatic fluid secretion in CP model was measured in vivo by magnetic resonance cholangiopancreatography (MRCP) and in vitro on cultured pancreatic ducts. Time-changes of ductal secretory function were correlated to those of the mucin production. Results: We demonstrate increased mucus content in the small pancreatic ducts in CP. Secretory mucins MUC6 and MUC5B were upregulated in human, Muc6 in mouse CP. In vivo and in vitro fluid secretion was decreased in cerulein-induced CP. Analysis of time-course changes showed that impaired ductal ion transport is paralleled by increased Muc6 expression. Conclusion: Mucus accumulation in the small ducts is a combined effect of mucus hypersecretion and epithelial fluid secretion defect, which may lead to ductal obstruction. These results suggest that imbalance of mucus homeostasis may have an important role in the early-phase development of CP, which may have novel diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Anita Balázs
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Zsolt Balla
- MTA-SZTE Momentum Epithel Cell Signalling and Secretion Research Group, Szeged, Hungary
| | - Balázs Kui
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Momentum Epithel Cell Signalling and Secretion Research Group, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Julia Duerr
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zhe Zhou-Suckow
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Matthias Sendler
- Department of Internal Medicine A, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Internal Medicine A, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jens-P Kühn
- Institute of Radiology, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Peter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Institute for Translational Medicine, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary.,MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary
| |
Collapse
|
36
|
Accelerating the Drug Delivery Pipeline for Acute and Chronic Pancreatitis-Knowledge Gaps and Research Opportunities: Overview Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2018; 47:1180-1184. [PMID: 30325855 PMCID: PMC6201320 DOI: 10.1097/mpa.0000000000001176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A workshop was sponsored by the Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, on July 25, 2018, in Pittsburgh, Penn. The workshop was designed to bring together a multidisciplinary group of experts to accelerate the development of therapeutics for clinical application in inflammatory diseases of the exocrine pancreas. Three separate working groups (acute pancreatitis, recurrent acute pancreatitis, and chronic pancreatitis) were formed to address the needs, gaps, and opportunities. The working groups included patients with pancreatic diseases, pharmaceutical company leaders, basic scientists, clinical researchers, and representatives from the US Food and Drug Administration to assist with regulatory considerations and to identify the unmet needs, research targets, and opportunities to provide direction for successful development of therapeutic agents in these diseases. This article represents the summary of the overview presentations at the National Institute of Diabetes and Digestive and Kidney Diseases workshop including an ongoing drug trial in acute pancreatitis; a successful drug development network developed by the Cystic Fibrosis Foundation; and considerations for subject selection in drug trials, incorporating Food and Drug Administration guidelines on clinical trial design and clinical outcome measures. The summaries of each working group follow separately in accompanying articles.
Collapse
|
37
|
Freeman AJ, Ooi CY. Pancreatitis and pancreatic cystosis in Cystic Fibrosis. J Cyst Fibros 2017; 16 Suppl 2:S79-S86. [DOI: 10.1016/j.jcf.2017.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 01/15/2023]
|
38
|
Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0425. [PMID: 27377719 PMCID: PMC4938025 DOI: 10.1098/rstb.2015.0425] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 12/23/2022] Open
Abstract
Acute pancreatitis (AP) is a leading cause of hospitalization among non-malignant gastrointestinal disorders. The mortality of severe AP can reach 30-50%, which is most probably owing to the lack of specific treatment. Therefore, AP is a major healthcare problem, which urges researchers to identify novel drug targets. Studies from the last decades highlighted that the toxic cellular Ca(2+) overload and mitochondrial damage are key pathogenic steps in the disease development affecting both acinar and ductal cell functions. Moreover, recent observations showed that modifying the cellular Ca(2+) signalling might be beneficial in AP. The inhibition of Ca(2+) release from the endoplasmic reticulum or the activity of plasma membrane Ca(2+) influx channels decreased the severity of AP in experimental models. Similarly, inhibition of mitochondrial permeability transition pore (MPTP) opening also seems to improve the outcome of AP in in vivo animal models. At the moment MPTP blockers are under detailed clinical investigation to test whether interventions in MPTP openings and/or Ca(2+) homeostasis of the cells can be specific targets in prevention or treatment of cell damage in AP.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary MTA-SZTE Momentum Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary MTA-SZTE Momentum Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
