1
|
Surya A, Bolton BM, Rothe R, Mejia-Trujillo R, Zhao Q, Leonita A, Liu Y, Rangan R, Gorusu Y, Nguyen P, Cenik C, Cenik ES. Cytosolic Ribosomal Protein Haploinsufficiency affects Mitochondrial Morphology and Respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589775. [PMID: 38659761 PMCID: PMC11042305 DOI: 10.1101/2024.04.16.589775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The interplay between ribosomal protein composition and mitochondrial function is essential for sustaining energy homeostasis. Precise stoichiometric production of ribosomal proteins is crucial to maximize protein synthesis efficiency while reducing the energy costs to the cell. However, the impact of this balance on mitochondrial ATP generation, morphology and function remains unclear. Particularly, the loss of a single copy ribosomal protein gene is observed in Mendelian disorders like Diamond Blackfan Anemia and is common in somatic tumors, yet the implications of this imbalance on mitochondrial function and energy dynamics are still unclear. In this study, we investigated the impact of haploinsufficiency for four ribosomal protein genes implicated in ribosomopathy disorders (rps-10, rpl-5, rpl-33, rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells. Our findings uncover significant, albeit variably penetrant, mitochondrial morphological differences across these mutants, alongside an upregulation of glutathione transferases, and SKN-1 dependent increase in oxidative stress resistance, indicative of increased ROS production. Specifically, loss of a single copy of rps-10 in C. elegans led to decreased mitochondrial activity, characterized by lower energy levels and reduced oxygen consumption. A similar reduction in mitochondrial activity and energy levels was observed in human leukemia cells with a 50% reduction in RPS10 transcript levels. Importantly, we also observed alterations in the translation efficiency of nuclear and mitochondrial electron transport chain components in response to reductions in ribosomal protein genes' expression in both C. elegans and human cells. This suggests a conserved mechanism whereby the synthesis of components vital for mitochondrial function are adjusted in the face of compromised ribosomal machinery. Finally, mitochondrial membrane and cytosolic ribosomal components exhibited significant covariation at the RNA and translation efficiency level in lymphoblastoid cells across a diverse group of individuals, emphasizing the interplay between the protein synthesis machinery and mitochondrial energy production. By uncovering the impact of ribosomal protein haploinsufficiency on the translation efficiency of electron transport chain components, mitochondrial physiology, and the adaptive stress responses, we provide evidence for an evolutionarily conserved strategy to safeguard cellular functionality under genetic stress.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Blythe Marie Bolton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Reed Rothe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Raquel Mejia-Trujillo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Amanda Leonita
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Rekha Rangan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yasash Gorusu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Pamela Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Prior D, Sowa A, Pashankar F. Normal Erythroid Precursors in Diamond-Blackfan Anemia: A Rare Case Highlighting Challenges That Remain. J Pediatr Hematol Oncol 2024; 46:e195-e198. [PMID: 38277626 DOI: 10.1097/mph.0000000000002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Diamond-Blackfan anemia (DBA) is a rare, inherited bone marrow failure syndrome that is both genetically and clinically heterogeneous. The diagnosis of DBA has changed over time, with advancements in our understanding of the varied genetic etiologies and phenotypic manifestations of the disease. We present a rare case of a patient who never developed erythroid precursor hypoplasia, adding to the understanding of atypical manifestations of DBA. Our patient had spontaneous remission followed by subsequent relapse, both atypical and poorly understood processes in DBA. We highlight important considerations in diagnostically challenging cases and review major outstanding questions surrounding DBA.
