1
|
Gibson G, Rioux JD, Cho JH, Haritunians T, Thoutam A, Abreu MT, Brant SR, Kugathasan S, McCauley JL, Silverberg M, McGovern D. Eleven Grand Challenges for Inflammatory Bowel Disease Genetics and Genomics. Inflamm Bowel Dis 2025; 31:272-284. [PMID: 39700476 DOI: 10.1093/ibd/izae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 12/21/2024]
Abstract
The past 2 decades have witnessed extraordinary advances in our understanding of the genetic factors influencing inflammatory bowel disease (IBD), providing a foundation for the approaching era of genomic medicine. On behalf of the NIDDK IBD Genetics Consortium, we herein survey 11 grand challenges for the field as it embarks on the next 2 decades of research utilizing integrative genomic and systems biology approaches. These involve elucidation of the genetic architecture of IBD (how it compares across populations, the role of rare variants, and prospects of polygenic risk scores), in-depth cellular and molecular characterization (fine-mapping causal variants, cellular contributions to pathology, molecular pathways, interactions with environmental exposures, and advanced organoid models), and applications in personalized medicine (unmet medical needs, working toward molecular nosology, and precision therapeutics). We review recent advances in each of the 11 areas and pose challenges for the genetics and genomics communities of IBD researchers.
Collapse
Affiliation(s)
- Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - John D Rioux
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Judy H Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talin Haritunians
- Widjaja Foundation IBD Research Institute, Cedars Sinai Health Center, Los Angeles, CA, USA
| | - Akshaya Thoutam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maria T Abreu
- Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Steven R Brant
- Robert Wood Johnson School of Medicine, Rutgers University, Piscataway, NJ, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob L McCauley
- Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Mark Silverberg
- Lunenfeld-Tanenbaum Research Institute IBD, University of Toronto, Toronto, ON, Canada
| | - Dermot McGovern
- Widjaja Foundation IBD Research Institute, Cedars Sinai Health Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Vélez N, De Ávila J, Cortés J, Barrero N, Rojas L, Bello JM, Romero-Sánchez C. Red flags to suspect inborn errors of immunity in patients with autoimmune diseases. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:236-262. [PMID: 39836840 DOI: 10.7705/biomedica.7561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 01/23/2025]
Abstract
Inborn errors of immunity are monogenic disorders that predispose patients to immune dysregulation, autoimmunity, and infection. Some autoimmune diseases, such as autoimmune cytopenias, systemic lupus erythematosus, and inflammatory bowel diseases, are increasingly recognized as phenotypes of inborn errors of immunity. The objective of this article was to identify red flags or clinical/laboratory markers to suspect inborn errors of immunity in patients with autoimmune cytopenias, systemic lupus erythematosus, and inflammatory bowel diseases through a systematic literature review. The study followed the systematic reviews and meta-analysis guidelines (PRISMA). After selection, we included 36 articles, and their methodological quality was verified using the Joanna Briggs Institute tools for individual risk of bias analysis. The principal red flags in autoimmune cytopenias are chronic, recurrent, and refractory cytopenias, recurrent infection, severe infectious complications associated with immunosuppressive treatment, and chronic lymphoproliferation. In systemic lupus erythematosus, red flags include age of onset before five years, severe organ involvement, chilblain lesions, and chronic lymphoproliferation. For inflammatory bowel diseases, red flags are an age of onset before two years, resistance to conventional therapies, atypical endoscopic or histologic findings, and consanguineous parents. Autoimmune diseases may be the primary manifestation of inborn errors of immunity in pediatric and adult patients. An early diagnosis of a monogenic disorder allows for the tailoring of effective treatment plans, providing prognostic information to families, and offering genetic counseling.
Collapse
Affiliation(s)
- Natalia Vélez
- Grupo de Inmunología Celular y Molecular - InmuBo, Universidad El Bosque, Bogotá, D. C., Colombia; Inmunología Clínica y Alergia Pediátrica, Fundación Hospital Pediátrico La Misericordia, Bogotá, D. C., Colombia
| | - Juliette De Ávila
- Grupo de Inmunología Celular y Molecular - InmuBo, Universidad El Bosque, Bogotá, D. C., Colombi
| | - Jaime Cortés
- Medicina Interna, Escuela de Medicina, Universidad Militar Nueva Granada, Bogotá, D. C., Colombia
| | - Nelson Barrero
- Reumatología, Escuela de Medicina, Universidad Militar Nueva Granada, Bogotá, D. C., Colombia
| | - Leosirlay Rojas
- Reumatología Pediátrica, Facultad de Medicina, Universidad El Bosque, Bogotá, D. C., Colombia
| | - Juan Manuel Bello
- Reumatología, Escuela de Medicina, Universidad Militar Nueva Granada, Bogotá, D. C., Colombia; Grupo de Inmunología, Escuela de Medicina, Universidad Militar Nueva Granada, Bogotá, D. C., Colombia; Departamento de Reumatología e Inmunología, Hospital Militar Central, Bogotá, D. C., Colombia
| | - Consuelo Romero-Sánchez
- Grupo de Inmunología Celular y Molecular - InmuBo, Universidad El Bosque, Bogotá, D. C., Colombia; Reumatología, Escuela de Medicina, Universidad Militar Nueva Granada, Bogotá, D. C., Colombia; Grupo de Inmunología, Escuela de Medicina, Universidad Militar Nueva Granada, Bogotá, D. C., Colombia; Departamento de Reumatología e Inmunología, Hospital Militar Central, Bogotá, D. C., Colombia
| |
Collapse
|
3
|
Hutmacher F, Doerig S, Grobholz R, Köhler H, Meyer P, Baumann P. Aphthous lesions turned out to be neonatal very early-onset inflammatory bowel disease: a case report. Front Pediatr 2024; 12:1433852. [PMID: 39539768 PMCID: PMC11557482 DOI: 10.3389/fped.2024.1433852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Neonatal diagnosis of inflammatory bowel disease (IBD) proves challenging due to its non-specific symptoms. A term-born neonate showing states of inflammation and aphthae was treated for sepsis and candidiasis before being diagnosed with interleukin-10 receptor deficiency and consecutive IBD. The patient was finally successfully treated by stem cell transplantation. The case illustrates the difficulties of the diagnostic course in IBD as it may mimic other diseases and emphasizes the importance of considering rare differential diagnoses early in the diagnostic process.
Collapse
Affiliation(s)
- Felix Hutmacher
- Department of Neonatology, Kantonsspital Aarau, Aarau, Switzerland
| | - Selina Doerig
- Department of Neonatology, Kantonsspital Aarau, Aarau, Switzerland
| | - Rainer Grobholz
- Medical Faculty, University of Zurich, Zurich, Switzerland
- Institute of Pathology, Kantonsspital Aarau, Aarau, Switzerland
| | - Henrik Köhler
- Medical Faculty, University of Basel, Basel, Switzerland
- Department of Gastroenterology, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Meyer
- Department of Neonatology, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Baumann
- Department of Neonatology, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
4
|
He X, Zhong X, Wang F, Liao W, Ning H, Zhu X. Two novel mutations in TTC37 in a child with very early onset inflammatory bowel disease, a case report. QJM 2024; 117:749-751. [PMID: 38976627 DOI: 10.1093/qjmed/hcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 07/10/2024] Open
Affiliation(s)
- Xi He
- Department of Gastroenterology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Xuemei Zhong
- Department of Gastroenterology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Fuping Wang
- Department of Gastroenterology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Weiwei Liao
- Department of Gastroenterology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Huijuan Ning
- Department of Gastroenterology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Xiaohan Zhu
- Department of Gastroenterology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| |
Collapse
|
5
|
Perez-Perez D, Santos-Argumedo L, Rodriguez-Alba JC, Lopez-Herrera G. Analysis of LRBA pathogenic variants and the association with functional protein domains and clinical presentation. Pediatr Allergy Immunol 2024; 35:e14179. [PMID: 38923448 DOI: 10.1111/pai.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
LRBA is a cytoplasmic protein that is ubiquitously distributed. Almost all LRBA domains have a scaffolding function. In 2012, it was reported that homozygous variants in LRBA are associated with early-onset hypogammaglobulinemia. Since its discovery, more than 100 pathogenic variants have been reported. This review focuses on the variants reported in LRBA and their possible associations with clinical phenotypes. In this work LRBA deficiency cases reported more than 11 years ago have been revised. A database was constructed to analyze the type of variants, age at onset, clinical diagnosis, infections, autoimmune diseases, and cellular and immunoglobulin levels. The review of cases from 2012 to 2023 showed that LRBA deficiency was commonly diagnosed in patients with a clinical diagnosis of Common Variable Immunodeficiency, followed by enteropathy, neonatal diabetes mellitus, ALPS, and X-linked-like syndrome. Most cases show early onset of presentation at <6 years of age. Most cases lack protein expression, whereas hypogammaglobulinemia is observed in half of the cases, and IgG and IgA levels are isotypes reported at low levels. Patients with elevated IgG levels exhibited more than one autoimmune manifestation. Patients carrying pathogenic variants leading to a premature stop codon show a severe phenotype as they have an earlier onset of disease presentation, severe autoimmune manifestations, premature death, and low B cells and regulatory T cell levels. Missense variants were more common in patients with low IgG levels and cytopenia. This work lead to the conclusion that the type of variant in LRBA has association with disease severity, which leads to a premature stop codon being the ones that correlates with severe disease.
Collapse
Affiliation(s)
- D Perez-Perez
- Doctorate Program in Biological Sciences, Autonomous National University of Mexico, Mexico City, Mexico
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| | - L Santos-Argumedo
- Biomedicine Department, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - J C Rodriguez-Alba
- Neuroimmunology and Neurooncology Unit, The National Institute of Neurology and Neurosurgery (NINN), Mexico City, Mexico
- Medicine and Surgery Faculty, Autonomous University Benito Juarez from Oaxaca, Oaxaca, Mexico
| | - G Lopez-Herrera
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| |
Collapse
|
6
|
Alshwaiki A, Samir Nakhal RMHD, Nahle AA, Hamdar H, Martini N, Mahmod J. Infantile inflammatory bowel disease in three Syrian infants: a case series. J Med Case Rep 2024; 18:160. [PMID: 38494475 PMCID: PMC10946191 DOI: 10.1186/s13256-024-04456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Inflammatory bowel diseases, consisting of Crohn's disease and ulcerative colitis, are chronic bowel relapsing inflammatory disorders. Inflammatory bowel diseases begin rarely in infants. Approximately 25% of patients with inflammatory bowel diseases present before the age of 20 years. Very early-onset inflammatory bowel disease occurs before the age of 6 years; infantile inflammatory bowel diseases occurs before the age of 2 years, and is extremely rare in infants under 1 year of age. CASE PRESENTATION Herein, we report a case series of 7-month-, 11-month-, and 12-month-old Syrian infants that presented with diarrhea, hematochezia, and pale appearance and were finally diagnosed with infantile inflammatory bowel disease and treated. CONCLUSIONS Early diagnosis and ruling out infantile inflammatory bowel diseases despite its rarity are recommended. Over and above that, new drugs such as vedolizumab, golimumab, and less invasive treatment methods should also be taken into consideration for better response and adequate remission with improved quality of life.
Collapse
Affiliation(s)
- Afif Alshwaiki
- Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Ranim M H D Samir Nakhal
- Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Ali Alakbar Nahle
- Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Hussein Hamdar
- Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Nafiza Martini
- Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic.
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic.
| | - Jaber Mahmod
- Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| |
Collapse
|
7
|
O'Brien CL, Summers KM, Martin NM, Carter-Cusack D, Yang Y, Barua R, Dixit OVA, Hume DA, Pavli P. The relationship between extreme inter-individual variation in macrophage gene expression and genetic susceptibility to inflammatory bowel disease. Hum Genet 2024; 143:233-261. [PMID: 38421405 PMCID: PMC11043138 DOI: 10.1007/s00439-024-02642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024]
Abstract
The differentiation of resident intestinal macrophages from blood monocytes depends upon signals from the macrophage colony-stimulating factor receptor (CSF1R). Analysis of genome-wide association studies (GWAS) indicates that dysregulation of macrophage differentiation and response to microorganisms contributes to susceptibility to chronic inflammatory bowel disease (IBD). Here, we analyzed transcriptomic variation in monocyte-derived macrophages (MDM) from affected and unaffected sib pairs/trios from 22 IBD families and 6 healthy controls. Transcriptional network analysis of the data revealed no overall or inter-sib distinction between affected and unaffected individuals in basal gene expression or the temporal response to lipopolysaccharide (LPS). However, the basal or LPS-inducible expression of individual genes varied independently by as much as 100-fold between subjects. Extreme independent variation in the expression of pairs of HLA-associated transcripts (HLA-B/C, HLA-A/F and HLA-DRB1/DRB5) in macrophages was associated with HLA genotype. Correlation analysis indicated the downstream impacts of variation in the immediate early response to LPS. For example, variation in early expression of IL1B was significantly associated with local SNV genotype and with subsequent peak expression of target genes including IL23A, CXCL1, CXCL3, CXCL8 and NLRP3. Similarly, variation in early IFNB1 expression was correlated with subsequent expression of IFN target genes. Our results support the view that gene-specific dysregulation in macrophage adaptation to the intestinal milieu is associated with genetic susceptibility to IBD.