39
|
Zhu J, Miao XR, Tao KM, Zhu H, Liu ZY, Yu DW, Chen QB, Qiu HB, Lu ZJ. Trypsin-protease activated receptor-2 signaling contributes to pancreatic cancer pain. Oncotarget 2017; 8:61810-61823. [PMID: 28977906 PMCID: PMC5617466 DOI: 10.18632/oncotarget.18696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/05/2017] [Indexed: 01/13/2023] Open
Abstract
Pain treatment is a critical aspect of pancreatic cancer patient clinical care. This study investigated the role of trypsin-protease activated receptor-2 (PAR-2) in pancreatic cancer pain. Pancreatic tissue samples were collected from pancreatic cancer (n=22) and control patients (n=22). Immunofluorescence analyses confirmed colocalization of PAR-2 and neuronal markers in pancreatic cancer tissues. Trypsin levels and protease activities were higher in pancreatic cancer tissue specimens than in the controls. Supernatants from cultured human pancreatic cancer tissues (PC supernatants) induced substance P and calcitonin gene-related peptide release in dorsal root ganglia (DRG) neurons, and FS-NH2, a selective PAR-2 antagonist, inhibited this effect. A BALB/c nude mouse orthotopic tumor model was used to confirm the role of PAR-2 signaling in pancreatic cancer visceral pain, and male Sprague-Dawley rats were used to assess ambulatory pain. FS-NH2 treatment decreased hunch scores, mechanical hyperalgesia, and visceromotor reflex responses in tumor-bearing mice. In rats, subcutaneous injection of PC supernatant induced pain behavior, which was alleviated by treatment with FS-NH2 or FUT-175, a broad-spectrum serine protease inhibitor. Our findings suggest that trypsin-PAR-2 signaling contributes to pancreatic cancer pain in vivo. Treatment strategies targeting PAR-2 or its downstream signaling molecules might effectively relieve pancreatic cancer pain.
Collapse
Affiliation(s)
- Jiao Zhu
- Department of Anesthesiology and Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xue-Rong Miao
- Department of Anesthesiology and Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Kun-Ming Tao
- Department of Anesthesiology and Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hai Zhu
- Department of Anesthesiology, Maternity and Infant Health Hospital of Putuo District, Shanghai 200062, China
| | - Zhi-Yun Liu
- Department of Anesthesiology and Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Da-Wei Yu
- Department of Anesthesiology, No.101 hospital of PLA, Wuxi 214000, China
| | - Qian-Bo Chen
- Department of Anesthesiology and Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hai-Bo Qiu
- Department of Anesthesiology and Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhi-Jie Lu
- Department of Anesthesiology and Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
40
|
Mosztbacher D, Farkas N, Solymár M, Pár G, Bajor J, Szűcs &A, Czimmer J, Márta K, Mikó A, Rumbus Z, Varjú P, Hegyi P, Párniczky A. Restoration of energy level in the early phase of acute pediatric pancreatitis. World J Gastroenterol 2017; 23:957-963. [PMID: 28246469 PMCID: PMC5311105 DOI: 10.3748/wjg.v23.i6.957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/21/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is a serious inflammatory disease with rising incidence both in the adult and pediatric populations. It has been shown that mitochondrial injury and energy depletion are the earliest intracellular events in the early phase of AP. Moreover, it has been revealed that restoration of intracellular ATP level restores cellular functions and defends the cells from death. We have recently shown in a systematic review and meta-analysis that early enteral feeding is beneficial in adults; however, no reviews are available concerning the effect of early enteral feeding in pediatric AP. In this minireview, our aim was to systematically analyse the literature on the treatment of acute pediatric pancreatitis. The preferred reporting items for systematic review (PRISMA-P) were followed, and the question was drafted based on participants, intervention, comparison and outcomes: P: patients under the age of twenty-one suffering from acute pancreatitis; I: early enteral nutrition (per os and nasogastric- or nasojejunal tube started within 48 h); C: nil per os therapy; O: length of hospitalization, need for treatment at an intensive care unit, development of severe AP, lung injury (including lung oedema and pleural effusion), white blood cell count and pain score on admission. Altogether, 632 articles (PubMed: 131; EMBASE: 501) were found. After detailed screening of eligible papers, five of them met inclusion criteria. Only retrospective clinical trials were available. Due to insufficient information from the authors, it was only possible to address length of hospitalization as an outcome of the study. Our mini-meta-analysis showed that early enteral nutrition significantly (SD = 0.806, P = 0.034) decreases length of hospitalization compared with nil per os diet in acute pediatric pancreatitis. In this minireview, we clearly show that early enteral nutrition, started within 24-48 h, is beneficial in acute pediatric pancreatitis. Prospective studies and better presentation of research are crucially needed to achieve a higher level of evidence.
