1
|
Quaglio AEV, Magro DO, Imbrizi M, De Oliveira ECS, Di Stasi LC, Sassaki LY. Creeping fat and gut microbiota in Crohn's disease. World J Gastroenterol 2025; 31:102042. [PMID: 39777251 PMCID: PMC11684179 DOI: 10.3748/wjg.v31.i1.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024] Open
Abstract
In this article, we explored the role of adipose tissue, especially mesenteric adipose tissue and creeping fat, and its association with the gut microbiota in the pathophysiology and progression of Crohn's disease (CD). CD is a form of inflammatory bowel disease characterized by chronic inflammation of the gastrointestinal tract, influenced by genetic predisposition, gut microbiota dysbiosis, and environmental factors. Gut microbiota plays a crucial role in modulating immune response and intestinal inflammation and is associated with the onset and progression of CD. Further, visceral adipose tissue, particularly creeping fat, a mesenteric adipose tissue characterized by hypertrophy and fibrosis, has been implicated in CD pathogenesis, inflammation, and fibrosis. The bacteria from the gut microbiota may translocate into mesenteric adipose tissue, contributing to the formation of creeping fat and influencing CD progression. Although creeping fat may be a protective barrier against bacterial invasion, its expansion can damage adjacent tissues, leading to complications. Modulating gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and prebiotics has shown potential in managing CD. However, more research is needed to clarify the mechanisms linking gut dysbiosis, creeping fat, and CD progression and develop targeted therapies for microbiota modulation and fat-related complications in patients with CD.
Collapse
Affiliation(s)
- Ana EV Quaglio
- Verum Ingredients, Botucatu Technology Park, Botucatu 18605-525, São Paulo, Brazil
| | - Daniéla O Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - Marcello Imbrizi
- Department of Gastroenterology, Faculty of Medical Sciences, University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - Ellen CS De Oliveira
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu 18618-686, São Paulo, Brazil
| | - Luiz C Di Stasi
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu 18618-689, São Paulo, Brazil
| | - Ligia Y Sassaki
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu 18618-686, São Paulo, Brazil
| |
Collapse
|
2
|
Shang J, Del Valle DM, Britton GJ, Mead K, Rajpal U, Chen-Liaw A, Mogno I, Li Z, Menon R, Gonzalez-Kozlova E, Elkrief A, Peled JU, Gonsalves TR, Shah NJ, Postow M, Colombel JF, Gnjatic S, Faleck DM, Faith JJ. Baseline colitogenicity and acute perturbations of gut microbiota in immunotherapy-related colitis. J Exp Med 2025; 222:e20232079. [PMID: 39666007 PMCID: PMC11636624 DOI: 10.1084/jem.20232079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/17/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Immunotherapy-related colitis (irC) frequently emerges as an immune-related adverse event during immune checkpoint inhibitor therapy and is presumably influenced by the gut microbiota. We longitudinally studied microbiomes from 38 ICI-treated cancer patients. We compared 13 ICI-treated subjects who developed irC against 25 ICI-treated subjects who remained irC-free, along with a validation cohort. Leveraging a preclinical mouse model, predisease stools from irC subjects induced greater colitigenicity upon transfer to mice. The microbiota during the first 10 days of irC closely resembled inflammatory bowel disease microbiomes, with reduced diversity, increased Proteobacteria and Veillonella, and decreased Faecalibacterium, which normalized before irC remission. These findings highlight the irC gut microbiota as functionally distinct but phylogenetically similar to non-irC and healthy microbiomes, with the exception of an acute, transient disruption early in irC. We underscore the significance of longitudinal microbiome profiling in developing clinical avenues to detect, monitor, and mitigate irC in ICI therapy cancer patients.
Collapse
Affiliation(s)
- Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane Marie Del Valle
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Graham J. Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K.R. Mead
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urvija Rajpal
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Chen-Liaw
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilaria Mogno
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhihua Li
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Edgar Gonzalez-Kozlova
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arielle Elkrief
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan U. Peled
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Tina Ruth Gonsalves
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neil J. Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Michael Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M. Faleck
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Kelly C, Sartor RB, Rawls JF. Early subclinical stages of the inflammatory bowel diseases: insights from human and animal studies. Am J Physiol Gastrointest Liver Physiol 2025; 328:G17-G31. [PMID: 39499254 DOI: 10.1152/ajpgi.00252.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/07/2024]
Abstract
The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals that mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. The natural history of IBD progression begins with early subclinical stages of disease that occur before clinical diagnosis. Improved understanding of those early subclinical stages could lead to new or improved strategies for IBD diagnosis, prognostication, or prevention. Here, we review our current understanding of the early subclinical stages of IBD in humans including studies from first-degree relatives of patients with IBD and members of the general population who go on to develop IBD. We also discuss representative mouse models of IBD that can be used to investigate disease dynamics and host-microbiota relationships during these early stages. In particular, we underscore how mouse models of IBD that develop disease later in life with variable penetrance may present valuable opportunities to discern early subclinical mechanisms of disease before histological inflammation and other severe symptoms become apparent.
Collapse
Affiliation(s)
- Cecelia Kelly
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, United States
| | - R Balfour Sartor
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
4
|
Olivera PA, Martinez-Lozano H, Leibovitzh H, Xue M, Neustaeter A, Espin-Garcia O, Xu W, Madsen KL, Guttman DS, Bernstein CN, Yerushalmi B, Hyams JS, Abreu MT, Marshall JK, Wrobel I, Mack DR, Jacobson K, Bitton A, Aumais G, Panacionne R, Dieleman LA, Silverberg MS, Steinhart AH, Moayyedi P, Turner D, Griffiths AM, Turpin W, Lee SH, Croitoru K. Healthy First-Degree Relatives From Multiplex Families vs Simplex Families Have Higher Subclinical Intestinal Inflammation, a Distinct Fecal Microbial Signature, and Harbor a Higher Risk of Developing Crohn's Disease. Gastroenterology 2025; 168:99-110.e2. [PMID: 39236898 DOI: 10.1053/j.gastro.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/09/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND & AIMS Unaffected first-degree relatives (FDRs) from families with ≥2 affected FDRs with Crohn's disease (CD, multiplex families) have a high risk of developing CD, although the underlying mechanisms driving this risk are poorly understood. We aimed to identify differences in biomarkers between FDRs from multiplex vs simplex families and investigate the risk of future CD onset accounting for potential confounders. METHODS We assessed the Crohn's and Colitis Canada Genetic Environmental Microbial cohort of healthy FDRs of patients with CD. Genome-wide CD-polygenic risk scores, urinary fractional excretion of lactulose-to-mannitol ratio, fecal calprotectin (FCP), and fecal 16S ribosomal RNA microbiome were measured at recruitment. Associations between CD multiplex status and baseline biomarkers were determined using generalized estimating equations models. Cox models were used to assess the risk of future CD onset. RESULTS There were 4051 participants from simplex families and 334 from CD multiplex families. CD multiplex status was significantly associated with higher baseline FCP (P = .026) but not with baseline CD-polygenic risk scores or the lactulose-to-mannitol ratio. Three bacterial genera were found to be differentially abundant between both groups. CD multiplex status at recruitment was independently associated with an increased risk of developing CD (adjusted hazard ratio, 3.65; 95% confidence interval, 2.18-6.11, P < .001). CONCLUSION Within FDRs of patients with CD, participants from multiplex families had a 3-fold increased risk of CD onset, a higher FCP, and an altered bacterial composition, but not genetic burden or altered gut permeability. These results suggest that putative environmental factors might be enriched in FDRs from multiplex families.
Collapse
Affiliation(s)
- Pablo A Olivera
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Helena Martinez-Lozano
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada; Department of Digestive System Medicine, Hospital General Universitario, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Haim Leibovitzh
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Mingyue Xue
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anna Neustaeter
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Division of Biostatistics, University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Wei Xu
- Division of Biostatistics, University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - David S Guttman
- Department of Cell & Systems Biology and Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Charles N Bernstein
- Inflammatory Bowel Disease Clinical and Research Centre and Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Baruch Yerushalmi
- Pediatric Gastroenterology Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Maria T Abreu
- Division of Gastroenterology, Crohn's and Colitis Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - John K Marshall
- Department of Medicine, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, Canada
| | - Iwona Wrobel
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - David R Mack
- Division of Gastroenterology, Hepatology & Nutrition, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Kevan Jacobson
- Canadian Gastro-Intestinal Epidemiology Consortium, Toronto, Ontario, Canada; British Columbia Children's Hospital, Vancouver, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alain Bitton
- Division of Gastroenterology and Hepatology, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Guy Aumais
- Department of Medicine, Montreal University, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Remo Panacionne
- Inflammatory Bowel Disease Clinic, Division of Gastroenterology and Hepatology of Gastroenterology, University of Calgary, Calgary, Alberta, Canada
| | - Levinus A Dieleman
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - A Hillary Steinhart
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Paul Moayyedi
- Department of Medicine, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, Canada
| | - Dan Turner
- The Juliet Keidan Institute of Pediatric Gastroenterology and Nutrition, The Hebrew University of Jerusalem, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Anne M Griffiths
- Department of Gastroenterology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Sun-Ho Lee
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Rudbaek JJ, Sazonovs A, Jess T. It Runs in the Family: What Studying Unaffected Individuals in Simplex and Multiplex Families Tells Us About Inflammatory Bowel Disease Development. Gastroenterology 2025; 168:8-10. [PMID: 39332605 DOI: 10.1053/j.gastro.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Affiliation(s)
- Jonas J Rudbaek
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Aleksejs Sazonovs
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark; Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.
| |
Collapse
|
6
|
Lee SH, Turpin W, Espin-Garcia O, Xu W, Croitoru K. Development and Validation of an Integrative Risk Score for Future Risk of Crohn's Disease in Healthy First-Degree Relatives: A Multicenter Prospective Cohort Study. Gastroenterology 2025; 168:150-153.e4. [PMID: 39209122 DOI: 10.1053/j.gastro.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Sun-Ho Lee
- Division of Gastroenterology and Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Williams Turpin
- Division of Gastroenterology and Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Biostatistics Department, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Epidemiology and Biostatistics, University of Western Ontario, London, Ontario, Canada
| | - Wei Xu
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Biostatistics Department, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Division of Gastroenterology and Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Gao JW, Liu YD, Jin MX. Intestinal epithelial glycocalyx and intestinal disease. Shijie Huaren Xiaohua Zazhi 2024; 32:887-896. [DOI: 10.11569/wcjd.v32.i12.887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
With the continuous research on glycobiology, more and more diseases are found to be associated with the glycocalyx. Glycocalyx can be categorized as endothelial glycocalyx and epithelial glycocalyx. Past studies mostly target endothelial glycocalyx, and this review focuses on the structure and function of intestinal epithelial glycocalyx, its degradation mechanism and biological relevance to different diseases of the intestinal tract, as well as the targeted delivery of drugs to organs by nanoparticle libraries mimicking the glycocalyx, in order to provide a theoretical basis for the study of potential diagnostic markers and therapeutic targets of intestinal epithelial glycocalyx in intestinal diseases.