Collapse
Affiliation(s)
- Claire L O'Brien
- Centre for Research in Therapeutics Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Natalia M Martin
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia
| | - Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Yuanhao Yang
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Rasel Barua
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia
| | - Ojas V A Dixit
- Centre for Research in Therapeutics Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
| | - Paul Pavli
- Inflammatory Bowel Disease Research Group, Canberra Hospital, Canberra, ACT, Australia.
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
8
|
Zhang Y, Yang X, Guo S, Tao L, Xiang R, Huang H, Yang H. Exome sequencing analysis reveals two novel mutations in TTC37 in Chinese patients with Crohn's disease. QJM 2024; 117:145-147. [PMID: 37878822 DOI: 10.1093/qjmed/hcad243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/19/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
- Y Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - X Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - S Guo
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - L Tao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - R Xiang
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - H Huang
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - H Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Conrad MA, Bittinger K, Ren Y, Kachelries K, Vales J, Li H, Wu GD, Bushman FD, Devoto M, Baldassano RN, Kelsen JR. The intestinal microbiome of inflammatory bowel disease across the pediatric age range. Gut Microbes 2024; 16:2317932. [PMID: 38404111 PMCID: PMC10900269 DOI: 10.1080/19490976.2024.2317932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Dysbiosis is associated with pediatric and adult-onset inflammatory bowel disease (IBD), but the role of dysbiosis and the microbiome in very early onset IBD (VEO-IBD) has not yet been described. Here, we aimed to demonstrate the impact of age and inflammation on microbial community structure using shotgun metagenomic sequencing in children with VEO-IBD, pediatric-onset IBD, and age-matched pediatric healthy controls (HC) observed longitudinally over the course of 8 weeks. We found disease-related differences in alpha and beta diversity between HC and children with IBD or VEO-IBD. Using a healthy microbial maturity index modeled from HC across the age range to characterize their gut microbiota, we found that children with pediatric-onset IBD and VEO-IBD had lower maturity than their age-matched HC groups, suggesting a disease effect on the microbial community. In addition, patients with pediatric IBD had significantly lower maturity than those with VEO-IBD, who had more heterogeneity at the youngest ages, highlighting differences in these two cohorts that were not captured in standard comparisons of alpha and beta diversity. These results demonstrate that young age and inflammation independently impact microbial community structure. However, the effect is not additive in the youngest patients, likely because of the heterogeneous and dynamic stool microbiome in this population.
Collapse
Affiliation(s)
- Máire A. Conrad
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Ren
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Kachelries
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer Vales
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary D. Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcella Devoto
- Institute for Research in Genetics and Biomedicine, Consiglio Nazionale delle Ricerche, Monserrato, CA, Italy
- Department of Translational and Precision Medicine, Università Sapienza, Rome, Italy
| | - Robert N Baldassano
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Judith R. Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Zeber-Lubecka N, Kulecka M, Suchta K, Dąbrowska M, Ciebiera M, Hennig EE. Association of Mitochondrial Variants with the Joint Occurrence of Polycystic Ovary Syndrome and Hashimoto's Thyroiditis. Antioxidants (Basel) 2023; 12:1983. [PMID: 38001836 PMCID: PMC10669137 DOI: 10.3390/antiox12111983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The prevalence of Hashimoto's thyroiditis (HT) among women with polycystic ovary syndrome (PCOS) is higher than in the general female population, but the factors predisposing to the coexistence of these disorders remain unclear. This study employed whole genome sequencing of mitochondrial DNA to identify genetic variants potentially associated with the development of PCOS and HT and predisposing to their joint occurrence. RESULTS A total of 84 women participated, including patients with PCOS, HT, coexisting PCOS and HT (PCOS + HT) and healthy women. Both Fisher's exact and Mann-Whitney U statistical analyses were performed to compare the frequency of variants between groups. Ten differentiating variants were common to both analyses in PCOS + HT vs. PCOS, one in PCOS + HT vs. HT, and six in PCOS + HT vs. control. Several variants differentiating the PCOS + HT group from PCOS and controls were identified, located both in the mitochondrial genes (including the MT-CYB, MT-ND1, MT-ND2, MT-ND4, MT-ND6, MT-CO1, MT-CO3) and the D-loop region. Only two variants differentiated PCOS + HT and HT groups. One variant (13237a in MT-ND5) was common for all three comparisons and underrepresented in the PCOS + HT group. Functional enrichment analysis showed 10 pathways that were unique for the comparison of PCOS + HT and PCOS groups, especially related to ATP production and oxidative phosphorylation, and one pathway, the NADH-quinone oxidoreductase, chain M/4, that was unique for the comparison of PCOS + HT and control groups. Notably, nine pathways shared commonality between PCOS + HT vs. PCOS and PCOS + HT vs. control, related to the biogenesis and assembly of Complex I. CONCLUSION This study provides novel insights into the genetic variants associated with oxidative stress in women with coexisting PCOS and HT. Mitochondrial dysfunction and oxidative stress appear to play a role in the pathogenesis of both conditions. However, more mitochondrial variants were found to differentiate women with both PCOS and HT from those with PCOS alone than from those with HT alone.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Katarzyna Suchta
- Department of Gynaecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland;
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
11
|
Li Z, Chen H, Feng X, Ruan Y, Yang M. Hematopoietic stem cell transplantation for CYBB heterozygous mutation resulting in very early onset inflammatory bowel disease in children: a case report. BMC Pediatr 2023; 23:348. [PMID: 37434114 DOI: 10.1186/s12887-023-04158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a heterogeneous group of disorders associated with environmental triggers and dysregulated immune responses resulting in chronic, recurrent intestinal inflammation. Very early-onset IBD (VEO-IBD) refers to patients with symptoms or diagnosis before the age of 6 years and is widely thought to be associated with monogenic mutations. Traditional drug therapy is often ineffective in this patient population, while hematopoietic stem cell transplantation (HSCT) represents the definitive cure for patients with gene mutations. CASE PRESENTATION We report a case of VEO-IBD associated with a monogenic mutation in a 2-year-old girl presenting mainly with gastrointestinal symptoms, including recurrent hematochezia and abdominal pain for more than 3 months. A gastroscopy revealed erosive gastritis and bulbar duodenitis, while a colonoscopy indicated erosive colitis. Abnormal results were obtained from the dihydrohodamine (DHR) assay and immunoglobulin testing. Whole-exome sequencing identified a heterozygous and de novo nonsense mutation (c.388 C > T; p.R130X) in the CYBB gene leading to deficiency of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) (encoded by CYBB), a critical component of phagocytes. HSCT was performed successfully, and the DHR assay showed that normal neutrophil function was restored. Six months after HSCT, clinical remission was observed, and a repeat colonoscopy revealed intestinal mucosal healing was attained. CONCLUSIONS Patients with CYBB mutations often develop recurrent or severe bacterial or fungal infections, mostly in the lungs, skin, lymph nodes, and liver. Here, we report on a young female child with CYBB mutations presenting predominantly with gastrointestinal symptoms. This study explores the mechanisms of inflammatory bowel disease caused by a monogenic mutation in CYBB to improve early diagnosis and effective treatment rates of this patient population.
Collapse
Affiliation(s)
- Zhiling Li
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Huan Chen
- Department of Pediatrics, Guangzhou Women And Children's Medical Center, National Children's Medical Center For South Central Region, Guangzhou, Guangdong, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongsheng Ruan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Yang
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Azabdaftari A, Jones KDJ, Kammermeier J, Uhlig HH. Monogenic inflammatory bowel disease-genetic variants, functional mechanisms and personalised medicine in clinical practice. Hum Genet 2023; 142:599-611. [PMID: 35761107 DOI: 10.1007/s00439-022-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022]
Abstract
Over 100 genes are associated with monogenic forms of inflammatory bowel disease (IBD). These genes affect the epithelial barrier function, innate and adaptive immunity in the intestine, and immune tolerance. We provide an overview of newly discovered monogenic IBD genes and illustrate how a recently proposed taxonomy model can integrate phenotypes and shared pathways. We discuss how functional understanding of genetic disorders and clinical genomics supports personalised medicine for patients with monogenic IBD.
Collapse
Affiliation(s)
- Aline Azabdaftari
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kelsey D J Jones
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children's Hospital, London, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
13
|
Wu Y, Gettler K, Kars ME, Giri M, Li D, Bayrak CS, Zhang P, Jain A, Maffucci P, Sabic K, Van Vleck T, Nadkarni G, Denson LA, Ostrer H, Levine AP, Schiff ER, Segal AW, Kugathasan S, Stenson PD, Cooper DN, Philip Schumm L, Snapper S, Daly MJ, Haritunians T, Duerr RH, Silverberg MS, Rioux JD, Brant SR, McGovern DPB, Cho JH, Itan Y. Identifying high-impact variants and genes in exomes of Ashkenazi Jewish inflammatory bowel disease patients. Nat Commun 2023; 14:2256. [PMID: 37080976 PMCID: PMC10119186 DOI: 10.1038/s41467-023-37849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic digestive tract inflammatory conditions whose genetic etiology is still poorly understood. The incidence of IBD is particularly high among Ashkenazi Jews. Here, we identify 8 novel and plausible IBD-causing genes from the exomes of 4453 genetically identified Ashkenazi Jewish IBD cases (1734) and controls (2719). Various biological pathway analyses are performed, along with bulk and single-cell RNA sequencing, to demonstrate the likely physiological relatedness of the novel genes to IBD. Importantly, we demonstrate that the rare and high impact genetic architecture of Ashkenazi Jewish adult IBD displays significant overlap with very early onset-IBD genetics. Moreover, by performing biobank phenome-wide analyses, we find that IBD genes have pleiotropic effects that involve other immune responses. Finally, we show that polygenic risk score analyses based on genome-wide high impact variants have high power to predict IBD susceptibility.
Collapse
Affiliation(s)
- Yiming Wu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle Gettler
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Meltem Ece Kars
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mamta Giri
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dalin Li
- Translational Genomics Unit, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cigdem Sevim Bayrak
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Aayushee Jain
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick Maffucci
- Immunology Institute, Graduate School, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Ksenija Sabic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tielman Van Vleck
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lee A Denson
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Harry Ostrer
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Adam P Levine
- Division of Medicine, University College London (UCL), London, UK
- Research Department of Pathology, University College London (UCL), London, UK
| | - Elena R Schiff
- Division of Medicine, University College London (UCL), London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony W Segal
- Division of Medicine, University College London (UCL), London, UK
| | | | - Peter D Stenson
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - L Philip Schumm
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Scott Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Oncology Boston Children's Hospital, Boston, MA, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Talin Haritunians
- Translational Genomics Unit, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard H Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Mark S Silverberg
- Inflammatory Bowel Disease Centre, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John D Rioux
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Steven R Brant
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dermot P B McGovern
- Translational Genomics Unit, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Judy H Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
He M, Wong A, Sutton K, Gondim MJB, Samson C. Very-Early Onset Chronic Active Colitis with Heterozygous Variants in LRBA1 and CARD11, a Case of "Immune TOR-Opathies". Fetal Pediatr Pathol 2023; 42:297-306. [PMID: 35748740 DOI: 10.1080/15513815.2022.2088912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND A small subset of cases of inflammatory bowel disease (IBD) occurs as a result of single gene defects, and typically occurs in young or very young pediatric patients, referred to as "monogenic very-early onset IBD (VEO-IBD)". The gene variants leading to monogenic VEO-IBD are often associated with primary immunodeficiency syndromes. CASE REPORT A six year-old girl presented to our gastroenterology clinic with LRBA deficiency with a heterozygous mutation at c.1399 A > G, p Met467Val, histopathologic chronic active colitis without granulomas and clinical chronic colitis. Her gastrointestinal symptoms began at age 5 with bloody diarrhea, abdominal pain and weight loss. Whole exome sequencing revealed a CARD11 heterozygous de novo mutation (c.220 + 1G > A). She was in clinical remission on only abatacept. DISCUSSION We present a case of monogenic VEO-IBD associated with two heterozygous variants in LRBA1 and CARD11, both considered as key players in the newly proposed "immune TOR-opathies".
Collapse
Affiliation(s)
- Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Wong
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly Sutton
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mercia Jeanne Bezerra Gondim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Charles Samson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Kammermeier J, Lamb CA, Jones KDJ, Anderson CA, Baple EL, Bolton C, Braggins H, Coulter TI, Gilmour KC, Gregory V, Hambleton S, Hartley D, Hawthorne AB, Hearn S, Laurence A, Parkes M, Russell RK, Speight RA, Travis S, Wilson DC, Uhlig HH. Genomic diagnosis and care co-ordination for monogenic inflammatory bowel disease in children and adults: consensus guideline on behalf of the British Society of Gastroenterology and British Society of Paediatric Gastroenterology, Hepatology and Nutrition. Lancet Gastroenterol Hepatol 2023; 8:271-286. [PMID: 36634696 DOI: 10.1016/s2468-1253(22)00337-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023]
Abstract
Genomic medicine enables the identification of patients with rare or ultra-rare monogenic forms of inflammatory bowel disease (IBD) and supports clinical decision making. Patients with monogenic IBD frequently experience extremely early onset of treatment-refractory disease, with complex extraintestinal disease typical of immunodeficiency. Since more than 100 monogenic disorders can present with IBD, new genetic disorders and variants are being discovered every year, and as phenotypic expression of the gene defects is variable, adaptive genomic technologies are required. Monogenic IBD has become a key area to establish the concept of precision medicine. Clear guidance and standardised, affordable applications of genomic technologies are needed to implement exome or genome sequencing in clinical practice. This joint British Society of Gastroenterology and British Society of Paediatric Gastroenterology, Hepatology and Nutrition guideline aims to ensure that testing resources are appropriately applied to maximise the benefit to patients on a national scale, minimise health-care disparities in accessing genomic technologies, and optimise resource use. We set out the structural requirements for genomic medicine as part of a multidisciplinary team approach. Initiation of genomic diagnostics should be guided by diagnostic criteria for the individual patient, in particular the age of IBD onset and the patient's history, and potential implications for future therapies. We outline the diagnostic care pathway for paediatric and adult patients. This guideline considers how to handle clinically actionable findings in research studies and the impact of consumer-based genomics for monogenic IBD. This document was developed by multiple stakeholders, including UK paediatric and adult gastroenterology physicians, immunologists, transplant specialists, clinical geneticists, scientists, and research leads of UK genetic programmes, in partnership with patient representatives of several IBD and rare disease charities.
