1
|
Liu Z, Wang M, Li J, Liang Y, Jiang K, Hu Y, Gong W, Guo X, Guo Q, Zhu B. Hizikia fusiforme polysaccharides synergized with fecal microbiota transplantation to alleviate gut microbiota dysbiosis and intestinal inflammation. Int J Biol Macromol 2024; 283:137851. [PMID: 39566790 DOI: 10.1016/j.ijbiomac.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ulcerative colitis (UC) is closely associated with disruptions in gut microbiota. Restoring balance to gut microbiota and reducing intestinal inflammation has become a promising therapeutic approach for UC. However, challenges remain, including limited efficacy in some treatments. This study explores the synergistic effects and underlying mechanisms of Hizikia fusiforme polysaccharides (HFP) combined with fecal microbiota transplantation (FMT) to improve UC symptoms. Seven-week-old C57/BL6J mice were induced with UC using dextran sodium sulfate (DSS). Supplementation with either FMT alone or in combination with HFP effectively alleviated UC symptoms, reduced colonic inflammation, and corrected gut microbiota imbalance. Notably, HFP combined with FMT yielded showed better effects in ameliorating DSS-induced UC in mice than did FMT alone. Enrichment of probiotics, such as Bifidobacterium, and upregulation of beneficial metabolites, such as betaine, were identified as potential mechanisms for the enhanced effects of HFP combined with FMT against DSS-induced UC. These findings suggest that the combination of Hizikia fusiforme polysaccharides with FMT has potential applications in rectifying dysbiosis and ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuxuan Liang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Kaiyu Jiang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Qingbin Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
2
|
Chen J, Zhang H, Fu T, Zhao J, Nowak JK, Kalla R, Wellens J, Yuan S, Noble A, Ventham NT, Dunlop MG, Halfvarson J, Mao R, Theodoratou E, Satsangi J, Li X. Exposure to air pollution increases susceptibility to ulcerative colitis through epigenetic alterations in CXCR2 and MHC class III region. EBioMedicine 2024; 110:105443. [PMID: 39536393 PMCID: PMC11605448 DOI: 10.1016/j.ebiom.2024.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study aims to confirm the associations of air pollution with ulcerative colitis (UC) and Crohn's disease (CD); to explore interactions with genetics and lifestyle; and to characterize potential epigenetic mechanisms. METHODS We identified over 450,000 individuals from the UK Biobank and investigated the relationship between air pollution and incident inflammatory bowel disease (IBD). Cox regression was utilized to calculate hazard ratios (HRs), while also exploring potential interactions with genetics and lifestyle factors. Additionally, we conducted epigenetic Mendelian randomization (MR) analyses to examine the association between air pollution-related DNA methylation and UC. Finally, our findings were validated through genome-wide DNA methylation analysis of UC, as well as co-localization and gene expression analyses. FINDINGS Higher exposures to NOx (HR = 1.20, 95% CI 1.05-1.38), NO2 (HR = 1.19, 95% CI = 1.03-1.36), PM2.5 (HR = 1.19, 95% CI = 1.05-1.36) and combined air pollution score (HR = 1.26, 95% CI = 1.11-1.45) were associated with incident UC but not CD. Interactions with genetic risk score and lifestyle were observed. In MR analysis, we found five and 22 methylated CpG sites related to PM2.5 and NO2 exposure to be significantly associated with UC. DNA methylation alterations at CXCR2 and sites within the MHC class III region, were validated in genome-wide DNA methylation analysis, co-localization analysis and analysis of colonic tissue. INTERPRETATION We report a potential causal association between air pollution and UC, modified by lifestyle and genetic influences. Biological pathways implicated include epigenetic alterations in key genetic loci, including CXCR2 and susceptible loci within MHC class III region. FUNDING Xue Li was supported by the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001) and the National Nature Science Foundation of China (No. 82204019). ET was supported by the CRUK Career Development Fellowship (C31250/A22804) and the Research Foundation Flanders (FWO). JW was supported by Belgium by a PhD Fellowship strategic basic research (SB) grant (1S06023N). JKN was supported by the National Science Center, Poland (No. 2020/39/D/NZ5/02720). The IBD Character was supported by the European Union's Seventh Framework Programme [FP7] grant IBD Character (No. 2858546).
Collapse
Affiliation(s)
- Jie Chen
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Han Zhang
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tian Fu
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University Medical College, Hangzhou, China
| | - Jianhui Zhao
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jan Krzysztof Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60572, Poznan, Poland
| | - Rahul Kalla
- Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Judith Wellens
- KU Leuven Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium; Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Noble
- Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Evropi Theodoratou
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Jack Satsangi
- Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK.
| | - Xue Li
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Premadasa LS, McDew-White M, Romero L, Gondo B, Drawec JA, Ling B, Okeoma CM, Mohan M. Epigenetic modulation of NLRP6 inflammasome sensor as a therapeutic modality to reduce necroptosis-driven gastrointestinal mucosal dysfunction in HIV/SIV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623322. [PMID: 39605466 PMCID: PMC11601347 DOI: 10.1101/2024.11.13.623322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The epigenetic mechanisms driving persistent gastrointestinal mucosal dysfunction in HIV/SIV infection is an understudied topic. Using reduced-representation bisulfite sequencing, we identified HIV/SIV infection in combination anti-retroviral therapy (cART)-naive rhesus macaques (RMs) to induce marked hypomethylation throughout promoter-associated CpG islands (paCGIs) in genes related to inflammatory response ( NLRP6, cGAS ), cellular adhesion and proliferation in colonic epithelial cells (CEs). Moreover, low-dose delta-9-tetrahydrocannabinol (THC) administration reduced NLRP6 protein expression in CE by hypermethylating the NLRP6 paCGI and blocked polyI:C induced NLRP6 upregulation in vitro. In cART suppressed SIV-infected RMs, NLRP6 protein upregulation associated with significantly increased expression of necroptosis-driving proteins; phosphorylated-RIPK3(Ser199), phosphorylated-MLKL(Thr357/Ser358), and HMGB1. Most strikingly, supplementing cART with THC effectively reduced NLRP6 and necroptosis-driving protein expression to pre-infection levels. These findings for the first time demonstrate that NLRP6 upregulation and ensuing activation of necroptosis promote HIV/SIV-induced gastrointestinal mucosal dysfunction and that epigenetic modulation using phytocannabinoids represents a feasible therapeutic modality for alleviating HIV/SIV-induced gastrointestinal inflammation and associated comorbidities.
Collapse
|
4
|
Miao Y, Wang M, Sun H, Zhang Y, Zhou W, Yang W, Duan L, Niu L, Li Z, Chen J, Li Y, Fan A, Xie Q, Wei S, Bai H, Wang C, Chen Q, Wang X, Li Y, Liu J, Han Y, Fan D, Hong L. Akkermansia muciniphila ameliorates colonic injury in mice with DSS-induced acute colitis by blocking macrophage pro-inflammatory phenotype switching via the HDAC5/DAB2 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119751. [PMID: 38776988 DOI: 10.1016/j.bbamcr.2024.119751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Akkermansia muciniphila (A. muciniphila), a probiotic, has been linked to macrophage phenotypic polarization in different diseases. However, the role and mechanisms of A. muciniphila in regulating macrophage during ulcerative colitis (UC) are not clear. This research aimed to examine the impact of A. muciniphila on dextran sulfate sodium (DSS)-induced acute colitis and elucidate the underlying mechanism related to macrophage phenotypic polarization. A. muciniphila inhibited weight loss, increased disease activity index, and ameliorated inflammatory injury in colonic tissues in mice induced with DSS. Furthermore, A. muciniphila reduced macrophage M1 polarization and ameliorated epithelial barrier damage in colonic tissues of DSS-induced mice through inhibition of histone deacetylase 5 (HDAC5). In contrast, the effect of A. muciniphila was compromised by HDAC5 overexpression. HDAC5 deacetylated H3K9ac modification of the disabled homolog 2 (DAB2) promoter, which led to repressed DAB2 expression. DAB2 overexpression blocked HDAC5-induced pro-inflammatory polarization of macrophages, whereas knockdown of DAB2 resulted in the loss of effects of A. muciniphila against colonic injury in DSS-induced mice. Taken together, A. muciniphila-induced loss of HDAC5 hampered the deacetylation of DAB2 and enhanced the expression of DAB2. Our findings propose that A. muciniphila may be a possible probiotic agent for alleviating DSS-induced acute colitis.
Collapse
Affiliation(s)
- Yan Miao
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Mian Wang
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Hao Sun
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yujie Zhang
- Department of Histology and Embryology, School of Basic Medicine, Xi'an Medical University, Xi'an 710032, Shaanxi, PR China
| | - Wei Zhou
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Wanli Yang
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Zhenshun Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Junfeng Chen
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yiding Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Aqiang Fan
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Qibin Xie
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Siyu Wei
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Han Bai
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Chenyang Wang
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Qian Chen
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Xiangjie Wang
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Jinqiang Liu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China.
| |
Collapse
|
5
|
Li D, Liu Z, Fan X, Zhao T, Wen D, Huang X, Li B. Lactic Acid Bacteria-Gut-Microbiota-Mediated Intervention towards Inflammatory Bowel Disease. Microorganisms 2024; 12:1864. [PMID: 39338538 PMCID: PMC11433943 DOI: 10.3390/microorganisms12091864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), arises from intricate interactions involving genetics, environment, and pharmaceuticals with an ambiguous pathogenic mechanism. Recently, there has been an increasing utilization of lactic acid bacteria (LAB) in managing IBD, attributed to their ability to enhance intestinal barrier function, mitigate inflammatory responses, and modulate gut microbiota. This review initiates by elucidating the pathogenesis of IBD and its determinants, followed by an exploration of the mechanisms underlying LAB therapy in UC and CD. Special attention is directed towards their influence on intestinal barrier function and homeostasis regulated by gut microbiota. Furthermore, the review investigates the complex interplay among pivotal gut microbiota, metabolites, and pathways associated with inflammation. Moreover, it underscores the limitations of LAB in treating IBD, particularly in light of their varying roles in UC and CD. This comprehensive analysis endeavors to offer insights for the optimized application of LAB in IBD therapy.
Collapse
Affiliation(s)
- Diantong Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhenjiang Liu
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xueni Fan
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tingting Zhao
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
| | - Xiaodan Huang
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
| |
Collapse
|
6
|
Yang Y, Zhang Z, Wang Y, Rao J, Sun J, Wu Z, He J, Tan X, Liang L, Yu Q, Wu Z, Zou H, Zhang H, Dong M, Zheng J, Feng S, Cheng W, Wei H. Colonization of microbiota derived from Macaca fascicularis, Bama miniature pigs, beagle dogs, and C57BL/6J mice alleviates DSS-induced colitis in germ-free mice. Microbiol Spectr 2024; 12:e0038824. [PMID: 38990027 PMCID: PMC11302040 DOI: 10.1128/spectrum.00388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Fecal microbiota transplantation (FMT) is an innovative and promising treatment for inflammatory bowel disease (IBD), which is related to the capability of FMT to supply functional microorganisms to improve recipient gut health. Numerous studies have highlighted considerable variability in the efficacy of FMT interventions for IBD. Several factors, including the composition of the donor microorganisms, significantly affect the efficacy of FMT in the treatment of IBD. Consequently, identifying the functional microorganisms in the donor is crucial for enhancing the efficacy of FMT. To explore potential common anti-inflammatory bacteria with therapeutic implications for IBD, germ-free (GF) BALB/c mice were pre-colonized with fecal microbiota obtained from diverse donors, including Macaca fascicularis (MCC_FMT), Bama miniature pigs (BP_FMT), beagle dogs (BD_FMT), and C57BL/6 J mice (Mice_FMT). Subsequently, mice were treated with dextran sodium sulfate (DSS). As expected, the symptoms of colitis were alleviated by MCC_FMT, BP_FMT, BD_FMT, and Mice_FMT, as demonstrated by the prevention of an elevated disease activity index in mice. Additionally, the utilization of distinct donors protected the intestinal barrier and contributed to the regulation of cytokine homeostasis. Metagenomic sequencing data showed that the microbial community structure and dominant species were significantly different among the four groups, which may be linked to variations in the anti-inflammatory efficacy observed in the respective groups. Notably, Lactobacillus reuteri and Flavonifractor plautii were consistently present in all four groups. L. reuteri exhibited a significant negative correlation with IL-1β, and animal studies further confirmed its efficacy in alleviating IBD, suggesting the presence of common functional bacteria across different donors that exert anti-inflammatory effects. This study provides essential foundational data for the potential clinical applications of FMT.IMPORTANCEDespite variations in efficacy observed among donors, numerous studies have underscored the potential of fecal microbiota transplantation (FMT) for managing inflammatory bowel disease (IBD), indicating the presence of shared anti-IBD bacterial species. In the present study, the collective anti-inflammatory efficacy observed across all four donor groups prompted the identification of two common bacterial species using metagenomics. A significant negative correlation between Lactobacillus reuteri and IL-1β was revealed. Furthermore, mice gavaged with L. reuteri successfully managed the colitis challenge induced by dextran sodium sulfate (DSS), suggesting that L. reuteri may act as an efficacious bacterium mediating shared anti-inflammatory effects among variable donors. This finding highlights the utilization of variable donors to screen FMT core bacteria, which may be a novel strategy for developing FMT applications.