Collapse
Affiliation(s)
- Jian-Wei Gao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan-Di Liu
- Department of Gastroenterology, Tianjin People's Hospital, Tianjin 300071, China
| | - Ming-Xing Jin
- Department of Gastroenterology, Tianjin People's Hospital, Tianjin 300071, China
| |
Collapse
|
8
|
Beauchemin ET, Hunter C, Maurice CF. Dextran sodium sulfate-induced colitis alters the proportion and composition of replicating gut bacteria. mSphere 2024:e0082524. [PMID: 39723822 DOI: 10.1128/msphere.00825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
The bacteria living in the human gut are essential for host health. Though the composition and metabolism of these bacteria are well described in both healthy hosts and those with intestinal disease, less is known about the metabolic activity of the gut bacteria prior to, and during, disease development-especially regarding gut bacterial replication. Here, we use a recently developed single-cell technique alongside existing metagenomics-based tools to identify, track, and quantify replicating gut bacteria both ex vivo and in situ in the dextran sodium sulfate (DSS) mouse model of colitis. We show that the proportion of replicating gut bacteria decreases when mice have the highest levels of inflammation and returns to baseline levels as mice begin recovering. In addition, we report significant alterations in the composition of the replicating gut bacterial community ex vivo during colitis development. On the taxa level, we observe significant changes in the abundance of taxa such as the mucus-degrading Akkermansia and the poorly described Erysipelatoclostridium genus. We further demonstrate that many taxa exhibit variable replication rates in situ during colitis, including Akkermansia muciniphila. Lastly, we show that colitis development is positively correlated with increases in the presence and abundance of bacteria in situ which are predicted to be fast replicators. This could suggest that taxa with the potential to replicate quickly may have an advantage during intestinal inflammation. These data support the need for additional research using activity-based approaches to further characterize the gut bacterial response to intestinal inflammation and its consequences for both the host and the gut microbial community.IMPORTANCEIt is well known that the bacteria living inside the gut are important for human health. Indeed, the type of bacteria that are present and their metabolism are different in healthy people versus those with intestinal disease. However, less is known about how these gut bacteria are replicating, especially as someone begins to develop intestinal disease. This is particularly important as it is thought that metabolically active gut bacteria may be more relevant to health. Here, we begin to address this gap using several complementary approaches to characterize the replicating gut bacteria in a mouse model of intestinal inflammation. We reveal which gut bacteria are replicating, and how quickly, as mice develop and recover from inflammation. This work can serve as a model for future research to identify how actively growing gut bacteria may be impacting health, or why these particular bacteria tend to thrive during intestinal inflammation.
Collapse
Affiliation(s)
- Eve T Beauchemin
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Claire Hunter
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Corinne F Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Zhang J. Dysbiosis exists in unaffected relatives of inflammatory bowel disease (IBD): emphasising the critical phases in the developmental trajectory of gut microbiota. Gut 2024:gutjnl-2024-333425. [PMID: 39715670 DOI: 10.1136/gutjnl-2024-333425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024]
Affiliation(s)
- Jingwan Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, People's Republic of China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
10
|
Hodgkiss R, Acharjee A. Unravelling metabolite-microbiome interactions in inflammatory bowel disease through AI and interaction-based modelling. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167618. [PMID: 39662756 DOI: 10.1016/j.bbadis.2024.167618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Inflammatory Bowel Diseases (IBDs) are chronic inflammatory disorders of the gastrointestinal tract and colon affecting approximately 7 million individuals worldwide. The knowledge of specific pathology and aetiological mechanisms leading to IBD is limited, however a reduced immune system, antibiotic use and reserved diet may initiate symptoms. Dysbiosis of the gut microbiome, and consequently a varied composition of the metabolome, has been extensively linked to these risk factors and IBD. Metagenomic sequencing and liquid-chromatography mass spectrometry (LC-MS) of N = 220 fecal samples by Fransoza et al., provided abundance data on microbial genera and metabolites for use in this study. Identification of differentially abundant microbes and metabolites was performed using a Wilcoxon test, followed by feature selection of random forest (RF), gradient-boosting (XGBoost) and least absolute shrinkage operator (LASSO) models. The performance of these features was then validated using RF models on the Human Microbiome Project 2 (HMP2) dataset and a microbial community (MICOM) model was utilised to predict and interpret the interactions between key microbes and metabolites. The Flavronifractor genus and microbes of the families Lachnospiraceae and Oscillospiraceae were found differential by all models. Metabolic pathways commonly influenced by such microbes in IBD were CoA biosynthesis, bile acid metabolism and amino acid production and degradation. This study highlights distinct interactive microbiome and metabolome profiles within IBD and the highly potential pathways causing disease pathology. It therefore paves way for future investigation into new therapeutic targets and non-invasive diagnostic tools for IBD.
Collapse
Affiliation(s)
- Rebecca Hodgkiss
- College of Medicine and Health, Cancer and Genomic Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Animesh Acharjee
- College of Medicine and Health, Cancer and Genomic Sciences, University of Birmingham, B15 2TT Birmingham, UK; Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, UK; MRC Health Data Research UK (HDR), Midlands Site, UK; Centre for Health Data Research, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
11
|
Green Z, Ashton JJ, Rodrigues A, Spray C, Howarth L, Mallikarjuna A, Chanchlani N, Hart J, Bakewell C, Lee KY, Wahid A, Beattie RM. Sustained Increase in Pediatric Inflammatory Bowel Disease Incidence Across the South West United Kingdom Over the Last 10 Years. Inflamm Bowel Dis 2024; 30:2271-2279. [PMID: 38372691 DOI: 10.1093/ibd/izad302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND Pediatric inflammatory bowel disease (pIBD) incidence has increased over the last 25 years. We aim to report contemporaneous trends across the South West United Kingdom. METHODS Data were provided from centers covering the South West United Kingdom (Bristol, Oxford, Cardiff, Exeter, and Southampton), with a total area at-risk population (<18 years of age) of 2 947 534. Cases were retrieved from 2013 to 2022. Incident rates were reported per 100 000 at-risk population, with temporal trends analyzed through correlation. Subgroup analysis was undertaken for age groups (0-6, 6-11, and 12-17 years of age), sex, and disease subtype. Choropleth maps were created for local districts. RESULTS In total, 2497 pIBD cases were diagnosed between 2013 and 2022, with a mean age of 12.6 years (38.7% female). Diagnosis numbers increased from 187 to 376, with corresponding incidence rates of 6.0 per 100 000 population per year (2013) to 12.4 per 100 000 population per year (2022) (b = 0.918, P < .01). Female rates increased from 5.1 per 100 000 population per year in 2013 to 11.0 per 100 000 population per year in 2022 (b = 0.865, P = .01). Male rates increased from 5.7 per 100 000 population per year to 14.4 per 100 000 population per year (b = 0.832, P = .03). Crohn's disease incidence increased from 3.1 per 100 000 population per year to 6.3 per 100 000 population per year (b = 0.897, P < .01). Ulcerative colitis increased from 2.3 per 100 000 population per year to 4.3 per 100 000 population per year (b = 0.813, P = .04). Inflammatory bowel disease unclassified also increased, from 0.6 per 100 000 population per year to 1.8 per 100 000 population per year (b = 0.851, P = .02). Statistically significant increases were seen in those ≥12 to 17 years of age, from 11.2 per 100 000 population per year to 24.6 per 100 000 population per year (b = 0.912, P < .01), and the 7- to 11-year-old age group, with incidence rising from 4.4 per 100 000 population per year to 7.6 per 100 000 population per year (b = 0.878, P = .01). There was no statistically significant increase in very early onset inflammatory bowel disease (≤6 years of age) (b = 0.417, P = .231). CONCLUSIONS We demonstrate significant increases in pIBD incidence across a large geographical area including multiple referral centers. Increasing incidence has implications for service provision for services managing pIBD.
Collapse
Affiliation(s)
- Zachary Green
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, United Kingdom
- Department of Paediatric Gastroenterology, Noah's Ark Children's Hospital for Wales, Cardiff, United Kingdom
| | - James J Ashton
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, United Kingdom
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, United Kingdom
| | - Astor Rodrigues
- Department of Paediatric Gastroenterology, Oxford University Hospitals, Oxford, United Kingdom
| | - Christine Spray
- Department of Paediatric Gastroenterology, Bristol Children's Hospital, Bristol, United Kingdom
| | - Lucy Howarth
- Department of Paediatric Gastroenterology, Oxford University Hospitals, Oxford, United Kingdom
| | - Akshatha Mallikarjuna
- Department of Paediatric Gastroenterology, Bristol Children's Hospital, Bristol, United Kingdom
| | - Neil Chanchlani
- Department of Paediatrics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - James Hart
- Department of Paediatrics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Christopher Bakewell
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, United Kingdom
| | - Kwang Yang Lee
- Department of Paediatric Gastroenterology, Bristol Children's Hospital, Bristol, United Kingdom
| | - Amar Wahid
- Department of Paediatric Gastroenterology, Noah's Ark Children's Hospital for Wales, Cardiff, United Kingdom
| | - R Mark Beattie
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, United Kingdom
| |
Collapse
|
12
|
Drieu La Rochelle J, Ward J, Stenke E, Yin Y, Matsumoto M, Jennings R, Aviello G, Knaus UG. Dysregulated NOX1-NOS2 activity as hallmark of ileitis in mice. Mucosal Immunol 2024; 17:1326-1336. [PMID: 39245144 DOI: 10.1016/j.mucimm.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Inflammation of the ileum, or ileitis, is commonly caused by Crohn's disease (CD) but can also accompany ulcerative colitis (backwash ileitis), infections or drug-related damage. Oxidative tissue injury triggered by reactive oxygen species (ROS) is considered part of the ileitis etiology. However, not only elevated ROS but also permanently decreased ROS are associated with inflammatory bowel disease (IBD). While very early onset IBD (VEO-IBD) is associated with a spectrum of NOX1 variants, how NOX1 inactivation contributes to disease development remains ill-defined. Besides propagating signaling responses, NOX1 provides superoxide for peroxynitrite formation in the epithelial barrier. Here we report that NOX4, an H2O2-generating NADPH oxidase with documented tissue protective effects in the intestine and other tissues, limits the generation of ileal peroxynitrite by NOX1/NOS2. Deletion of NOX4 leads to persistent peroxynitrite excess, hyperpermeability, villus blunting, muscular hypertrophy, chemokine/cytokine upregulation and dysbiosis. Conversely, SAMP1/YitFc mice, a CD-like ileitis model, showed age-dependent NOX1/NOS2 downregulation preventing ileal peroxynitrite formation in homeostasis and LPS-induced acute inflammation. Deficiency in NOX1 correlated with the upregulation of antimicrobial peptides, suggesting that ileal peroxynitrite acts as chemical barrier and microbiota modifier in the ileum.