Collapse
Affiliation(s)
- Jochen Kammermeier
- Department of Paediatric Gastroenterology, Evelina London Children's Hospital, London, UK
| | - Christopher A Lamb
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Department of Gastroenterology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Kelsey D J Jones
- Department of Gastroenterology, Great Ormond Street Hospital for Children, London, UK; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, University of Oxford, Oxford, UK
| | | | - Emma L Baple
- University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK
| | - Chrissy Bolton
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helen Braggins
- Department of Immunology, Great Ormond Street Hospital of Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK; Chronic Granulomatous Disorder Society, Dartford, UK
| | - Tanya I Coulter
- Regional Immunology Service for Northern Ireland, Belfast, UK
| | - Kimberly C Gilmour
- Clinical Immunology Laboratory, Great Ormond Street Hospital of Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | | | - Sophie Hambleton
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Department of Paediatric Immunology, Great North Children's Hospital, Newcastle upon Tyne, UK
| | | | - A Barney Hawthorne
- Department of Gastroenterology, University Hospital of Wales, Cardiff, UK
| | - Sarah Hearn
- Translational Gastroenterology Unit and Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Arian Laurence
- Department of Clinical Immunology, Royal Free Hospital, London, UK; Department of Haematology and Bone Marrow Transplantation, University College Hospital, London, UK
| | - Miles Parkes
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, UK
| | - Richard K Russell
- Child Life and Health, University of Edinburgh, The Royal Hospital for Children & Young People, Edinburgh, UK; Department of Paediatric Gastroenterology, The Royal Hospital for Children & Young People, Edinburgh, UK; Department of Paediatric Gastroenterology, The Royal Hospital for Children & Young People, Edinburgh, UK
| | - R Alexander Speight
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Department of Gastroenterology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Simon Travis
- Translational Gastroenterology Unit and Biomedical Research Centre, University of Oxford, Oxford, UK
| | - David C Wilson
- Child Life and Health, University of Edinburgh, The Royal Hospital for Children & Young People, Edinburgh, UK; Department of Paediatric Gastroenterology, The Royal Hospital for Children & Young People, Edinburgh, UK; Department of Paediatric Gastroenterology, The Royal Hospital for Children & Young People, Edinburgh, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Biomedical Research Centre, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Mirsepasi-Lauridsen HC. Therapy Used to Promote Disease Remission Targeting Gut Dysbiosis, in UC Patients with Active Disease. J Clin Med 2022; 11:7472. [PMID: 36556089 PMCID: PMC9784819 DOI: 10.3390/jcm11247472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Ulcerative colitis (UC) is a relapsing non-transmural chronic inflammatory disease of the colon characterized by bloody diarrhea. The etiology of UC is unknown. The goal is to reduce the inflammation and induce disease remission in UC patients with active disease. The aim of this study is to investigate the innovative treatment method used to promote disease remission in UC patients with active disease targeting gut dysbiosis. Immunosuppressants such as TNF-α blocker are used to promote disease remission in UC, but it is expensive and with side effects. Probiotic, prebiotic and diet are shown to be effective in maintaining disease remission. Fecal microbiota transplantation (FMT) might be the future therapy option to promote disease remission in UC patients with active disease. However, correct manufacturing and administration of the FMT are essential to achieve successful outcome. A few cohorts with FMT capsules show promising results in UC patients with active disease. However, randomized controlled clinical trials with long-term treatment and follow-up periods are necessary to show FMT capsules' efficacy to promote disease remission in UC patients.
Collapse
|
17
|
Progression to Anti-TNF Treatment in Very Early Onset Inflammatory Bowel Disease Patients. J Pediatr Gastroenterol Nutr 2022; 75:473-479. [PMID: 35815885 DOI: 10.1097/mpg.0000000000003551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Limited data are currently available regarding anti-tumor necrosis factor (TNF) use and outcomes in very early onset inflammatory bowel disease (VEOIBD) patients. We aimed to assess the long-term outcomes and time to progression to anti-TNF treatment in VEOIBD patients. METHODS We retrospectively reviewed IBD patients diagnosed under 6 years of age, between January 2005 and December 2019, from the British-Columbia (BC) Pediatric IBD database. Demographic data, disease characteristics, disease location and severity were documented. Data on anti-TNF treatment at initiation and during follow up including type of biologic, dosing, and response were collected. Kaplan-Meier curves were used to assess the number of years to progression to anti-TNF treatment and the parameters influencing commencement. RESULTS Eighty-nine patients with VEOIBD were diagnosed during the study period. Median age at diagnosis was 3.8 years [interquartile range (IQR) 2.6-5.1], 45.3% had Crohn disease (CD) and 62.8% were males. Median duration of follow up was 6.39 years (IQR 3.71-10.55). Anti-TNF treatment was started on 39.5% of patients and 7.0% underwent surgery. Rapid progression to biologic treatment was associated with Perianal fistulizing disease or stricturing disease in CD patients ( P = 0.026, P = 0.033, respectively), and disease severity ( P = 0.017) in ulcerative colitis(UC) patients. The median dose of infliximab at 1 year was 10 mg/kg (IQR 7.5-11) and a median dose interval of 4.5 weeks (IQR 4-6). Clinical remission was reported in 61.8% of patients on their first biologic agent. CONCLUSIONS The response rate was higher than previously reported and might be due to higher infliximab dosing with shorter infusion intervals than standard dosing.
Collapse
|
18
|
Dipasquale V, Romano C. Genes vs environment in inflammatory bowel disease: an update. Expert Rev Clin Immunol 2022; 18:1005-1013. [PMID: 35912838 DOI: 10.1080/1744666x.2022.2108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Inflammatory bowel diseases (IBDs) are known to be caused by a combination of genetic and environmental factors that vary in their influence on the development of the disease. Environmental exposures seem to influence IBD susceptibility, whereas genetic background is thought to modulate the impact of the environment on disease course and phenotype. AREAS COVERED A broad review of the involvement of genes and the environment in IBD pathogenesis was performed, and information regarding the main genetic and environmental factors - categorized into lifestyle factors, drugs, diet, and microbes - was updated. Monogenic very early onset IBD (VEO-IBD) was also discussed. EXPERT OPINION In the upcoming years, better understanding of gene-environment interactions will contribute to the possibility of a better prediction of disease course, response to therapy, and therapy-related adverse events with the final goal of personalized and more efficient patient management.
Collapse
Affiliation(s)
- Valeria Dipasquale
- Pediatric Gastroenterology and Cystic Fibrosis Unit, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Claudio Romano
- Pediatric Gastroenterology and Cystic Fibrosis Unit, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
19
|
Paduano F, Colao E, Fabiani F, Rocca V, Dinatolo F, Dattola A, D’Antona L, Amato R, Trapasso F, Baudi F, Perrotti N, Iuliano R. Germline Testing in a Cohort of Patients at High Risk of Hereditary Cancer Predisposition Syndromes: First Two-Year Results from South Italy. Genes (Basel) 2022; 13:1286. [PMID: 35886069 PMCID: PMC9319682 DOI: 10.3390/genes13071286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Germline pathogenic variants (PVs) in oncogenes and tumour suppressor genes are responsible for 5 to 10% of all diagnosed cancers, which are commonly known as hereditary cancer predisposition syndromes (HCPS). A total of 104 individuals at high risk of HCPS were selected by genetic counselling for genetic testing in the past 2 years. Most of them were subjects having a personal and family history of breast cancer (BC) selected according to current established criteria. Genes analysis involved in HCPS was assessed by next-generation sequencing (NGS) using a custom cancer panel with high- and moderate-risk susceptibility genes. Germline PVs were identified in 17 of 104 individuals (16.3%) analysed, while variants of uncertain significance (VUS) were identified in 21/104 (20.2%) cases. Concerning the germline PVs distribution among the 13 BC individuals with positive findings, 8/13 (61.5%) were in the BRCA1/2 genes, whereas 5/13 (38.4%) were in other high- or moderate-risk genes including PALB2, TP53, ATM and CHEK2. NGS genetic testing showed that 6/13 (46.1%) of the PVs observed in BC patients were detected in triple-negative BC. Interestingly, the likelihood of carrying the PVs in the moderate-to-high-risk genes calculated by the cancer risk model BOADICEA was significantly higher in pathogenic variant carriers than in negative subjects. Collectively, this study shows that multigene panel testing can offer an effective diagnostic approach for patients at high risk of hereditary cancers.
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Emma Colao
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Fernanda Fabiani
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Valentina Rocca
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesca Dinatolo
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Adele Dattola
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesco Baudi
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
20
|
Grillo F, Mastracci L, Parente P. A Pattern-based Approach and Multidisciplinary Discussion Are Fundamental for Diagnosis in Very Early Onset Inflammatory Bowel Disease (VEO-IBD). Adv Anat Pathol 2022; 29:259-260. [PMID: 35389893 DOI: 10.1097/pap.0000000000000345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Federica Grillo
- Ospedale Policlinico San Martino, IRCCS
- Unit of Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova Genova
| | - Luca Mastracci
- Ospedale Policlinico San Martino, IRCCS
- Unit of Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova Genova
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo Della Sofferenza San Giovanni Rotondo, FG, Italy
| |
Collapse
|
21
|
Sharifinejad N, Zaki-Dizaji M, Sepahvandi R, Fayyaz F, Dos Santos Vilela MM, ElGhazali G, Abolhassani H, Ochs HD, Azizi G. The clinical, molecular, and therapeutic features of patients with IL10/IL10R deficiency: a systematic review. Clin Exp Immunol 2022; 208:281-291. [PMID: 35481870 PMCID: PMC9226142 DOI: 10.1093/cei/uxac040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 01/19/2023] Open
Abstract
Interleukin10 (IL10) and IL10 receptor (IL10R) deficiencies are monogenic inborn errors of immunity (IEI) causing early-onset inflammatory bowel diseases (IBD). In this report, we systematically reviewed articles that included related keywords using PubMed, Web of Science, and Scopus databases. The articles were screened for eligibility criteria before data extraction. We assessed 286 patients (44.5% female) with IL10 and/or IL10R deficiencies who were predominantly from China (40.7%), Italy (13.9%), and South Korea (8.5%). The median age of onset was 1.0 (0.3-4.0) months with a median age of genetic diagnosis at 16.0 (7.4-81.0) months. Consanguinity was reported in all evaluable patients with IL10 deficiency and in 38.2% of patients with IL10R deficiency (22.9% of patients with IL10RA, and 79.4% of patients with IL10RB deficiency). The most prevalent mutations in IL10RA were c.301C>T (p.R101W) and c.537G>A (p.T179T), those in IL10RB were c.139A>G (p.K47E) and c.611G>A (p.W204X). Auto-inflammation and enteropathy were present in all cases. The first presentation of both groups was protracted diarrhea (45.7%), bloody diarrhea (17.8%), and colitis (15.5%). Patients with IL10R deficiency had a high frequency of dermatologic manifestations (50.5%) and failure to thrive (60.5%), while IL10-deficient patients lacked those complications. In the majority of patients, the basic immunologic parameters were in normal ranges. Of the entire publications, 30.7% underwent hemopoietic stem cell transplantation, 57.5% surgery, and 86.6% immunosuppressive treatment. The 10-year survival rate was higher in patients with IL10 deficiency than in patients with IL10R deficiency. In conclusion, IL10/IL10R deficiency predominantly presents with treatment-resistant, early-onset IBD within the first months of life. We detected no clear correlation between the phenotype of patients carrying the same variant. The high prevalence of distinct clinical manifestations reported in IL10RA- and IL10RB-deficient patients might be attributable to the interactions between the target tissue and cytokines other than IL10 capable of binding to IL10RB. These results gain translational significance by contributing to earlier diagnosis, adequate therapy, and avoiding delay in the diagnosis and unfavorable outcomes.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Roya Sepahvandi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farimah Fayyaz
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maria Marluce Dos Santos Vilela
- Center for Investigation in Pediatrics, Pediatrics Department, Faculty of Medical Sciences, State University of Campinas (UNICAMP). Campinas, SP, Brazil
| | - Gehad ElGhazali
- Department of Clinical Microbiology and Immunology, Sheikh Khalifa Medical City, Abu Dhabi, UAE
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Targeted RNAseq Improves Clinical Diagnosis of Very Early-Onset Pediatric Immune Dysregulation. J Pers Med 2022; 12:jpm12060919. [PMID: 35743704 PMCID: PMC9224647 DOI: 10.3390/jpm12060919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Despite increased use of whole exome sequencing (WES) for the clinical analysis of rare disease, overall diagnostic yield for most disorders hovers around 30%. Previous studies of mRNA have succeeded in increasing diagnoses for clearly defined disorders of monogenic inheritance. We asked if targeted RNA sequencing could provide similar benefits for primary immunodeficiencies (PIDs) and very early-onset inflammatory bowel disease (VEOIBD), both of which are difficult to diagnose due to high heterogeneity and variable severity. We performed targeted RNA sequencing of a panel of 260 immune-related genes for a cohort of 13 patients (seven suspected PID cases and six VEOIBD) and analyzed variants, splicing, and exon usage. Exonic variants were identified in seven cases, some of which had been previously prioritized by exome sequencing. For four cases, allele specific expression or lack thereof provided additional insights into possible disease mechanisms. In addition, we identified five instances of aberrant splicing associated with four variants. Three of these variants had been previously classified as benign in ClinVar based on population frequency. Digenic or oligogenic inheritance is suggested for at least two patients. In addition to validating the use of targeted RNA sequencing, our results show that rare disease research will benefit from incorporating contributing genetic factors into the diagnostic approach.