Collapse
Affiliation(s)
- Yapeng Yang
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zeyue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yuqing Wang
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Junhua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jinhui He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiang Tan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Lifeng Liang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Yu
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhifeng Wu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Huicong Zou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Hang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Miaomiao Dong
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jixia Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Shuaifei Feng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wei Cheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Yu‐Yue Pathology Scientific Research Center, Chongqing, China
| |
Collapse
|
7
|
Zhang S, Zhang Y, Duan X, Wang B, Zhan Z. Targeting NPM1 Epigenetically Promotes Postinfarction Cardiac Repair by Reprogramming Reparative Macrophage Metabolism. Circulation 2024; 149:1982-2001. [PMID: 38390737 PMCID: PMC11175795 DOI: 10.1161/circulationaha.123.065506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Reparative macrophages play a crucial role in limiting excessive fibrosis and promoting cardiac repair after myocardial infarction (MI), highlighting the significance of enhancing their reparative phenotype for wound healing. Metabolic adaptation orchestrates the phenotypic transition of macrophages; however, the precise mechanisms governing metabolic reprogramming of cardiac reparative macrophages remain poorly understood. In this study, we investigated the role of NPM1 (nucleophosmin 1) in the metabolic and phenotypic shift of cardiac macrophages in the context of MI and explored the therapeutic effect of targeting NPM1 for ischemic tissue repair. METHODS Peripheral blood mononuclear cells were obtained from healthy individuals and patients with MI to explore NPM1 expression and its correlation with prognostic indicators. Through RNA sequencing, metabolite profiling, histology, and phenotype analyses, we investigated the role of NPM1 in postinfarct cardiac repair using macrophage-specific NPM1 knockout mice. Epigenetic experiments were conducted to study the mechanisms underlying metabolic reprogramming and phenotype transition of NPM1-deficient cardiac macrophages. The therapeutic efficacy of antisense oligonucleotide and inhibitor targeting NPM1 was then assessed in wild-type mice with MI. RESULTS NPM1 expression was upregulated in the peripheral blood mononuclear cells from patients with MI that closely correlated with adverse prognostic indicators of MI. Macrophage-specific NPM1 deletion reduced infarct size, promoted angiogenesis, and suppressed tissue fibrosis, in turn improving cardiac function and protecting against adverse cardiac remodeling after MI. Furthermore, NPM1 deficiency boosted the reparative function of cardiac macrophages by shifting macrophage metabolism from the inflammatory glycolytic system to oxygen-driven mitochondrial energy production. The oligomeric NPM1 recruited histone demethylase KDM5b to the promoter of Tsc1 (TSC complex subunit 1), the mTOR (mechanistic target of rapamycin kinase) complex inhibitor, reduced histone H3K4me3 modification, and inhibited TSC1 expression, which then facilitated mTOR-related inflammatory glycolysis and antagonized the reparative function of cardiac macrophages. The in vivo administration of antisense oligonucleotide targeting NPM1 or oligomerization inhibitor NSC348884 substantially ameliorated tissue injury and enhanced cardiac recovery in mice after MI. CONCLUSIONS Our findings uncover the key role of epigenetic factor NPM1 in impeding postinfarction cardiac repair by remodeling metabolism pattern and impairing the reparative function of cardiac macrophages. NPM1 may serve as a promising prognostic biomarker and a valuable therapeutic target for heart failure after MI.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China (S.Z., X.D., Z.Z.)
| | - Yunkai Zhang
- Naval Medical Center, Naval Medical University, Shanghai, China (Y.Z.)
| | - Xuewen Duan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China (S.Z., X.D., Z.Z.)
| | - Bo Wang
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Z.Z., B.W.)
| | - Zhenzhen Zhan
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Z.Z., B.W.)
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China (S.Z., X.D., Z.Z.)
| |
Collapse
|
8
|
Wang S, Yang Y, Jiang X, Zheng X, Wei Q, Dai W, Zhang X. Nurturing gut health: role of m6A RNA methylation in upholding the intestinal barrier. Cell Death Discov 2024; 10:271. [PMID: 38830900 PMCID: PMC11148167 DOI: 10.1038/s41420-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The intestinal lumen acts as a critical interface connecting the external environment with the body's internal state. It's essential to prevent the passage of harmful antigens and bacteria while facilitating nutrient and water absorption. The intestinal barriers encompass microbial, mechanical, immunological, and chemical elements, working together to maintain intestinal balance. Numerous studies have associated m6A modification with intestinal homeostasis. This review comprehensively outlines potential mechanisms through which m6A modification could initiate, exacerbate, or sustain barrier damage from an intestinal perspective. The pivotal role of m6A modification in preserving intestinal equilibrium provides new insights, guiding the exploration of m6A modification as a target for optimizing preventive and therapeutic strategies for intestinal homeostasis.
Collapse
Affiliation(s)
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaohan Jiang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiufang Wei
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wenbin Dai
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| |
Collapse
|
9
|
Patel P, Sinh P. Editorial commentary: Unraveling the mechanistic link between atherosclerosis and inflammatory bowel disease. Can we find a target? Trends Cardiovasc Med 2024; 34:212-213. [PMID: 36758847 DOI: 10.1016/j.tcm.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Affiliation(s)
- Paraj Patel
- Department of Medicine, Clement J. Zablocki VA Medical Center, Medical College of Wisconsin
| | - Preetika Sinh
- Division of Gastroenterology and Hepatology, Department of Medicine, 8701 Watertown plank road, Medical College of Wisconsin, Milwaukee, Wisconsin, US 53226.
| |
Collapse
|
10
|
de Ponthaud C, Abdalla S, Belot MP, Shao X, Penna C, Brouquet A, Bougnères P. Increased CpG methylation at the CDH1 locus in inflamed ileal mucosa of patients with Crohn disease. Clin Epigenetics 2024; 16:28. [PMID: 38355645 PMCID: PMC10865720 DOI: 10.1186/s13148-024-01631-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND E-cadherin, a major actor of cell adhesion in the intestinal barrier, is encoded by the CDH1 gene associated with susceptibility to Crohn Disease (CD) and colorectal cancer. Since epigenetic mechanisms are suspected to contribute to the multifactorial pathogenesis of CD, we studied CpG methylation at the CDH1 locus. The methylation of the CpG island (CGI) and of the 1st enhancer, two critical regulatory positions, was quantified in surgical specimens of inflamed ileal mucosa and in peripheral blood mononuclear cells (PBMC) of 21 CD patients. Sixteen patients operated on for a non-inflammatory bowel disease, although not normal controls, provided a macroscopically normal ileal mucosa and PBMC for comparison. RESULTS In ileal mucosa, 19/21 (90%) CD patients vs 8/16 control patients (50%) (p < 0.01) had a methylated CDH1 promoter CGI. In PBMC, CD patients with methylated CGI were 11/21 (52%) vs 7/16 controls (44%), respectively. Methylation in the 1st enhancer of CDH1 was also higher in the CD group for each of the studied CpGs and for their average value (45 ± 17% in CD patients vs 36 ± 17% in controls; p < 0.001). Again, methylation was comparable in PBMC. Methylation of CGI and 1st enhancer were not correlated in mucosa or PBMC. CONCLUSIONS Methylation of several CpGs at the CDH1 locus was increased in the inflamed ileal mucosa, not in the PBMC, of CD patients, suggesting the association of CDH1 methylation with ileal inflammation. Longitudinal studies will explore if this increased methylation is a risk marker for colorectal cancer.
Collapse
Affiliation(s)
- Charles de Ponthaud
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Solafah Abdalla
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Marie-Pierre Belot
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Xiaojian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Christophe Penna
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Brouquet
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Pierre Bougnères
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- MIRCEN Institute, CEA Paris-Saclay/site de Fontenay-aux-Roses, Bâtiment 56 PC 103, 18 route du Panorama, BP6 92265, Fontenay-aux-Roses Cedex, France.
| |
Collapse
|
11
|
Routh S, Manickam V. Epigenetic alterations dictating the inflammation: A view through pancreatitis. Life Sci 2024; 338:122383. [PMID: 38158041 DOI: 10.1016/j.lfs.2023.122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Pancreatitis is a severe inflammation in the pancreas and accounts for one of the leading gastrointestinal disorders worldwide, and presently pacing up with the morbidity and mortality rates. It has been noted that severe recurrences of acute pancreatitis lead to chronic inflammation and fibrosis of the pancreas which may further result to a long-term risk of pancreatic carcinogenesis which has a lower survival rate and worse prognosis. Several genetic and epigenetic mechanisms have been reported to orchestrate disease development. Intriguingly, concurrent epigenetic alterations can also control the genes responsible for the pathophysiology of several inflammatory pathways. Deciphering how epigenetic changes affect the inflammatory processes in pancreatitis and body's response to various therapeutic modalities may help to manage the condition more effectively. The current review will concentrate on several epigenetic changes in general and how specifically they are implicated in pancreatitis pathogenesis. Further, this review summarizes the involvement of inflammation in pancreatitis from an epigenetic perspective.
Collapse
Affiliation(s)
- Sreyoshi Routh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Venkatraman Manickam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Zhao X, Hu C, Chen X, Ren S, Gao F. Drug Repositioning of Inflammatory Bowel Disease Based on Co-Target Gene Expression Signature of Glucocorticoid Receptor and TET2. BIOLOGY 2024; 13:82. [PMID: 38392301 PMCID: PMC10886832 DOI: 10.3390/biology13020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
The glucocorticoid receptor (GR) and ten-eleven translocation 2 (TET2), respectively, play a crucial role in regulating immunity and inflammation, and GR interacts with TET2. However, their synergetic roles in inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), remain unclear. This study aimed to investigate the co-target gene signatures of GR and TET2 in IBD and provide potential therapeutic interventions for IBD. By integrating public data, we identified 179 GR- and TET2-targeted differentially expressed genes (DEGs) in CD and 401 in UC. These genes were found to be closely associated with immunometabolism, inflammatory responses, and cell stress pathways. In vitro inflammatory cellular models were constructed using LPS-treated HT29 and HCT116 cells, respectively. Drug repositioning based on the co-target gene signatures of GR and TET2 derived from transcriptomic data of UC, CD, and the in vitro model was performed using the Connectivity Map (CMap). BMS-536924 emerged as a top therapeutic candidate, and its validation experiment within the in vitro inflammatory model confirmed its efficacy in mitigating the LPS-induced inflammatory response. This study sheds light on the pathogenesis of IBD from a new perspective and may accelerate the development of novel therapeutic agents for inflammatory diseases including IBD.
Collapse
Affiliation(s)
- Xianglin Zhao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Henan University, Shenzhen 518000, China
| | - Chenghao Hu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xinyu Chen
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuqiang Ren
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Ye S, Lyu Y, Chen L, Wang Y, He Y, Li Q, Tian L, Liu F, Wang X, Ai F. Construction of a molecular inflammatory predictive model with histone modification-related genes and identification of CAMK2D as a potential response signature to infliximab in ulcerative colitis. Front Immunol 2024; 14:1282136. [PMID: 38274809 PMCID: PMC10808628 DOI: 10.3389/fimmu.2023.1282136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Ulcerative colitis (UC) is a lifelong inflammatory disease affecting the rectum and colon with numerous treatment options that require an individualized treatment plan. Histone modifications regulate chromosome structure and gene expression, resulting in effects on inflammatory and immune responses. However, the relationship between histone modification-related genes and UC remains unclear. Methods Transcriptomic data from GSE59071 and GSE66407 were obtained from the Gene Expression Omnibus (GEO), encompassing colonic biopsy expression profiles of UC patients in inflamed and non-inflamed status. Differentially expressed gene (DEG) analyses, functional enrichment analyses, weighted gene co-expression network analysis (WGCNA), and random forest were performed to identify histone modification-related core genes associated with UC inflammation. Features were screened through the least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), establishing a molecular inflammatory predictive model using logistic regression. The model was validated in the GSE107499 dataset, and the performance of the features was assessed using receiver operating characteristic (ROC) and calibration curves. Immunohistochemistry (IHC) staining of colonic biopsy tissues from UC patients treated with infliximab was used to further confirm the clinical application value. Univariate logistic regression on GSE14580 highlighted features linked to infliximab response. Results A total of 253 histone modification-related DEGs were identified between inflammatory and non-inflammatory patients with UC. Seven key genes (IL-1β, MSL3, HDAC7, IRF4, CAMK2D, AUTS2, and PADI2) were selected using WGCNA and random forest. Through univariate logistic regression, three core genes (CAMK2D, AUTS2, and IL-1β) were further incorporated to construct the molecular inflammatory predictive model. The area under the curve (AUC) of the model was 0.943 in the independent validation dataset. A significant association between CAMK2D protein expression and infliximab response was observed, which was validated in another independent verification set of GSE14580 from the GEO database. Conclusion The molecular inflammatory predictive model based on CAMK2D, AUTS2, and IL-1β could reliably distinguish the mucosal inflammatory status of UC patients. We further revealed that CAMK2D was a predictive marker of infliximab response. These findings are expected to provide a new evidence base for personalized treatment and management strategies for UC patients.