Collapse
Affiliation(s)
| | - Josie Ward
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Emily Stenke
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Yuting Yin
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Richard Jennings
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Gabriella Aviello
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ulla G Knaus
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
13
|
Collado MC, Devkota S, Ghosh TS. Gut microbiome: a biomedical revolution. Nat Rev Gastroenterol Hepatol 2024; 21:830-833. [PMID: 39478172 DOI: 10.1038/s41575-024-01001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 11/27/2024]
Affiliation(s)
- Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Suzanne Devkota
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Diseases Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Delhi, India.
| |
Collapse
|
14
|
Cannarozzi AL, Latiano A, Massimino L, Bossa F, Giuliani F, Riva M, Ungaro F, Guerra M, Brina ALD, Biscaglia G, Tavano F, Carparelli S, Fiorino G, Danese S, Perri F, Palmieri O. Inflammatory bowel disease genomics, transcriptomics, proteomics and metagenomics meet artificial intelligence. United European Gastroenterol J 2024; 12:1461-1480. [PMID: 39215755 PMCID: PMC11652336 DOI: 10.1002/ueg2.12655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Various extrinsic and intrinsic factors such as drug exposures, antibiotic treatments, smoking, lifestyle, genetics, immune responses, and the gut microbiome characterize ulcerative colitis and Crohn's disease, collectively called inflammatory bowel disease (IBD). All these factors contribute to the complexity and heterogeneity of the disease etiology and pathogenesis leading to major challenges for the scientific community in improving management, medical treatments, genetic risk, and exposome impact. Understanding the interaction(s) among these factors and their effects on the immune system in IBD patients has prompted advances in multi-omics research, the development of new tools as part of system biology, and more recently, artificial intelligence (AI) approaches. These innovative approaches, supported by the availability of big data and large volumes of digital medical datasets, hold promise in better understanding the natural histories, predictors of disease development, severity, complications and treatment outcomes in complex diseases, providing decision support to doctors, and promising to bring us closer to the realization of the "precision medicine" paradigm. This review aims to provide an overview of current IBD omics based on both individual (genomics, transcriptomics, proteomics, metagenomics) and multi-omics levels, highlighting how AI can facilitate the integration of heterogeneous data to summarize our current understanding of the disease and to identify current gaps in knowledge to inform upcoming research in this field.
Collapse
Affiliation(s)
- Anna Lucia Cannarozzi
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Anna Latiano
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Luca Massimino
- Gastroenterology and Digestive Endoscopy DepartmentIRCCS Ospedale San RaffaeleMilanItaly
| | - Fabrizio Bossa
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Francesco Giuliani
- Innovation & Research UnitFondazione IRCCS “Casa Sollievo della Sofferenza”San Giovanni RotondoItaly
| | - Matteo Riva
- Gastroenterology and Digestive Endoscopy DepartmentIRCCS Ospedale San RaffaeleMilanItaly
| | - Federica Ungaro
- Gastroenterology and Digestive Endoscopy DepartmentIRCCS Ospedale San RaffaeleMilanItaly
| | - Maria Guerra
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Anna Laura Di Brina
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Giuseppe Biscaglia
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Francesca Tavano
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Sonia Carparelli
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Gionata Fiorino
- Gastroenterology and Digestive EndoscopySan Camillo‐Forlanini HospitalRomeItaly
| | - Silvio Danese
- Faculty of MedicineUniversità Vita‐Salute San RaffaeleMilanItaly
| | - Francesco Perri
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Orazio Palmieri
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| |
Collapse
|
15
|
Grännö O, Bergemalm D, Salomon B, Lindqvist CM, Hedin CRH, Carlson M, Dannenberg K, Andersson E, Keita ÅV, Magnusson MK, Eriksson C, Lanka V, Magnusson PKE, D'Amato M, Öhman L, Söderholm JD, Hultdin J, Kruse R, Cao Y, Repsilber D, Grip O, Karling P, Halfvarson J. Preclinical Protein Signatures of Crohn's Disease and Ulcerative Colitis: A Nested Case-Control Study Within Large Population-Based Cohorts. Gastroenterology 2024:S0016-5085(24)05741-X. [PMID: 39608683 DOI: 10.1053/j.gastro.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND AND AIMS Biomarkers are needed to identify individuals at elevated risk of inflammatory bowel disease. This study aimed to identify protein signatures predictive of inflammatory bowel disease. METHODS Using large population-based cohorts (n ≥180,000), blood samples were obtained from individuals who later in life were diagnosed with inflammatory bowel disease and compared with age and sex-matched controls, free from inflammatory bowel disease during follow-up. A total of 178 proteins were measured on Olink platforms. We used machine-learning methods to identify protein signatures of preclinical disease in the discovery cohort (n = 312). Their performance was validated in an external preclinical cohort (n = 222) and assessed in an inception cohort (n = 144) and a preclinical twin cohort (n = 102). RESULTS In the discovery cohort, a signature of 29 proteins differentiated preclinical Crohn's disease (CD) cases from controls, with an area under the curve (AUC) of 0.85. Its performance was confirmed in the preclinical validation (AUC = 0.87) and the inception cohort (AUC = 1.0). In preclinical samples, downregulated (but not upregulated) proteins related to gut barrier integrity and macrophage functionality correlated with time to diagnosis of CD. The preclinical ulcerative colitis signature had a significant, albeit lower, predictive ability in the discovery (AUC = 0.77), validation (AUC = 0.67), and inception cohorts (AUC = 0.95). The preclinical signature for CD demonstrated an AUC of 0.89 when comparing twins with preclinical CD with matched external healthy twins, but its predictive ability was lower (AUC = 0.58; P = .04) when comparing them with their healthy twin siblings, that is, when accounting for genetic and shared environmental factors. CONCLUSION We identified protein signatures for predicting a future diagnosis of CD and ulcerative colitis, validated across independent cohorts. In the context of CD, the signature offers potential for early prediction.
Collapse
Affiliation(s)
- Olle Grännö
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Benita Salomon
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Carl Mårten Lindqvist
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Charlotte R H Hedin
- Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Marie Carlson
- Department of Medical Sciences, Gastroenterology Research Group, Uppsala University, Uppsala, Sweden
| | - Katharina Dannenberg
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Erik Andersson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Carl Eriksson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Vivekananda Lanka
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mauro D'Amato
- Department of Medicine and Surgery, LUM University, Casamassima, Italy; Gastrointestinal Genetics Lab, CIC BioGUNE-BRTA, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Johan D Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Surgery, Linköping University, Linköping, Sweden
| | - Johan Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Robert Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Olof Grip
- Department of Gastroenterology, Skåne University Hospital, Malmö, Sweden
| | - Pontus Karling
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
16
|
Jacobs JP, Spencer EA, Helmus DS, Yang JC, Lagishetty V, Bongers G, Britton G, Gettler K, Reyes-Mercedes P, Hu J, Hart A, Lamousé-Smith E, Wehkamp J, Landers C, Debbas P, Torres J, Colombel JF, Cho J, Peter I, Faith J, Braun J, Dubinsky M. Age-related patterns of microbial dysbiosis in multiplex inflammatory bowel disease families. Gut 2024; 73:1953-1964. [PMID: 39122361 PMCID: PMC11560537 DOI: 10.1136/gutjnl-2024-332475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE IBD is characterised by dysbiosis, but it remains unclear to what extent dysbiosis develops in unaffected at-risk individuals. To address this, we investigated age-related patterns of faecal and serum markers of dysbiosis in high-risk multiplex IBD families (two or more affected first-degree relatives). DESIGN Faecal and serum samples were collected from multiplex IBD and control families (95 IBD, 292 unaffected, 51 controls). Findings were validated in independent cohorts of 616 and 1173 subjects including patients with IBD, infants born to mothers with IBD and controls. 16S rRNA gene sequencing and global untargeted metabolomics profiling of faeces and serum were performed. RESULTS Microbial and metabolomic parameters of dysbiosis progressively decreased from infancy until age 8. This microbial maturation process was slower in infants born to mothers with IBD. After age 15, dysbiosis steadily increased in unaffected relatives throughout adulthood. Dysbiosis was accompanied by marked shifts in the faecal metabolome and, to a lesser extent, the serum metabolome. Faecal and serum metabolomics dysbiosis indices were validated in an independent cohort. Dysbiosis was associated with elevated antimicrobial serologies but not with faecal calprotectin. Dysbiosis metrics differentiated IBD from non-IBD comparably to serologies, with a model combining calprotectin, faecal metabolomics dysbiosis index and serology score demonstrating highest accuracy. CONCLUSION These findings support that dysbiosis exists as a pre-disease state detectable by faecal and serum biomarkers for IBD risk prediction. Given the expansion of disease-modifying agents and non-invasive imaging, the indices developed here may facilitate earlier diagnoses and improved management in at-risk individuals.
Collapse
Affiliation(s)
- Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Elizabeth A Spencer
- The Division of Pediatric Gastroenterology and Nutrition, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Drew S Helmus
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julianne C Yang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gerold Bongers
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Graham Britton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kyle Gettler
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pamela Reyes-Mercedes
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amy Hart
- Janssen, Spring House, Pennsylvania, USA
| | | | | | - Carol Landers
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Philip Debbas
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Joana Torres
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Hospital da Luz, Lisboa, Portugal
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Judy Cho
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jeremiah Faith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jonathan Braun
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Marla Dubinsky
- The Division of Pediatric Gastroenterology and Nutrition, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Kaden T, Alonso-Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2024:e2402756. [PMID: 39491534 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH, 07745, Jena, Germany
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Raquel Alonso-Román
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV, Jena University Hospital, 07747, Jena, Germany
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| |
Collapse
|
18
|
Britton RA, Verdu EF, Di Rienzi SC, Reyes Muñoz A, Tarr PI, Preidis GA. Taking Microbiome Science to the Next Level: Recommendations to Advance the Emerging Field of Microbiome-Based Therapeutics and Diagnostics. Gastroenterology 2024; 167:1059-1064. [PMID: 38815708 DOI: 10.1053/j.gastro.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Affiliation(s)
- Robert A Britton
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sara C Di Rienzi
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas
| | - Alejandro Reyes Muñoz
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics and, Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri
| | - Geoffrey A Preidis
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| |
Collapse
|
19
|
Sun H, Long SR, Jiang M, Zhang HR, Wang JJ, Liao ZX, Cui J, Wang ZQ. The gut microbiota is essential for Trichinella spiralis-evoked suppression of colitis. PLoS Negl Trop Dis 2024; 18:e0012645. [PMID: 39495798 PMCID: PMC11563474 DOI: 10.1371/journal.pntd.0012645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) increases the risk of colorectal cancer, and it has the potential to diminish the quality of life. Clinical and experimental evidence demonstrate protective aspects of parasitic helminth infection against IBD. However, studies on the inhibition of inflammation by helminth infection have overlooked a key determinant of health: the gut microbiota. Although infection with helminths induces alterations in the host microbiota composition, the potential influence and mechanism of helminth infections induced changes in the gut microbiota on the development of IBD has not yet been elucidated. In this study, we analyzed the intersection of helminth Trichinella spiralis and gut bacteria in the regulation of colitis and related mechanisms. METHODOLOGY/PRINCIPAL FINDINGS T. spiralis infected mice were treated with antibiotics or cohoused with wild type mice, then challenged with dextran sodium sulfate (DSS)-colitis and disease severity, immune responses and goblet cells assessed. Gut bacteria composition was assessed by 16S rRNA sequencing and short-chain fatty acids (SCFAs) were measured. We found that protection against disease by infection with T. spiralis was abrogated by antibiotic treatment, and cohousing with T. spiralis- infected mice suppressed DSS-colitis in wild type mice. Bacterial community profiling revealed an increase in the abundance of the bacterial genus Muribaculum and unclassified_Muribaculaceae in mice with T. spiralis infection or mice cohoused with T. spiralis- infected mice. Metabolomic analysis demonstrated significantly increased propionic acid in feces from T. spiralis- infected mice. Data also showed that the gut microbiome modulated by T. spiralis exhibited enhanced goblet cell differentiation and elevated IL-10 levels in mice. CONCLUSIONS These findings identify the gut microbiome as a critical component of the anti- colitic effect of T. spiralis and gives beneficial insights into the processes by which helminth alleviates colitis.