Collapse
|
23
|
Pediatric Management of Crohn's Disease. Gastroenterol Clin North Am 2022; 51:401-424. [PMID: 35595422 DOI: 10.1016/j.gtc.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Pediatric Crohn's disease is often more severe, requires higher levels of immunosuppression, and is associated with greater morbidity compared with adult Crohn's disease. Unique considerations in pediatric Crohn's disease include growth impairment, pubertal delay, bone disease, longevity of disease burden, and psychosocial impact. Treatment options are limited, requiring off-label use of therapy in this challenging patient population. Understanding the medications available, the existing evidence supporting their use, and side effects is important. There is tremendous potential for growth and improvement in this field and it is essential that all gastroenterologists have an understanding of this complex and unique patient population.
Collapse
|
24
|
Huang Q, Yuan Y, Gong J, Zhang T, Qi Z, Yang X, Li W, Wei A. Identification of a Novel MLPH Missense Mutation in a Chinese Griscelli Syndrome 3 Patient. Front Med (Lausanne) 2022; 9:896943. [PMID: 35602484 PMCID: PMC9120966 DOI: 10.3389/fmed.2022.896943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Melanophilin (MLPH) functions as a linker between RAB27A and myosin Va (MYO5A) in regulating skin pigmentation during the melanosome transport process. The MYO5A-MLPH-RAB27A ternary protein complex is required for anchoring mature melanosomes in the peripheral actin filaments of melanocytes for subsequent transfer to adjacent keratinocytes. Griscelli syndrome type 3 (GS3) is caused by mutations in the MLPH gene. So far, only five variants of MLPH associated with GS3 have been reported. Here, we reported the first patient with GS3 in a Chinese population. The proband carried a novel homozygous missense mutation (c.73G>C; p.D25H), residing in the conserved Slp homology domain of MLPH, and presented with hypopigmentation of the hair, eyebrows, and eyelashes. Light microscopy revealed the presence of abnormal pigment clumping in his hair shaft. In silico tools predicted this MLPH variant to be likely pathogenic. Using immunoblotting and immunofluorescence analysis, we demonstrated that the MLPH (D25H) variant had an inhibitory effect on melanosome transport by exhibiting perinuclear melanosome aggregation in melanocytes, and greatly reduced its binding to RAB27A, although the protein level of MLPH in the patient was not changed. Our findings suggest that MLPH (D25H) is a pathogenic variant that expands the genetic spectrum of the MLPH gene.
Collapse
Affiliation(s)
- Qiaorong Huang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yefeng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
| | - Juanjuan Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tianjiao Zhang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiumin Yang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Wei Li
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Aihua Wei
| |
Collapse
|
25
|
Collen LV, Kim DY, Field M, Okoroafor I, Saccocia G, Whitcomb SD, Green J, Dong MD, Barends J, Carey B, Weatherly ME, Rockowitz S, Sliz P, Liu E, Eran A, Grushkin-Lerner L, Bousvaros A, Muise AM, Klein C, Mitsialis V, Ouahed J, Snapper SB. Clinical Phenotypes and Outcomes in Monogenic Versus Non-monogenic Very Early Onset Inflammatory Bowel Disease. J Crohns Colitis 2022; 16:1380-1396. [PMID: 35366317 PMCID: PMC9455789 DOI: 10.1093/ecco-jcc/jjac045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Over 80 monogenic causes of very early onset inflammatory bowel disease [VEOIBD] have been identified. Prior reports of the natural history of VEOIBD have not considered monogenic disease status. The objective of this study is to describe clinical phenotypes and outcomes in a large single-centre cohort of patients with VEOIBD and universal access to whole exome sequencing [WES]. METHODS Patients receiving IBD care at a single centre were prospectively enrolled in a longitudinal data repository starting in 2012. WES was offered with enrollment. Enrolled patients were filtered by age of diagnosis <6 years to comprise a VEOIBD cohort. Monogenic disease was identified by filtering proband variants for rare, loss-of-function, or missense variants in known VEOIBD genes inherited according to standard Mendelian inheritance patterns. RESULTS This analysis included 216 VEOIBD patients, followed for a median of 5.8 years. Seventeen patients [7.9%] had monogenic disease. Patients with monogenic IBD were younger at diagnosis and were more likely to have Crohn's disease phenotype with higher rates of stricturing and penetrating disease and extraintestinal manifestations. Patients with monogenic disease were also more likely to experience outcomes of intensive care unit [ICU] hospitalisation, gastrostomy tube, total parenteral nutrition use, stunting at 3-year follow-up, haematopoietic stem cell transplant, and death. A total of 41 patients [19.0%] had infantile-onset disease. After controlling for monogenic disease, patients with infantile-onset IBD did not have increased risk for most severity outcomes. CONCLUSIONS Monogenic disease is an important driver of disease severity in VEOIBD. WES is a valuable tool in prognostication and management of VEOIBD.
Collapse
Affiliation(s)
- Lauren V Collen
- Corresponding authors: Lauren V. Collen, 300 Longwood Avenue, Enders 670, Boston, MA 02115, USA. Tel.: 617-919-4973; fax: 617-730-0498;
| | - David Y Kim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Field
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ibeawuchi Okoroafor
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Gwen Saccocia
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney Driscoll Whitcomb
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Julia Green
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle Dao Dong
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jared Barends
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Bridget Carey
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Madison E Weatherly
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Shira Rockowitz
- Manton centre for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
| | - Piotr Sliz
- Manton centre for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA,Division of Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Enju Liu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA,Institutional centres for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA, USA
| | - Alal Eran
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA,Harvard Medical School, Department of Biomedical Informatics, Boston, MA, USA,Department of Life Sciences and Zlotowski centre for Neuroscience, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Leslie Grushkin-Lerner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Athos Bousvaros
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease centre, Research Institute, Hospital for Sick Children, Toronto, ON, Canada,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Toronto, Toronto, ON, Canada,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU Klinikum, and Gene centre, Ludwig Maximilians Universität München, München,Germany
| | - Vanessa Mitsialis
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA,Division of Gastroenterology, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Scott B Snapper
- Scott B. Snapper, 300 Longwood Avenue, Enders 670, Boston, MA 02115, USA. Tel: 617-919-4973; fax: 617-730-0498;
| |
Collapse
|
26
|
Sasahara Y, Uchida T, Suzuki T, Abukawa D. Primary Immunodeficiencies Associated With Early-Onset Inflammatory Bowel Disease in Southeast and East Asia. Front Immunol 2022; 12:786538. [PMID: 35095863 PMCID: PMC8792847 DOI: 10.3389/fimmu.2021.786538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
Background Causes of early-onset inflammatory bowel disease (IBD) vary, and primary immunodeficiency diseases (PIDs) are associated with early-onset IBD as monogenic disorders. Aim This review investigates the prevalence, clinical manifestation, genetic profile, and treatment of patients with early-onset IBD in Southeast and East Asia. Methods A systemic review of articles reporting PID patients associated with early-onset IBD in Southeast and East Asia was conducted. Results The prevalence of PID associated with IBD was higher than that reported in western nations, and the frequency of patients with bloody stools as an early symptom was relatively higher in monogenic diseases. A total 13 (12.0%) of 108 patients with early-onset IBD were diagnosed as PID by exome sequencing and targeted gene panel analysis in Japan, including four patients with XIAP, three with IL10RA, and two or one patient with other gene mutations. In addition, ten patients were reported as having IL-10 receptor alpha (IL-10RA) deficiency in China and Hong Kong. Allogeneic hematopoietic stem cell transplantation was performed in patients with X-linked inhibitor of apoptosis deficiency, IL-10RA deficiency, or other PID as a curative treatment, and the preferable outcome of reduced-intensity conditioning and complete resolution of IBD symptoms and dysbiosis were achieved. Conclusion Comprehensive molecular diagnosis has been widely applied to screen for patients with PID-associated IBD in Southeast and East Asia. These results contributed to the awareness of monogenic PID in early-onset IBD patients and their differences in clinical manifestations and genetic profiles compared to the patients in western counties.
Collapse
Affiliation(s)
- Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Uchida
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tasuku Suzuki
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daiki Abukawa
- Department of General Pediatrics, Gastroenterology and Hepatology, Miyagi Children's Hospital, Sendai, Japan
| |
Collapse
|
27
|
Mulder DJ, Khalouei S, Li M, Warner N, Gonzaga-Jauregui C, Benchimol EI, Church PC, Walters TD, Ramani AK, Griffiths AM, Ricciuto A, Muise AM. A Machine Learning Approach to Identifying Causal Monogenic Variants in Inflammatory Bowel Disease. GASTRO HEP ADVANCES 2022; 1:171-179. [PMID: 39131125 PMCID: PMC11307936 DOI: 10.1016/j.gastha.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 08/13/2024]
Abstract
Background and Aims Diagnosis of monogenic disease is increasingly important for patient care and personalizing therapy. However, the current process is nonstandardized, expensive, and time consuming. There is currently no accepted strategy to help identify disease-causing variants in monogenic inflammatory bowel disease (IBD). The aim of the study is to develop a prioritization strategy for monogenic IBD variant discovery through detailed analysis of a whole-exome sequencing (WES) data set. Methods All consenting pediatric patients with IBD presenting to our tertiary care hospital during the study period were enrolled and underwent WES (n = 1005). Available family members also underwent WES. Variants were analyzed en masse using the GEMINI framework and were further annotated using data from dbNSFP, Combined Annotation Dependent Depletion, and gnomAD. Known disease-causing variants (n = 36) were used as positive controls. Machine learning algorithms were optimized and then compared to assist with identifying monogenic IBD case characteristics. Results Initial gene-level analysis identified 11 genes not previously linked to IBD that could potentially harbor IBD-causing variants. Machine learning algorithms identified 4 primary variant characteristics (Combined Annotation Dependent Depletion score, dbNSFP score, relationship with a known immunodeficiency gene, and alternate allele frequency), and optimal threshold values for each were determined to assist with identifying monogenic IBD variants. Based on these characteristics, an automated variant prioritization pipeline was then created that filters and prioritizes variants from >100,000 variants per patient down to a mean of 15. This pipeline is available online for all to use. Conclusion Leveraging a large WES data set, we demonstrate a statistically rigorous strategy for prioritization of variants for monogenic IBD diagnosis.
Collapse
Affiliation(s)
- Daniel J. Mulder
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Pediatrics, Medicine and Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Sam Khalouei
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Li
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Neil Warner
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics and Biochemistry, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Eric I. Benchimol
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter C. Church
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas D. Walters
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arun K. Ramani
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne M. Griffiths
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Ricciuto
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aleixo M. Muise
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics and Biochemistry, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Parente P, Pastore M, Grillo F, Fassan M, Francalanci P, Dirodi A, Rossi C, Arpa G, De Angelis P, Gullo I, Mastracci L, Alaggio R, Vanoli A. Very Early Onset-IBD: evidence for the need of a multidisciplinary approach. Pathologica 2022; 114:3-11. [PMID: 34856603 PMCID: PMC9040548 DOI: 10.32074/1591-951x-336] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
Very early onset inflammatory bowel disease (VEO-IBD) represents approximately 25% of cases of IBD-like colitis occurring during childhood and, by definition, it is characterized by an onset prior to 6 years of age. This subgroup of patients presents significant differences from IBD occurring in older children and in adults, including a more severe clinical course, a reduced responsiveness to conventional IBD therapy, and a greater proportion of cases featuring an underlying monogenic disorder. Histological findings from gastro-intestinal (GI) biopsies are characterized by an IBD-like, apoptotic or enterocolitis-like pattern, complicating the differential diagnosis with other pediatric diseases involving GI tract. Moreover, individuals with monogenic disorders may develop significant comorbidities, such as primary immunodeficiency (PID), impacting treatment options. Without an appropriate diagnosis, the clinical course of VEO-IBD has greater potential for escalated treatment regimens involving extensive surgery, more intensive medical therapies and, even more important, inadequate recognition of underlying monogenic defect that may lead to inappropriate (sometimes fatal) therapy. For these reasons, an adequate context leading to an appropriate diagnosis is imperative, calling for a close collaboration between pediatricians, pathologists, geneticists, and immunologists.