Collapse
Affiliation(s)
- Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Libin Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yue He
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Quansi Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fen Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Zhou YW, Ren Y, Lu MM, Xu LL, Cheng WX, Zhang MM, Ding LP, Chen D, Gao JG, Du J, Jin CL, Chen CX, Li YF, Cheng T, Jiang PL, Yang YD, Qian PX, Xu PF, Jin X. Crohn's disease as the intestinal manifestation of pan-lymphatic dysfunction: An exploratory proposal based on basic and clinical data. World J Gastroenterol 2024; 30:34-49. [PMID: 38293325 PMCID: PMC10823898 DOI: 10.3748/wjg.v30.i1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Crohn's disease (CD) is caused by immune, environmental, and genetic factors. It can involve the entire gastrointestinal tract, and although its prevalence is rapidly increasing its etiology remains unclear. Emerging biological and small-molecule drugs have advanced the treatment of CD; however, a considerable proportion of patients are non-responsive to all known drugs. To achieve a breakthrough in this field, innovations that could guide the further development of effective therapies are of utmost urgency. In this review, we first propose the innovative concept of pan-lymphatic dysfunction for the general distribution of lymphatic dysfunction in various diseases, and suggest that CD is the intestinal manifestation of pan-lymphatic dysfunction based on basic and clinical preliminary data. The supporting evidence is fully summarized, including the existence of lymphatic system dysfunction, recognition of the inside-out model, disorders of immune cells, changes in cell plasticity, partial overlap of the underlying mechanisms, and common gut-derived fatty and bile acid metabolism. Another benefit of this novel concept is that it proposes adopting the zebrafish model for studying intestinal diseases, especially CD, as this model is good at presenting and mimicking lymphatic dysfunction. More importantly, the ensuing focus on improving lymphatic function may lead to novel and promising therapeutic strategies for CD.
Collapse
Affiliation(s)
- Yu-Wei Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The Second Hospital of Jiaxing, Jiaxing 314000, Zhejiang Province, China
| | - Miao-Miao Lu
- Endoscopy Center, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Ling Xu
- Department of Gastroenterology, The Second People’s Hospital of Yuhang District, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Xin Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Meng Zhang
- Department of Gastroenterology, Hangzhou Shangcheng District People’s Hospital, Hangzhou 310003, Zhejiang Province, China
| | - Lin-Ping Ding
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Juan Du
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ci-Liang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chun-Xiao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yun-Fei Li
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Tao Cheng
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Lei Jiang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Da Yang
- Department of Infectious Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Peng-Xu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Peng-Fei Xu
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
15
|
Kuang X, Chen S, Ye Q. The Role of Histone Deacetylases in NLRP3 Inflammasomesmediated Epilepsy. Curr Mol Med 2024; 24:980-1003. [PMID: 37519210 DOI: 10.2174/1566524023666230731095431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Epilepsy is one of the most common brain disorders that not only causes death worldwide, but also affects the daily lives of patients. Previous studies have revealed that inflammation plays an important role in the pathophysiology of epilepsy. Activation of inflammasomes can promote neuroinflammation by boosting the maturation of caspase-1 and the secretion of various inflammatory effectors, including chemokines, interleukins, and tumor necrosis factors. With the in-depth research on the mechanism of inflammasomes in the development of epilepsy, it has been discovered that NLRP3 inflammasomes may induce epilepsy by mediating neuronal inflammatory injury, neuronal loss and blood-brain barrier dysfunction. Therefore, blocking the activation of the NLRP3 inflammasomes may be a new epilepsy treatment strategy. However, the drugs that specifically block NLRP3 inflammasomes assembly has not been approved for clinical use. In this review, the mechanism of how HDACs, an inflammatory regulator, regulates the activation of NLRP3 inflammasome is summarized. It helps to explore the mechanism of the HDAC inhibitors inhibiting brain inflammatory damage so as to provide a potential therapeutic strategy for controlling the development of epilepsy.
Collapse
Affiliation(s)
- Xi Kuang
- Hainan Health Vocational College,Haikou, Hainan, 570311, China
| | - Shuang Chen
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, 430022, Hubei, China
| | - Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| |
Collapse
|
16
|
Wang Y, Chen C, Yan W, Fu Y. Epigenetic modification of m 6A methylation: Regulatory factors, functions and mechanism in inflammatory bowel disease. Int J Biochem Cell Biol 2024; 166:106502. [PMID: 38030117 DOI: 10.1016/j.biocel.2023.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Although the exact cause of inflammatory bowel disease (IBD) is still unknown, there is a lot of evidence to support the notion that it results from a combination of environmental factors, immune system issues, gut microbial changes, and genetic susceptibility. In recent years, the role of epigenetics in the pathogenesis of IBD has drawn increasing attention. The regulation of IBD-related immunity, the preservation of the intestinal epithelial barrier, and autophagy are all significantly influenced by epigenetic factors. The most extensive epigenetic methylation modification of mammalian mRNA among them is N6-methyladenosine (m6A). It summarizes the general structure and function of the m6A regulating factors, as well as their complex effects on IBD by regulating the intestinal mucous barrier, intestine mucosal immunity, epidermal cell death, and intestinal microorganisms.This paper provides key insights for the future identification of potential new targets for the diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Deris Zayeri Z, Parsi A, Shahrabi S, Kargar M, Davari N, Saki N. Epigenetic and metabolic reprogramming in inflammatory bowel diseases: diagnostic and prognostic biomarkers in colorectal cancer. Cancer Cell Int 2023; 23:264. [PMID: 37936149 PMCID: PMC10631091 DOI: 10.1186/s12935-023-03117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND AND AIM "Inflammatory bowel disease" (IBD) is a chronic, relapsing inflammatory disease of the intestinal tract that typically begins at a young age and might transit to colorectal cancer (CRC). In this manuscript, we discussed the epigenetic and metabolic change to present a extensive view of IBDs transition to CRC. This study discusses the possible biomarkers for evaluating the condition of IBDs patients, especially before the transition to CRC. RESEARCH APPROACH We searched "PubMed" and "Google Scholar" using the keywords from 2000 to 2022. DISCUSSION In this manuscript, interesting titles associated with IBD and CRC are discussed to present a broad view regarding the epigenetic and metabolic reprogramming and the biomarkers. CONCLUSION Epigenetics can be the main reason in IBD transition to CRC, and Hypermethylation of several genes, such as VIM, OSM4, SEPT9, GATA4 and GATA5, NDRG4, BMP3, ITGA4 and plus hypomethylation of LINE1 can be used in IBD and CRC management. Epigenetic, metabolisms and microbiome-derived biomarkers, such as Linoleic acid and 12 hydroxy 8,10-octadecadienoic acid, Serum M2-pyruvate kinase and Six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK and ADCY5) expression are valuable biomarkers for early detection and transition to CRC condition. Some miRs, such as miR-31, miR-139-5p, miR -155, miR-17, miR-223, miR-370-3p, miR-31, miR -106a, miR -135b and miR-320 can be used as biomarkers to estimate IBD transition to CRC condition.
Collapse
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abazar Parsi
- Alimentary Tract Research Center, Clinical Sciences Research Inistitute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Masoud Kargar
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
18
|
Ding Z, Ninan K, Johnston BC, Moayyedi P, Sherlock M, Zachos M. Microbiota signatures and mucosal healing in the use of enteral nutrition therapy v. corticosteroids for the treatment of children with Crohn's disease: a systematic review and meta-analysis. Br J Nutr 2023; 130:1385-1402. [PMID: 36788671 PMCID: PMC10511686 DOI: 10.1017/s0007114523000405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
Corticosteroids (CS) and exclusive and partial enteral nutrition (EEN and PEN) are effective therapies in paediatric Crohn's disease (CD). This systematic review of randomised controlled trials (RCT) and cohort studies analyses the impact of EEN/PEN v. CS on intestinal microbiota, mucosal healing as well as other clinically important outcomes, including clinical remission, relapse, adherence, adverse events and health-related quality of life (HRQL) in paediatric CD. Three RCT (n 76) and sixteen cohort studies (n 1104) compared EEN v. CS. With limited available data (one RCT), the effect on intestinal microbiome indicated a trend towards EEN regarding Shannon diversity. Based on two RCT, EEN achieved higher mucosal healing than CS (risk ratio (RR) 2·36, 95 % CI (1·22, 4·57), low certainty). Compared with CS, patients on EEN were less likely to experience adverse events based on two RCT (RR 0·32, 95 % CI (0·13, 0·80), low certainty). For HRQL, there was a trend in favour of CS based on data from two published abstracts of cohort studies. Based on thirteen cohort studies, EEN achieved higher clinical remission than CS (RR 1·18, 95 % CI (1·02, 1·38), very low certainty). Studies also reported no important differences in relapse and adherence. Compared with CS, EEN may improve mucosal healing with fewer adverse events based on RCT data. While limited data indicate the need for further trials, this is the first systematic review to comprehensively summarise the data on intestinal microbiome, mucosal healing and HRQOL when comparing enteral nutrition and CS in paediatric CD.
Collapse
Affiliation(s)
- Zhaolu Ding
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Kiran Ninan
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Bradley C. Johnston
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Paul Moayyedi
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
- Department of Medicine, Division of Gastroenterology, McMaster University, Hamilton, ON, Canada
| | - Mary Sherlock
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Mary Zachos
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
19
|
Fiocchi C. Omics and Multi-Omics in IBD: No Integration, No Breakthroughs. Int J Mol Sci 2023; 24:14912. [PMID: 37834360 PMCID: PMC10573814 DOI: 10.3390/ijms241914912] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The recent advent of sophisticated technologies like sequencing and mass spectroscopy platforms combined with artificial intelligence-powered analytic tools has initiated a new era of "big data" research in various complex diseases of still-undetermined cause and mechanisms. The investigation of these diseases was, until recently, limited to traditional in vitro and in vivo biological experimentation, but a clear switch to in silico methodologies is now under way. This review tries to provide a comprehensive assessment of state-of-the-art knowledge on omes, omics and multi-omics in inflammatory bowel disease (IBD). The notion and importance of omes, omics and multi-omics in both health and complex diseases like IBD is introduced, followed by a discussion of the various omics believed to be relevant to IBD pathogenesis, and how multi-omics "big data" can generate new insights translatable into useful clinical tools in IBD such as biomarker identification, prediction of remission and relapse, response to therapy, and precision medicine. The pitfalls and limitations of current IBD multi-omics studies are critically analyzed, revealing that, regardless of the types of omes being analyzed, the majority of current reports are still based on simple associations of descriptive retrospective data from cross-sectional patient cohorts rather than more powerful longitudinally collected prospective datasets. Given this limitation, some suggestions are provided on how IBD multi-omics data may be optimized for greater clinical and therapeutic benefit. The review concludes by forecasting the upcoming incorporation of multi-omics analyses in the routine management of IBD.