Collapse
Affiliation(s)
- Hualei Sun
- Department of Nutrition, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shao Rong Long
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Miao Jiang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Ran Zhang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Jing Wang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Xuan Liao
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Cui
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhong Quan Wang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Bronze S, Agrawal M, Colombel JF, Torres J, Ungaro RC. Review article: Prevention of inflammatory bowel disease-The path forward. Aliment Pharmacol Ther 2024; 60:1166-1175. [PMID: 39403049 DOI: 10.1111/apt.18263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND The possibility of preventing inflammatory bowel disease (IBD) is becoming more plausible due to advances in understanding preclinical disease and successful prevention trials in other immune-mediated diseases, such as type 1 diabetes and rheumatoid arthritis. However, before that possibility becomes reality, several efforts need to occur in parallel and in a coordinated way. AIM To propose some critical steps necessary for advancing the field of IBD prediction and prevention. METHODS We reviewed the current literature to identify the necessary steps toward a preventive strategy for IBD. RESULTS The first step should determine the most robust predictive biomarkers and validate them across independent cohorts, creating a multidimensional predictive tool. The second step is to gain a better understanding of the preferences of first-degree relatives and people at risk for IBD, informing the implementation of screening and preventive strategies. Third, these efforts should contribute to the development of high-risk clinics and establish the necessary networks for disease prevention trials. CONCLUSIONS Advancing the field of IBD prediction and prevention will require a multifaceted approach, integrating biomarker discovery, understanding patient preferences, and establishing infrastructure for a collaborative network to support the practical implementation of IBD prevention strategies.
Collapse
Affiliation(s)
- Sérgio Bronze
- Gastroenterology and Hepatology Department, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal
- Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manasi Agrawal
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean-Frédéric Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joana Torres
- Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
- Division of Gastroenterology, Hospital da luz Lisboa, Lisbon, Portugal
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Ryan C Ungaro
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Xia L, Li C, Zhao J, Sun Q, Mao X. Rebalancing immune homeostasis in combating disease: The impact of medicine food homology plants and gut microbiome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156150. [PMID: 39740376 DOI: 10.1016/j.phymed.2024.156150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Gut microbiota plays an important role in multiple human physiological processes and an imbalance in it, including the species, abundance, and metabolites can lead to diseases. These enteric microorganisms modulate immune homeostasis by presenting a myriad of antigenic determinants and microbial metabolites. Medicinal and food homologous (MFH) plants, edible herbal materials for both medicine and food, are important parts of Traditional Chinese Medicine (TCM). MFH plants have drawn much attention due to their strong biological activity and low toxicity. However, the interplay of MFH and gut microbiota in rebalancing the immune homeostasis in combating diseases needs systematic illumination. PURPOSE The review discusses the interaction between MFH and gut microbiota, including the effect of MFH on the major group of gut microbiota and the metabolic effect of gut microbiota on MFH. Moreover, how gut microbiota influences the immune system in terms of innate and adaptive immunity is addressed. Finally, the immunoregulatory mechanisms of MFH in regulation of host pathophysiology via gut microbiota are summarized. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Web of Science, and Google Scholar using relevant keywords. The obtained articles were screened and summarized by the research content of MFH and gut microbiota in immune regulation. RESULTS The review demonstrates the interaction between MFH and gut microbiota in disease prevention and treatment. Not only do the intestinal microorganisms and intestinal mucosa constitute an important immune barrier of the human body, but also lymphoid tissue and diffused immune cells within the mucosa participate in the response of innate immunity and adaptive immunity. MFH modulates immune regulation by affecting intestinal flora, helps maintain the balance of the immune system and interfere with the occurrence and development of a broad category of diseases. CONCLUSION Being absorbed from the gastrointestinal tract, MFH can have profound effects on gut microbiota. In turn, the gut microbiota also actively participate in the bioconversion of complex constituents from MFH, which could further influence their physiological and pharmacological properties. The review deepens the understanding of the relationship among MFH, gut microbiota, immune system, and human diseases and further promotes the progression of additional relevant research.
Collapse
Affiliation(s)
- Lu Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Chuangen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food sciences, Florida State University, Tallahassee, USA
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
22
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Joos R, Boucher K, Lavelle A, Arumugam M, Blaser MJ, Claesson MJ, Clarke G, Cotter PD, De Sordi L, Dominguez-Bello MG, Dutilh BE, Ehrlich SD, Ghosh TS, Hill C, Junot C, Lahti L, Lawley TD, Licht TR, Maguin E, Makhalanyane TP, Marchesi JR, Matthijnssens J, Raes J, Ravel J, Salonen A, Scanlan PD, Shkoporov A, Stanton C, Thiele I, Tolstoy I, Walter J, Yang B, Yutin N, Zhernakova A, Zwart H, Doré J, Ross RP. Examining the healthy human microbiome concept. Nat Rev Microbiol 2024:10.1038/s41579-024-01107-0. [PMID: 39443812 DOI: 10.1038/s41579-024-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Human microbiomes are essential to health throughout the lifespan and are increasingly recognized and studied for their roles in metabolic, immunological and neurological processes. Although the full complexity of these microbial communities is not fully understood, their clinical and industrial exploitation is well advanced and expanding, needing greater oversight guided by a consensus from the research community. One of the most controversial issues in microbiome research is the definition of a 'healthy' human microbiome. This concept is complicated by the microbial variability over different spatial and temporal scales along with the challenge of applying a unified definition to the spectrum of healthy microbiome configurations. In this Perspective, we examine the progress made and the key gaps that remain to be addressed to fully harness the benefits of the human microbiome. We propose a road map to expand our knowledge of the microbiome-health relationship, incorporating epidemiological approaches informed by the unique ecological characteristics of these communities.
Collapse
Affiliation(s)
- Raphaela Joos
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Katy Boucher
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Luisa De Sordi
- Centre de Recherche Saint Antoine, Sorbonne Université, INSERM, Paris, France
| | | | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stanislav D Ehrlich
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), New Delhi, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Christophe Junot
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, Gif-sur-Yvette, France
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Microbiology, Leuven, Belgium
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauline D Scanlan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Ines Thiele
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Medicine, University of Ireland, Galway, Ireland
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Natalia Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hub Zwart
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
24
|
Midya V, Agrawal M, Lane JM, Gennings C, Tarassishin L, Torres-Olascoaga LA, Eggers J, Gregory JK, Picker M, Peter I, Faith JJ, Arora M, Téllez-Rojo MM, Wright RO, Colombel JF, Eggers S. Association between Exposure to Metals during Pregnancy, Childhood Gut Microbiome, and Risk of Intestinal Inflammation in Late Childhood. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:739-749. [PMID: 39474439 PMCID: PMC11501044 DOI: 10.1021/envhealth.4c00125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 12/12/2024]
Abstract
Alterations to the gut microbiome and exposure to metals during pregnancy have been suggested to impact inflammatory bowel disease. Nonetheless, how prenatal exposure to metals eventually results in long-term effects on the gut microbiome, leading to subclinical intestinal inflammation, particularly during late childhood, has not been studied. It is also unknown whether such an interactive effect drives a specific subgroup of children toward elevated susceptibility to intestinal inflammation. We used an amalgamation of machine-learning techniques with a regression-based framework to explore if children with distinct sets of gut microbes and certain patterns of exposure to metals during pregnancy (metal-microbial clique signature) had a higher likelihood of intestinal inflammation, measured based on fecal calprotectin (FC) in late childhood. We obtained samples from a well-characterized longitudinal birth cohort from Mexico City (n = 108), Mexico. In the second and third trimesters of pregnancy, 11 metals were measured in whole blood. Gut microbial abundances and FC were measured in stool samples from children 9-11 years of age. Elevated FC was defined as having FC above 100 μg/g of stool. We identified subgroups of children in whom microbial and metal-microbial clique signatures were associated with elevated FC (false discovery rate (FDR) < 0.05). In particular, we found two metal-microbial clique signatures significantly associated with elevated FC: (1) low cesium (Cs) and copper (Cu) in the third trimester and low relative abundance of Eubacterium ventriosum (OR [95%CI]: 10.27 [3.57,29.52], FDR < 0.001) and (2) low Cu in the third trimester and high relative abundances of Roseburia inulinivorans and Ruminococcus torques (OR [95%CI]: 7.21 [1.81,28.77], FDR < 0.05). This exploratory study demonstrates that children with specific gut microbes and specific exposure patterns to metals during pregnancy may have higher fecal calprotectin levels in late childhood, denoting an elevated risk of intestinal inflammation.