Collapse
Affiliation(s)
- Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Pastore
- Department of Pediatrics, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Federica Grillo
- Anatomic Pathology, Ospedale Policlinico San Martino IRCCS, Genova, Italy
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Matteo Fassan
- Departement of Medicine (DIMED), Surgical Pathology Unit, University of Padova, Padova, Italy
- Veneto Institute of Oncology, IOV-IRCCS, Padova, Italy
| | - Paola Francalanci
- Pathology Unit, Department of Diagnostic and Laboratory Medicine, IRCCS Bambino Gesù Children’s Hospital, Roma, Italy
| | - Angelica Dirodi
- Department of Pediatrics, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Chiara Rossi
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Giovanni Arpa
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Paola De Angelis
- Digestive Endoscopy and Surgery Unit, IRCCS Bambino Gesù Children’s Hospital, Roma, Italy
| | - Irene Gullo
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ); Department of Pathology, Faculty of Medicine of the University of Porto (FMUP) & i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Portugal
| | - Luca Mastracci
- Anatomic Pathology, Ospedale Policlinico San Martino IRCCS, Genova, Italy
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Diagnostic and Laboratory Medicine, IRCCS Bambino Gesù Children’s Hospital, Roma, Italy
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
29
|
Wilkins BJ, Kelsen JR, Conrad MA. A Pattern-based Pathology Approach to Very Early-onset Inflammatory Bowel Disease: Thinking Beyond Crohn Disease and Ulcerative Colitis. Adv Anat Pathol 2022; 29:62-70. [PMID: 34813528 PMCID: PMC8665089 DOI: 10.1097/pap.0000000000000327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Very early-onset inflammatory bowel disease (VEO-IBD), IBD diagnosed in children younger than 6 years old, is phenotypically and genetically distinct from older onset IBD. Monogenic and digenic causative defects, particularly in primary immunodeficiency and intestinal epithelial barrier genes, have been identified in a subset of patients with VEO-IBD allowing for targeted therapies and improved outcomes. However, these findings are the minority, thus strategies to correctly diagnose patients, including identification of specific histopathologic findings with correlating clinical and laboratory features may provide critical and necessary insight into mechanisms of disease pathogenesis and subsequent therapeutic options. In this article, we review the pathologic findings seen in patients with VEO-IBD and outline a pattern-based approach to diagnosis using examples from primary immunodeficiencies with gastrointestinal manifestations.
Collapse
Affiliation(s)
- Benjamin J. Wilkins
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Judith R. Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Maire A. Conrad
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
30
|
Rao A, Gokhale R. Ulcerative Colitis. TEXTBOOK OF PEDIATRIC GASTROENTEROLOGY, HEPATOLOGY AND NUTRITION 2022:401-421. [DOI: 10.1007/978-3-030-80068-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Costagliola G, Peroni DG, Consolini R. Beyond Infections: New Warning Signs for Inborn Errors of Immunity in Children. Front Pediatr 2022; 10:855445. [PMID: 35757131 PMCID: PMC9226481 DOI: 10.3389/fped.2022.855445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Patients with inborn errors of immunity (IEI) are susceptible to developing a severe infection-related clinical phenotype, but the clinical consequences of immune dysregulation, expressed with autoimmunity, atopy, and lymphoproliferation could represent the first sign in a significant percentage of patients. Therefore, during the diagnostic work-up patients with IEI are frequently addressed to different specialists, including endocrinologists, rheumatologists, and allergologists, often resulting in a delayed diagnosis. In this paper, the most relevant non-infectious manifestations of IEI are discussed. Particularly, we will focus on the potential presentation of IEI with autoimmune cytopenia, non-malignant lymphoproliferation, severe eczema or erythroderma, autoimmune endocrinopathy, enteropathy, and rheumatologic manifestations, including vasculitis and systemic lupus erythematosus. This paper aims to identify new warning signs to suspect IEI and help in the identification of patients presenting with atypical/non-infectious manifestations.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Ouahed J, Kelsen JR, Spessott WA, Kooshesh K, Sanmillan ML, Dawany N, Sullivan KE, Hamilton KE, Slowik V, Nejentsev S, Neves JF, Flores H, Chung WK, Wilson A, Anyane-Yeboa K, Wou K, Jain P, Field M, Tollefson S, Dent MH, Li D, Naito T, McGovern DPB, Kwong AC, Taliaferro F, Ordovas-Montanes J, Horwitz BH, Kotlarz D, Klein C, Evans J, Dorsey J, Warner N, Elkadri A, Muise AM, Goldsmith J, Thompson B, Engelhardt KR, Cant AJ, Hambleton S, Barclay A, Toth-Petroczy A, Vuzman D, Carmichael N, Bodea C, Cassa CA, Devoto M, Maas RL, Behrens EM, Giraudo CG, Snapper SB. Variants in STXBP3 are Associated with Very Early Onset Inflammatory Bowel Disease, Bilateral Sensorineural Hearing Loss and Immune Dysregulation. J Crohns Colitis 2021; 15:1908-1919. [PMID: 33891011 PMCID: PMC8575043 DOI: 10.1093/ecco-jcc/jjab077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Very early onset inflammatory bowel disease [VEOIBD] is characterized by intestinal inflammation affecting infants and children less than 6 years of age. To date, over 60 monogenic aetiologies of VEOIBD have been identified, many characterized by highly penetrant recessive or dominant variants in underlying immune and/or epithelial pathways. We sought to identify the genetic cause of VEOIBD in a subset of patients with a unique clinical presentation. METHODS Whole exome sequencing was performed on five families with ten patients who presented with a similar constellation of symptoms including medically refractory infantile-onset IBD, bilateral sensorineural hearing loss and, in the majority, recurrent infections. Genetic aetiologies of VEOIBD were assessed and Sanger sequencing was performed to confirm novel genetic findings. Western analysis on peripheral blood mononuclear cells and functional studies with epithelial cell lines were employed. RESULTS In each of the ten patients, we identified damaging heterozygous or biallelic variants in the Syntaxin-Binding Protein 3 gene [STXBP3], a protein known to regulate intracellular vesicular trafficking in the syntaxin-binding protein family of molecules, but not associated to date with either VEOIBD or sensorineural hearing loss. These mutations interfere with either intron splicing or protein stability and lead to reduced STXBP3 protein expression. Knock-down of STXBP3 in CaCo2 cells resulted in defects in cell polarity. CONCLUSION Overall, we describe a novel genetic syndrome and identify a critical role for STXBP3 in VEOIBD, sensorineural hearing loss and immune dysregulation.
Collapse
Affiliation(s)
- Jodie Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Judith R Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Waldo A Spessott
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Kameron Kooshesh
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Maria L Sanmillan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Noor Dawany
- Department of Biomedical Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Voytek Slowik
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sergey Nejentsev
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - João Farela Neves
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, the Netherlands.,Primary Immunodeficiencies Unit; Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Helena Flores
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Lisbon, 1150, Portugal
| | - Wendy K Chung
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Ashley Wilson
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Kwame Anyane-Yeboa
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Karen Wou
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Preti Jain
- Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael Field
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Tollefson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Maiah H Dent
- Department of Genetics, Yale University, New Haven, CT, 06510, USA
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Takeo Naito
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Andrew C Kwong
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Faith Taliaferro
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Program in Immunology, Harvard Medical School, Boston, MA, 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Bruce H Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Division of Emergency Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Kotlarz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, 80337, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, 80337, Germany
| | - Jonathan Evans
- Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - Jill Dorsey
- Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Jeffrey Goldsmith
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin Thompson
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Karin R Engelhardt
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Andrew J Cant
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK.,Children's Immunology Service, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, NE1 4LP, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK.,Children's Immunology Service, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, NE1 4LP, UK
| | - Andrew Barclay
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, G51 4TF, UK
| | - Agnes Toth-Petroczy
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Dana Vuzman
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Nikkola Carmichael
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Corneliu Bodea
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher A Cassa
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Marcella Devoto
- Division of Human Genetics, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Translational and Precision Medicine, University Sapienza, Rome 00185, Italy.,CNR-IRGB, Cagliari 09042, Italy
| | - Richard L Maas
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Edward M Behrens
- Division of Rheumatology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claudio G Giraudo
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Division of Gastroenterology, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
33
|
Sandy NS, Marega LF, Bechara GD, Riccetto AGL, Bonfim C, Vilela MMDS, Ribeiro AF, Servidoni MDF, Lomazi EA. Elevated IgA and IL-10 levels in very-early-onset inflammatory bowel disease secondary to IL-10 receptor deficiency. REVISTA PAULISTA DE PEDIATRIA 2021; 40:e2020434. [PMID: 34730757 PMCID: PMC8565602 DOI: 10.1590/1984-0462/2022/40/2020434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/21/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To report two patients with very-early-onset inflammatory bowel disease (VEOIBD) secondary to interleukin-10 receptor (IL-10R) mutations, explore immunophenotyping data and plasma cytokine profile on these cases compared to healthy controls, and describe the phenotype of IL-10/IL-10R mutations based on a literature review. CASE DESCRIPTION We report on two female infants referred to our tertiary center at the age of ten months, with severe colonic and perianal disease, as well as significant malnutrition, who had shown limited response to usual inflammatory bowel disease (IBD) therapy agents. In the first case, whole-exome sequencing (WES) revealed a homozygous (c.537G>A/p.T179T) mutation in exon 4 of the IL-10RA gene, while in the second patient, compound heterozygosity was identified, also in the IL-10RA gene (chr11:117.859.199 variant A>G/p.Tyr57Cys and chr11: 117.860.335 variant G>T/p.Val123Leu). Both patients underwent hematopoietic cell transplantation (HCT). Immunological work-up of these patients revealed increased IL-10 plasma levels and increased IgA. COMMENTS Our case reports disclose novel findings on plasma cytokine profile in IL-10R deficiency, and we describe the severe phenotype of IL-10/IL-10R deficiency that should be recognized by physicians.
Collapse
|
34
|
Malik A, Stringer E, Warner N, van Limbergen J, Vandersteen A, Muise A, Derfalvi B. Multisystem Autoimmune Inflammatory Disease, Including Colitis, Due to Inborn Error of Immunity. Pediatrics 2021; 148:peds.2021-050614. [PMID: 34686572 PMCID: PMC9359614 DOI: 10.1542/peds.2021-050614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 01/30/2023] Open
Abstract
Our understanding of inflammatory bowel disease is changing as we identify genetic variants associated with immune dysregulation. Inflammatory bowel disease undetermined, even when diagnosed in older children and adolescents, in the setting of multiple inflammatory and infectious diseases should raise the suspicion of complex immune dysregulation with a monogenic basis. We report a case of inflammatory bowel disease undetermined triggered by exposure to a nonsteroidal antiinflammatory drug in a 16-year-old girl with a background history of juvenile idiopathic arthritis, cytopenias, recurrent respiratory tract and middle ear infections, and esophageal candidiasis. Immunologic assessment included measurement of immunoglobulin levels, lymphocyte immunophenotyping, B-cell functional tests, and whole-exome sequencing. Laboratory investigation revealed defects of humoral immunity, including mild persistent hypogammaglobulinemia affecting all 3 isotypes and absent isohemagglutinins. Whole exome sequencing revealed a heterozygous TNFRSF13B (Tumor Necrosis Factor Receptor Superfamily Member 13B, or Transmembrane Activator and Calcium-modulating cyclophilin ligand Interactor, TACI) gene variant, which is associated with common variable immunodeficiency and the development of autoimmune diseases. In conclusion, a clinical history of recurrent infections, atypical histologic features of inflammatory bowel disease, additional autoimmune manifestations, and an inadequate response to conventional therapy should prompt the physician to refer to an immunologist with the query of inborn error of immunity. We report how extensive immune evaluation and genetic diagnosis can individualize care and facilitate a multidisciplinary team approach.
Collapse
Affiliation(s)
- Aniko Malik
- Department of Pediatrics, Dalhousie University and IWK Health Center, Halifax, Nova Scotia, Canada
| | - Elizabeth Stringer
- Department of Pediatrics, Dalhousie University and IWK Health Center, Halifax, Nova Scotia, Canada
| | - Neil Warner
- International Early Onset Pediatric Inflammatory Bowel Disease Cohort Study, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johan van Limbergen
- Department of Pediatrics, Dalhousie University and IWK Health Center, Halifax, Nova Scotia, Canada
| | - Anthony Vandersteen
- Department of Pediatrics, Dalhousie University and IWK Health Center, Halifax, Nova Scotia, Canada
| | - Aleixo Muise
- International Early Onset Pediatric Inflammatory Bowel Disease Cohort Study, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Beata Derfalvi
- Department of Pediatrics, Dalhousie University and IWK Health Center, Halifax, Nova Scotia, Canada
| |
Collapse
|
35
|
Both T, Dalm VASH, Richardson SA, van Schie N, van den Broek LM, de Vries AC, van Hagen PM, Rombach SM. Inflammatory bowel disease in primary immunodeficiency disorders is a heterogeneous clinical entity requiring an individualized treatment strategy: A systematic review. Autoimmun Rev 2021; 20:102872. [PMID: 34118459 DOI: 10.1016/j.autrev.2021.102872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To describe the prevalence, clinical presentation and current treatment regimens of inflammatory bowel disease (IBD) in patients with primary immunodeficiency disorders (PIDs). METHODS A systematic review was conducted. The following databases were searched: MEDLINE, Embase, Web of Science, the Cochrane Library and Google Scholar. RESULTS A total of 838 articles were identified, of which 36 were included in this review. The prevalence of IBD in PIDs ranges between 3.4% and 61.2%, depending on the underlying PID. Diarrhea and abdominal pain were reported in 64.3% and 52.4% of the patients, respectively. Colon ulceration was the most frequent finding on endoscopic evaluation, while cryptitis, granulomas, ulcerations and neutrophilic/lymphocytic infiltrates were the most frequently reported histopathological abnormalities. Described treatment regimens included oral corticosteroids and other oral immunosuppressive agents, including mesalazine, azathioprine and cyclosporin, leading to clinical improvement in the majority of patients. In case of treatment failure, biological therapies including TNF- α blocking agents, are considered. CONCLUSIONS The overall prevalence of IBD in patients with PID is high, but varies between different PIDs. Physicians should be aware of these complications and focus on characteristic symptoms to reduce diagnostic delay and delay in initiation of treatment. Treatment of IBD in PIDs depends on severity of symptoms and may differ between various PIDs based on distinct underlying pathogenesis. An individualized diagnostic and therapeutic approach is therefore warranted.