Collapse
|
41
|
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2016; 74:93-115. [PMID: 27714410 PMCID: PMC5209439 DOI: 10.1007/s00018-016-2391-y] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
42
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
43
|
Sendler M, Maertin S, John D, Persike M, Weiss FU, Krüger B, Wartmann T, Wagh P, Halangk W, Schaschke N, Mayerle J, Lerch MM. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis. J Biol Chem 2016; 291:14717-31. [PMID: 27226576 DOI: 10.1074/jbc.m116.718999] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific.
Collapse
Affiliation(s)
- Matthias Sendler
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Sandrina Maertin
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Daniel John
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Maria Persike
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - F Ulrich Weiss
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Burkhard Krüger
- the Division of Medical Biology, University of Rostock, 18057 Rostock, Germany
| | - Thomas Wartmann
- the Division of Experimental Surgery, Department of Surgery, Otto von Guericke University, 39120 Magdeburg, Germany, and
| | - Preshit Wagh
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Walter Halangk
- the Division of Experimental Surgery, Department of Surgery, Otto von Guericke University, 39120 Magdeburg, Germany, and
| | | | - Julia Mayerle
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Markus M Lerch
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany,
| |
Collapse
|
44
|
Balázs A, Hegyi P, Sahin-Tóth M. Pathogenic cellular role of the p.L104P human cationic trypsinogen variant in chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G477-86. [PMID: 26822915 PMCID: PMC4824176 DOI: 10.1152/ajpgi.00444.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/27/2016] [Indexed: 01/31/2023]
Abstract
Mutations in the PRSS1 gene encoding human cationic trypsinogen are associated with hereditary and sporadic chronic pancreatitis. High-penetrance PRSS1 mutations found in hereditary pancreatitis alter activation and/or degradation of cationic trypsinogen, thereby promoting intrapancreatic trypsinogen activation. In contrast, a number of rare PRSS1 variants identified in subjects with sporadic chronic pancreatitis cause misfolding and endoplasmic reticulum (ER) stress. Mutation p.L104P is unique among natural PRSS1 variants, since it affects the substrate binding site of trypsin. The aim of the present study was to establish the clinical significance of variant p.L104P through functional analysis. We found that p.L104P trypsin exhibited decreased activity on peptide and protein substrates; however, autoactivation was slightly accelerated. Remarkably, binding of the physiological trypsin inhibitor serine protease inhibitor Kazal type 1 (SPINK1) was decreased by 70-fold. In the presence of the trypsinogen-degrading enzyme chymotrypsin C, mutant p.L104P autoactivated to higher trypsin levels than wild-type trypsinogen. This apparent resistance to degradation was due to slower cleavage at Arg(122) rather than Leu(81) Finally, secretion of mutant p.L104P from transfected cells was markedly reduced due to intracellular retention and aggregation with concomitant elevation of ER stress markers. We conclude that PRSS1 variant p.L104P exhibits a variety of phenotypic changes that can increase risk for chronic pancreatitis. Mutation-induced misfolding and associated ER stress are the dominant effects that support a direct pathogenic role in chronic pancreatitis.