Collapse
Affiliation(s)
- Vishal Midya
- Department
of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Manasi Agrawal
- The
Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
- Center
for Molecular Prediction of Inflammatory Bowel Disease (PREDICT),
Department of Clinical Medicine, Aalborg
University, Copenhagen 9220, Denmark
| | - Jamil M. Lane
- Department
of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Chris Gennings
- Department
of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Leonid Tarassishin
- Department
of Genetics and Genomic Sciences, Icahn
School of Medicine, New York 10029-6574, New York, United States
| | - Libni A. Torres-Olascoaga
- Center
for Research on Nutrition and Health, National
Institute of Public Health, Cuernavaca 62508, Mexico
| | - Joseph Eggers
- Department
of Immunology and Immunotherapy, Icahn School
of Medicine at Mount Sinai, New York 10029-6574, New York, United States
- Department
of Epidemiology, University of Iowa College
of Public Health, Iowa City 52242, Iowa, United States
| | - Jill K. Gregory
- Instructional
Technology Group, Icahn School of Medicine
at Mount Sinai, New York 10029-6574, New York, United States
| | - Mellissa Picker
- Department
of Genetics and Genomic Sciences, Icahn
School of Medicine, New York 10029-6574, New York, United States
| | - Inga Peter
- Department
of Genetics and Genomic Sciences, Icahn
School of Medicine, New York 10029-6574, New York, United States
| | - Jeremiah J. Faith
- Department
of Immunology and Immunotherapy, Icahn School
of Medicine at Mount Sinai, New York 10029-6574, New York, United States
- Department
of Genetics and Genomic Sciences, Icahn
School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Manish Arora
- Department
of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Martha M. Téllez-Rojo
- Center
for Research on Nutrition and Health, National
Institute of Public Health, Cuernavaca 62508, Mexico
| | - Robert O. Wright
- Department
of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Jean-Frederic Colombel
- The
Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Shoshannah Eggers
- Department
of Epidemiology, University of Iowa College
of Public Health, Iowa City 52242, Iowa, United States
| |
Collapse
|
25
|
Lee SH, Bushra M, Qiu L, Griffiths AM, Turpin W, Croitoru K, Lee SH, Bushra M, Qiu L, Shao J, Olivera PA, Leibovitzh H, Xue M, Xu W, Espin-Garcia O, Amuais GL, Huynh HQ, Panaccione R, Steinhart AH, Cino M, Mack D, Marshall J, Ropeleski M, Bitton A, Jacobson K, McGrath J, Yerushalmi B, Abreu MT, Bernstein CN, Radford-Smith G, Lees C, Turner D, Madsen K, Guttman DS, Silverberg M, Griffiths AM, Moayyedi P, Turpin W, Beck P, Dieleman L, Feagan BG, Kaplan G, Krause DO, Seidman E, Snapper S, Stadnyk A, Surette M, Walters T, Vallance B, Critch J, Denson L, Deslandres C, El-Matary W, Herfarth H, Higgins P, Hyams J, Otley A, Hedin C, Hussey S, Keljo D, Kevans D, Murthy S, Parekh N, Plamondon S, Rosh J, Rubin D, Schultz M, Siegel C, Croitoru K. Early Life Exposure to Parental Crohn's Disease Is Associated With Offspring's Gut Microbiome, Gut Permeability, and Increased Risk of Future Crohn's Disease. Gastroenterology 2024:S0016-5085(24)05539-2. [PMID: 39384162 DOI: 10.1053/j.gastro.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Affiliation(s)
- Sun-Ho Lee
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | - Maham Bushra
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Lanhui Qiu
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anne M Griffiths
- Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Temerty Faculty of Medicine, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Williams Turpin
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | - Sun-Ho Lee
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Maham Bushra
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Lanhui Qiu
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jincheng Shao
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Pablo A Olivera
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Haim Leibovitzh
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mingyue Xue
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Wei Xu
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Biostatistics Department, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Biostatistics Department, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Guy L Amuais
- Hopital Maisonneuve-Rosemont Un Montréal, Montréal, Québec, Canada
| | - Hien Q Huynh
- University of Alberta, Edmonton, Alberta, Canada
| | | | - A Hillary Steinhart
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Maria Cino
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Mack
- Division of Gastroenterology, Hepatology & Nutrition, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - John Marshall
- Department of Medicine, McMaster University, Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| | - Mark Ropeleski
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alain Bitton
- Division of Gastroenterology and Hepatology, McGill University and McGill University Health Centre (MUHC), Montréal, Québec, Canada
| | - Kevan Jacobson
- British Columbia Children's Hospital, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jerry McGrath
- General Hospital, Health Sciences Centre, St. John's, Newfoundland, Canada
| | - Baruch Yerushalmi
- Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maria T Abreu
- Division of Gastroenterology, Crohn's and Colitis Center, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Charles N Bernstein
- University of Manitoba Inflammatory Bowel Disease Clinical and Research Centre and Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, Canada
| | - Graham Radford-Smith
- Queensland Institute of Medical Research, Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | | | - Dan Turner
- The Juliet Keidan Institute of Pediatric Gastroenterology and Nutrition, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karen Madsen
- University of Alberta, Edmonton, Alberta, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Mark Silverberg
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anne M Griffiths
- Division of Gastroenterology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul Moayyedi
- Department of Medicine, McMaster University, Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| | - Williams Turpin
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Paul Beck
- University of Calgary, Calgary, Alberta, Canada
| | | | - Brian G Feagan
- Departments of Medicine, Epidemiology, and Biostatistics, University of Western Ontario, London, Ontario, Canada
| | | | - Denis O Krause
- University of Manitoba Inflammatory Bowel Disease Clinical and Research Centre and Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, Canada
| | - Ernest Seidman
- Division of Gastroenterology and Hepatology, McGill University and McGill University Health Centre (MUHC), Montréal, Québec, Canada
| | - Scott Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andy Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael Surette
- Department of Medicine, McMaster University, Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| | - Thomas Walters
- Division of Gastroenterology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bruce Vallance
- British Columbia Children's Hospital, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeff Critch
- Department of Pediatrics, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Lee Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Colette Deslandres
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Wael El-Matary
- University of Manitoba Inflammatory Bowel Disease Clinical and Research Centre and Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, Canada
| | - Hans Herfarth
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Peter Higgins
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jeff Hyams
- Connecticut Children's Medical Center Hartford, Connecticut
| | - Anthony Otley
- Department of Pediatrics, IWK Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Charlotte Hedin
- Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Centre for Digestive Health, Stockholm, Sweden
| | - Seamus Hussey
- National Centre for Pediatric Gastroenterology, Children's Health Ireland, Dublin, Ireland
| | - David Keljo
- Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - David Kevans
- Gastroenterology Department, St James's Hospital, Dublin, Ireland
| | - Sanjay Murthy
- Division of Gastroenterology, Hepatology & Nutrition, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Nimisha Parekh
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California Irvine, Orange, California
| | - Sophie Plamondon
- Division of Gastroenterology, Department of Medicine, Centre Hospitalier Universitaire de Sherbrooke, Hôtel-Dieu, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Joel Rosh
- Division of Pediatric Gastroenterology, Liver Disease, and Nutrition, Cohen Children's Medical Center of New York, Lake Success, New York
| | - David Rubin
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, Illinois
| | - Michael Schultz
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Corey Siegel
- Center for Digestive Health, Section of Gastroenterology and Hepatology, Dartmouth Hitchcock Medical Centre, Lebanon, New Hampshire
| | - Kenneth Croitoru
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Vich Vila A, Zhang J, Liu M, Faber KN, Weersma RK. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut 2024; 73:1909-1920. [PMID: 39002973 PMCID: PMC11503092 DOI: 10.1136/gutjnl-2023-329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Collapse
Affiliation(s)
- Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong (SAR), People's Republic of China
- Microbiota I-Center (MagIC), Hong Kong (SAR), People's Republic of China
| | - Moting Liu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Zhang Y, Thomas JP, Korcsmaros T, Gul L. Integrating multi-omics to unravel host-microbiome interactions in inflammatory bowel disease. Cell Rep Med 2024; 5:101738. [PMID: 39293401 PMCID: PMC11525031 DOI: 10.1016/j.xcrm.2024.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
The gut microbiome is crucial for nutrient metabolism, immune regulation, and intestinal homeostasis with changes in its composition linked to complex diseases like inflammatory bowel disease (IBD). Although the precise host-microbial mechanisms in disease pathogenesis remain unclear, high-throughput sequencing have opened new ways to unravel the role of interspecies interactions in IBD. Systems biology-a holistic computational framework for modeling complex biological systems-is critical for leveraging multi-omics datasets to identify disease mechanisms. This review highlights the significance of multi-omics data in IBD research and provides an overview of state-of-the-art systems biology resources and computational tools for data integration. We explore gaps, challenges, and future directions in the research field aiming to uncover novel biomarkers and therapeutic targets, ultimately advancing personalized treatment strategies. While focusing on IBD, the proposed approaches are applicable for other complex diseases, like cancer, and neurodegenerative diseases, where the microbiome has also been implicated.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Surgery & Cancer, Imperial College London, London W12 0NN, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - John P Thomas
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; UKRI MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0HS, UK
| | - Tamas Korcsmaros
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; NIHR Imperial BRC Organoid Facility, Imperial College London, London W12 0NN, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.
| | - Lejla Gul
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
28
|
Wu L, Hu Z, Luo X, Ge C, Lv Y, Zhan S, Huang W, Shen X, Yu D, Liu B. Itaconic Acid Alleviates Perfluorooctanoic Acid-Induced Oxidative Stress and Intestinal Damage by Regulating the Keap1/Nrf2/Ho-1 Pathway and Reshaping the Gut Microbiota. Int J Mol Sci 2024; 25:9826. [PMID: 39337313 PMCID: PMC11432532 DOI: 10.3390/ijms25189826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Itaconic acid (IA) is recognized for its potential application in treating intestinal diseases owing to the anti-inflammatory and antioxidant properties. Perfluorooctanoic acid (PFOA) can accumulate in animals and result in oxidative and inflammatory damages to multi-tissue and organ, particularly in the intestinal tract. This study aimed to explore whether IA could mitigate intestinal damage induced by PFOA exposure in laying hens and elucidate its potential underlying mechanisms. The results showed that IA improved the antioxidant capacity of laying hens and alleviated the oxidative damage induced by PFOA, as evidenced by the elevated activities of T-SOD, GSH-Px, and CAT, and the decreased MDA content in both the jejunum and serum. Furthermore, IA improved the intestinal morphological and structural integrity, notably attenuating PFOA-induced villus shedding, length reduction, and microvillus thinning. IA also upregulated the mRNA expression of ZO-1, Occludin, Claudin-1, and Mucin-2 in the jejunum, thereby restoring intestinal barrier function. Compared with the PF group, IA supplementation downregulated the gene expression of Keap1 and upregulated the HO-1, NQO1, SOD1, and GPX1 expression in the jejunum. Meanwhile, the PF + IA group exhibited lower expressions of inflammation-related genes (NF-κB, IL-1β, IFN-γ, TNF-α, and IL-6) compared to the PF group. Moreover, IA reversed the PFOA-induced imbalance in gut microbiota by reducing the harmful bacteria such as Escherichia-Shigella, Clostridium innocuum, and Ruminococcus torques, while increasing the abundance of beneficial bacteria like Lactobacillus. Correlation analysis further revealed a significant association between gut microbes, inflammatory factors, and the Keap1/Nrf2/HO-1 pathway expression. In conclusion, dietary IA supplementation could alleviate the oxidative and inflammatory damage caused by PFOA exposure in the intestinal tract by reshaping the intestinal microbiota, modulating the Keap1/Nrf2/HO-1 pathway and reducing oxidative stress and inflammatory response, thereby promoting intestinal homeostasis.
Collapse
Affiliation(s)
- Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Shaoxing 312500, China
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Shaoxing 312500, China
| |
Collapse
|
29
|
Xue M, Leibovitzh H, Jingcheng S, Neustaeter A, Dong M, Xu W, Espin-Garcia O, Griffiths AM, Steinhart AH, Turner D, Huynh HQ, Dieleman LA, Panaccione R, Aumais G, Bressler B, Bitton A, Murthy S, Marshall JK, Hyams JS, Otley A, Bernstein CN, Moayyedi P, El-Matary W, Fich A, Denson LA, Ropeleski MJ, Abreu MT, Deslandres C, Cino M, Avni-Biron I, Lee SH, Turpin W, Croitoru K. Environmental Factors Associated With Risk of Crohn's Disease Development in the Crohn's and Colitis Canada - Genetic, Environmental, Microbial Project. Clin Gastroenterol Hepatol 2024; 22:1889-1897.e12. [PMID: 38759825 DOI: 10.1016/j.cgh.2024.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND & AIMS To date, it is unclear how environmental factors influence Crohn's disease (CD) risk and how they interact with biological processes. This study investigates the association between environmental exposures and CD risk and evaluates their association with pre-disease biomarkers. METHODS We studied 4289 healthy first-degree relatives (FDRs) of patients with CD from the Crohn's and Colitis Canada - Genetic, Environmental, Microbial (CCC-GEM) project. Regression models identified environmental factors associated with future CD onset and their association with pre-disease biological factors, including altered intestinal permeability measured by urinary fractional excretion of lactulose to mannitol ratio (LMR); gut inflammation via fecal calprotectin (FCP) levels; and fecal microbiome composition through 16S rRNA sequencing. RESULTS Over a 5.62-year median follow-up, 86 FDRs developed CD. Living with a dog between ages 5 and 15 (hazard ratio [HR], 0.62; 95% confidence interval [CI], 0.40-0.96; P = .034), and living with a large family size in the first year of life (HR, 0.43; 95% CI, 0.21-0.85; P = .016) were associated with decreased CD risk, whereas having a bird at the time of recruitment (HR, 2.78; 95% CI, 1.36-5.68; P = .005) was associated with an increased CD risk. Furthermore, living with a dog was associated with reduced LMR, altered relative abundance of multiple bacterial genera, and increased Chao1 diversity, whereas bird owners had higher FCP levels. Large family during participants' first year of life was associated with altered microbiota composition without affecting FCP or LMR. CONCLUSION This study identifies environmental variables associated with CD risk. These variables were also associated with altered barrier function, subclinical inflammation, and gut microbiome composition shifts, suggesting potential roles in CD pathogenesis.