Collapse
Affiliation(s)
- Claudio Fiocchi
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
Lee JY, Ma HW, Kim JH, Park IS, Son M, Ryu KH, Shin J, Kim SW, Cheon JH. Novel Histone Deacetylase 6 Inhibitor Confers Anti-inflammatory Effects and Enhances Gut Barrier Function. Gut Liver 2023; 17:766-776. [PMID: 36167345 PMCID: PMC10502503 DOI: 10.5009/gnl220159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022] Open
Abstract
Background/Aims The purpose of the current study was to examine the anti-inflammatory effects of CKD-506, a novel histone deacetylase 6 inhibitor, on human peripheral blood mononuclear cells (PBMCs) and CD4+ T cells and to explore the relationship between CKD-506 and gut epithelial barrier function. Methods Lipopolysaccharide-stimulated human PBMCs from inflammatory bowel disease (IBD) patients were treated with CKD-506, and tumor necrosis factor (TNF)-α expression was measured using an enzyme-linked immunosorbent assay. The proliferation of CD4+ T cells from IBD patients was evaluated using flow cytometric analysis. The effects of CKD-506 on gut barrier function in a cell line and colon organoids, based on examinations of mRNA production, goblet cell differentiation, and E-cadherin recovery, were investigated using quantitative reverse transcription polymerase chain reaction, immunofluorescence, and a fluorescein isothiocyanate-dextran permeability assay. Results Secretion of TNF-α, a pivotal pro-inflammatory mediator in IBD, by lipopolysaccharide-triggered PBMCs was markedly decreased by CKD-506 treatment in a dose-dependent manner and to a greater extent than by tofacitinib or tubastatin A treatment. E-cadherin mRNA expression and goblet cell differentiation increased significantly and dose-dependently in HT-29 cells in response to CKD-506, and inhibition of E-cadherin loss after TNF-α stimulation was significantly reduced both in HT-29 cells and gut organoids. Caco-2 cells treated with CKD-506 showed a significant reduction in barrier permeability in a dose-dependent manner. Conclusions The present study demonstrated that CKD-506 has anti-inflammatory effects on PBMCs and CD4 T cells and improves gut barrier function, suggesting its potential as a small-molecule therapeutic option for IBD.
Collapse
Affiliation(s)
- Jae-Young Lee
- Department of Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Woo Ma
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyung Kim
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - I Seul Park
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Mijeong Son
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Keun Ho Ryu
- Department of Non-Clinical Study, CKD Research Institute, CKD Pharmaceutical Co., Yongin, Korea
| | - Jieun Shin
- Department of Non-Clinical Study, CKD Research Institute, CKD Pharmaceutical Co., Yongin, Korea
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Steigleder KM, Pascoal LB, Siqueira NSN, Simino LADP, Ayrizono MDLS, Ferreira MM, Fagundes JJ, Azevedo ATD, Torsoni AS, Leal RF. Mathematical Models Including microRNA Levels of Mesenteric Adipose Tissue May Predict Postoperative Relapse in Crohn's Disease Patients. GASTRO HEP ADVANCES 2023; 3:17-30. [PMID: 39132178 PMCID: PMC11307883 DOI: 10.1016/j.gastha.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/21/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Recent evidence suggests that the mesenteric adipose tissue (MAT) near the affected intestine may play a role in Crohn's disease (CD) pathophysiology. Modulation of several transcripts has already been identified in the MAT of CD in the literature. Therefore, our aim was to validate the microRNA (miRNA) transcript levels and their target genes in the MAT of active CD patients and correlate them with clinical and epidemiological data. Methods Samples from the MAT of surgical specimens from 25 active CD patients were obtained. The control group comprised fifteen patients who underwent surgery for other diseases, except inflammatory bowel diseases. Transcriptional levels of miRNA and their target genes were assessed by quantitative real-time polymerase chain reaction. The correlation between transcripts and clinical characteristics was obtained using multiple linear regression. The mathematical models (M) underwent a statistical filter to ensure robustness and reliability (P value < .05; adjusted R-squared (Rˆ2)> .99; correct predictions of more than 60%). Results miRNA-650 and miRNA-29c were upregulated in the MAT of CD compared to the control group (P < .0001 and P = .0032, respectively), besides presenting decreased levels of their target genes. Two were target genes of the miRNA-650: glutamine-fructose-6-phosphate transaminase 2 (P = .012) and aldehyde dehydrogenase 4 family (P = .0035); and 4 were targets of the miRNA-29c: cell death-inducing DFFA-like effector c (P = .001), E2F transcription factor-1 (P = .007), hypoxia-inducible factor 3 subunit alpha (P = .0029), and pyruvate dehydrogenase kinase 4 (P = .0054). We found 2 M with statistical strength and robustness. The performance test identified one model with 100% accuracy for predicting the month of recurrence and determining patients with less risk of early relapse after surgery. Conclusion We demonstrate that miRNA-650 and miRNA-29c and some of their target genes, besides clinical and epidemiological variables, may be useful in a model to predict when disease relapse may occur in CD patients who underwent surgery. These findings constitute a potential tool to guide postoperative clinical management.
Collapse
Affiliation(s)
- Karine Mariane Steigleder
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Lívia Bitencourt Pascoal
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Natália Souza Nunes Siqueira
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Laís Angélica de Paula Simino
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Maria de Lourdes Setsuko Ayrizono
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Marciane Milanski Ferreira
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - João José Fagundes
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Aníbal Tavares de Azevedo
- Simulation Laboratory, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Raquel Franco Leal
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
22
|
Kamal S, Parkash N, Beattie W, Christensen B, Segal JP. Are We Ready to Reclassify Crohn's Disease Using Molecular Classification? J Clin Med 2023; 12:5786. [PMID: 37762727 PMCID: PMC10532006 DOI: 10.3390/jcm12185786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease. The number of IBD cases worldwide was estimated to be 4.9 million in 2019. CD exhibits heterogeneity in clinical presentation, anatomical involvement, disease behaviour, clinical course and response to treatment. The classical description of CD involves transmural inflammation with skip lesions anywhere along the entire gastrointestinal tract. The complexity and heterogeneity of Crohn's disease is not currently reflected in the conventional classification system. Though the knowledge of Crohn's pathophysiology remains far from understood, the established complex interplay of the omics-genomics, transcriptomics, proteomics, epigenomics, metagenomics, metabolomics, lipidomics and immunophenomics-provides numerous targets for potential molecular markers of disease. Advancing technology has enabled identification of small molecules within these omics, which can be extrapolated to differentiate types of Crohn's disease. The multi-omic future of Crohn's disease is promising, with potential for advancements in understanding of its pathogenesis and implementation of personalised medicine.
Collapse
Affiliation(s)
- Shahed Kamal
- Department of Gastroenterology, Northern Hospital, Epping, Melbourne VIC 3076, Australia
| | - Nikita Parkash
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
| | - William Beattie
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
| | - Britt Christensen
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
- Department of Gastroenterology, The University of Melbourne, Parkville, Melbourne VIC 3010, Australia
| | - Jonathan P. Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
- Department of Gastroenterology, The University of Melbourne, Parkville, Melbourne VIC 3010, Australia
| |
Collapse
|
23
|
Scalia F, Carini F, David S, Giammanco M, Mazzola M, Rappa F, Bressan NI, Maida G, Tomasello G. Inflammatory Bowel Diseases: An Updated Overview on the Heat Shock Protein Involvement. Int J Mol Sci 2023; 24:12129. [PMID: 37569505 PMCID: PMC10419025 DOI: 10.3390/ijms241512129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) represent chronic idiopathic disorders, including Crohn's disease (CD) and ulcerative colitis (UC), in which one of the trigger factors is represented by aberrant immune interactions between the intestinal epithelium and the intestinal microbiota. The involvement of heat shock proteins (HSPs) as etiological and pathogenetic factors is becoming of increasing interest. HSPs were found to be differentially expressed in the intestinal tissues and sera of patients with CD and UC. It has been shown that HSPs can play a dual role in the disease, depending on the stage of progression. They can support the inflammatory and fibrosis process, but they can also act as protective factors during disease progression or before the onset of one of the worst complications of IBD, colorectal cancer. Furthermore, HSPs are able to mediate the interaction between the intestinal microbiota and intestinal epithelial cells. In this work, we discuss the involvement of HSPs in IBD considering their genetic, epigenetic, immune and molecular roles, referring to the most recent works present in the literature. With our review, we want to shed light on the importance of further exploring the role of HSPs, or even better, the role of the molecular chaperone system (CS), in IBD: various molecules of the CS including HSPs may have diagnostic, prognostic and therapeutic potential, promoting the creation of new drugs that could overcome the side-effects of the therapies currently used.
Collapse
Affiliation(s)
- Federica Scalia
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesco Carini
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
- Hospital University School of Medicine, P. Giaccone, 90127 Palermo, Italy
| | - Sabrina David
- Department Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, 90133 Palermo, Italy; (S.D.); (M.G.)
| | - Marco Giammanco
- Department Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, 90133 Palermo, Italy; (S.D.); (M.G.)
| | - Margherita Mazzola
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
| | - Francesca Rappa
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
- Institute of Translational Pharmacology (IFT), Section of Palermo, Italy National Research Council of Italy (CNR), 90146 Palermo, Italy
| | | | - Giorgio Maida
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
| | - Giovanni Tomasello
- Biomedicine, Neurosciences and Advanced Diagnostics BIND, School of Medicine, University of Palermo, 90133 Palermo, Italy; (F.C.); (M.M.); (F.R.); (G.M.); (G.T.)
| |
Collapse
|
24
|
Bragg MA, Breaux WA, M’Koma AE. Inflammatory Bowel Disease-Associated Colorectal Cancer: Translational and Transformational Risks Posed by Exogenous Free Hemoglobin Alpha Chain, A By-Product of Extravasated Erythrocyte Macrophage Erythrophagocytosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1254. [PMID: 37476546 PMCID: PMC10358352 DOI: 10.3390/medicina59071254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Colonic inflammatory bowel disease (IBD) encompasses ulcerative colitis (UC) and Crohn's colitis (CC). Patients with IBD are at increased risk for colitis-associated colorectal cancer (CACRC) compared to the general population. CACRC is preceded by IBD, characterized by highly heterogenous, pharmacologically incurable, pertinacious, worsening, and immune-mediated inflammatory pathologies of the colon and rectum. The molecular and immunological basis of CACRC is highly correlated with the duration and severity of inflammation, which is influenced by the exogenous free hemoglobin alpha chain (HbαC), a byproduct of infiltrating immune cells; extravasated erythrocytes; and macrophage erythrophagocytosis. The exogenous free HbαC prompts oxygen free radical-arbitrated DNA damage (DNAD) through increased cellular reactive oxygen species (ROS), which is exacerbated by decreased tissue antioxidant defenses. Mitigation of the Fenton Reaction via pharmaceutical therapy would attenuate ROS, promote apoptosis and DNAD repair, and subsequently prevent the incidence of CACRC. Three pharmaceutical options that attenuate hemoglobin toxicity include haptoglobin, deferoxamine, and flavonoids (vitamins C/E). Haptoglobin's clearance rate from plasma is inversely correlated with its size; the smaller the size, the faster the clearance. Thus, the administration of Hp1-1 may prove to be beneficial. Further, deferoxamine's hydrophilic structure limits its ability to cross cell membranes. Finally, the effectiveness of flavonoids, natural herb antioxidants, is associated with the high reactivity of hydroxyl substituents. Multiple analyses are currently underway to assess the clinical context of CACRC and outline the molecular basis of HbαC-induced ROS pathogenesis by exposing colonocytes and/or colonoids to HbαC. The molecular immunopathogenesis pathways of CACRC herein reviewed are broadly still not well understood. Therefore, this timely review outlines the molecular and immunological basis of disease pathogenesis and pharmaceutical intervention as a protective measure for CACRC.
Collapse
Affiliation(s)
| | | | - Amosy E. M’Koma
- School of Medicine, Division of Biomedical Sciences, Meharry Medical College, Nashville, TN 37208, USA; (M.A.B.); (W.A.B.)
| |
Collapse
|
25
|
Noble AJ, Nowak JK, Adams AT, Uhlig HH, Satsangi J. Defining Interactions Between the Genome, Epigenome, and the Environment in Inflammatory Bowel Disease: Progress and Prospects. Gastroenterology 2023; 165:44-60.e2. [PMID: 37062395 DOI: 10.1053/j.gastro.2023.03.238] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023]
Abstract
Recent advances in our understanding of the pathogenesis of inflammatory bowel disease (IBD) have highlighted the complex interplay between the genome, the epigenome, and the environment. Despite the exciting advances in genomics that have enabled the identification of over 200 susceptibility loci, these only account for a small proportion of the disease variance and the estimated heritability in IBD. It is likely that gene-environment (GxE) interactions contribute to "missing heritability" and these may act through epigenetic mechanisms. Several environmental factors, such as the microbiome, nutrition, and tobacco smoking, induce alterations in the epigenome of children and adults, which may impact disease susceptibility. Other mechanisms for GxE interactions are also directly pertinent in early life. We discuss a model in which environmental factors imprint disease risk in a window of susceptibility during infancy that may contribute to later disease onset, whereas other elements of the exposome act later in life and contribute directly to the pathogenesis and course of the disease. Understanding the mechanisms underlying GxE interactions may provide the basis for new therapeutic targets or preventative strategies for IBD.