Collapse
Affiliation(s)
- Anita Balázs
- 1Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts; ,2First Department of Medicine, University of Szeged, Szeged, Hungary;
| | - Péter Hegyi
- 2First Department of Medicine, University of Szeged, Szeged, Hungary; ,3MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary; and ,4Institute for Translational Medicine and 1st Department of Medicine, University of Pécs, Pécs, Hungary
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| |
Collapse
|
45
|
Davies JC, Cunningham S, Harris WT, Lapey A, Regelmann WE, Sawicki GS, Southern KW, Robertson S, Green Y, Cooke J, Rosenfeld M. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2-5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. THE LANCET RESPIRATORY MEDICINE 2016; 4:107-15. [PMID: 26803277 DOI: 10.1016/s2213-2600(15)00545-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ivacaftor has been shown to be a safe, effective treatment for cystic fibrosis in patients aged 6 years or older with a CFTR gating mutation. We aimed to assess the safety, pharmacokinetics, and pharmacodynamics of ivacaftor in children aged 2-5 years. METHODS In the two-part KIWI study, we enrolled children aged 2-5 years weighing 8 kg or more with a confirmed diagnosis of cystic fibrosis and a CFTR gating mutation on at least one allele from 15 hospitals in the USA, UK, and Canada. Participants received oral ivacaftor 50 mg (if bodyweight <14 kg) or 75 mg (if bodyweight ≥14 kg) every 12 h for 4 days in part A (to establish the short-term safety of doses for subsequent assessment in part B), and then for 24 weeks in part B (to assess safety and longer-term pharmacodynamics). Children could participate in both or just one part of the study. Primary outcomes were pharmacokinetics and safety, analysed in all patients who received at least one dose of ivacaftor. Secondary outcomes were absolute change from baseline in sweat chloride concentrations and bodyweight, body-mass index (BMI), and height Z scores, and pharmacokinetic parameter estimation of ivacaftor. This study is registered with ClinicalTrials.gov, number NCT01705145. FINDINGS Between Jan 8, 2013, and March 1, 2013, nine patients were enrolled onto part A of the study, all of whom completed the 4 day treatment period, and eight of whom took part in part B. Between June 28, 2013, and Sept 26, 2013, 34 patients were enrolled in part B, 33 of whom completed the 24 week treatment period. All patients received at least one dose of ivacaftor. Results of ivacaftor pharmacokinetics suggested that exposure was similar to that reported in adults (median Cmin were 536 ng/mL for the 50 mg dose; 580 ng/mL for the 75 mg dose; median ivacaftor AUC values were 9840 ng × h/mL and 10 200 ng × h/mL, respectively). Common adverse events in part B included cough (in 19 [56%] of 34 patients) and vomiting (in ten [29%]). Five (15%) patients had liver function test (LFT) results that were more than eight times higher than the upper limit of normal, four of whom had study drug interrupted, and one of whom had study drug discontinued. Six (18%) of 34 patients had seven serious adverse events; a raised concentration of transaminases was the only serious adverse event regarded as related to ivacaftor and the only adverse event that resulted in study treatment discontinuation. At week 24, in patients for whom we had data, sweat chloride had changed from baseline by a mean of -46·9 mmol/L (SD 26·2, p<0·0001), weight Z score by 0·2 (0·3; p<0·0001), BMI Z score by 0·4 (0·4, p<0·0001), and height Z score by -0·01 (0·3; p=0·84). INTERPRETATION Ivacaftor at doses of 50 mg and 75 mg seems to be safe in children aged 2-5 years with cystic fibrosis with a gating mutation followed up for 24 weeks, although the frequency of elevated LFTs suggests that monitoring should be frequent in young children, particularly those with a history of elevated LFTs. Results of an ongoing extension study assessing durability of these effects and longer-term safety are warranted. FUNDING Vertex Pharmaceuticals Incorporated.
Collapse
Affiliation(s)
- Jane C Davies
- Imperial College London, London, UK; Royal Brompton and Harefield NHS Foundation Trust, London, UK.
| | | | | | - Allen Lapey
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | - Yulia Green
- Vertex Pharmaceuticals Incorporated, Milton Park, UK
| | - Jon Cooke
- Vertex Pharmaceuticals Incorporated, Milton Park, UK
| | | | | |
Collapse
|
46
|
Gryshchenko O, Gerasimenko JV, Gerasimenko OV, Petersen OH. Ca(2+) signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca(2+) channel blockade. J Physiol 2015; 594:281-93. [PMID: 26442817 PMCID: PMC4713750 DOI: 10.1113/jp271468] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Bradykinin may play a role in the autodigestive disease acute pancreatitis, but little is known about its pancreatic actions. In this study, we have investigated bradykinin-elicited Ca(2+) signal generation in normal mouse pancreatic lobules. We found complete separation of Ca(2+) signalling between pancreatic acinar (PACs) and stellate cells (PSCs). Pathophysiologically relevant bradykinin concentrations consistently evoked Ca(2+) signals, via B2 receptors, in PSCs but never in neighbouring PACs, whereas cholecystokinin, consistently evoking Ca(2+) signals in PACs, never elicited Ca(2+) signals in PSCs. The bradykinin-elicited Ca(2+) signals were due