Collapse
Affiliation(s)
- Mingyue Xue
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Haim Leibovitzh
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shao Jingcheng
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Anna Neustaeter
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mei Dong
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Anne M Griffiths
- IBD Center, The Hospital for Sick Children, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - A Hillary Steinhart
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dan Turner
- The Juliet Keidan Institute of Pediatric Gastroenterology and Nutrition, Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hien Q Huynh
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Levinus A Dieleman
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Remo Panaccione
- Inflammatory Bowel Disease Clinic, Division of Gastroenterology and Hepatology of Gastroenterology, University of Calgary, Calgary, Alberta, Canada
| | - Guy Aumais
- Hôspital Maisonneuve-Rosemont, Department of Medicine, Montreal University, Montreal, Quebec, Canada
| | - Brian Bressler
- Division of Gastroenterology, Department of Medicine, St Paul's Hospital, Vancouver, British Columbia
| | - Alain Bitton
- Division of Gastroenterology and Hepatology, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Sanjay Murthy
- The Ottawa Hospital IBD Centre, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - John K Marshall
- Department of Medicine, McMaster University, Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Anthony Otley
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Charles N Bernstein
- Inflammatory Bowel Disease Clinical and Research Centre, and Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Moayyedi
- Department of Medicine, McMaster University, Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| | - Wael El-Matary
- Section of Pediatric Gastroenterology, Department of Pediatrics and Child Health, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alexander Fich
- Department of Gastroenterology and Hepatology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Lee A Denson
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark J Ropeleski
- Gastrointestinal Diseases Research Unit, Departments of Medicine, Anatomy and Cell Biology, and Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Maria T Abreu
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
| | - Colette Deslandres
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Centre Hospitalier Universitaire, Sainte-Justine, Montréal, Quebec, Canada
| | - Maria Cino
- Division of Gastroenterology, University Health Network, Toronto, Ontario, Canada
| | - Irit Avni-Biron
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
| | - Sun-Ho Lee
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Kenneth Croitoru
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Grellier N, Severino A, Archilei S, Kim J, Gasbarrini A, Cammarota G, Porcari S, Benech N. Gut microbiota in inflammation and colorectal cancer: A potential Toolbox for Clinicians. Best Pract Res Clin Gastroenterol 2024; 72:101942. [PMID: 39645280 DOI: 10.1016/j.bpg.2024.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) is a worldwide public health issue specifically in patients with chronic diseases associated with a western lifestyle, such as metabolic diseases and inflammatory bowel diseases (IBD). Interestingly, both metabolic disorders and IBD are characterized by a chronic state of inflammation that contributes to the carcinogenesis with specific alteration of the gut microbiota composition and function. Evidence now shows that this altered gut microbiota contributes fueling a chronic pro-inflammatory state in a vicious circle that can favor CRC development. In this review article, we present the current knowledge concerning the involvement of the gut microbiota as a procarcinogenic factor shared by IBD and cardiometabolic diseases, and provide clues as to how it may be used to prevent or diagnose CRC.
Collapse
Affiliation(s)
- Nathan Grellier
- Department of Hepato-Gastroenterology, Poitiers University Hospital, Poitiers, France
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Sebastiano Archilei
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Jumin Kim
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Nicolas Benech
- Hospices Civils de Lyon, Hepato-gastroenterology Department, Hôpital de La Croix-Rousse, 69000, Lyon, France; Lyon GEM Microbiota Study Group, Lyon, France; Université Claude Bernard Lyon 1, Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Lyon, France.
| |
Collapse
|
31
|
Schaus SR, Vasconcelos Pereira G, Luis AS, Madlambayan E, Terrapon N, Ostrowski MP, Jin C, Henrissat B, Hansson GC, Martens EC. Ruminococcus torques is a keystone degrader of intestinal mucin glycoprotein, releasing oligosaccharides used by Bacteroides thetaiotaomicron. mBio 2024; 15:e0003924. [PMID: 38975756 PMCID: PMC11323728 DOI: 10.1128/mbio.00039-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques-a known mucin degrader that has been implicated in inflammatory bowel diseases (IBDs)-degrades mucin glycoproteins or their component O-linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong α-L-fucosidase, sialidase and β1,4-galactosidase activities. There was a lack of detectable sulfatase and weak β1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron. This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which might contribute to its association with IBD.IMPORTANCEAn important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade the various components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate species associated with bacterial mucus damage and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another species of gut bacteria, Bacteroides thetaiotaomicron. Our findings underscore the importance of understanding mucin degradation mechanisms in different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately affect mucus damage and could therefore be key players in effects that result from reductions in mucus integrity.
Collapse
Affiliation(s)
- Sadie R. Schaus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Ana S. Luis
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Emily Madlambayan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicolas Terrapon
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Marseille, France
| | - Matthew P. Ostrowski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Han Z, Ran Y, Li J, Zhang X, Yang H, Liu J, Dong S, Jia H, Yang Z, Li Y, Guo L, Zhou S, Bao S, Yuan W, Wang B, Zhou L. Association of gut microbiota with lactose intolerance and coeliac disease: a two-sample Mendelian randomization study. Front Nutr 2024; 11:1395801. [PMID: 39166131 PMCID: PMC11333455 DOI: 10.3389/fnut.2024.1395801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Background and objectives Lactose intolerance and coeliac disease are common clinical nutrient malabsorption disorders, with an unclear pathogenesis and limited therapeutic options. It is widely believed that the gut microbiota plays an important role in many digestive disorders, but its role in lactose intolerance and coeliac disease is not yet clear. This study aimed to investigate the correlation between gut microbiota and lactose intolerance and coeliac disease. Materials and methods This study utilized the genome-wide association study database to investigate the association between gut microbiota and lactose intolerance and coeliac disease using Mendelian randomization (MR). The robustness of our findings was confirmed through subsequent analyses including Cochrane's Q statistic, MR-Egger Intercept Regression, MR-PRESSO Global Test and Leave-one-out methods. Results By employing the inverse variance weighted method, we identified that family Veillonellaceae, genus Oxalobacter and Senegalimassilia were protective against lactose intolerance, whereas genus Anaerotruncus, Eubacterium rectale group and Ruminococcus2 were found to be risk factors for lactose intolerance. Regarding coeliac disease, class Bacilli and Gammaproteobacteria, family FamilyXIII and Veillonellaceae, genus Eisenbergiella, Lachnoclostridium, RuminococcaceaeUCG014 and Ruminococcus2 were identified as protective factors, while class Betaproteobacteria, genus Eubacterium xylanophilum group and Blautia were risk factors. Furthermore, reverse the MR analysis did not reveal any evidence of a causal relationship between lactose intolerance or coeliac disease and the bacteria identified in our study. Conclusion This study provides novel insights into exploring the role of gut microbiota in lactose intolerance and coeliac disease; however, further experiments investigations are required to elucidate the specific underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
33
|
Adolph TE, Tilg H. Western diets and chronic diseases. Nat Med 2024; 30:2133-2147. [PMID: 39085420 DOI: 10.1038/s41591-024-03165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
'Westernization', which incorporates industrial, cultural and dietary trends, has paralleled the rise of noncommunicable diseases across the globe. Today, the Western-style diet emerges as a key stimulus for gut microbial vulnerability, chronic inflammation and chronic diseases, affecting mainly the cardiovascular system, systemic metabolism and the gut. Here we review the diet of modern times and evaluate the threat it poses for human health by summarizing recent epidemiological, translational and clinical studies. We discuss the links between diet and disease in the context of obesity and type 2 diabetes, cardiovascular diseases, gut and liver diseases and solid malignancies. We collectively interpret the evidence and its limitations and discuss future challenges and strategies to overcome these. We argue that healthcare professionals and societies must react today to the detrimental effects of the Western diet to bring about sustainable change and improved outcomes in the future.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
34
|
Wang Y, Li L, Chen S, Yu Z, Gao X, Peng X, Ye Q, Li Z, Tan W, Chen Y. Faecalibacterium prausnitzii-derived extracellular vesicles alleviate chronic colitis-related intestinal fibrosis by macrophage metabolic reprogramming. Pharmacol Res 2024; 206:107277. [PMID: 38945379 DOI: 10.1016/j.phrs.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Faecalibacterium prausnitzii (F. prausnitzii) has been recognized for its various intestinal and extraintestinal benefits to human. And reduction of F. prausnitzii has been linked to an increased risk of intestinal fibrosis in patients of Crohn's disease (CD). In this study, oral administration of either live F. prausnitzii or its extracellular vesicles (FEVs) can markedly mitigate the severity of fibrosis in mice induced by repetitive administration of DSS. In vitro experiment revealed that FEVs were capable of directing the polarization of peripheral blood mononuclear cells (PBMCs) towards an M2b macrophage phenotype, which has been associated with anti-fibrotic activities. This effect of FEV was found to be stable under various conditions that promote the development of pro-fibrotic M1/M2a/M2c macrophages. Proteomics and RNA sequencing were performed to uncover the molecular modulation of macrophages by FEVs. Notably, we found that FEVs reprogramed every metabolism of macrophages by damaging the mitochondria, and inhibited oxidative phosphorylation and glycolysis. Moreover, FEV-treated macrophages showed a decreased expression of PPARγ and an altered lipid processing phenotype characterized by decreased cholesterol efflux, which may promote energy reprogramming. Taken together, these findings identify FEV as a driver of macrophage reprogramming, suggesting that triggering M2b macrophage polarization by oral admiration of FEV may serve as strategy to alleviate hyperfibrotic intestine conditions in CD.
Collapse
Affiliation(s)
- Ying Wang
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Linjie Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuze Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zonglin Yu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefeng Gao
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiujuan Ye
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zitong Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weihao Tan
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Onwuka S, Bravo-Merodio L, Gkoutos GV, Acharjee A. Explainable AI-prioritized plasma and fecal metabolites in inflammatory bowel disease and their dietary associations. iScience 2024; 27:110298. [PMID: 39040076 PMCID: PMC11261406 DOI: 10.1016/j.isci.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Fecal metabolites effectively discriminate inflammatory bowel disease (IBD) and show differential associations with diet. Metabolomics and AI-based models, including explainable AI (XAI), play crucial roles in understanding IBD. Using datasets from the UK Biobank and the Human Microbiome Project Phase II IBD Multi'omics Database (HMP2 IBDMDB), this study uses multiple machine learning (ML) classifiers and Shapley additive explanations (SHAP)-based XAI to prioritize plasma and fecal metabolites and analyze their diet correlations. Key findings include the identification of discriminative metabolites like glycoprotein acetyl and albumin in plasma, as well as nicotinic acid metabolites andurobilin in feces. Fecal metabolites provided a more robust disease predictor model (AUC [95%]: 0.93 [0.87-0.99]) compared to plasma metabolites (AUC [95%]: 0.74 [0.69-0.79]), with stronger and more group-differential diet-metabolite associations in feces. The study validates known metabolite associations and highlights the impact of IBD on the interplay between gut microbial metabolites and diet.