Collapse
Affiliation(s)
- Daniel Prior
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | | | | |
Collapse
|
3
|
Kirschen GW, Blakemore K, Al-Kouatly HB, Fridkis G, Baschat A, Gearhart J, Jelin AC. The genetic etiologies of bilateral renal agenesis. Prenat Diagn 2024; 44:205-221. [PMID: 38180355 DOI: 10.1002/pd.6516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE The goal of this study was to review and analyze the medical literature for cases of prenatal and/or postnatally diagnosed bilateral renal agenesis (BRA) and create a comprehensive summary of the genetic etiologies known to be associated with this condition. METHODS A literature search was conducted as a scoping review employing Online Mendeliain Inheritance in Man, PubMed, and Cochrane to identify cases of BRA with known underlying genetic (chromosomal vs. single gene) etiologies and those described in syndromes without any known genetic etiology. The cases were further categorized as isolated versus non-isolated, describing additional findings reported prenatally, postnatally, and postmortem. Inheritance pattern was also documented when appropriate in addition to the reported timing of diagnosis and sex. RESULTS We identified six cytogenetic abnormalities and 21 genes responsible for 20 single gene disorders associated with BRA. Five genes have been reported to associate with BRA without other renal anomalies; sixteen others associate with both BRA as well as unilateral renal agenesis. Six clinically recognized syndromes/associations were identified with an unknown underlying genetic etiology. Genetic etiologies of BRA are often phenotypically expressed as other urogenital anomalies as well as complex multi-system syndromes. CONCLUSION Multiple genetic etiologies of BRA have been described, including cytogenetic abnormalities and monogenic syndromes. The current era of the utilization of exome and genome-wide sequencing is likely to significantly expand our understanding of the underlying genetic architecture of BRA.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Karin Blakemore
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Jefferson Health, Philadelphia, New York, USA
| | - Gila Fridkis
- Physician Affiliate Group of New York, P.C. (PAGNY), Department of Pediatrics, Metropolitan Hospital Center, New York, New York, USA
| | - Ahmet Baschat
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - John Gearhart
- Department of Urology, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Angie C Jelin
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Iskander D, Roy NBA, Payne E, Drasar E, Hennessy K, Harrington Y, Christodoulidou C, Karadimitris A, Batkin L, de la Fuente J. Diamond-Blackfan anemia in adults: In pursuit of a common approach for a rare disease. Blood Rev 2023; 61:101097. [PMID: 37263874 DOI: 10.1016/j.blre.2023.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/19/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome, usually caused by loss-of function variants in genes encoding ribosomal proteins. The hallmarks of DBA are anemia, congenital anomalies and cancer predisposition. Although DBA usually presents in childhood, the prevalence in later life is increasing due to an expanding repertoire of implicated genes, improvements in genetic diagnosis and increasing life expectancy. Adult patients uniquely suffer the manifestations of end-organ damage caused by the disease and its treatment, and transition to adulthood poses specific issues in disease management. To standardize and optimize care for this rare disease, in this review we provide updated guidance on the diagnosis and management of DBA, with a specific focus on older adolescents and adults. Recommendations are based upon published literature and our pooled clinical experience from three centres in the United Kingdom (U·K.). Uniquely we have also solicited and incorporated the views of affected families, represented by the independent patient organization, DBA U.K.
Collapse
Affiliation(s)
- Deena Iskander
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK.
| | - Noémi B A Roy
- Oxford University Hospitals NHS Foundation Trust and University of Oxford, OX3 9DU, UK
| | - Elspeth Payne
- UCL Cancer Institute, Dept of Hematology, London WC1 E6BT, UK; Dept of Hematology, University College Hospital London, NW1 2BU, UK
| | - Emma Drasar
- Whittington Health NHS Trust and University College Hospital London, N19 5NF, UK
| | - Kelly Hennessy
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Yvonne Harrington
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Chrysi Christodoulidou
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK
| | - Leisa Batkin
- DBA, UK 71-73 Main Street, Palterton, Chesterfield, S44 6UR, UK
| | - Josu de la Fuente
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK.
| |
Collapse
|
5
|
Al-Mulla A, Austin F, Helou M. Utility of Whole Exome Sequencing in the Early Diagnosis of Atypical Diamond-Blackfan Anemia. J Pediatr Hematol Oncol 2023; 45:159-161. [PMID: 36706306 DOI: 10.1097/mph.0000000000002616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/07/2022] [Indexed: 01/28/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome, with a hallmark of erythroblastopenia and congenital anomalies. DBA demonstrates genetic heterogeneity and variable phenotypic expression. We present two cases of atypical DBA harboring de novo mutations in the RPS-19 gene with c.49 G>C and c.357-1G>T allelic variants. The two cases presented confounding critical illness demonstrated by multiorgan failure, aplastic crisis, with case 2 meeting the criteria for hemophagocytic lymphohistiocytosis. We highlight the utility of genetic testing in the early diagnosis of DBA and the associated complexities and burden of disease in caring for DBA patients.