Collapse
Affiliation(s)
- Tim Both
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Savannah A Richardson
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Naïma van Schie
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Luuk M van den Broek
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annemarie C de Vries
- Department of Gastroenterology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Saskia M Rombach
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Tang Z, Zhang P, Ji M, Yin C, Zhao R, Huang Z, Huang Y. Characterization of novel and large fragment deletions in exon 1 of the IL10RA gene in Chinese children with very early onset inflammatory bowel diseases. BMC Gastroenterol 2021; 21:167. [PMID: 33849446 PMCID: PMC8045347 DOI: 10.1186/s12876-021-01756-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Defects in interleukin 10 (IL10) and its receptors are particularly involved in very early onset inflammatory bowel disease (VEOIBD). However, large fragment deletions of IL10 receptor A (IL10RA) are rare. METHODS VEOIBD patients with confirmed mutations in the IL10RA gene were enrolled from January 1, 2019 to June 30, 2020. The clinical features and endoscopic-radiological findings of the patients with large fragment deletions of the IL10RA gene were determined and followed up. RESULTS Thirty-five patients with IL10RA gene mutations, namely, 28 compound heterozygous mutations and 7 homozygote mutations, were enrolled in this study. Six patients carried the reported point mutation c.301C > T (p. R101RW) or c.537 G > A (p. T179T) in one locus and a large fragment deletion in exon 1 in another locus, which were novel mutations in this gene. A 333-bp deletion of exon 1 (117857034-11857366 del) was the main mutation in this locus in 85.7% of the patients with large fragment deletions. The time of disease onset ranged from birth to 4 years, and diarrhea was the main initial symptom. In total, 6/7 patients had perianal complications, including perianal abscess, fistula and skin tags. Six patients accepted thalidomide treatment, 5/7 accepted mesalamine, 3/7 accepted hematopoietic stem cell transplantation (HSCT), and 3/7 were waiting for HSCT. CONCLUSIONS We identified a novel large deletion of exon 1 involving the IL10RA gene for the first time and showed the characteristics of VEOIBD patients. This study expands the spectrum of Chinese VEOIBD patients with IL0RA gene mutations.
Collapse
Affiliation(s)
- Zifei Tang
- Department of Gastroenterology, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Ping Zhang
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Min Ji
- Department of Radiology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Chunlan Yin
- Department of Gastroenterology, Children's Hospital of Hebei Province, Shijiazhuang, 050030, China
| | - Ruiqin Zhao
- Department of Gastroenterology, Children's Hospital of Hebei Province, Shijiazhuang, 050030, China
| | - Zhiheng Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| | - Ying Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| |
Collapse
|
37
|
Karthikeyan A, Young KN, Moniruzzaman M, Beyene AM, Do K, Kalaiselvi S, Min T. Curcumin and Its Modified Formulations on Inflammatory Bowel Disease (IBD): The Story So Far and Future Outlook. Pharmaceutics 2021; 13:484. [PMID: 33918207 PMCID: PMC8065662 DOI: 10.3390/pharmaceutics13040484] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing and remitting inflammatory disorder of the small intestine and colon. IBD includes ulcerative colitis (UC) and Crohn's disease (CD), and it is a major factor for the development of colon cancer, referred to as colitis-associated cancer (CAC). The current treatment of IBD mainly includes the use of synthetic drugs and monoclonal antibodies. However, these drugs have side effects over long-term use, and the high relapse rate restricts their application. In the recent past, many studies had witnessed a surge in applying plant-derived products to manage various diseases, including IBD. Curcumin is a bioactive component derived from a rhizome of turmeric (Curcuma longa). Numerous in vitro and in vivo studies show that curcumin may interact with many cellular targets (NF-κB, JAKs/STATs, MAPKs, TNF-γ, IL-6, PPARγ, and TRPV1) and effectively reduce the progression of IBD with promising results. Thus, curcumin is a potential therapeutic agent for patients with IBD once it significantly decreases clinical relapse in patients with quiescent IBD. This review aims to summarize recent advances and provide a comprehensive picture of curcumin's effectiveness in IBD and offer our view on future research on curcumin in IBD treatment.
Collapse
Affiliation(s)
- Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Kim Na Young
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Anteneh Marelign Beyene
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Kyoungtag Do
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Senthil Kalaiselvi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India;
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| |
Collapse
|
38
|
Gómez Delgado I, Corvillo F, Nozal P, Arjona E, Madrid Á, Melgosa M, Bravo J, Szilágyi Á, Csuka D, Veszeli N, Prohászka Z, Sánchez-Corral P. Complement Genetic Variants and FH Desialylation in S. pneumoniae-Haemolytic Uraemic Syndrome. Front Immunol 2021; 12:641656. [PMID: 33777036 PMCID: PMC7991904 DOI: 10.3389/fimmu.2021.641656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Haemolytic Uraemic Syndrome associated with Streptococcus pneumoniae infections (SP-HUS) is a clinically well-known entity that generally affects infants, and could have a worse prognosis than HUS associated to E. coli infections. It has been assumed that complement genetic variants associated with primary atypical HUS cases (aHUS) do not contribute to SP-HUS, which is solely attributed to the action of the pneumococcal neuraminidase on the host cellular surfaces. We previously identified complement pathogenic variants and risk polymorphisms in a few Hungarian SP-HUS patients, and have now extended these studies to a cohort of 13 Spanish SP-HUS patients. Five patients presented rare complement variants of unknown significance, but the frequency of the risk haplotypes in the CFH-CFHR3-CFHR1 region was similar to the observed in aHUS. Moreover, we observed desialylation of Factor H (FH) and the FH-Related proteins in plasma samples from 2 Spanish and 4 Hungarian SP-HUS patients. To analyze the functional relevance of this finding, we compared the ability of native and "in vitro" desialylated FH in: (a) binding to C3b-coated microtiter plates; (b) proteolysis of fluid-phase and surface-bound C3b by Factor I; (c) dissociation of surface bound-C3bBb convertase; (d) haemolytic assays on sheep erythrocytes. We found that desialylated FH had reduced capacity to control complement activation on sheep erythrocytes, suggesting a role for FH sialic acids on binding to cellular surfaces. We conclude that aHUS-risk variants in the CFH-CFHR3-CFHR1 region could also contribute to disease-predisposition to SP-HUS, and that transient desialylation of complement FH by the pneumococcal neuraminidase may have a role in disease pathogenesis.
Collapse
Affiliation(s)
- Irene Gómez Delgado
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Pilar Nozal
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
- Immunology Unit, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Emilia Arjona
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
- Department of Cellular and Molecular Medicine, Margarita Salas Center for Biological Research, Madrid, Spain
| | - Álvaro Madrid
- Pediatric Nephrology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marta Melgosa
- Pediatric Nephrology Unit, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Juan Bravo
- Pediatric Nephrology Unit, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Ágnes Szilágyi
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Research Group for Immunology and Haematology, Semmelweis University- Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Nóra Veszeli
- Research Group for Immunology and Haematology, Semmelweis University- Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Zoltán Prohászka
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Pilar Sánchez-Corral
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
39
|
Uhlig HH, Charbit-Henrion F, Kotlarz D, Shouval DS, Schwerd T, Strisciuglio C, de Ridder L, van Limbergen J, Macchi M, Snapper SB, Ruemmele FM, Wilson DC, Travis SP, Griffiths AM, Turner D, Klein C, Muise AM, Russell RK. Clinical Genomics for the Diagnosis of Monogenic Forms of Inflammatory Bowel Disease: A Position Paper From the Paediatric IBD Porto Group of European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2021; 72:456-473. [PMID: 33346580 PMCID: PMC8221730 DOI: 10.1097/mpg.0000000000003017] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is important to identify patients with monogenic IBD as management may differ from classical IBD. In this position statement we formulate recommendations for the use of genomics in evaluating potential monogenic causes of IBD across age groups. METHODS The consensus included paediatric IBD specialists from the Paediatric IBD Porto group of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and specialists from several monogenic IBD research consortia. We defined key topics and performed a systematic literature review to cover indications, technologies (targeted panel, exome and genome sequencing), gene panel setup, cost-effectiveness of genetic screening, and requirements for the clinical care setting. We developed recommendations that were voted upon by all authors and Porto group members (32 voting specialists). RESULTS We recommend next-generation DNA-sequencing technologies to diagnose monogenic causes of IBD in routine clinical practice embedded in a setting of multidisciplinary patient care. Routine genetic screening is not recommended for all IBD patients. Genetic testing should be considered depending on age of IBD-onset (infantile IBD, very early-onset IBD, paediatric or young adult IBD), and further criteria, such as family history, relevant comorbidities, and extraintestinal manifestations. Genetic testing is also recommended in advance of hematopoietic stem cell transplantation. We developed a diagnostic algorithm that includes a gene panel of 75 monogenic IBD genes. Considerations are provided also for low resource countries. CONCLUSIONS Genomic technologies should be considered an integral part of patient care to investigate patients at risk for monogenic forms of IBD.
Collapse
Affiliation(s)
- Holm H. Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Fabienne Charbit-Henrion
- Université de Paris, INSERM UMR 1163 Immunité Intestinale, APHP, Hôpital Necker Enfants Malades, Service de Génétique moléculaire, Paris, France
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Dror S. Shouval
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | | | - Lissy de Ridder
- Department of Paediatric Gastroenterology, Erasmus University Medical Center Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Johan van Limbergen
- Amsterdam University Medical Centres, Emma Children’s Hospital, The Netherlands and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marina Macchi
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Frank M. Ruemmele
- Université de Paris, APHP, Hôpital Necker Enfants Malades, Service de Gastroentérologie pédiatrique, Paris, France
| | - David C. Wilson
- Child Life and Health, University of Edinburgh, Department of Paediatric Gastroenterology, The Royal Hospital for Sick Children, Edinburgh
| | - Simon P.L. Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Anne M. Griffiths
- The Hospital for Sick Children, University of Toronto
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, The Hospital for Sick Children
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Toronto, Ontario, Canada
| | - Dan Turner
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Israel
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Aleixo M. Muise
- The Hospital for Sick Children, University of Toronto
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, The Hospital for Sick Children
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Toronto, Ontario, Canada
| | - Richard K. Russell
- Child Life and Health, University of Edinburgh, Department of Paediatric Gastroenterology, The Royal Hospital for Sick Children, Edinburgh
| |
Collapse
|
40
|
Hu S, Vich Vila A, Gacesa R, Collij V, Stevens C, Fu JM, Wong I, Talkowski ME, Rivas MA, Imhann F, Bolte L, van Dullemen H, Dijkstra G, Visschedijk MC, Festen EA, Xavier RJ, Fu J, Daly MJ, Wijmenga C, Zhernakova A, Kurilshikov A, Weersma RK. Whole exome sequencing analyses reveal gene-microbiota interactions in the context of IBD. Gut 2021; 70:285-296. [PMID: 32651235 PMCID: PMC7815889 DOI: 10.1136/gutjnl-2019-319706] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Both the gut microbiome and host genetics are known to play significant roles in the pathogenesis of IBD. However, the interaction between these two factors and its implications in the aetiology of IBD remain underexplored. Here, we report on the influence of host genetics on the gut microbiome in IBD. DESIGN To evaluate the impact of host genetics on the gut microbiota of patients with IBD, we combined whole exome sequencing of the host genome and whole genome shotgun sequencing of 1464 faecal samples from 525 patients with IBD and 939 population-based controls. We followed a four-step analysis: (1) exome-wide microbial quantitative trait loci (mbQTL) analyses, (2) a targeted approach focusing on IBD-associated genomic regions and protein truncating variants (PTVs, minor allele frequency (MAF) >5%), (3) gene-based burden tests on PTVs with MAF <5% and exome copy number variations (CNVs) with site frequency <1%, (4) joint analysis of both cohorts to identify the interactions between disease and host genetics. RESULTS We identified 12 mbQTLs, including variants in the IBD-associated genes IL17REL, MYRF, SEC16A and WDR78. For example, the decrease of the pathway acetyl-coenzyme A biosynthesis, which is involved in short chain fatty acids production, was associated with variants in the gene MYRF (false discovery rate <0.05). Changes in functional pathways involved in the metabolic potential were also observed in participants carrying rare PTVs or CNVs in CYP2D6, GPR151 and CD160 genes. These genes are known for their function in the immune system. Moreover, interaction analyses confirmed previously known IBD disease-specific mbQTLs in TNFSF15. CONCLUSION This study highlights that both common and rare genetic variants affecting the immune system are key factors in shaping the gut microbiota in the context of IBD and pinpoints towards potential mechanisms for disease treatment.