Collapse
Affiliation(s)
- Alexandra J Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom.
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Department of Pediatrics, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Ventham NT, Kennedy NA, Kalla R, Adams AT, Noble A, Ennis H, Mowat C, Dunlop MG, Satsangi J. Genome-Wide Methylation Profiling in 229 Patients With Crohn's Disease Requiring Intestinal Resection: Epigenetic Analysis of the Trial of Prevention of Post-operative Crohn's Disease (TOPPIC). Cell Mol Gastroenterol Hepatol 2023; 16:431-450. [PMID: 37331566 PMCID: PMC10372903 DOI: 10.1016/j.jcmgh.2023.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND & AIMS DNA methylation alterations may provide important insights into gene-environment interaction in cancer, aging, and complex diseases, such as inflammatory bowel disease (IBD). We aim first to determine whether the circulating DNA methylome in patients requiring surgery may predict Crohn's disease (CD) recurrence following intestinal resection; and second to compare the circulating methylome seen in patients with established CD with that we had reported in a series of inception cohorts. METHODS TOPPIC was a placebo-controlled, randomized controlled trial of 6-mercaptopurine at 29 UK centers in patients with CD undergoing ileocolic resection between 2008 and 2012. Genomic DNA was extracted from whole blood samples from 229 of the 240 patients taken before intestinal surgery and analyzed using 450KHumanMethylation and Infinium Omni Express Exome arrays (Illumina, San Diego, CA). Coprimary objectives were to determine whether methylation alterations may predict clinical disease recurrence; and to assess whether the epigenetic alterations previously reported in newly diagnosed IBD were present in the patients with CD recruited into the TOPPIC study. Differential methylation and variance analysis was performed comparing patients with and without clinical evidence of recurrence. Secondary analyses included investigation of methylation associations with smoking, genotype (MeQTLs), and chronologic age. Validation of our previously published case-control observation of the methylome was performed using historical control data (CD, n = 123; Control, n = 198). RESULTS CD recurrence in patients following surgery is associated with 5 differentially methylated positions (Holm P < .05), including probes mapping to WHSC1 (P = 4.1 × 10-9, Holm P = .002) and EFNA3 (P = 4.9 × 10-8, Holm P = .02). Five differentially variable positions are demonstrated in the group of patients with evidence of disease recurrence including a probe mapping to MAD1L1 (P = 6.4 × 10-5). DNA methylation clock analyses demonstrated significant age acceleration in CD compared with control subjects (GrimAge + 2 years; 95% confidence interval, 1.2-2.7 years), with some evidence for accelerated aging in patients with CD with disease recurrence following surgery (GrimAge +1.04 years; 95% confidence interval, -0.04 to 2.22). Significant methylation differences between CD cases and control subjects were seen by comparing this cohort in conjunction with previously published control data, including validation of our previously described differentially methylated positions (RPS6KA2 P = 1.2 × 10-19, SBNO2 = 1.2 × 10-11) and regions (TXK [false discovery rate, P = 3.6 × 10-14], WRAP73 [false discovery rate, P = 1.9 × 10-9], VMP1 [false discovery rate, P = 1.7 × 10-7], and ITGB2 [false discovery rate, P = 1.4 × 10-7]). CONCLUSIONS We demonstrate differential methylation and differentially variable methylation in patients developing clinical recurrence within 3 years of surgery. Moreover, we report replication of the CD-associated methylome, previously characterized only in adult and pediatric inception cohorts, in patients with medically refractory disease needing surgery.
Collapse
Affiliation(s)
- Nicholas T Ventham
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom.
| | - Nicholas A Kennedy
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Rahul Kalla
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Alex T Adams
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Alexandra Noble
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Holly Ennis
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Craig Mowat
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Malcolm G Dunlop
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Jack Satsangi
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
27
|
M’Koma AE, Ware JN, Nabaweesi RK, Chirwa SS. Managing Pregnancy and Nursing Affecting African American Women with Inflammatory Bowel Disease: Clinical Outcomes and Parenthood. MEDICAL RESEARCH ARCHIVES 2023; 11:3784. [PMID: 37492395 PMCID: PMC10367541 DOI: 10.18103/mra.v11i6.3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Inflammatory bowel disease (IBD) is a term for two autoimmune diseases encompassing Crohn's disease (CD) and ulcerative colitis (UC) which are lifelong diseases affecting more than 3 million adults (1.3%) in the United States. IBD is characterized by chronic inflammation of the whole digestive system which results in damage to the gastrointestinal (GI) tract. IBD often emerges during adolescence and young adulthood. Maternal morbidity includes physical and psychological conditions that result from or are aggravated by pregnancy and have an adverse effect on a woman's health, the baby's health or both. Some women have health challenges that arise before or during pregnancy that could lead to complications. It is recommended for women to receive health care counseling before and during pregnancy. Compared to other developed countries, the United States has the highest rate of women dying of pregnancy related complications. During the past 25 years maternal mortality has been getting worse. African American women (AAW) with and/or without IBD are dying at significantly higher rates than other groups. This is linked to several factors, i.e., systemic, institutionalized, and structural racism in health-care delivery and subsequent toxic stress from people's lived experiences of racism, limited knowledge about healthcare system function, lack of access to healthcare, (inclusiveness and insurance policies) all of which negatively impact these patients. African Americans (AAs) are also up to three times as likely to experience severe maternal morbidity: unexpected outcomes of labor and delivery, deficient or lacking prenatal care and social determinants of health like lack of transportation, adequate employment, limited literacy, and limited healthcare access contribute to poor health outcomes. Studies on IBD patients indicate Medicaid expansion is associated with reduced rates of maternal morbidity, particularly for African American Women (AAW) and increased access to preconception and prenatal services that make pregnancy and childbirth safer for parent and baby. Herein we examine the physiological changes of pregnancy in patients diagnosed with inflammatory bowel disease and their relationship perinatal outcomes and parenthood.
Collapse
Affiliation(s)
- Amosy E. M’Koma
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology
| | | | | | - Sanika S. Chirwa
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology
| |
Collapse
|
28
|
Xu S, Li X, Zhang S, Qi C, Zhang Z, Ma R, Xiang L, Chen L, Zhu Y, Tang C, Bourgonje AR, Li M, He Y, Zeng Z, Hu S, Feng R, Chen M. Oxidative stress gene expression, DNA methylation, and gut microbiota interaction trigger Crohn's disease: a multi-omics Mendelian randomization study. BMC Med 2023; 21:179. [PMID: 37170220 PMCID: PMC10173549 DOI: 10.1186/s12916-023-02878-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Oxidative stress (OS) is a key pathophysiological mechanism in Crohn's disease (CD). OS-related genes can be affected by environmental factors, intestinal inflammation, gut microbiota, and epigenetic changes. However, the role of OS as a potential CD etiological factor or triggering factor is unknown, as differentially expressed OS genes in CD can be either a cause or a subsequent change of intestinal inflammation. Herein, we used a multi-omics summary data-based Mendelian randomization (SMR) approach to identify putative causal effects and underlying mechanisms of OS genes in CD. METHODS OS-related genes were extracted from the GeneCards database. Intestinal transcriptome datasets were collected from the Gene Expression Omnibus (GEO) database and meta-analyzed to identify differentially expressed genes (DEGs) related to OS in CD. Integration analyses of the largest CD genome-wide association study (GWAS) summaries with expression quantitative trait loci (eQTLs) and DNA methylation QTLs (mQTLs) from the blood were performed using SMR methods to prioritize putative blood OS genes and their regulatory elements associated with CD risk. Up-to-date intestinal eQTLs and fecal microbial QTLs (mbQTLs) were integrated to uncover potential interactions between host OS gene expression and gut microbiota through SMR and colocalization analysis. Two additional Mendelian randomization (MR) methods were used as sensitivity analyses. Putative results were validated in an independent multi-omics cohort from the First Affiliated Hospital of Sun Yat-sen University (FAH-SYS). RESULTS A meta-analysis from six datasets identified 438 OS-related DEGs enriched in intestinal enterocytes in CD from 817 OS-related genes. Five genes from blood tissue were prioritized as candidate CD-causal genes using three-step SMR methods: BAD, SHC1, STAT3, MUC1, and GPX3. Furthermore, SMR analysis also identified five putative intestinal genes, three of which were involved in gene-microbiota interactions through colocalization analysis: MUC1, CD40, and PRKAB1. Validation results showed that 88.79% of DEGs were replicated in the FAH-SYS cohort. Associations between pairs of MUC1-Bacillus aciditolerans and PRKAB1-Escherichia coli in the FAH-SYS cohort were consistent with eQTL-mbQTL colocalization. CONCLUSIONS This multi-omics integration study highlighted that OS genes causal to CD are regulated by DNA methylation and host-microbiota interactions. This provides evidence for future targeted functional research aimed at developing suitable therapeutic interventions and disease prevention.
Collapse
Affiliation(s)
- Shu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaozhi Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Cancan Qi
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenhua Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine & TWINCORE, Joint Ventures Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Ruiqi Ma
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liyuan Xiang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lianmin Chen
- Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yijun Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ce Tang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Miaoxin Li
- Zhongshan School of Medicine, Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yao He
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shixian Hu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Rui Feng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Department of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-Sen University, Nanning, Guangxi, China.
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Ghorbaninejad M, Asadzadeh-Aghdaei H, Baharvand H, Meyfour A. Intestinal organoids: A versatile platform for modeling gastrointestinal diseases and monitoring epigenetic alterations. Life Sci 2023; 319:121506. [PMID: 36858311 DOI: 10.1016/j.lfs.2023.121506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/03/2023]
Abstract
Considering the significant limitations of conventional 2D cell cultures and tissue in vitro models, creating intestinal organoids has burgeoned as an ideal option to recapitulate the heterogeneity of the native intestinal epithelium. Intestinal organoids can be developed from either tissue-resident adult stem cells (ADSs) or pluripotent stem cells (PSCs) in both forms induced PSCs and embryonic stem cells. Here, we review current advances in the development of intestinal organoids that have led to a better recapitulation of the complexity, physiology, morphology, function, and microenvironment of the intestine. We discuss current applications of intestinal organoids with an emphasis on disease modeling. In particular, we point out recent studies on SARS-CoV-2 infection in human intestinal organoids. We also discuss the less explored application of intestinal organoids in epigenetics by highlighting the role of epigenetic modifications in intestinal development, homeostasis, and diseases, and subsequently the power of organoids in mirroring the regulatory role of epigenetic mechanisms in these conditions and introducing novel predictive/diagnostic biomarkers. Finally, we propose 3D organoid models to evaluate the effects of novel epigenetic drugs (epi-drugs) on the treatment of GI diseases where epigenetic mechanisms play a key role in disease development and progression, particularly in colorectal cancer treatment and epigenetically acquired drug resistance.
Collapse
Affiliation(s)
- Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
30
|
Premadasa LS, Lee E, McDew-White M, Alvarez X, Jayakumar S, Ling B, Okeoma CM, Byrareddy SN, Kulkarni S, Mohan M. Cannabinoid enhancement of lncRNA MMP25-AS1/MMP25 interaction reduces neutrophil infiltration and intestinal epithelial injury in HIV/SIV infection. JCI Insight 2023; 8:e167903. [PMID: 37036007 PMCID: PMC10132162 DOI: 10.1172/jci.insight.167903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/16/2023] [Indexed: 04/11/2023] Open
Abstract
Intestinal epithelial barrier dysfunction, a hallmark of HIV/SIV infection, persists despite viral suppression by combination antiretroviral therapy (cART). Emerging evidence suggests a critical role for long noncoding RNAs (lncRNAs) in maintaining epithelial homeostasis. We simultaneously profiled lncRNA/mRNA expression exclusively in colonic epithelium (CE) of SIV-infected rhesus macaques (RMs) administered vehicle (VEH) or Δ-9-tetrahydrocannabinol (THC). Relative to controls, fewer lncRNAs were up- or downregulated in CE of THC/SIV compared with VEH/SIV RMs. Importantly, reciprocal expression of the natural antisense lncRNA MMP25-AS1 (up 2.3-fold) and its associated protein-coding gene MMP25 (attracts neutrophils by inactivating alpha-1 anti-trypsin/SERPINA1) (down 2.2-fold) was detected in CE of THC/SIV RMs. Computational analysis verified 2 perfectly matched complementary regions and an energetically stable (normalized binding free energy = -0.2626) MMP25-AS1/MMP25 duplex structure. MMP25-AS1 overexpression blocked IFN-γ-induced MMP25 mRNA and protein expression in vitro. Elevated MMP25 protein expression in CE of VEH/SIV but not THC/SIV RMs was associated with increased infiltration by myeloperoxidase/CD11b++ neutrophils (transendothelial migration) and epithelial CD47 (transepithelial migration) expression. Interestingly, THC administered in combination with cART increased MMP25-AS1 and reduced MMP25 mRNA/protein expression in jejunal epithelium of SIV-infected RMs. Our findings demonstrate that MMP25-AS1 is a potentially unique epigenetic regulator of MMP25 and that low-dose THC can reduce neutrophil infiltration and intestinal epithelial injury potentially by downregulating MMP25 expression through modulation of MMP25-AS1.