Collapse
Affiliation(s)
- Abdulla Al-Mulla
- Department of Hematology and Oncology, Children's Hospital of Richmond at VCU, Richmond, VA
| | | | | |
Collapse
|
6
|
Bastos GC, Tolezano GC, Krepischi ACV. Rare CNVs and Known Genes Linked to Macrocephaly: Review of Genomic Loci and Promising Candidate Genes. Genes (Basel) 2022; 13:genes13122285. [PMID: 36553552 PMCID: PMC9778424 DOI: 10.3390/genes13122285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Macrocephaly frequently occurs in single-gene disorders affecting the PI3K-AKT-MTOR pathway; however, epigenetic mutations, mosaicism, and copy number variations (CNVs) are emerging relevant causative factors, revealing a higher genetic heterogeneity than previously expected. The aim of this study was to investigate the role of rare CNVs in patients with macrocephaly and review genomic loci and known genes. We retrieved from the DECIPHER database de novo <500 kb CNVs reported on patients with macrocephaly; in four cases, a candidate gene for macrocephaly could be pinpointed: a known microcephaly gene-TRAPPC9, and three genes based on their functional roles-RALGAPB, RBMS3, and ZDHHC14. From the literature review, 28 pathogenic CNV genomic loci and over 300 known genes linked to macrocephaly were gathered. Among the genomic regions, 17 CNV loci (~61%) exhibited mirror phenotypes, that is, deletions and duplications having opposite effects on head size. Identifying structural variants affecting head size can be a preeminent source of information about pathways underlying brain development. In this study, we reviewed these genes and recurrent CNV loci associated with macrocephaly, as well as suggested novel potential candidate genes deserving further studies to endorse their involvement with this phenotype.
Collapse
|
7
|
Brodie SA, Khincha PP, Giri N, Bouk AJ, Steinberg M, Dai J, Jessop L, Donovan FX, Chandrasekharappa SC, de Andrade KC, Maric I, Ellis SR, Mirabello L, Alter BP, Savage SA. Pathogenic germline IKZF1 variant alters hematopoietic gene expression profiles. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006015. [PMID: 34162668 PMCID: PMC8327879 DOI: 10.1101/mcs.a006015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/28/2021] [Indexed: 12/03/2022] Open
Abstract
IKZF1 encodes Ikaros, a zinc finger–containing transcription factor crucial to the development of the hematopoietic system. Germline pathogenic variants in IKZF1 have been reported in patients with acute lymphocytic leukemia and immunodeficiency syndromes. Diamond–Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome characterized by erythroid hypoplasia, associated with a spectrum of congenital anomalies and an elevated risk of certain cancers. DBA is usually caused by heterozygous pathogenic variants in genes that function in ribosomal biogenesis; however, in many cases the genetic etiology is unknown. We identified a germline IKZF1 variant, rs757907717 C > T, in identical twins with DBA-like features and autoimmune gastrointestinal disease. rs757907717 C > T results in a p.R381C amino acid change in the IKZF1 Ik-x isoform (p.R423C on isoform Ik-1), which we show is associated with altered global gene expression and perturbation of transcriptional networks involved in hematopoietic system development. These data suggest that this missense substitution caused a DBA-like syndrome in this family because of alterations in hematopoiesis, including dysregulation of networks essential for normal erythropoiesis and the immune system.
Collapse
Affiliation(s)
- Seth A Brodie
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Aaron J Bouk
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Mia Steinberg
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Jieqiong Dai
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Lea Jessop
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kelvin C de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Irina Maric
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Steven R Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Panici B, Nakajima H, Carlston CM, Ozadam H, Cenik C, Cenik ES. Loss of coordinated expression between ribosomal and mitochondrial genes revealed by comprehensive characterization of a large family with a rare Mendelian disorder. Genomics 2021; 113:1895-1905. [PMID: 33862179 PMCID: PMC8266734 DOI: 10.1016/j.ygeno.2021.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Non-canonical intronic variants are a poorly characterized yet highly prevalent class of alterations associated with Mendelian disorders. Here, we report the first RNA expression and splicing analysis from a family whose members carry a non-canonical splice variant in an intron of RPL11 (c.396 +3A>G). This mutation is causative for Diamond Blackfan Anemia (DBA) in this family despite incomplete penetrance and variable expressivity. Our analyses revealed a complex pattern of disruptions with many novel junctions of RPL11. These include an RPL11 transcript that is translated with a late stop codon in the 3' untranslated region (3'UTR) of the main isoform. We observed that RPL11 transcript abundance is comparable among carriers regardless of symptom severity. Interestingly, both the small and large ribosomal subunit transcripts were significantly overexpressed in individuals with a history of anemia in addition to congenital abnormalities. Finally, we discovered that coordinated expression between mitochondrial components and RPL11 was lost in all carriers, which may lead to variable expressivity. Overall, this study highlights the importance of RNA splicing and expression analyses in families for molecular characterization of Mendelian diseases.