Collapse
Affiliation(s)
- Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Christine Stevens
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Floris Imhann
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Bolte
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Hendrik van Dullemen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Marijn C Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Eleonora A Festen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ramnik J Xavier
- Center for Microbiome Informatics and Therapeutic, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jingyuan Fu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Dong F, Xiao F, Ge T, Li X, Xu W, Wu S, Zhang T, Wang Y. Case Report: A Novel Compound Heterozygous Mutation in IL-10RA in a Chinese Child With Very Early-Onset Inflammatory Bowel Disease. Front Pediatr 2021; 9:678390. [PMID: 34113591 PMCID: PMC8185152 DOI: 10.3389/fped.2021.678390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Very early-onset inflammatory bowel disease (VEO-IBD) is defined as IBD diagnosed in children younger than 6 years of age. VEO-IBD is often associated with a monogenic etiology or primary immune deficiency. Here, we report the case of a 7-month-old Chinese girl diagnosed with VEO-IBD who had a variant in the interleukin-10 receptor A (IL-10-RA) gene. The patient presented with recurrent fevers, abdominal pain, diarrhea, perianal abscesses, and oral ulcers. Whole-exome sequencing (WES) identified a novel compound heterozygote mutation, c.395T>G (p.Leu132Arg)/ex.1del (p.?), in the IL-10RA gene of the patient. The missense mutation c.395T>G (p.Leu132Arg) was inherited from her mother, and ex.1del (p.?) was inherited from her father. Neither mutation has been reported previously. The IL-10RA function of the patient was defective, as demonstrated by a failure of signal transducer and activator of transcription 3 (STAT3) activation in peripheral blood mononuclear cells (PBMCs) stimulated with recombinant IL-10. The patient underwent matched unrelated peripheral blood hematopoietic stem cell transplantation (HSCT), and the clinical manifestations were dramatically improved. In summary, we identified a novel compound heterozygote mutation, c.395T>G (p.Leu132Arg)/ex.1del (p.?), in IL-10RA that caused VEO-IBD in a Chinese child, which further expands the mutational spectrum of IL-10RA.
Collapse
Affiliation(s)
- Fang Dong
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Ge
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolu Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wuhen Xu
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Wu
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institue of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institue of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Farmer JR, Uzel G. Mapping Out Autoimmunity Control in Primary Immune Regulatory Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:653-659. [PMID: 33358993 DOI: 10.1016/j.jaip.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
There is a growing understanding of the clinical overlap between primary immune deficiency and autoimmunity. An atypical or treatment-refractory clinical presentation of autoimmunity may in fact signal an underlying congenital condition of primary immune dysregulation (an inborn error of immunity). Detailed profiling of the family history is critical in the diagnostic process and must not be limited to the occurrence of frequent or atypical infections, but additionally should include inquiries into chronic forms of autoimmunity, hyperinflammation, and malignancy. A genetic and a functional diagnostic approach are complementary and nonoverlapping methods of identifying and validating an inborn error of immunity. Extended immune phenotyping of both affected and unaffected family members may provide insight into disease mode of inheritance, penetrance, and secondary inherited or environmentally acquired modifiers. Clinical care of a family with an inborn error of immunity may require local and national expertise in addition to cross-disciplinary care from the disciplines of pediatrics and internal medicine. Physician communication across subspecialties as well as distinct medical institutes can facilitate the appropriate disclosure of genetic testing results toward their prompt incorporation into patient care. Targeted immunomodulation based directly on genetic and functional immune phenotyping has the potential to reduce unnecessary immunosuppression and provide more exacting therapeutic benefit to our patients.
Collapse
Affiliation(s)
- Jocelyn R Farmer
- Division of Rheumatology, Allergy & Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Ragon Institute of MGH, MIT and Harvard, Boston, Mass.
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
43
|
Kurowski JA, Achkar JP, Gupta R, Barbur I, Bonfield TL, Worley S, Remer EM, Fiocchi C, Viswanath SE, Kay MH. Adipokine Resistin Levels at Time of Pediatric Crohn Disease Diagnosis Predict Escalation to Biologic Therapy. Inflamm Bowel Dis 2020; 27:1088-1095. [PMID: 32978938 PMCID: PMC8355503 DOI: 10.1093/ibd/izaa250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Hypertrophy of visceral adipose tissue (VAT) is a hallmark of Crohn disease (CD). The VAT produces a wide range of adipokines, biologically active factors that contribute to metabolic disorders in addition to CD pathogenesis. The study aim was to concomitantly evaluate serum adipokine profiles and VAT volumes as predictors of disease outcomes and treatment course in newly diagnosed pediatric patients with CD. METHODS Pediatric patients ages 6 to 20 years were enrolled, and their clinical data and anthropometric measurements were obtained. Adipokine levels were measured at 0, 6, and 12 months after CD diagnosis and baseline in control patients (CP). The VAT volumes were measured by magnetic resonance imaging or computed tomography imaging within 3 months of diagnosis. RESULTS One hundred four patients undergoing colonoscopy were prospectively enrolled: 36 diagnosed with CD and 68 CP. The serum adipokine resistin and plasminogen activator inhibitor (PAI)-1 levels were significantly higher in patients with CD at diagnosis than in CP. The VAT volume was similar between CD and CP. Baseline resistin levels at the time of diagnosis in patients with CD who were escalated to biologics was significantly higher than in those not treated using biologic therapy by 12 months (29.8 ng/mL vs 13.8 ng/mL; P = 0.004). A resistin level of ≥29.8 ng/mL at the time of diagnosis predicted escalation to biologic therapy in the first year after diagnosis with a specificity of 95% (sensitivity = 53%; area under the curve = 0.82; P = 0.015 for model with log-scale). There was a significantly greater reduction in resistin (P = 0.002) and PAI-1 (P = 0.010) at the 12-month follow-up in patients on biologics compared with patients who were not treated using biologics. CONCLUSIONS Serum resistin levels at diagnosis of pediatric CD predict the escalation to biologic therapy at 12 months, independent of VAT volumes. Resistin and PAI-1 levels significantly improved in patients with CD after treatment using biologics compared with those not on biologics. These results suggest the utility of resistin as a predictive biomarker in pediatric CD.
Collapse
Affiliation(s)
- Jacob A Kurowski
- Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, Ohio, United States,Address correspondence to: Jacob A. Kurowski, MD, Cleveland Clinic, Pediatric Gastroenterology, Hepatology, and Nutrition, 9500 Euclid Avenue, Desk R3, Cleveland, OH 44195 ()
| | - Jean-Paul Achkar
- Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, Ohio, United States
| | - Rishi Gupta
- Pediatric Gastroenterology, University of Rochester, Rochester, New York, United States
| | - Iulia Barbur
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Tracey L Bonfield
- Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Sarah Worley
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Erick M Remer
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Claudio Fiocchi
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Satish E Viswanath
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Marsha H Kay
- Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
44
|
Mat Ripen A, Ghani H, Chear CT, Chiow MY, Syed Yahya SNH, Kassim A, Mohamad SB. Whole exome sequencing identifies compound heterozygous variants of CR2 gene in monozygotic twin patients with common variable immunodeficiency. SAGE Open Med 2020; 8:2050312120922652. [PMID: 32547748 PMCID: PMC7249565 DOI: 10.1177/2050312120922652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/26/2020] [Indexed: 11/16/2022] Open
Abstract
Objectives: A pair of female Malay monozygotic twins who presented with recurrent upper
respiratory tract infections, hepatosplenomegaly, bronchiectasis and
bicytopenia were recruited in this study. Both patients were suspected with
primary immunodeficiency diseases. However, the definite diagnosis was not
clear due to complex disease phenotypes. The objective of this study was to
identify the causative gene mutation in these patients. Methods: Lymphocyte subset enumeration test and whole exome sequencing were
performed. Results: We identified a compound heterozygous CR2 mutation
(c.1916G>A and c.2012G>A) in both patients. These variants were then
confirmed using Sanger sequencing. Conclusion: Whole exome sequencing analysis of the monozygotic twins revealed compound
heterozygous missense mutations in CR2.
Collapse
Affiliation(s)
- Adiratna Mat Ripen
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Hamidah Ghani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Chai Teng Chear
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Mei Yee Chiow
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Sharifah Nurul Husna Syed Yahya
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Asiah Kassim
- Paediatric Institute, Kuala Lumpur Hospital, Ministry of Health, Kuala Lumpur, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Crowley E, Warner N, Pan J, Khalouei S, Elkadri A, Fiedler K, Foong J, Turinsky AL, Bronte-Tinkew D, Zhang S, Hu J, Tian D, Li D, Horowitz J, Siddiqui I, Upton J, Roifman CM, Church PC, Wall DA, Ramani AK, Kotlarz D, Klein C, Uhlig H, Snapper SB, Gonzaga-Jauregui C, Paterson A, McGovern DPB, Brudno M, Walters TD, Griffiths AM, Muise AM. Prevalence and Clinical Features of Inflammatory Bowel Diseases Associated With Monogenic Variants, Identified by Whole-Exome Sequencing in 1000 Children at a Single Center. Gastroenterology 2020; 158:2208-2220. [PMID: 32084423 PMCID: PMC7283012 DOI: 10.1053/j.gastro.2020.02.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A proportion of infants and young children with inflammatory bowel diseases (IBDs) have subtypes associated with a single gene variant (monogenic IBD). We aimed to determine the prevalence of monogenic disease in a cohort of pediatric patients with IBD. METHODS We performed whole-exome sequencing analyses of blood samples from an unselected cohort of 1005 children with IBD, aged 0-18 years (median age at diagnosis, 11.96 years) at a single center in Canada and their family members (2305 samples total). Variants believed to cause IBD were validated using Sanger sequencing. Biopsies from patients were analyzed by immunofluorescence and histochemical analyses. RESULTS We identified 40 rare variants associated with 21 monogenic genes among 31 of the 1005 children with IBD (including 5 variants in XIAP, 3 in DOCK8, and 2 each in FOXP3, GUCY2C, and LRBA). These variants occurred in 7.8% of children younger than 6 years and 2.3% of children aged 6-18 years. Of the 17 patients with monogenic Crohn's disease, 35% had abdominal pain, 24% had nonbloody loose stool, 18% had vomiting, 18% had weight loss, and 5% had intermittent bloody loose stool. The 14 patients with monogenic ulcerative colitis or IBD-unclassified received their diagnosis at a younger age, and their most predominant feature was bloody loose stool (78%). Features associated with monogenic IBD, compared to cases of IBD not associated with a single variant, were age of onset younger than 2 years (odds ratio [OR], 6.30; P = .020), family history of autoimmune disease (OR, 5.12; P = .002), extra-intestinal manifestations (OR, 15.36; P < .0001), and surgery (OR, 3.42; P = .042). Seventeen patients had variants in genes that could be corrected with allogeneic hematopoietic stem cell transplantation. CONCLUSIONS In whole-exome sequencing analyses of more than 1000 children with IBD at a single center, we found that 3% had rare variants in genes previously associated with pediatric IBD. These were associated with different IBD phenotypes, and 1% of the patients had variants that could be potentially corrected with allogeneic hematopoietic stem cell transplantation. Monogenic IBD is rare, but should be considered in analysis of all patients with pediatric onset of IBD.
Collapse
Affiliation(s)
- Eileen Crowley
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada,School of Medicine, Conway Institute, University College
Dublin, Dublin, Ireland,Division of Pediatric Gastroenterology, Western University,
Children’s Hospital, London Health Sciences Centre, London, ON, Canada
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Jie Pan
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Sam Khalouei
- Centre for Computational Medicine, The Hospital for Sick
Children, Toronto, ON, Canada
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada,Division of Pediatric Gastroenterology, Medical College of
Wisconsin, Milwaukee, WI, USA
| | - Karoline Fiedler
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Justin Foong
- Centre for Computational Medicine, The Hospital for Sick
Children, Toronto, ON, Canada
| | - Andrei L. Turinsky
- Centre for Computational Medicine, The Hospital for Sick
Children, Toronto, ON, Canada
| | - Dana Bronte-Tinkew
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Shiqi Zhang
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Jamie Hu
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - David Tian
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel Disease Center and
Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | | | - Julie Horowitz
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc.,
Tarrytown, NY, USA
| | - Iram Siddiqui
- Division of Pathology, The Hospital for Sick Children,
Toronto, ON, Canada
| | - Julia Upton
- Division of Immunology, Department of Pediatrics,
University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chaim M. Roifman
- Division of Immunology, Department of Pediatrics,
University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter C. Church
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Donna A. Wall
- Blood and Marrow Transplant/Cellular Therapy,
Haematology/Oncology, Department of Pediatrics, University of Toronto, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Arun K. Ramani
- Centre for Computational Medicine, The Hospital for Sick
Children, Toronto, ON, Canada
| | - Daniel Kotlarz
- Dr. von Hauner Children’s Hospital, Department of
Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Klein
- Dr. von Hauner Children’s Hospital, Department of
Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Holm Uhlig
- Translational Gastroenterology Unit, University of
Oxford, UK, Department of Pediatrics, University of Oxford, UK
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology and Nutrition,
Boston Children’s Hospital, Harvard Medical School; Division of
Gastroenterology, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Andrew Paterson
- Dalla Lana School of Public Health, University of
Toronto, Toronto, ON, Canada
| | - Dermot PB. McGovern
- F. Widjaja Foundation Inflammatory Bowel Disease Center and
Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Michael Brudno
- Centre for Computational Medicine, The Hospital for Sick
Children, Toronto, ON, Canada,Department of Computer Science, University of Toronto,
Toronto, ON, Canada
| | - Thomas D. Walters
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Anne M. Griffiths
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Aleixo M. Muise
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital
for Sick Children, Toronto, ON, Canada,Department of Pediatrics, Institute of Medical Science
and Biochemistry, University of Toronto, The Hospital for Sick Children, Toronto,
ON, Canada,Correspondence and requests for materials should
be addressed to: Aleixo M. Muise MD, PhD, 555 University Ave., The Hospital for
Sick Children, Toronto, ON, Canada, M5G 1X8,
, Phone: 416-813-7735, Fax:
416-813-6531
| |
Collapse
|
46
|
Kelsen JR, Conrad MA, Dawany N, Patel T, Shraim R, Merz A, Maurer K, Sullivan KE, Devoto M. The Unique Disease Course of Children with Very Early onset-Inflammatory Bowel Disease. Inflamm Bowel Dis 2020; 26:909-918. [PMID: 31560377 PMCID: PMC7216772 DOI: 10.1093/ibd/izz214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Insight into the pathogenesis of very early onset-inflammatory bowel disease (VEO-IBD) has expanded through the identification of causative monogenic defects detected in a subset of patients. However, the clinical course of this population remains uncertain. The study objective is to determine whether VEO-IBD is associated with more severe disease, defined as increased surgical intervention and growth failure, than older pediatric IBD. Secondary outcomes included therapeutic response and hospitalizations. METHODS Subjects with IBD diagnosed younger than 6 years old (VEO-IBD) were compared with children diagnosed 6 to 10 (intermediate-onset) and older than 10 years of age (older-onset IBD). Metadata obtained from the medical record included age of onset, disease phenotype and location, surgeries, medical therapy, and comorbid conditions. Length of follow-up was at least 1 year from diagnosis. RESULTS There were 229, 221, and 521 subjects with VEO, intermediate-onset, and older-onset IBD, respectively. Very early onset-inflammatory bowel disease subjects underwent more diverting ileostomies (P < 0.001) and colectomies (P < 0.001) than the older children. There was less improvement in weight- and height-for-age Z scores during the follow-up period in subjects with VEO-IBD. Additionally, subjects with VEO-IBD had higher rates of medication failure at 1 year and were more frequently readmitted to the hospital. Targeted therapy was successfully used almost exclusively in VEO-IBD. CONCLUSION Patients with VEO-IBD can have a more severe disease course with increased surgical interventions and poor growth as compared with older-onset IBD patients. Further, VEO-IBD patients are more likely to be refractory to conventional therapies. Strategies using targeted therapy in these children can improve outcome and, in some cases, be curative.