Collapse
Affiliation(s)
- Lakmini S. Premadasa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Eunhee Lee
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Marina McDew-White
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Xavier Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Sahana Jayakumar
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Binhua Ling
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Smita Kulkarni
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
31
|
Joustra V, Hageman IL, Satsangi J, Adams A, Ventham NT, de Jonge WJ, Henneman P, D’Haens GR, Li Yim AYF. Systematic Review and Meta-analysis of Peripheral Blood DNA Methylation Studies in Inflammatory Bowel Disease. J Crohns Colitis 2023; 17:185-198. [PMID: 35998097 PMCID: PMC10024549 DOI: 10.1093/ecco-jcc/jjac119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Over the past decade, the DNA methylome has been increasingly studied in peripheral blood of inflammatory bowel disease [IBD] patients. However, a comprehensive summary and meta-analysis of peripheral blood leukocyte [PBL] DNA methylation studies has thus far not been conducted. Here, we systematically reviewed all available literature up to February 2022 and summarized the observations by means of meta-analysis. METHODS We conducted a systematic search and critical appraisal of IBD-associated DNA methylation studies in PBL using the biomarker-based cross-sectional studies [BIOCROSS] tool. Subsequently, we performed meta-analyses on the summary statistics obtained from epigenome-wide association studies [EWAS] that included patients with Crohn's disease [CD], ulcerative colitis [UC] and/or healthy controls [HC]. RESULTS Altogether, we included 15 studies for systematic review. Critical appraisal revealed large methodological and outcome heterogeneity between studies. Summary statistics were obtained from four studies based on a cumulative 552 samples [177 CD, 132 UC and 243 HC]. Consistent differential methylation was identified for 256 differentially methylated probes [DMPs; Bonferroni-adjusted p ≤ 0.05] when comparing CD with HC and 103 when comparing UC with HC. Comparing IBD [CD + UC] with HC resulted in 224 DMPs. Importantly, several of the previously identified DMPs, such as VMP1/TMEM49/MIR21 and RPS6KA2, were consistently differentially methylated across all studies. CONCLUSION Methodological homogenization of IBD epigenetic studies is needed to allow for easier aggregation and independent validation. Nonetheless, we were able to confirm previous observations. Our results can serve as the basis for future IBD epigenetic biomarker research in PBL.
Collapse
Affiliation(s)
| | | | - Jack Satsangi
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Alex Adams
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | - Wouter J de Jonge
- Amsterdam UMC location University of Amsterdam, Department of Gastroenterology and Hepatology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, Netherlands
| | - Peter Henneman
- Amsterdam UMC location University of Amsterdam, Department of Human Genetics, Genome Diagnostics Laboratory, Amsterdam, Netherlands
- Amsterdam Reproduction & Development, Amsterdam, Netherlands
| | - Geert R D’Haens
- Amsterdam UMC location University of Amsterdam, Department of Gastroenterology and Hepatology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - Andrew Y F Li Yim
- Corresponding author: Andrew Y. F. Li Yim, Amsterdam UMC location University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, Netherlands.
| |
Collapse
|
32
|
Cao Y, Liu H, Teng Y, Zhang S, Zhu B, Xia X. Gut microbiota mediates the anti-colitis effects of polysaccharides derived from Rhopilema esculentum Kishinouye in mice. Food Funct 2023; 14:1989-2007. [PMID: 36723100 DOI: 10.1039/d2fo02712g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ulcerative colitis (UC) is closely associated with the disturbance of gut microbiota. Crude polysaccharide-rich extract from Rhopilema esculentum Kishinouye has been proven to alleviate dextran sulfate sodium (DSS)-triggered colitis. However, it remains unclear whether the polysaccharides from Rhopilema esculentum (REP) in the extract play a predominant role in ameliorating colitis and whether gut microbiota mediates the beneficial effect of REP. Herein, we aimed to investigate the anti-colitis effects of REP and its mechanisms and to explore the role of REP-modulated gut microbiota in alleviating colitis in mice. Oral REP supplementation ameliorated the symptoms, inflammatory responses, colonic damage and gut microbial dysbiosis in colitic mice. REP significantly enriched SCFA-producing bacteria such as Roseburia and probiotics such as Bifidobacterium and restored the level of SCFAs especially butyric acid and propionic acid. Next, we found that transplantation of microbiota from REP-treated mice alleviated DSS-induced acute colitis, evidenced by improved gut barrier integrity and lower inflammation compared with mice receiving microbiota from control mice. Notably, dramatically enriched Bifidobacterium, Faecalibaculum and SCFA-producing bacteria including Butyricicoccus and Roseburia were found in mice receiving microbiota from the REP-treated donor mice. Lastly, the protective effect of REP supplementation on colitis was abolished in the antibiotic-treated mice. Overall, our findings suggest that REP could alleviate DSS-induced colitis in mice by regulating the imbalance of the microbiome. The polysaccharides of Rhopilema esculentum Kishinouye have the potential to be developed into promising prebiotic agents for rectifying dysbiosis of gut microbiota and preventing UC.
Collapse
Affiliation(s)
- Yu Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Huanhuan Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Yue Teng
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Siteng Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China. .,College of Food Science and Engineering, Northwest A&F University, Yangling, Shannxi 712100, China
| |
Collapse
|
33
|
Fadeeva N, Khatkov I, Bodunova N, Knyazev O, Bordin D, Parfenov A, Nikolskaya K, Nikolaev S, Rumyantsev K, Polyakova V, Yanova T. Personalized Medicine for IBD Patients. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Ribeiro BE, Breves J, de Souza HSP. Pathogenesis: Crohn’s disease and ulcerative colitis. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:9-46. [DOI: 10.1016/b978-0-323-99111-7.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
35
|
Joustra V, Li Yim AYF, Hageman I, Levin E, Adams A, Satsangi J, de Jonge WJ, Henneman P, D'Haens G. Long-term Temporal Stability of Peripheral Blood DNA Methylation Profiles in Patients With Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2023; 15:869-885. [PMID: 36581079 PMCID: PMC9972576 DOI: 10.1016/j.jcmgh.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS There is great current interest in the potential application of DNA methylation alterations in peripheral blood leukocytes (PBLs) as biomarkers of susceptibility, progression, and treatment response in inflammatory bowel disease (IBD). However, the intra-individual stability of PBL methylation in IBD has not been characterized. Here, we studied the long-term stability of all probes located on the Illumina HumanMethylation EPIC BeadChip array. METHODS We followed a cohort of 46 adult patients with IBD (36 Crohn's disease [CD], 10 ulcerative colitis [UC]; median age, 44 years; interquartile range [IQR] 27-56 years; 50% female) that received standard care follow-up at the Amsterdam University Medical Centers. Paired PBL samples were collected at 2 time points with a median of 7 years (range, 2-9 years) in between. Differential methylation and intra-class correlation (ICC) analyses were used to identify time-associated differences and temporally stable CpGs, respectively. RESULTS Around 60% of all EPIC array loci presented poor intra-individual stability (ICC <0.50); 78.114 (≈9%) showed good (ICC, 0.75-0.89), and 41.274 (≈5%) showed excellent (ICC ≥0.90) stability, between both measured time points. Focusing on previously identified consistently differentially methylated positions indicated that 22 CD-, 11 UC-, and 24 IBD-associated loci demonstrated high stability (ICC ≥0.75) over time; of these, we observed a marked stability of CpG loci associated to the HLA genes. CONCLUSIONS Our data provide insight into the long-term stability of the PBL DNA methylome within an IBD context, facilitating the selection of biologically relevant and robust IBD-associated epigenetic biomarkers with increased potential for independent validation. These data also have potential implications in understanding disease pathogenesis.
Collapse
Affiliation(s)
- Vincent Joustra
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrew Y F Li Yim
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ishtu Hageman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Evgeni Levin
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Horaizon BV, Delft, the Netherlands
| | - Alex Adams
- Oxford University- Hospitals NHS Foundation Trust- John Radcliffe Hospital, Translational Gastroenterology Unit- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Jack Satsangi
- Oxford University- Hospitals NHS Foundation Trust- John Radcliffe Hospital, Translational Gastroenterology Unit- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Geert D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Bai L, Dermadi D, Kalesinskas L, Dvorak M, Chang SE, Ganesan A, Rubin SJS, Kuo A, Cheung P, Donato M, Utz PJ, Habtezion A, Khatri P. Mass-cytometry-based quantitation of global histone post-translational modifications at single-cell resolution across peripheral immune cells in IBD. J Crohns Colitis 2022; 17:804-815. [PMID: 36571819 PMCID: PMC10155749 DOI: 10.1093/ecco-jcc/jjac194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Current understanding of histone post-translational modifications (histone modifications) across immune cell types in patients with inflammatory bowel disease (IBD) during remission and flare is limited. The study aimed to quantify histone modifications at a single-cell resolution in IBD patients during remission and flare and how they differ compared to healthy controls. METHODS We performed a case-control study of 94 subjects (83 IBD patients and 11 healthy controls). IBD patients had either UC (n=38) or CD (n=45) in clinical remission or flare. We used epigenetic profiling by time-of-flight (EpiTOF) to investigate changes in histone modifications within peripheral blood mononuclear cells from IBD patients. RESULTS We discovered substantial heterogeneity in histone modifications across multiple immune cell types in IBD patients. They had a higher proportion of less differentiated CD34 + hematopoietic progenitors, and a subset of CD56 bright NK cells and γδ T cells characterized by distinct histone modifications associated with the gene transcription. The subset of CD56 bright NK cells had increased several histone acetylations. An epigenetically defined subset of NK was associated with higher levels of CRP in peripheral blood. CD14+ monocytes from IBD patients had significantly decreased cleaved H3T22, suggesting they were epigenetically primed for macrophage differentiation. CONCLUSION We describe the first systems-level quantification of histone modifications across immune cells from IBD patients at a single-cell resolution revealing the increased epigenetic heterogeneity that is not possible with traditional ChIP-seq profiling. Our data open new directions in investigating the association between histone modifications and IBD pathology using other epigenomic tools.
Collapse
Affiliation(s)
- Lawrence Bai
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA
| | - Denis Dermadi
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laurynas Kalesinskas
- Biomedical Informatics Training Program, Stanford University School of Medicine, 1265 Welch Road, MSOB X-343, Stanford, CA 94305 USA
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Chang
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ananthakrishnan Ganesan
- Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Suite B060, Stanford, CA 94305 USA
| | - Samuel J S Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Alex Kuo
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peggie Cheung
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul J Utz
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aida Habtezion
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Purvesh Khatri
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
37
|
Therapeutic Efficacy of Novel HDAC Inhibitors SPA3052 and SPA3074 against Intestinal Inflammation in a Murine Model of Colitis. Pharmaceuticals (Basel) 2022; 15:ph15121515. [PMID: 36558966 PMCID: PMC9785328 DOI: 10.3390/ph15121515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are digestive tract disorders that involve chronic inflammation with frequent recurrences. This study aimed to evaluate the efficacy of two novel histone deacetylase 8 (HDAC8) inhibitors, namely, SPA3052 and SPA3074, against dextran sulfate sodium (DSS)-induced experimental colitis. Male C57BL/6N mice were subjected to two cycles of 1.5% DSS followed by treatment with suberoylanilide hydroxamic acid (SAHA), SPA3052, or SPA3074 for 14 days. Our results showed that SPA3074 administration increased (>50%) the expression of occludin, a tight junction protein, which was significantly decreased (>100%) after DSS treatment. Moreover, SPA3074 upregulated suppressor of cytokine signaling 1 (SOCS1) protein expression, which is known to be a key suppressor of T-helper cell differentiation and pro-inflammatory cytokines expression. Furthermore, we observed a decrease in SOCS1-associated Akt phosphorylation and an increase in lower extracellular signal-regulated kinase 1 and 2 phosphorylation, which contributed to lower nuclear factor-kappa B activation. Th2 effector cytokines, especially interleukin-13, were also downregulated by SPA3074 treatment. This study suggests that HDAC8 might be a promising novel target for the development of IBD treatments and that the novel HDAC8 inhibitor SPA3074 is a new candidate for IBD therapeutics.