Collapse
Affiliation(s)
- Brendan Panici
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| | - Hosei Nakajima
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA
| | | | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| |
Collapse
|
9
|
Gianferante MD, Wlodarski MW, Atsidaftos E, Da Costa L, Delaporta P, Farrar JE, Goldman FD, Hussain M, Kattamis A, Leblanc T, Lipton JM, Niemeyer CM, Pospisilova D, Quarello P, Ramenghi U, Sankaran VG, Vlachos A, Volejnikova J, Alter BP, Savage SA, Giri N. Genotype-phenotype association and variant characterization in Diamond-Blackfan anemia caused by pathogenic variants in RPL35A. Haematologica 2021; 106:1303-1310. [PMID: 32241839 PMCID: PMC8094096 DOI: 10.3324/haematol.2020.246629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Indexed: 01/02/2023] Open
Abstract
Diamond Blackfan anemia (DBA) is predominantly an autosomal dominant inherited red cell aplasia primarily caused by pathogenic germline variants in ribosomal protein genes. DBA due to pathogenic RPL35A variants has been associated with large 3q29 deletions and phenotypes not common in DBA. We conducted a multi-institutional genotypephenotype study of 45 patients with DBA associated with pathogenic RPL35A germline variants and curated the variant data on 21 additional cases from the literature. Genotype-phenotype analyses were conducted comparing patients with large deletions versus all other pathogenic variants in RPL35A. Twenty-two of the 45 cases had large deletions in RPL35A. After adjusting for multiple tests, a statistically significant association was observed between patients with a large deletion and steroid-resistant anemia, neutropenia, craniofacial abnormalities, chronic gastrointestinal problems, and intellectual disabilities (P<0.01) compared with all other pathogenic variants. Non-large deletion pathogenic variants were spread across RPL35Awith no apparent hot spot and 56% of the individual family variants were observed more than once. In this, the largest known study of DBA patients with pathogenic RPL35A variants, we determined that patients with large deletions have a more severe phenotype that is clinically different from those with non-large deletion variants. Genes of interest also deleted in the 3q29 region that could be associated with some of these phenotypic features include LMLN and IQCG. Management of DBA due to large RPL35A deletions may be challenging due to complex problems and require comprehensive assessments by multiple specialists including immunological, gastrointestinal, and developmental evaluations to provide optimal multidisciplinary care.
Collapse
Affiliation(s)
- Matthew D Gianferante
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | | | - Evangelia Atsidaftos
- Feinstein Institute of Medical Research, Cohen Children's Medical Center, NY, USA
| | - Lydie Da Costa
- Service Hematologie Biologique, Hopital Robert-Debré, Université de Paris, France
| | - Polyxeni Delaporta
- First Department of Pediatrics, National and Kapodistrian University of Athens, Greece
| | - Jason E Farrar
- Arkansas Children Research Institute, University of Arkansas, Little Rock, USA
| | | | - Maryam Hussain
- Feinstein Institute of Medical Research, Cohen Children's Medical Center, NY, USA
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Greece
| | - Thierry Leblanc
- Service Hematologie Biologique, Hopital Robert-Debré, Université de Paris, France
| | - Jeffrey M Lipton
- Feinstein Institute of Medical Research, Cohen Children's Medical Center, NY, USA
| | | | | | | | - Ugo Ramenghi
- Pediatric and Public Health Science, University of Torino, Torino, Italy
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adrianna Vlachos
- Feinstein Institute of Medical Research, Cohen Children's Medical Center, NY, USA
| | - Jana Volejnikova
- Palacky University and University Hospital, Olomouc, Czech Republic
| | - Blanche P Alter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| |
Collapse
|
10
|
Diamond-Blackfan Anemia: 2 Cases With a Twist. J Pediatr Hematol Oncol 2021; 43:e539-e542. [PMID: 32118814 DOI: 10.1097/mph.0000000000001767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Diamond-Blackfan anemia is a rare inherited bone marrow failure disease. Typical findings include hypoplastic macrocytic anemia, congenital anomalies, and a predisposition to cancer. The molecular basis of the disease is heterozygous mutations of ribosomal proteins without a strict correlation between genotype and phenotype. OBSERVATION We present 2 cases of Diamond-Blackfan anemia diagnosed during infancy with interesting clinical, molecular, and family characteristics. CONCLUSIONS A thorough evaluation of all family members is imperative to identify possible 'silent carriers' who are those with no physical stigmata and minor or absent hematologic manifestations. New mutations could add in the map of the disease.