Collapse
Affiliation(s)
- Serena Onwuka
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Laura Bravo-Merodio
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Amir A, Haberman Y. All (remains) in the family? Using healthy relatives to define Crohn's gut microbiome alterations. Cell Rep Med 2024; 5:101651. [PMID: 39019007 PMCID: PMC11293313 DOI: 10.1016/j.xcrm.2024.101651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Gut microbial imbalance is noted in Crohn's disease (CD), but the specific bacteria associated with CD vary between studies. Chen et al.1 pair CD patients with their healthy first-degree relatives to mitigate some of the environmental and genetic effects.
Collapse
Affiliation(s)
- Amnon Amir
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel; School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
37
|
Chen W, Li Y, Wang W, Gao S, Hu J, Xiang B, Wu D, Jiao N, Xu T, Zhi M, Zhu L, Zhu R. Enhanced microbiota profiling in patients with quiescent Crohn's disease through comparison with paired healthy first-degree relatives. Cell Rep Med 2024; 5:101624. [PMID: 38942021 PMCID: PMC11293350 DOI: 10.1016/j.xcrm.2024.101624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Prior studies indicate no correlation between the gut microbes of healthy first-degree relatives (HFDRs) of patients with Crohn's disease (CD) and the development of CD. Here, we utilize HFDRs as controls to examine the microbiota and metabolome in individuals with active (CD-A) and quiescent (CD-R) CD, thereby minimizing the influence of genetic and environmental factors. When compared to non-relative controls, the use of HFDR controls identifies fewer differential taxa. Faecalibacterium, Dorea, and Fusicatenibacter are decreased in CD-R, independent of inflammation, and correlated with fecal short-chain fatty acids (SCFAs). Validation with a large multi-center cohort confirms decreased Faecalibacterium and other SCFA-producing genera in CD-R. Classification models based on these genera distinguish CD from healthy individuals and demonstrate superior diagnostic power than models constructed with markers identified using unrelated controls. Furthermore, these markers exhibited limited discriminatory capabilities for other diseases. Finally, our results are validated across multiple cohorts, underscoring their robustness and potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Wanning Chen
- Department of Gastroenterology, the Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, P.R. China
| | - Yichen Li
- Medical College, Jiaying University, Meizhou 514031, P. R. China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China
| | - Wenxia Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China
| | - Sheng Gao
- Department of Gastroenterology, the Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, P.R. China
| | - Jun Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China; Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China
| | - Bingjie Xiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China; Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China
| | - Dingfeng Wu
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310058, Zhejiang, P.R. China
| | - Na Jiao
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310058, Zhejiang, P.R. China
| | - Tao Xu
- Medical College, Jiaying University, Meizhou 514031, P. R. China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Min Zhi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China; Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China.
| | - Lixin Zhu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology; Biomedical Innovation Center; The Sixth Affiliated Hospital, Sun Yat-sen University; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, P.R. China.
| | - Ruixin Zhu
- Department of Gastroenterology, the Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, P.R. China.
| |
Collapse
|
38
|
Lopes EW, Turpin W, Croitoru K, Colombel JF, Torres J. Prediction and Prevention of Inflammatory Bowel Disease. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00597-4. [PMID: 38996831 DOI: 10.1016/j.cgh.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 07/14/2024]
Affiliation(s)
- Emily W Lopes
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joana Torres
- Division of Gastrenterology, Hospital da Luz, Lisboa, Portugal; Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal; Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
39
|
Ananthakrishnan AN, Whelan K, Allegretti JR, Sokol H. Diet and Microbiome-Directed Therapy 2.0 for IBD. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00599-8. [PMID: 38992408 DOI: 10.1016/j.cgh.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024]
Abstract
Inflammatory bowel disease (IBD) comprises chronic and relapsing disorders of the gastrointestinal tract, characterized by dysregulated immune responses to the gut microbiome. The gut microbiome and diet are key environmental factors that influence the onset and progression of IBD and can be leveraged for treatment. In this review, we summarize the current evidence on the role of the gut microbiome and diet in IBD pathogenesis, and the potential of microbiome-directed therapies and dietary interventions to improve IBD outcomes. We discuss available data and the advantages and drawbacks of the different approaches to manipulate the gut microbiome, such as fecal microbiota transplantation, next-generation and conventional probiotics, and postbiotics. We also review the use of diet as a therapeutic tool in IBD, including the effects in induction and maintenance, special diets, and exclusive enteral nutrition. Finally, we highlight the challenges and opportunities for the translation of diet and microbiome interventions into clinical practice, such as the need for personalization, manufacturing and regulatory hurdles, and the specificity to take into account for clinical trial design.
Collapse
Affiliation(s)
- Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, United Kingdom
| | - Jessica R Allegretti
- Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Harry Sokol
- Gastroenterology Department, Centre de Recherche Saint-Antoine, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Univeresitaire, Paris, France; Micalis Institute, AgroParisTech, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
40
|
Hernández-Rocha C, Turpin W, Borowski K, Stempak JM, Sabic K, Gettler K, Tastad C, Chasteau C, Korie U, Hanna M, Khan A, Mengesha E, Bitton A, Schwartz MB, Barrie A, Datta LW, Lazarev M, Brant SR, Rioux JD, McGovern DPB, Duerr RH, Schumm LP, Cho JH, Silverberg MS. After Surgically Induced Remission, Ileal and Colonic Mucosa-Associated Microbiota Predicts Crohn's Disease Recurrence. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00592-5. [PMID: 38969076 DOI: 10.1016/j.cgh.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND & AIMS Investigating the tissue-associated microbiota after surgically induced remission may help to understand the mechanisms initiating intestinal inflammation in Crohn's disease. METHODS Patients with Crohn's disease undergoing ileocolic resection were prospectively recruited in 6 academic centers. Biopsy samples from the neoterminal ileum, colon, and rectosigmoid were obtained from colonoscopies performed after surgery. Microbial DNA was extracted for 16S rRNA gene sequencing. Microbial diversity and taxonomic differential relative abundance were analyzed. A random forest model was applied to analyze the performance of clinical and microbial features to predict recurrence. A Rutgeerts score ≥i2 was deemed as endoscopic recurrence. RESULTS A total of 349 postoperative colonoscopies and 944 biopsy samples from 262 patients with Crohn's disease were analyzed. Ileal inflammation accounted for most of the explained variance of the ileal and colonic mucosa-associated microbiota. Samples obtained from 97 patients who were in surgically induced remission at first postoperative colonoscopy who went on to develop endoscopic recurrence at second colonoscopy showed lower diversity and microbial deviations when compared with patients who remained in endoscopic remission. Depletion of genus Anaerostipes and increase of several genera from class Gammaproteobacteria at the 3 biopsy sites increase the risk of further recurrence. Gut microbiome was able to predict future recurrence better than clinical features. CONCLUSIONS Ileal and colonic mucosa-associated microbiome deviations precede development of new-onset ileal inflammation after surgically induced remission and show good predictive performance for future recurrence. These findings suggest that targeted microbial modulation is a plausible modality to prevent postoperative Crohn's disease recurrence.
Collapse
Affiliation(s)
- Cristian Hernández-Rocha
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica of Chile, Santiago, Chile
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Krzysztof Borowski
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Joanne M Stempak
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ksenija Sabic
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kyle Gettler
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher Tastad
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Colleen Chasteau
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ujunwa Korie
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mary Hanna
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Abdul Khan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Emebet Mengesha
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Alain Bitton
- Division of Gastroenterology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Marc B Schwartz
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Arthur Barrie
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lisa W Datta
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Lazarev
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven R Brant
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School and the Crohn's and Colitis Center of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Department of Genetics and The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - John D Rioux
- Research Centre, Montreal Heart Institute, Montréal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Richard H Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania
| | - L Phil Schumm
- Biostatistics Laboratory & Research Computing Group, Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Judy H Cho
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2024:10.1007/s10620-024-08523-5. [PMID: 38963463 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Liu Y, Fachrul M, Inouye M, Méric G. Harnessing human microbiomes for disease prediction. Trends Microbiol 2024; 32:707-719. [PMID: 38246848 DOI: 10.1016/j.tim.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The human microbiome has been increasingly recognized as having potential use for disease prediction. Predicting the risk, progression, and severity of diseases holds promise to transform clinical practice, empower patient decisions, and reduce the burden of various common diseases, as has been demonstrated for cardiovascular disease or breast cancer. Combining multiple modifiable and non-modifiable risk factors, including high-dimensional genomic data, has been traditionally favored, but few studies have incorporated the human microbiome into models for predicting the prospective risk of disease. Here, we review research into the use of the human microbiome for disease prediction with a particular focus on prospective studies as well as the modulation and engineering of the microbiome as a therapeutic strategy.
Collapse
Affiliation(s)
- Yang Liu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muhamad Fachrul
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Human Genomics and Evolution Unit, St Vincent's Institute of Medical Research, Victoria, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; British Heart Foundation Cambridge Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Medical Science, Molecular Epidemiology, Uppsala University, Uppsala, Sweden; Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
43
|
Montrose JA, Kurada S, Fischer M. Current and future microbiome-based therapies in inflammatory bowel disease. Curr Opin Gastroenterol 2024; 40:258-267. [PMID: 38841848 DOI: 10.1097/mog.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW The role of the microbiome and dysbiosis is increasingly recognized in the pathogenesis of inflammatory bowel disease (IBD). Intestinal microbiota transplant (IMT), previously termed fecal microbiota transplant has demonstrated efficacy in restoring a healthy microbiome and promoting gut health in recurrent Clostridioides difficile infection. Several randomized trials (RCTs) highlighted IMT's potential in treating ulcerative colitis, while smaller studies reported on its application in managing Crohn's disease and pouchitis. RECENT FINDINGS This review delves into the current understanding of dysbiosis in IBD, highlighting the distinctions in the microbiota of patients with IBD compared to healthy controls. It explores the mechanisms by which IMT can restore a healthy microbiome and provides a focused analysis of recent RCTs using IMT for inducing and maintaining remission in IBD. Lastly, we discuss the current knowledge gaps that limit its widespread use. SUMMARY The body of evidence supporting the use of IMT in IBD is growing. The lack of a standardized protocol impedes its application beyond clinical trials. Further research is needed to identify patient profile and disease phenotypes that benefit from IMT, to delineate key donor characteristics, optimize the delivery route, dosage, and frequency.