to initial Ca(2+) release from inositol trisphosphate-sensitive stores followed by Ca(2+) entry through Ca(2+) release-activated channels (CRACs). The Ca(2+) entry phase was effectively inhibited by a CRAC blocker. B2 receptor blockade reduced the extent of PAC necrosis evoked by pancreatitis-promoting agents and we therefore conclude that bradykinin plays a role in acute pancreatitis via specific actions on PSCs. ABSTRACT Normal pancreatic stellate cells (PSCs) are regarded as quiescent, only to become activated in chronic pancreatitis and pancreatic cancer. However, we now report that these cells in their normal microenvironment are far from quiescent, but are capable of generating substantial Ca(2+) signals. We have compared Ca(2+) signalling in PSCs and their better studied neighbouring acinar cells (PACs) and found complete separation of Ca(2+) signalling in even closely neighbouring PACs and PSCs. Bradykinin (BK), at concentrations corresponding to the slightly elevated plasma BK levels that have been shown to occur in the auto-digestive disease acute pancreatitis in vivo, consistently elicited substantial Ca(2+) signals in PSCs, but never in neighbouring PACs, whereas the physiological PAC stimulant cholecystokinin failed to evoke Ca(2+) signals in PSCs. The BK-induced Ca(2+) signals were mediated by B2 receptors and B2 receptor blockade protected against PAC necrosis evoked by agents causing acute pancreatitis. The initial Ca(2+) rise in PSCs was due to inositol trisphosphate receptor-mediated release from internal stores, whereas the sustained phase depended on external Ca(2+) entry through Ca(2+) release-activated Ca(2+) (CRAC) channels. CRAC channel inhibitors, which have been shown to protect PACs against damage caused by agents inducing pancreatitis, therefore also inhibit Ca(2+) signal generation in PSCs and this may be helpful in treating acute pancreatitis.
Collapse
Affiliation(s)
- Oleksiy Gryshchenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK.,Bogomoletz Institute of Physiology, Kiev, 01024, Ukraine
| | - Julia V Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Oleg V Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Ole H Petersen
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
47
|
Abstract
The human exocrine pancreas consists of 2 main cell types: acinar and ductal cells. These exocrine cells interact closely to contribute to the secretion of pancreatic juice. The most important ion in terms of the pancreatic ductal secretion is HCO3. In fact, duct cells produce an alkaline fluid that may contain up to 140 mM NaHCO3, which is essential for normal digestion. This article provides an overview of the basics of pancreatic ductal physiology and pathophysiology. In the first part of the article, we discuss the ductal electrolyte and fluid transporters and their regulation. The central role of cystic fibrosis transmembrane conductance regulator (CFTR) is highlighted, which is much more than just a Cl channel. We also review the role of pancreatic ducts in severe debilitating diseases such as cystic fibrosis (caused by various genetic defects of cftr), pancreatitis, and diabetes mellitus. Stimulation of ductal secretion in cystic fibrosis and pancreatitis may have beneficial effects in their treatment.
Collapse
|
48
|
Watson P. Pancreatitis in dogs and cats: definitions and pathophysiology. J Small Anim Pract 2015; 56:3-12. [PMID: 25586802 DOI: 10.1111/jsap.12293] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/10/2013] [Accepted: 01/09/2014] [Indexed: 12/14/2022]
Abstract
Pancreatitis, or inflammation of the pancreas, is commonly seen in dogs and cats and presents a spectrum of disease severities from acute to chronic and mild to severe. It is usually sterile, but the causes and pathophysiology remain poorly understood. The acute end of the disease spectrum is associated with a high mortality but the potential for complete recovery of organ structure and function if the animal survives. At the other end of the spectrum, chronic pancreatitis in either species can cause refractory pain and reduce quality of life. It may also result in progressive exocrine and endocrine functional impairment. There is confusion in the veterinary literature about definitions of acute and chronic pancreatitis and there are very few studies on the pathophysiology of naturally occurring pancreatitis in dogs and cats. This article reviews histological and clinical definitions and current understanding of the pathophysiology and causes in small animals by comparison with the much more extensive literature in humans, and suggests many areas that need further study in dogs and cats.
Collapse
Affiliation(s)
- P Watson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES
| |
Collapse
|
49
|
Abstract
The early phase of both acute and chronic pancreatitis can be characterized by disrupt level and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, decreased bicarbonate secretion, intraductal acidosis, decrease of fluid secretion and elevation of mucoprotein levels. It is almost needless to say that these intrapancreatic changes are very similar to the pathophysiological changes observed in cystic fibrosis. The aim of this mini review is to describe the development of the above mentioned pathological observations in details, moreover highlight some future therapeutic opportunities in pancreatitis.