Collapse
|
11
|
Akram T, Fatima A, Klar J, Hoeber J, Zakaria M, Tariq M, Baig SM, Schuster J, Dahl N. Aberrant splicing due to a novel RPS7 variant causes Diamond-Blackfan Anemia associated with spontaneous remission and meningocele. Int J Hematol 2020; 112:894-899. [PMID: 32772263 DOI: 10.1007/s12185-020-02950-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Diamond-Blackfan Anemia (DBA) is a congenital pure red cell aplasia caused by heterozygous variants in ribosomal protein genes. The hematological features associated with DBA are highly variable and non-hematological abnormalities are common. We report herein on an affected mother and her daughter presenting with transfusion-dependent anemia. The mother showed mild physical abnormalities and entered spontaneous remission at age 13 years. Her daughter was born with occipital meningocele. Exome sequencing of DNA from the mother revealed a heterozygous novel splice site variant (NM_001011.4:c.508-3T > G) in the Ribosomal Protein S7 gene (RPS7) inherited by the daughter. Functional analysis of the RPS7 variant expressed from a mini-gene construct revealed that the exon 7 acceptor splice site was replaced by a cryptic splice resulting in a transcript missing 64 bp of exon 7 (p.Val170Serfs*8). Our study confirms a pathogenic effect of a novel RPS7 variant in DBA associated with spontaneous remission in the mother and meningocele in her daughter, thus adding to the genotype-phenotype correlations in DBA.
Collapse
Affiliation(s)
- Talia Akram
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE-C)-PIEAS, Faisalabad, Pakistan.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, BMC Box 815, Uppsala, Sweden
| | - Ambrin Fatima
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, BMC Box 815, Uppsala, Sweden
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, BMC Box 815, Uppsala, Sweden
| | - Jan Hoeber
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, BMC Box 815, Uppsala, Sweden
| | - Muhammad Zakaria
- Center for Human Genetics, Hazara University, Mansehra, Pakistan
| | - Muhammad Tariq
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE-C)-PIEAS, Faisalabad, Pakistan
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE-C)-PIEAS, Faisalabad, Pakistan
| | - Jens Schuster
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, BMC Box 815, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, BMC Box 815, Uppsala, Sweden.
| |
Collapse
|
12
|
Jahan D, Al Hasan MM, Haque M. Diamond-Blackfan anemia with mutation in RPS19: A case report and an overview of published pieces of literature. J Pharm Bioallied Sci 2020; 12:163-170. [PMID: 32742115 PMCID: PMC7373105 DOI: 10.4103/jpbs.jpbs_234_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/04/2022] Open
Abstract
Introduction Diamond-Blackfan anemia (DBA), one of a rare group of inherited bone marrow failure syndromes, is characterized by red cell failure, the presence of congenital anomalies, and cancer predisposition. It can be caused by mutations in the RPS19 gene (25% of the cases). Methods This case report describes a 10-month-old boy who presented with 2 months' history of gradually increasing weakness and pallor. Results The patient was diagnosed as a case of DBA based on peripheral blood finding, bone marrow aspiration with trephine biopsy reports, and genetic mutation analysis of the RPS19 gene. His father refused hematopoietic stem cell transplantation for financial constraints. Patient received prednisolone therapy with oral folic acid and iron supplements. Conclusion Hemoglobin raised from 6.7 to 9.8g/dL after 1 month of therapeutic intervention.