Collapse
Affiliation(s)
- Judith R Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania
| | - Maire A Conrad
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania
| | - Noor Dawany
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia
| | - Trusha Patel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania
| | - Rawan Shraim
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia
| | - Audrey Merz
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia
| | - Kelly Maurer
- Division of Immunology and Allergy, The Children’s Hospital of Philadelphia
| | - Kathleen E Sullivan
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania
- Division of Immunology and Allergy, The Children’s Hospital of Philadelphia
| | - Marcella Devoto
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania
- Division of Human Genetics, The Children’s Hospital of Philadelphia
- Department of Translational and Precision Medicine, University Sapienza, Rome, Italy
| |
Collapse
|
47
|
Lega S, Pin A, Arrigo S, Cifaldi C, Girardelli M, Bianco AM, Malamisura M, Angelino G, Faraci S, Rea F, Romeo EF, Aloi M, Romano C, Barabino A, Martelossi S, Tommasini A, Di Matteo G, Cancrini C, De Angelis P, Finocchi A, Bramuzzo M. Diagnostic Approach to Monogenic Inflammatory Bowel Disease in Clinical Practice: A Ten-Year Multicentric Experience. Inflamm Bowel Dis 2020; 26:720-727. [PMID: 31375816 DOI: 10.1093/ibd/izz178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Multiple monogenic disorders present as very early onset inflammatory bowel disease (VEO-IBD) or as IBD with severe and atypical features. Establishing a genetic diagnosis may change patients' management and prognosis. In this study, we describe the diagnostic approach to suspected monogenic IBD in a real clinical setting, discussing genetic and phenotypic findings and therapeutic implications of molecular diagnosis. METHODS Information of patients with VEO-IBD and early onset IBD with severe/atypical phenotypes (EO-IBD s/a) managed between 2008-2017 who underwent a genetic workup were collected. RESULTS Ninety-three patients were included, and 12 (13%) reached a genetic diagnosis. Candidate sequencing (CS) was performed in 47 patients (50%), and next generation sequencing (NGS) was performed in 84 patients (90%). Candidate sequencing had a good diagnostic performance only when guided by clinical features specific for known monogenic diseases, whereas NGS helped finding new causative genetic variants and would have anticipated one monogenic diagnosis (XIAP) and consequent bone marrow transplant (BMT). Patients with monogenic IBD more frequently were male (92% vs 54%; P = 0.02), had extraintestinal findings (100% vs 34%; P < 0.001), and had disease onset ≤1 month of life (25% vs 1%; P = 0.006). Genetic diagnosis impacted patient management in 11 patients (92%), 7 of whom underwent BMT. CONCLUSION A genetic diagnosis can be established in a significant proportion of suspected monogenic IBD and has an impact on patients' management. Candidate sequencing may be deployed when clinical findings orientate toward a specific diagnosis. Next generation sequencing should be preferred in patients with nonspecific phenotypes.
Collapse
Affiliation(s)
- Sara Lega
- University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Alessia Pin
- University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Serena Arrigo
- Pediatric Gastroenterology and Endoscopy Unit, Institute Giannina Gaslini, Genoa, Italy
| | - Cristina Cifaldi
- Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Martina Girardelli
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Anna Monica Bianco
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Monica Malamisura
- Digestive Diseases Unit, Children's Hospital Bambino Gesù, Rome, Italy
| | - Giulia Angelino
- Digestive Diseases Unit, Children's Hospital Bambino Gesù, Rome, Italy
| | - Simona Faraci
- Digestive Diseases Unit, Children's Hospital Bambino Gesù, Rome, Italy
| | - Francesca Rea
- Digestive Diseases Unit, Children's Hospital Bambino Gesù, Rome, Italy
| | | | - Marina Aloi
- Pediatric Gastroenterology And Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Claudio Romano
- Pediatric Gastroenterology and Cystic Fibrosis Unit, University of Messina, Messina, Italy
| | - Arrigo Barabino
- Pediatric Gastroenterology and Endoscopy Unit, Institute Giannina Gaslini, Genoa, Italy
| | - Stefano Martelossi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Caterina Cancrini
- Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Paola De Angelis
- Digestive Diseases Unit, Children's Hospital Bambino Gesù, Rome, Italy
| | - Andrea Finocchi
- Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
48
|
Kelsen JR, Sullivan KE, Rabizadeh S, Singh N, Snapper S, Elkadri A, Grossman AB. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper on the Evaluation and Management for Patients With Very Early-onset Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2020; 70:389-403. [PMID: 32079889 DOI: 10.1097/mpg.0000000000002567] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rate of pediatric inflammatory bowel disease (IBD) has been increasing over the last decade and this increase has occurred most rapidly in the youngest children diagnosed <6 years, known as very early-onset inflammatory bowel disease (VEO-IBD). These children can present with more extensive and severe disease than older children and adults. The contribution of host genetics in this population is underscored by the young age of onset and the distinct, aggressive phenotype. In fact, monogenic defects, often involving primary immunodeficiency genes, have been identified in children with VEO-IBD and have led to targeted and life-saving therapy. This position paper will discuss the phenotype of VEO-IBD and outline the approach and evaluation for these children and what factors should trigger concern for an underlying immunodeficiency. We will then review the immunological assays and genetic studies that can facilitate the identification of the underlying diagnosis in patients with VEO-IBD and how this evaluation may lead to directed therapies. The position paper will also aid the pediatric gastroenterologist in recognizing when a patient should be referred to a center specializing in the care of these patients. These guidelines are intended for pediatricians, allied health professionals caring for children, pediatric gastroenterologists, pediatric pathologists, and immunologists.
Collapse
Affiliation(s)
| | - Kathleen E Sullivan
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shervin Rabizadeh
- Division of Gastroenterology, Hepatology, and Nutrition, Cedar-Sinai Medical Center, Los Angeles, CA
| | - Namita Singh
- Division of Gastroenterology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Scott Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School
- Division of Gastroenterology, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Abdul Elkadri
- Division of Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
49
|
Serra EG, Schwerd T, Moutsianas L, Cavounidis A, Fachal L, Pandey S, Kammermeier J, Croft NM, Posovszky C, Rodrigues A, Russell RK, Barakat F, Auth MKH, Heuschkel R, Zilbauer M, Fyderek K, Braegger C, Travis SP, Satsangi J, Parkes M, Thapar N, Ferry H, Matte JC, Gilmour KC, Wedrychowicz A, Sullivan P, Moore C, Sambrook J, Ouwehand W, Roberts D, Danesh J, Baeumler TA, Fulga TA, Carrami EM, Ahmed A, Wilson R, Barrett JC, Elkadri A, Griffiths AM, Snapper SB, Shah N, Muise AM, Wilson DC, Uhlig HH, Anderson CA. Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease. Nat Commun 2020; 11:995. [PMID: 32081864 PMCID: PMC7035382 DOI: 10.1038/s41467-019-14275-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Very-early-onset inflammatory bowel disease (VEO-IBD) is a heterogeneous phenotype associated with a spectrum of rare Mendelian disorders. Here, we perform whole-exome-sequencing and genome-wide genotyping in 145 patients (median age-at-diagnosis of 3.5 years), in whom no Mendelian disorders were clinically suspected. In five patients we detect a primary immunodeficiency or enteropathy, with clinical consequences (XIAP, CYBA, SH2D1A, PCSK1). We also present a case study of a VEO-IBD patient with a mosaic de novo, pathogenic allele in CYBB. The mutation is present in ~70% of phagocytes and sufficient to result in defective bacterial handling but not life-threatening infections. Finally, we show that VEO-IBD patients have, on average, higher IBD polygenic risk scores than population controls (99 patients and 18,780 controls; P < 4 × 10-10), and replicate this finding in an independent cohort of VEO-IBD cases and controls (117 patients and 2,603 controls; P < 5 × 10-10). This discovery indicates that a polygenic component operates in VEO-IBD pathogenesis.
Collapse
Affiliation(s)
| | - Tobias Schwerd
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig Maximilians University, Munich, Germany
| | | | - Athena Cavounidis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Laura Fachal
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Nicholas M Croft
- Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- The Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | | | | | | | - Farah Barakat
- Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- The Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | | | | | | | - Krzysztof Fyderek
- Department of Paediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Simon P Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, UK
| | - Miles Parkes
- IBD Research Unit, Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, UK
| | | | - Helen Ferry
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Julie C Matte
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Andrzej Wedrychowicz
- Department of Paediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| | - Peter Sullivan
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Carmel Moore
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jennifer Sambrook
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Willem Ouwehand
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - David Roberts
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant - Oxford Centre, Level 2, John Radcliffe Hospital, Oxford, UK
- Biomedical Research Centre, Oxford - Haematology Theme, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - John Danesh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Toni A Baeumler
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Eli M Carrami
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ahmed Ahmed
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, Surgical Innovation and Evaluation and Molecular Diagnostics Themes, University of Oxford, Oxford, UK
| | - Rachel Wilson
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Abdul Elkadri
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Anne M Griffiths
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Neil Shah
- Great Ormond Street Hospital, London, UK
| | - Aleixo M Muise
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - David C Wilson
- Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Carl A Anderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
50
|
Rajagopalan R, Tsai EA, Grochowski CM, Kelly SM, Loomes KM, Spinner NB, Devoto M. Exome Sequencing in Individuals with Isolated Biliary Atresia. Sci Rep 2020; 10:2709. [PMID: 32066793 PMCID: PMC7026070 DOI: 10.1038/s41598-020-59379-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia (BA) is a severe pediatric liver disease resulting in necroinflammatory obliteration of the extrahepatic biliary tree. BA presents within the first few months of life as either an isolated finding or with additional syndromic features. The etiology of isolated BA is unknown, with evidence for infectious, environmental, and genetic risk factors described. However, to date, there are no definitive causal genes identified for isolated BA in humans, and the question of whether single gene defects play a major role remains open. We performed exome-sequencing in 101 North American patients of European descent with isolated BA (including 30 parent-child trios) and considered several experimental designs to identify potentially deleterious protein-altering variants that may be involved in the disease. In a case-only analysis, we did not identify genes with variants shared among more than two probands, and burden tests of rare variants using a case-case control design did not yield significant results. In the trio analysis of 30 simplex families (patient and parent trios), we identified 66 de novo variants in 66 genes including potentially deleterious variants in STIP1 and REV1. STIP1 is a co-chaperone for the heat-shock protein, HSP90, and has been shown to have diverse functions in yeast, flies and mammals, including stress-responses. REV1 is known to be a key player in DNA repair pathway and to interact with HSP90. In conclusion, our results do not support the hypothesis that a simple genetic model is responsible for the majority of cases of isolated BA. Our finding of de novo variants in genes linked to evolutionarily conserved stress responses (STIP1 and REV1) suggests that exploration of how genetic susceptibility and environmental exposure may interact to cause BA is warranted.
Collapse
Affiliation(s)
- Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ellen A Tsai
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Genomics and Computational Biology Graduate Group, The University of Pennsylvania, Philadelphia, PA, USA
- Genetic Epidemiology Group, Department of Translational Biology, Biogen, Cambridge, MA, USA
| | - Christopher M Grochowski
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Kelly
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kathleen M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcella Devoto
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Translational and Precision Medicine, University La Sapienza, Rome, Italy.
| |
Collapse
|