Collapse
Affiliation(s)
- Anita Balázs
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Momentum Translational Gastroenterology Research Group, Szeged, Hungary.
| |
Collapse
|
50
|
Balázs A, Ruffert C, Hegyi E, Hritz I, Czakó L, Takács T, Szepes Z, Németh BC, Gervain J, Izbéki F, Halász A, Kelemen D, Szmola R, Novák J, Crai S, Illés A, Vincze Á, Molnár Z, Varga M, Bod B, Farkas G, Sümegi J, Szepes A, Dubravcsik Z, Lásztity N, Párniczky A, Hamvas J, Andorka C, Veres G, Szentkereszty Z, Rakonczay Z, Maléth J, Sahin-Tóth M, Rosendahl J, Hegyi P. Genetic analysis of the bicarbonate secreting anion exchanger SLC26A6 in chronic pancreatitis. Pancreatology 2015; 15:508-513. [PMID: 26372434 DOI: 10.1016/j.pan.2015.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic ductal HCO3(-) secretion is critically dependent on the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) and the solute-linked carrier 26 member 6 anion transporter (SLC26A6). Deterioration of HCO3(-) secretion is observed in chronic pancreatitis (CP), and CFTR mutations increase CP risk. Therefore, SLC26A6 is a reasonable candidate for a CP susceptibility gene, which has not been investigated in CP patients so far. METHODS As a first screening cohort, 106 subjects with CP and 99 control subjects with no pancreatic disease were recruited from the Hungarian National Pancreas Registry. In 60 non-alcoholic CP cases the entire SLC26A6 coding region was sequenced. In the Hungarian cohort variants c.616G > A (p.V206M) and c.1191C > A (p.P397=) were further genotyped by restriction fragment length polymorphism analysis. In a German replication cohort all exons were sequenced in 40 non-alcoholic CP cases and variant c.616G > A (p.V206M) was further analyzed by sequencing in 321 CP cases and 171 controls. RESULTS Sequencing of the entire coding region revealed four common variants: intronic variants c.23 + 78_110del, c.183-4C > A, c.1134 + 32C > A, and missense variant c.616G > A (p.V206M) which were found in linkage disequilibrium indicating a conserved haplotype. The distribution of the haplotype did not show a significant difference between patients and controls in the two cohorts. A synonymous variant c.1191C > A (p.P397=) and two intronic variants c.1248 + 9_20del and c.-10C > T were detected in single cases. CONCLUSION Our data show that SLC26A6 variants do not alter the risk for the development of CP.
Collapse
Affiliation(s)
- Anita Balázs
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Claudia Ruffert
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Eszter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary; 2nd Department of Pediatrics, Comenius University Medical School, University Children's Hospital, Bratislava, Slovakia
| | - István Hritz
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - László Czakó
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Szepes
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Balázs Csaba Németh
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Judit Gervain
- Szent György University Teaching Hospital of County Fejér, Székesfehérvár, Hungary
| | - Ferenc Izbéki
- Szent György University Teaching Hospital of County Fejér, Székesfehérvár, Hungary
| | - Adrienn Halász
- Szent György University Teaching Hospital of County Fejér, Székesfehérvár, Hungary
| | | | - Richárd Szmola
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary
| | - János Novák
- Pándy Kálmán County Hopsital, Gyula, Hungary
| | - Stefan Crai
- Pándy Kálmán County Hopsital, Gyula, Hungary
| | - Anita Illés
- First Department of Medicine, University of Pécs, Hungary
| | - Áron Vincze
- First Department of Medicine, University of Pécs, Hungary
| | - Zsolt Molnár
- Department of Anestesiology and Intensive Care, University of Szeged, Szeged, Hungary
| | | | | | - Gyula Farkas
- Department of Surgery, University of Szeged, Hungary
| | - János Sümegi
- B-A-Z County Hopspital and University Teaching Hospital, Miskolc, Hungary
| | - Attila Szepes
- Department of Gastroenterology, Bács-Kiskun County Hospital, Kecskemét, Hungary
| | - Zsolt Dubravcsik
- Department of Gastroenterology, Bács-Kiskun County Hospital, Kecskemét, Hungary
| | | | | | | | - Csilla Andorka
- 1st Department of Pediatrics, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Gábor Veres
- 1st Department of Pediatrics, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Zsolt Szentkereszty
- Institute of Surgery, University of Debrecen, Clinical Center, Debrecen Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Jonas Rosendahl
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary.
| |
Collapse
|