Collapse
Affiliation(s)
- Dilshad Jahan
- Department of Hematology, Apollo Hospitals, Dhaka, Bangladesh
| | | | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Lauhasurayotin S, Cuvelier GD, Klaassen RJ, Fernandez CV, Pastore YD, Abish S, Rayar M, Steele M, Jardine L, Breakey VR, Brossard J, Sinha R, Silva M, Goodyear L, Lipton JH, Michon B, Corriveau-Bourque C, Sung L, Shabanova I, Li H, Zlateska B, Dhanraj S, Cada M, Scherer SW, Dror Y. Reanalysing genomic data by normalized coverage values uncovers CNVs in bone marrow failure gene panels. NPJ Genom Med 2019; 4:30. [PMID: 31839986 PMCID: PMC6901453 DOI: 10.1038/s41525-019-0104-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/04/2019] [Indexed: 11/09/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are genetically heterogeneous disorders with cytopenia. Many IBMFSs also feature physical malformations and an increased risk of cancer. Point mutations can be identified in about half of patients. Copy number variation (CNVs) have been reported; however, the frequency and spectrum of CNVs are unknown. Unfortunately, current genome-wide methods have major limitations since they may miss small CNVs or may have low sensitivity due to low read depths. Herein, we aimed to determine whether reanalysis of NGS panel data by normalized coverage value could identify CNVs and characterize them. To address this aim, DNA from IBMFS patients was analyzed by a NGS panel assay of known IBMFS genes. After analysis for point mutations, heterozygous and homozygous CNVs were searched by normalized read coverage ratios and specific thresholds. Of the 258 tested patients, 91 were found to have pathogenic point variants. NGS sample data from 165 patients without pathogenic point mutations were re-analyzed for CNVs; 10 patients were found to have deletions. Diamond Blackfan anemia genes most commonly exhibited heterozygous deletions, and included RPS19, RPL11, and RPL5. A diagnosis of GATA2-related disorder was made in a patient with myelodysplastic syndrome who was found to have a heterozygous GATA2 deletion. Importantly, homozygous FANCA deletion were detected in a patient who could not be previously assigned a specific syndromic diagnosis. Lastly, we identified compound heterozygousity for deletions and pathogenic point variants in RBM8A and PARN genes. All deletions were validated by orthogonal methods. We conclude that careful analysis of normalized coverage values can detect CNVs in NGS panels and should be considered as a standard practice prior to do further investigations.
Collapse
Affiliation(s)
- Supanun Lauhasurayotin
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada.,2Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON Canada
| | - Geoff D Cuvelier
- 3Pediatric Hematology-Oncology-Bone Marrow Transplantation, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB Canada
| | - Robert J Klaassen
- 4Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON Canada
| | | | | | - Sharon Abish
- 7Pediatric Hematology Oncology, Montreal Children's Hospital, Montreal, QC Canada
| | - Meera Rayar
- 8Division of Hematology/Oncology, UBC & B.C. Children's Hospital, Vancouver, BC Canada
| | | | - Lawrence Jardine
- 10Children's Hospital, London Health Sciences Centre, London, ON Canada
| | - Vicky R Breakey
- 11Department of Pediatrics, McMaster University, Hamilton, ON Canada
| | - Josee Brossard
- 12Centre hospitalier universitaire, Sherbrooke, QC Canada
| | - Roona Sinha
- 13Royal University Hospital, Saskatoon, SK Canada
| | | | - Lisa Goodyear
- 15Pediatric Hematology/Oncology, Janeway Child Health Centre, St. John's, NF Canada
| | - Jeffrey H Lipton
- 16Allogeneic Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON Canada
| | - Bruno Michon
- 17Centre Hospitalier Universitaire de Quebec, Sainte-Foy, QC Canada
| | | | - Lillian Sung
- 19Population Health Sciences, Research Institute, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON Canada
| | - Iren Shabanova
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada
| | - Hongbing Li
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada
| | - Bozana Zlateska
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada
| | - Santhosh Dhanraj
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada.,20Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Michaela Cada
- 2Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON Canada
| | - Stephen W Scherer
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada.,21McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Yigal Dror
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada.,2Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON Canada.,20Institute of Medical Science, University of Toronto, Toronto, ON Canada
| |
Collapse
|
14
|
Volejnikova J, Vojta P, Urbankova H, Mojzíkova R, Horvathova M, Hochova I, Cermak J, Blatny J, Sukova M, Bubanska E, Feketeova J, Prochazkova D, Horakova J, Hajduch M, Pospisilova D. Czech and Slovak Diamond-Blackfan Anemia (DBA) Registry update: Clinical data and novel causative genetic lesions. Blood Cells Mol Dis 2019; 81:102380. [PMID: 31855845 DOI: 10.1016/j.bcmd.2019.102380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/23/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital erythroid aplasia, underlied by haploinsufficient mutations in genes coding for ribosomal proteins (RP) in approximately 70% of cases. DBA is frequently associated with somatic malformations, endocrine dysfunction and with an increased predisposition to cancer. Here we present clinical and genetic characteristics of 62 patients from 52 families enrolled in the Czech and Slovak DBA Registry. Whole exome sequencing (WES) and array comparative genomic hybridization (aCGH) were employed to identify causative mutations in newly diagnosed patients and in cases with previously unrecognized molecular pathology. RP mutation detection rate was 81% (50/62 patients). This included 8 novel point mutations and 4 large deletions encompassing some of the RP genes. Malignant or predisposing condition developed in 8/62 patients (13%): myelodysplastic syndrome in 3 patients; breast cancer in 2 patients; colorectal cancer plus ocular tumor, diffuse large B-cell lymphoma and multiple myeloma each in one case. These patients exclusively harbored RPL5, RPL11 or RPS19 mutations. Array CGH is beneficial for detection of novel mutations in DBA due to its capacity to detect larger chromosomal aberrations. Despite the importance of genotype-phenotype correlation in DBA, phenotypic differences among family members harboring an identical mutation were observed.