Collapse
|
38
|
Li H, Wang Y, Shao S, Yu H, Wang D, Li C, Yuan Q, Liu W, Cao J, Wang X, Guo H, Wu X, Wang S. Rabdosia serra alleviates dextran sulfate sodium salt-induced colitis in mice through anti-inflammation, regulating Th17/Treg balance, maintaining intestinal barrier integrity, and modulating gut microbiota. J Pharm Anal 2022; 12:824-838. [PMID: 36605573 PMCID: PMC9805946 DOI: 10.1016/j.jpha.2022.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Rabdosia serra (R. serra), an important component of Chinese herbal tea, has traditionally been used to treat hepatitis, jaundice, cholecystitis, and colitis. However, the chemical composition of R. serra and its effect against colitis remain unclear. In this study, the chemical composition of the water extract of R. serra was analyzed using ultra performance liquid chromatography coupled with a hybrid linear ion trap quadrupole-orbitrap mass spectrometer (UPLC-LTQ-Orbitrap-MS). A total of 46 compounds, comprising ent-kaurane diterpenoids, flavonoids, phenolic acids, and steroids, were identified in the water extract of R. serra, and the extract could significantly alleviate dextran sulfate sodium salt-induced colitis by improving colon length, upregulating anti-inflammatory factors, downregulating proinflammatory factors, and restoring the balance of T helper 17/T regulatory cells. R. serra also preserved intestinal barrier function by increasing the level of tight junction proteins (zonula occludens 1 and occludin) in mouse colonic tissue. In addition, R. serra modulated the gut microbiota composition by increasing bacterial richness and diversity, increasing the abundance of beneficial bacteria (Muribaculaceae, Bacteroides, Lactobacillus, and Prevotellaceae_UCG-001), and decreasing the abundance of pathogenic bacteria (Turicibacter, Eubacterium_fissicatena_group, and Eubacterium_xylanophilum_group). Gut microbiota depletion by antibiotics further confirmed that R. serra alleviated colitis in a microbiota-dependent manner. Overall, our findings provide chemical and biological evidence for the potential application of R. serra in the management of colitis.
Collapse
Affiliation(s)
- Hongyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Yi Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shumin Shao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Hui Yu
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, 510000, China
| | - Deqin Wang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, 510000, China
| | - Chuyuan Li
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, 510000, China
| | - Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jiliang Cao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Haibiao Guo
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, 510000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Corresponding author.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macao, 999078, China
- Corresponding author. State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| |
Collapse
|
39
|
Coates E, Wickramasekera N, Barr A, Shackley P, Lee M, Hind D, Probert C, Sebastian S, Totton N, Blackwell S, Bedford H, Dames N, Lobo A. Patient preferences and current practice for adults with steroid-resistant ulcerative colitis: POPSTER mixed-methods study. Health Technol Assess 2022; 26:1-118. [PMID: 36305390 PMCID: PMC9638891 DOI: 10.3310/rhxr5192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Corticosteroids are a mainstay of the treatment of moderately severe relapses of ulcerative colitis, yet almost 50% of patients do not respond fully to these and risk prolonged steroid use and side effects. There is a lack of clarity about the definitions of steroid resistance, the optimum choice of treatment, and patient and health-care professional treatment preferences. OBJECTIVES The overall aim of this research was to understand how steroid-resistant ulcerative colitis is managed in adult secondary care and how current practice compares with patient and health-care professional preferences. DESIGN A mixed-methods study, including an online survey, qualitative interviews and discrete choice experiments. SETTING NHS inflammatory bowel disease services in the UK. PARTICIPANTS Adults with ulcerative colitis and health-care professionals treating inflammatory bowel disease. RESULTS We carried out a survey of health-care professionals (n = 168), qualitative interviews with health-care professionals (n = 20) and patients (n = 33), discrete choice experiments with health-care professionals (n = 116) and patients (n = 115), and a multistakeholder workshop (n = 9). The interviews with and survey of health-care professionals showed that most health-care professionals define steroid resistance as an incomplete response to 40 mg per day of prednisolone after 2 weeks. The survey also found that anti-tumour necrosis factor drugs (particularly infliximab) are the most frequently offered drugs across most steroid-resistant (and steroid-dependent) patient scenarios, but they are less frequently offered to thiopurine-naive patients. Patient interviews identified several factors influencing their treatment choices, including effectiveness of treatment, recommendations from health-care professionals, route of administration and side effects. Over time, depending on the severity and duration of symptoms and, crucially, as medical treatment options become exhausted, patients are willing to try alternative treatments and, eventually, to undergo surgery. The discrete choice experiments found that the probability of remission and of side effects strongly influences the treatment choices of both patients and health-care professionals. Patients are less likely to choose a treatment that takes longer to improve symptoms. Health-care professionals are willing to make difficult compromises by tolerating greater safety risks in exchange for therapeutic benefits. The treatments ranked most positively by patients were infliximab and tofacitinib (each preferred by 38% of patients), and the predicted probability of uptake by health-care professionals was greatest for infliximab (62%). LIMITATIONS The survey and the discrete choice experiments with patients and health-care professionals are limited by their relatively small sample sizes. The qualitative studies are subject to selection bias. The timing of the different substudies, both before and during the COVID-19 pandemic, is a potential limitation. CONCLUSIONS We have identified factors influencing treatment decisions for steroid-resistant ulcerative colitis and the characteristics to consider when choosing treatments to evaluate in future randomised controlled trials. The findings may be used to improve discussions between patients and health-care professionals when they review treatment options for steroid-resistant ulcerative colitis. FUTURE WORK This research highlights the need for consensus work to establish an agreed definition of steroid resistance in ulcerative colitis and a greater understanding of the optimal use of tofacitinib and surgery for this patient group. A randomised controlled trial comparing infliximab with tofacitinib is also recommended. FUNDING This project was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 26, No. 41. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Elizabeth Coates
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | | | - Amy Barr
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Phil Shackley
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Matthew Lee
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Daniel Hind
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Christopher Probert
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Shaji Sebastian
- Hull University Teaching Hospitals NHS Foundation Trust, Hull, UK
| | - Nikki Totton
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | | | | | | | - Alan Lobo
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
40
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
41
|
Wang J, Huang J, Fang L. Inhibition of TLR4 Suppresses the Inflammatory Response in Inflammatory Bowel Disease (IBD) by Modulating the PDK1-Induced Metabolism Reprogramming via a m6A-Denpendent Manner. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1335562. [PMID: 35832126 PMCID: PMC9273424 DOI: 10.1155/2022/1335562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Objective To investigate the role of TLR4 and PDK1 genes in IBD. Methods The DSS mouse model was established by inducing BALB/C with 5% DSS solution. The behavior of DSS mice was detected, and the m6A modification was detected by m6A methylation chip. At the same time, the expressions of TLR and PDK1 were detected by fluorescence real-time quantitative PCR. Results The results showed that the model of dextran sodium sulfate colitis in mice was successful, and the colon membrane of mice had obvious naked eye inflammation. Through comparison, it was found that there were differences in m6A modification between the blank group and the model group, and compared with the blank group, the expression of PKD1 in DSS group was significantly reduced and the expression of TLR4 was significantly increased. Conclusion TLR4 inhibition inhibits the inflammatory response in inflammatory bowel disease (IBD) in a m6A-dependent manner by regulating PDK1-induced metabolic reprogramming.
Collapse
Affiliation(s)
- Jing Wang
- Department of Digestive Medicine, Huanggang Central Hospital, Hubei Province Huanggang City 438000, China
| | - Jing Huang
- Department of Digestive Medicine, Huanggang Central Hospital, Hubei Province Huanggang City 438000, China
| | - Liang Fang
- Department of Digestive Medicine, Huanggang Central Hospital, Hubei Province Huanggang City 438000, China
| |
Collapse
|
42
|
The Current Status of Molecular Biomarkers for Inflammatory Bowel Disease. Biomedicines 2022; 10:biomedicines10071492. [PMID: 35884797 PMCID: PMC9312796 DOI: 10.3390/biomedicines10071492] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Diagnosis and prognosis of inflammatory bowel disease (IBD)-a chronic inflammation that affects the gastrointestinal tract of patients-are challenging, as most clinical symptoms are not specific to IBD, and are often seen in other inflammatory diseases, such as intestinal infections, drug-induced colitis, and monogenic diseases. To date, there is no gold-standard test for monitoring IBD. Endoscopy and imaging are essential diagnostic tools that provide information about the disease's state, location, and severity. However, the invasive nature and high cost of endoscopy make it unsuitable for frequent monitoring of disease activity in IBD patients, and even when it is possible to replace endoscopy with imaging, high cost remains a concern. Laboratory testing of blood or feces has the advantage of being non-invasive, rapid, cost-effective, and standardizable. Although the specificity and accuracy of laboratory testing alone need to be improved, it is increasingly used to monitor disease activity or to diagnose suspected IBD cases in combination with endoscopy and/or imaging. The literature survey indicates a dearth of summarization of biomarkers for IBD testing. This review introduces currently available non-invasive biomarkers of clinical importance in laboratory testing for IBD, and discusses the trends and challenges in the IBD biomarker studies.
Collapse
|
43
|
Wu Z, Liu X, Huang S, Li T, Zhang X, Pang J, Zhao J, Chen L, Zhang B, Wang J, Han D. Milk Fat Globule Membrane Attenuates Acute Colitis and Secondary Liver Injury by Improving the Mucus Barrier and Regulating the Gut Microbiota. Front Immunol 2022; 13:865273. [PMID: 35799795 PMCID: PMC9253277 DOI: 10.3389/fimmu.2022.865273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Inflammatory bowel disease (IBD) often occurs along with extraintestinal manifestations, including hepatic injury. Milk fat globule membrane (MFGM) is an active substance with a potential anti-inflammation activity. However, its alleviated effect and mechanisms in IBD as well as the IBD-induced secondary liver injury are still unclear. Methods C57BL/6J mice were administered with a 21-day oral gavage of MFGM, followed by 7 days of drinking water with 4% dextran sulfate sodium (DSS). Disease activity index (DAI), histological features, and cytokines of the colon and liver were evaluated. Then, RNA-seq of the colon and liver was conducted. The gut microbiota was assessed by analyzing 16S rRNA gene sequences, and finally the integrity and the function of the mucus barrier were evaluated by Alcian blue staining, real-time quantitative PCR, and ELISA. Results Prophylactic MFGM treatment was effective against colitis to include effects in body weight loss, DAI score, colonic length, intestinal pathology, and histological score. Additionally, prophylactic MFGM decreased the levels of interleukin (IL)-1β, IL-6, and myeloperoxidase in colonic tissue, while it increased the IL-10 level. Moreover, the gene expressions of MUC2, MUC4, Reg3b, and Reg3g associated with the production of the molecular mediator of immune response, membrane invagination, and response to protozoan were strikingly upregulated when administered with MFGM. On the other hand, the beneficial effects of MFGM were related to the enriched abundance of genera such as Faccalibacumum and Roseburia in feces samples. Consistently, the administration of MFGM was also found to alleviate DSS-induced hepatic injury. Furthermore, the glutathione transferase activity pathway was enriched in the liver of MFGM-treated mice after DSS administration. Mechanistically, prophylactic MFGM enhanced the mucosal barrier by increasing the gene levels of Reg3b and Reg3g. Meanwhile, the alleviation of MFGM on liver injury was dependent on the reduced hepatic oxidative stress. Conclusions MFGM attenuated colitis and hepatic injury by maintaining the mucosal barrier and bacterial community while inhibiting oxidative stress, which might be an effective therapy of hepatic injury secondary to IBD.
Collapse
Affiliation(s)
- Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junying Zhao
- National Engineering Center of Dairy for Early Life Health, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Lijun Chen
- National Engineering Center of Dairy for Early Life Health, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Bing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Dandan Han,
| |
Collapse
|
44
|
G N, Zilbauer M. Epigenetics in IBD: a conceptual framework for disease pathogenesis. Frontline Gastroenterol 2022; 13:e22-e27. [PMID: 35812027 PMCID: PMC9234725 DOI: 10.1136/flgastro-2022-102120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
The global incidence and prevalence of paediatric inflammatory bowel disease (IBD) is increasing, with a notable emergence in developing countries with historically low rates. This suggests that environmental and epigenetic factors may play an important role in the pathogenesis and progression of IBD. Epigenetics refers to the study of biological mechanisms that result in a change of phenotype, without an change in the underlying DNA sequence. Epigenetic mechanisms drive many biological processes that occur in health, such as development and ageing, and are also implicated in disease, including cancer and other inflammatory diseases. Importantly, identification of cell-type-specific epigenetic mechanisms could lead to the identification of molecular disease subtypes allowing a personalised treatment approach. In this short review, we provide a summary of epigenetic mechanisms operative in mammals, and their potential involvement in IBD pathogenesis. Furthermore, we discuss key challenges associated with investigating epigenetics in IBD and provide potential strategies to overcome these, such as through the use of 'omics' and organoid technologies.