Collapse
Affiliation(s)
| | - Satya Kurada
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Monika Fischer
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
44
|
El-Sayed A, Kapila D, Taha RSI, El-Sayed S, Mahen MRA, Taha R, Alrubaiy L. The Role of the Gut Microbiome in Inflammatory Bowel Disease: The Middle East Perspective. J Pers Med 2024; 14:652. [PMID: 38929872 PMCID: PMC11204866 DOI: 10.3390/jpm14060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The gut microbiome is of paramount importance in preserving internal balance in the gastrointestinal tract; therefore, disruptions in its regulation have been linked to the development of inflammatory bowel disease (IBD). This article explores the intricate details of the gastrointestinal microbiome as it pertains to inflammatory bowel disease (IBD), with an emphasis on the Middle East. The study reviews the typical gut microbiome, modifications in inflammatory bowel disease (IBD), determinants impacting the gut microbiome of the Middle East, and prospective therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed El-Sayed
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Diya Kapila
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Rama Sami Issa Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | | | - Mohd Rafiw Ahmed Mahen
- Department of Medicine, King’s College Hospital London, Dubai P.O. Box 340901, United Arab Emirates;
| | - Roa’a Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | - Laith Alrubaiy
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
45
|
Ananthakrishnan AN, Gerasimidis K, Ho SM, Mayer E, Pollock J, Soni S, Wu GD, Benyacoub J, Ali B, Favreau A, Smith DE, Oh JE, Heller C, Hurtado-Lorenzo A, Moss A, Croitoru K. Challenges in IBD Research 2024: Environmental Triggers. Inflamm Bowel Dis 2024; 30:S19-S29. [PMID: 38778624 DOI: 10.1093/ibd/izae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Environmental factors play an important role in inflammatory bowel diseases (IBD; Crohn's disease, [CD], ulcerative colitis [UC]). As part of the Crohn's & Colitis Challenges 2024 agenda, the Environmental Triggers workgroup summarized the progress made in the field of environmental impact on IBD since the last Challenges cycle in this document. The workgroup identified 4 unmet gaps in this content area pertaining to 4 broad categories: (1) Epidemiology; (2) Exposomics and environmental measurement; (3) Biologic mechanisms; and (4) Interventions and Implementation. Within epidemiology, the biggest unmet gaps were in the study of environmental factors in understudied populations including racial and ethnic minority groups and in populations witnessing rapid rise in disease incidence globally. The workgroup also identified a lack of robust knowledge of how environmental factors may impact difference stages of the disease and for different disease-related end points. Leveraging existing cohorts and targeted new prospective studies were felt to be an important need for the field. The workgroup identified the limitations of traditional questionnaire-based assessment of environmental exposure and placed high priority on the identification of measurable biomarkers that can quantify cross-sectional and longitudinal environmental exposure. This would, in turn, allow for identifying the biologic mechanisms of influence of environmental factors on IBD and understand the heterogeneity in effect of such influences. Finally, the working group emphasized the importance of generating high-quality data on effective environmental modification on an individual and societal level, and the importance of scalable and sustainable methods to deliver such changes.
Collapse
Affiliation(s)
- Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kostantinos Gerasimidis
- Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
| | - Shuk-Mei Ho
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Emeran Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience; Goodman-Luskin Microbiome Center; The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jennifer Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shefali Soni
- Crohn's Disease Program, The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | - Gary D Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Basmah Ali
- Crohn's & Colitis Foundation, IBD Patient Representative, USA
| | - Alex Favreau
- Crohn's & Colitis Foundation, IBD Patient Representative, USA
| | | | - Ji-Eun Oh
- Research Department, Crohn's & Colitis Foundation, New York, NY, USA
| | - Caren Heller
- Research Department, Crohn's & Colitis Foundation, New York, NY, USA
| | | | - Alan Moss
- Research Department, Crohn's & Colitis Foundation, New York, NY, USA
| | - Ken Croitoru
- Division of Gastroenterology, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
46
|
Syed S, Boland BS, Bourke LT, Chen LA, Churchill L, Dobes A, Greene A, Heller C, Jayson C, Kostiuk B, Moss A, Najdawi F, Plung L, Rioux JD, Rosen MJ, Torres J, Zulqarnain F, Satsangi J. Challenges in IBD Research 2024: Precision Medicine. Inflamm Bowel Dis 2024; 30:S39-S54. [PMID: 38778628 DOI: 10.1093/ibd/izae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Precision medicine is part of 5 focus areas of the Challenges in IBD Research 2024 research document, which also includes preclinical human IBD mechanisms, environmental triggers, novel technologies, and pragmatic clinical research. Building on Challenges in IBD Research 2019, the current Challenges aims to provide a comprehensive overview of current gaps in inflammatory bowel diseases (IBDs) research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in interception, remission, and restoration for these diseases. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders, and represents a valuable resource for patient-centric research prioritization. In particular, the precision medicine section is focused on the main research gaps in elucidating how to bring the best care to the individual patient in IBD. Research gaps were identified in biomarker discovery and validation for predicting disease progression and choosing the most appropriate treatment for each patient. Other gaps were identified in making the best use of existing patient biosamples and clinical data, developing new technologies to analyze large datasets, and overcoming regulatory and payer hurdles to enable clinical use of biomarkers. To address these gaps, the Workgroup suggests focusing on thoroughly validating existing candidate biomarkers, using best-in-class data generation and analysis tools, and establishing cross-disciplinary teams to tackle regulatory hurdles as early as possible. Altogether, the precision medicine group recognizes the importance of bringing basic scientific biomarker discovery and translating it into the clinic to help improve the lives of IBD patients.
Collapse
Affiliation(s)
- Sana Syed
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - Brigid S Boland
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lauren T Bourke
- Precision Medicine Drug Development, Early Respiratory and Immunology, AstraZeneca, Boston, MA, USA
| | - Lea Ann Chen
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Laurie Churchill
- Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | | | - Adam Greene
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | | | | | | | - Alan Moss
- Crohn's & Colitis Foundation, New York, NY, USA
| | | | - Lori Plung
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - John D Rioux
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Michael J Rosen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Hospital da Luz, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Fatima Zulqarnain
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Jack Satsangi
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Stange EF. Dysbiosis in inflammatory bowel diseases: egg, not chicken. Front Med (Lausanne) 2024; 11:1395861. [PMID: 38846142 PMCID: PMC11153678 DOI: 10.3389/fmed.2024.1395861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
There is agreement that inflammatory bowel diseases are, both in terms of species composition and function, associated with an altered intestinal microbiome. This is usually described by the term "dysbiosis," but this is a vague definition lacking quantitative precision. In this brief narrative review, the evidence concerning the primary or secondary role of this dysbiotic state is critically evaluated. Among others, the following facts argue against a primary etiological impact: 1) There is no specific dysbiotic microbiome in IBD, 2) the presence or absence of mucosal inflammation has a profound impact on the composition of the microbiome, 3) dysbiosis is not specific for IBD but linked to many unrelated diseases, 4) antibiotics, probiotics, and microbiome transfer have a very limited therapeutic effect, 5) the microbiome in concordant twins is similar to disease-discordant twins, and 6) the microbiome in relatives of IBD patients later developing IBD is altered, but these individuals already display subclinical inflammation.
Collapse
Affiliation(s)
- Eduard F. Stange
- Klinik für Innere Medizin I, Universitätsklinik Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Ciorba MA, Konnikova L, Hirota SA, Lucchetta EM, Turner JR, Slavin A, Johnson K, Condray CD, Hong S, Cressall BK, Pizarro TT, Hurtado-Lorenzo A, Heller CA, Moss AC, Swantek JL, Garrett WS. Challenges in IBD Research 2024: Preclinical Human IBD Mechanisms. Inflamm Bowel Dis 2024; 30:S5-S18. [PMID: 38778627 PMCID: PMC11491665 DOI: 10.1093/ibd/izae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Preclinical human inflammatory bowel disease (IBD) mechanisms is one of 5 focus areas of the Challenges in IBD Research 2024 document, which also includes environmental triggers, novel technologies, precision medicine, and pragmatic clinical research. Herein, we provide a comprehensive overview of current gaps in inflammatory bowel diseases research that relate to preclinical research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in IBD interception, remission, and restoration. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders and represents a valuable resource for patient-centric research prioritization. This preclinical human IBD mechanisms section identifies major research gaps whose investigation will elucidate pathways and mechanisms that can be targeted to address unmet medical needs in IBD. Research gaps were identified in the following areas: genetics, risk alleles, and epigenetics; the microbiome; cell states and interactions; barrier function; IBD complications (specifically fibrosis and stricturing); and extraintestinal manifestations. To address these gaps, we share specific opportunities for investigation for basic and translational scientists and identify priority actions.
Collapse
Affiliation(s)
- Matthew A Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Liza Konnikova
- Departments of Pediatrics, Immunobiology, and Obstetric, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Dept. of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Elena M Lucchetta
- The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | - Jerrold R Turner
- Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Cass D Condray
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Sungmo Hong
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Brandon K Cressall
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Caren A Heller
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | - Alan C Moss
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | | | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Kymera Therapeutics, Watertown, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Davoutis E, Gkiafi Z, Lykoudis PM. Bringing gut microbiota into the spotlight of clinical research and medical practice. World J Clin Cases 2024; 12:2293-2300. [PMID: 38765739 PMCID: PMC11099419 DOI: 10.12998/wjcc.v12.i14.2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
Despite the increasing scientific interest and expanding role of gut microbiota (GM) in human health, it is rarely reported in case reports and deployed in clinical practice. Proteins and metabolites produced by microbiota contribute to immune system development, energy homeostasis and digestion. Exo- and endogenous factors can alter its composition. Disturbance of microbiota, also known as dysbiosis, is associated with various pathological conditions. Specific bacterial taxa and related metabolites are involved in disease pathogenesis and therefore can serve as a diagnostic tool. GM could also be a useful prognostic factor by predicting future disease onset and preventing hospital-associated infections. Additionally, it can influence response to treatments, including those for cancers, by altering drug bioavailability. A thorough understanding of its function has permitted significant development in therapeutics, such as probiotics and fecal transplantation. Hence, GM should be considered as a ground-breaking biological parameter, and it is advisable to be investigated and reported in literature in a more consistent and systematic way.
Collapse
Affiliation(s)
- Efstathia Davoutis
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Zoi Gkiafi
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagis M Lykoudis
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
50
|
Bethlehem L, Estevinho MM, Grinspan A, Magro F, Faith JJ, Colombel JF. Microbiota therapeutics for inflammatory bowel disease: the way forward. Lancet Gastroenterol Hepatol 2024; 9:476-486. [PMID: 38604201 DOI: 10.1016/s2468-1253(23)00441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 04/13/2024]
Abstract
Microbiota therapeutics that transplant faecal material from healthy donors to people with mild-to-moderate ulcerative colitis have shown the potential to induce remission in about 30% of participants in small, phase 2 clinical trials. Despite this substantial achievement, the field needs to leverage the insights gained from these trials and progress towards phase 3 clinical trials and drug approval, while identifying the distinct clinical niche for this new therapeutic modality within inflammatory bowel disease (IBD) therapeutics. We describe the lessons that can be learned from past studies of microbiota therapeutics, from full spectrum donor stool to defined products manufactured in vitro. We explore the actionable insights these lessons provide on the design of near-term studies and future trajectories for the integration of microbiota therapeutics in the treatment of IBD. If successful, microbiota therapeutics will provide a powerful orthogonal approach (complementing or in combination with existing immunomodulatory drugs) to raise the therapeutic ceiling for the many non-responders and partial responders within the IBD patient population.
Collapse
Affiliation(s)
- Lukas Bethlehem
- Department of Genomics and Genetic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Manuela Estevinho
- Department of Gastroenterology, Vila Nova de Gaia Espinho Hospital Center, Vila Nova de Gaia, Portugal; Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ari Grinspan
- Dr Henry D Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS@RISE, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Gastroenterology, São João Hospital Center, Porto, Portugal
| | - Jeremiah J Faith
- Department of Genomics and Genetic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Dr Henry D Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|