Collapse
Affiliation(s)
- Jana Volejnikova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 77900 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| | - Petr Vojta
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| | - Helena Urbankova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 77900 Olomouc, Czech Republic
| | - Renata Mojzíkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77900 Olomouc, Czech Republic
| | - Monika Horvathova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77900 Olomouc, Czech Republic
| | - Ivana Hochova
- Department of Hematology, Second Faculty of Medicine, Charles University and University Hospital Motol Prague, V Uvalu 84, 15006 Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 12820 Prague, Czech Republic
| | - Jan Blatny
- Department of Pediatric Hematology, Masaryk University and University Hospital Brno, Jihlavská 20, 62500 Brno, Czech Republic
| | - Martina Sukova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol Prague, V Uvalu 84, 15006 Prague, Czech Republic
| | - Eva Bubanska
- Department of Pediatric Oncology and Hematology, Children's Faculty Hospital Banska Bystrica, Ludovit Svoboda Square 4, 97409 Banska Bystrica, Slovakia
| | - Jaroslava Feketeova
- Department of Pediatric Oncology and Hematology, Children Teaching Hospital Kosice, Trieda SNP 457/1, 04011 Kosice, Slovakia
| | - Daniela Prochazkova
- Department of Pediatrics, Masaryk Hospital Usti nad Labem, Socialni pece 3316/12A, 40113 Usti nad Labem, Czech Republic
| | - Julia Horakova
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Comenius University and University Hospital Bratislava, Limbova 1, 83340 Bratislava, Slovakia
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| | - Dagmar Pospisilova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 77900 Olomouc, Czech Republic.
| |
Collapse
|
15
|
Cenik ES, Meng X, Tang NH, Hall RN, Arribere JA, Cenik C, Jin Y, Fire A. Maternal Ribosomes Are Sufficient for Tissue Diversification during Embryonic Development in C. elegans. Dev Cell 2019; 48:811-826.e6. [PMID: 30799226 DOI: 10.1016/j.devcel.2019.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/06/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
Caenorhabditis elegans provides an amenable system to explore whether newly composed ribosomes are required to progress through development. Despite the complex pattern of tissues that are formed during embryonic development, we found that null homozygotes lacking any of the five different ribosomal proteins (RPs) can produce fully functional first-stage larvae, with similar developmental competence seen upon complete deletion of the multi-copy ribosomal RNA locus. These animals, relying on maternal but not zygotic contribution of ribosomal components, are capable of completing embryogenesis. In the absence of new ribosomal components, the resulting animals are arrested before progression from the first larval stage and fail in two assays for postembryonic plasticity of neuronal structure. Mosaic analyses of larvae that are a mixture of ribosome-competent and non-competent cells suggest a global regulatory mechanism in which ribosomal insufficiency in a subset of cells triggers organism-wide growth arrest.
Collapse
Affiliation(s)
- Elif Sarinay Cenik
- Department of Pathology, Stanford University Medical School, Stanford, CA, USA; Department of Molecular Biosciences, University of Texas Austin, Austin, TX, USA
| | - Xuefeng Meng
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Ngang Heok Tang
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | | | - Joshua A Arribere
- Department of MCD Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas Austin, Austin, TX, USA
| | - Yishi Jin
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Andrew Fire
- Department of Pathology, Stanford University Medical School, Stanford, CA, USA.