Collapse
Affiliation(s)
- Natasha G
- Paediatrics, Cambridge University, Cambridge, UK
| | | |
Collapse
|
45
|
Wang G, Yuan J, Luo J, Ocansey DKW, Zhang X, Qian H, Xu W, Mao F. Emerging role of protein modification in inflammatory bowel disease. J Zhejiang Univ Sci B 2022; 23:173-188. [PMID: 35261214 PMCID: PMC8913920 DOI: 10.1631/jzus.b2100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
The onset of inflammatory bowel disease (IBD) involves many factors, including environmental parameters, microorganisms, and the immune system. Although research on IBD continues to expand, the specific pathogenesis mechanism is still unclear. Protein modification refers to chemical modification after protein biosynthesis, also known as post-translational modification (PTM), which causes changes in the properties and functions of proteins. Since proteins can be modified in different ways, such as acetylation, methylation, and phosphorylation, the functions of proteins in different modified states will also be different. Transitions between different states of protein or changes in modification sites can regulate protein properties and functions. Such modifications like neddylation, sumoylation, glycosylation, and acetylation can activate or inhibit various signaling pathways (e.g., nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT)) by changing the intestinal flora, regulating immune cells, modulating the release of cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), and ultimately leading to the maintenance of the stability of the intestinal epithelial barrier. In this review, we focus on the current understanding of PTM and describe its regulatory role in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Gaoying Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Clinical Laboratory, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Jintao Yuan
- Clinical Laboratory, the People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China
| | - Ji Luo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast 02630, Ghana
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
46
|
Noble AJ, Purcell RV, Adams AT, Lam YK, Ring PM, Anderson JR, Osborne AJ. A Final Frontier in Environment-Genome Interactions? Integrated, Multi-Omic Approaches to Predictions of Non-Communicable Disease Risk. Front Genet 2022; 13:831866. [PMID: 35211161 PMCID: PMC8861380 DOI: 10.3389/fgene.2022.831866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
Epidemiological and associative research from humans and animals identifies correlations between the environment and health impacts. The environment-health inter-relationship is effected through an individual's underlying genetic variation and mediated by mechanisms that include the changes to gene regulation that are associated with the diversity of phenotypes we exhibit. However, the causal relationships have yet to be established, in part because the associations are reduced to individual interactions and the combinatorial effects are rarely studied. This problem is exacerbated by the fact that our genomes are highly dynamic; they integrate information across multiple levels (from linear sequence, to structural organisation, to temporal variation) each of which is open to and responds to environmental influence. To unravel the complexities of the genomic basis of human disease, and in particular non-communicable diseases that are also influenced by the environment (e.g., obesity, type II diabetes, cancer, multiple sclerosis, some neurodegenerative diseases, inflammatory bowel disease, rheumatoid arthritis) it is imperative that we fully integrate multiple layers of genomic data. Here we review current progress in integrated genomic data analysis, and discuss cases where data integration would lead to significant advances in our ability to predict how the environment may impact on our health. We also outline limitations which should form the basis of future research questions. In so doing, this review will lay the foundations for future research into the impact of the environment on our health.
Collapse
Affiliation(s)
- Alexandra J. Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel V. Purcell
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Alex T. Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Ying K. Lam
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Paulina M. Ring
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jessica R. Anderson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Amy J. Osborne
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
47
|
Gong L, Xiao J, Yi J, Xiao J, Lu F, Liu X. Immunomodulatory Effect of Serum Exosomes From Crohn Disease on Macrophages via Let-7b-5p/TLR4 Signaling. Inflamm Bowel Dis 2022; 28:96-108. [PMID: 34106260 DOI: 10.1093/ibd/izab132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Exosomes are extensively reported to be strongly associated with many immunologic diseases, including Crohn disease (CD). Meanwhile, the dysfunction of macrophage activation has been proposed to be critical for the pathogenesis of CD. However, it is an unsettled issue whether serum exosomes from CD could activate macrophages and participate in its pathogenesis. Our study intended to clarify the role of CD-derived exosomes on macrophages to elucidate a novel mechanism and possible diagnostic and therapeutic strategies. METHODS Serum exosomes were isolated and identified. Functional assays in vitro were performed on Raw264.7 macrophages, followed by exosomal microRNA (miRNA) profiling and bioinformatics analyses via high-throughput sequencing. In animal experiments, exosomes were intraperitoneally injected into dextran sulfate sodium-induced colitis. RESULTS In vitro CD-derived exosomes induced proinflammatory cytokine expression and increased macrophage counts. Meanwhile, the intervention of exosomes from CD with epithelial cells led to increased permeability of the intestinal epithelial barrier. In vivo, CD-derived exosomes could circulate into the intestinal mucosa and significantly aggravate colitis. Furthermore, CD changed the miRNA profile of exosomes and further analysis revealed a differential expression of let-7b-5p. Mechanistically, the let-7b-5p/TLR4 pathway was recognized as a potential contributor to macrophage activation and inflammatory response. Furthermore, serum exosome-mediated let-7b-5p mimic delivery alleviated colitis significantly. CONCLUSIONS Our study indicated that serum exosomes can circulate into the intestinal mucosa to aggravate colitis by regulating macrophage activation and epithelial barrier function. In addition, CD showed altered exosomal miRNA profiles. Furthermore, serum exosome-mediated let-7b-5p-mimic delivery may significantly alleviate colitis, providing potential novel insight into an exosome-based strategy for the diagnosis and treatment of CD.
Collapse
Affiliation(s)
- Lingqi Gong
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province,China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan Province, China
| | - Jintao Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province,China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan Province, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province,China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan Province, China
| | - Junbo Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province,China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan Province, China
| | - Fanggen Lu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province,China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province,China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan Province, China
| |
Collapse
|
48
|
Zhao SB, Wu JY, He ZX, Song YH, Chang X, Xia T, Fang X, Li ZS, Xu C, Wang SL, Bai Y. Corticotropin releasing hormone promotes inflammatory bowel disease via inducing intestinal macrophage autophagy. Cell Death Dis 2021; 7:377. [PMID: 34873177 PMCID: PMC8648763 DOI: 10.1038/s41420-021-00767-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Psychosocial stress is a vital factor contributing to the pathogenesis and progression of inflammatory bowel disease (IBD). The contribution of intestinal macrophage autophagy to the onset and development of IBD has been widely studied. Herein, we investigated the underlying mechanism of psychosocial stress in an IBD mouse model pertaining to macrophage autophagy. Corticotropin releasing hormone (CRH) was peripherally administrated to induce psychosocial stress. For in vivo studies, dextran sulfate sodium (DSS) was used for the creation of our IBD mouse model. For in vitro studies, lipopolysaccharide (LPS) was applied on murine bone marrow-derived macrophages (BMDMs) as a cellular IBD-related challenge. Chloroquine was applied to inhibit autophagy. We found that CRH aggravated the severity of DSS-induced IBD, increasing overall and local inflammatory reactions and infiltration. The levels of autophagy in intestinal macrophages and murine BMDMs were increased under these IBD-related inflammatory challenges and CRH further enhanced these effects. Subsequent administration of chloroquine markedly attenuated the detrimental effects of CRH on IBD severity and inflammatory reactions via inhibition of autophagy. These findings illustrate the effects of peripheral administration of CRH on DSS-induced IBD via the enhancement of intestinal macrophage autophagy, thus providing a novel understanding as well as therapeutic target for the treatment of IBD.
Collapse
Affiliation(s)
- Sheng-Bing Zhao
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jia-Yi Wu
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Zi-Xuan He
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yi-Hang Song
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Xin Chang
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China ,grid.417279.eDepartment of Gastroenterology, General Hospital of Central Theater Command, Wuhan, China
| | - Tian Xia
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Xue Fang
- grid.73113.370000 0004 0369 1660Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| |
Collapse
|
49
|
Wang JM, Lin SR, Zhu YB, Yuan J, Wang YM, Zhang Q, Xie LS, Li SH, Liu SQ, Yu SG, Wu QF. Proteomic analysis of lysine acetylation reveals that metabolic enzymes and heat shock proteins may be potential targets for DSS-induced mice colitis. Int Immunopharmacol 2021; 101:108336. [PMID: 34768127 DOI: 10.1016/j.intimp.2021.108336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Research on acetylation modification and its modification sites will be of great significance for revealing the mechanism of disease and developing new targeted medicines. In this study, we aim to construct a complete atlas of acetylome in the DSS-induced ulcerative colitis mice model (UC model) METHODS: A high-resolution mass spectrometry-based quantitative approach was employed to identify lysine-acetylated proteins and acetylation sites. Bioinformatics analysis and in vitro experiments verified anti-inflammatory effects of HSP90B1-K142ac. RESULTS 2597 acetylation events and 1914 sites were quantified, highlighting 140 acetylation site changes in the colitis colon tissue. 91 acetylation sites in 75 proteins were up-regulated, and 49 acetylation sites in 39 proteins were down-regulated in the UC models. The differentially acetylated proteins mainly consisted of non-histone proteins located in the cytoplasm and mitochondria. KEGG and protein-protein interaction networks analysis showed that the differentially acetylated proteins were enriched in the TCA cycle, fatty acid metabolism, and protein processing in the endoplasmic reticulum. 68% of the differentially metabolized enzymes have a down-regulated trend in acetylation levels. The acetylation level of lysine 142 in HSP90B1 was found to be obvious in the UC colon, and point mutation of HSP90B1-K142ac would result in the decreasing secretion of TNF-α and IL-2 in LPS-stimulated cultured cells. CONCLUSION Our work built a complete atlas of acetylome and revealed the potential role of metabolic enzymes and heat shock proteins in DSS-induced colitis.
Collapse
Affiliation(s)
- Jun-Meng Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Si-Rui Lin
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China,; Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan,646000, China Tel.: +86 13880648343
| | - Yuan-Bing Zhu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jing Yuan
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Yue-Mei Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qun Zhang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Lu-Shuang Xie
- School of basic medicine, Chengdu University of traditional Chinese Medicine, No.37, Road Shi-Er-Qiao, Jinniu District, Chengdu, Sichuan 610075,China
| | - Si-Hui Li
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Shu-Qing Liu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Shu-Guang Yu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qiao-Feng Wu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China,; Acupuncture & Chronobiology Key Laboratory of Sichuan Province, No.37, Road Shi-Er-Qiao, Jinniu District, Chengdu, Sichuan 610075,China.
| |
Collapse
|
50
|
Niu W, Dong Y, Fu Z, Lv J, Wang L, Zhang Z, Huo J, Ju J. Effects of molecular weight of chitosan on anti-inflammatory activity and modulation of intestinal microflora in an ulcerative colitis model. Int J Biol Macromol 2021; 193:1927-1936. [PMID: 34748786 DOI: 10.1016/j.ijbiomac.2021.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
This study investigated the therapeutic effects and mechanisms of chitosans (CSs) with different molecular weights on ulcerative colitis (UC). Three size classes of CSs (Mw ≤ 3, 50, and 200 kDa) were used in this study. The effect of large CSs (Mw ≤ 200 kDa) on UC was the best, followed by that of medium CSs (Mw ≤ 50 kDa), and that of small CSs (Mw ≤ 3 kDa) was the least in the LPS-induced Raw 264.7 cell model and DSS-induced UC mice model. The therapeutic mechanisms of three CSs are related to anti-oxidation, anti-inflammation, and regulation of immunoglobulin and intestinal flora by attenuating body weight loss, decreasing the disease activity index (DAI) and MPO activity, suppressing proinflammatory cytokines and IgG levels, down-regulating the level of oxidative stress, increasing anti-inflammatory cytokines, SOD activity and Prevotellaceae_UCG-001 levels, and reducing the abundance of Proteobacteria, Actinobacteria, and Escherichia-Shigella. In general, the molecular weight of CSs influences their efficacy against UC. CSs with an optimal molecular weight demonstrate good development prospects for ameliorating UC.
Collapse
Affiliation(s)
- Wei Niu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yuelin Dong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ziwei Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jiajie Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ligui Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|