| |
Collapse
|
16
|
Lyu SJ, Ren WR, Zhu HL, Liu T. [The clinical characteristics and molecular pathogenesis of a variant Glanzmann's thrombasthenia-like pedigree]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:807-811. [PMID: 30369200 PMCID: PMC7348282 DOI: 10.3760/cma.j.issn.0253-2727.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Indexed: 02/05/2023]
Abstract
Objective: To review the clinical characteristics of a pedigree with inherited hemorrhagic disease to explore its molecular pathogenesis. Methods: The clinical data of the pedigree with inherited hemorrhagic disease were collected. After extracting DNA, next generation sequencing was utilized to detect the potential gene mutation. The changes of RASGRP2 transcript of this proband and his parents were detected using RT-PCR to compare with normal control. Results: The phenotype of the proband in this pedigree with inherited platelet dysfunction and bleeding disorder was similar to variant Glanzmann's thrombasthenia, the maximum aggregations of platelet in response to the physiological agonists including ADP, epinephrine and arachidonic acid were significantly lower, leading to severe spontaneous mucosal bleeding. Integrin αIIbβ3 gene mutation was not detected, but another gene mutation RASGRP2 IVS3-1 stood out. The mutation was homozygous in the proband and heterozygosis in both of his parents. Two transcript types were detected in the proband, without transcripts coding functional RASGRP2 protein, however, his parents had functional transcripts and abnormal transcripts, with the normal transcripts in the majority. Conclusions: The RASGRP2 IVS3-1 gene mutation was responsible for the inherited hemorrhagic disease. The RASGRP2 IVS3-1 gene mutation led to abnormal alternative splicing, without formation of functional RASGRP2 protein. The RASGRP2 protein is at the nexus of calcium-dependent platelet activation and hemostasis after damage of blood vessels. Spontaneous mucosal bleeding was a result of the lack of the functional RASGRP2 protein. This was the first report of RASGRP2 gene mutation resulting in bleeding disorder in China, and also the first report of the mutation type of RASGRP2 IVS3-1.
Collapse
Affiliation(s)
- S J Lyu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
17
|
The severe phenotype of Diamond-Blackfan anemia is modulated by heat shock protein 70. Blood Adv 2017; 1:1959-1976. [PMID: 29296843 DOI: 10.1182/bloodadvances.2017008078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome that exhibits an erythroid-specific phenotype. In at least 70% of cases, DBA is related to a haploinsufficient germ line mutation in a ribosomal protein (RP) gene. Additional cases have been associated with mutations in GATA1. We have previously established that the RPL11+/Mut phenotype is more severe than RPS19+/Mut phenotype because of delayed erythroid differentiation and increased apoptosis of RPL11+/Mut erythroid progenitors. The HSP70 protein is known to protect GATA1, the major erythroid transcription factor, from caspase-3 mediated cleavage during normal erythroid differentiation. Here, we show that HSP70 protein expression is dramatically decreased in RPL11+/Mut erythroid cells while being preserved in RPS19+/Mut cells. The decreased expression of HSP70 in RPL11+/Mut cells is related to an enhanced proteasomal degradation of polyubiquitinylated HSP70. Restoration of HSP70 expression level in RPL11+/Mut cells reduces p53 activation and rescues the erythroid defect in DBA. These results suggest that HSP70 plays a key role in determining the severity of the erythroid phenotype in RP-mutation-dependent DBA.
Collapse
|
18
|
Ayodele BA, Mirams M, Pagel CN, Mackie EJ. The vacuolar H + ATPase V 0 subunit d 2 is associated with chondrocyte hypertrophy and supports chondrocyte differentiation. Bone Rep 2017; 7:98-107. [PMID: 29062863 PMCID: PMC5647522 DOI: 10.1016/j.bonr.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022] Open
Abstract
Chondrocyte hypertrophy makes important contributions to bone development and growth. We have investigated a number of novel cartilage genes identified in a recent transcriptomic study to determine whether they are differentially expressed between different zones of equine foetal growth cartilage. Twelve genes (ATP6V0D2, BAK1, DDX5, GNB1, PIP4K2A, RAP1B, RPS7, SRSF3, SUB1, TMSB4, TPI1 and WSB2) were found to be more highly expressed in the zone of hypertrophic chondrocytes than in the reserve or proliferative zones, whereas FOXA3 and SERPINA1 were expressed at lower levels in the hypertrophic zone than in the reserve zone. ATP6V0D2, which encodes vacuolar H+ ATPase (V-ATPase) V0 subunit d2 (ATP6V0D2), was selected for further study. Immunohistochemical analysis of ATP6V0D2 in growth cartilage showed stronger staining in hypertrophic than in reserve zone or proliferative chondrocytes. Expression of ATP6V0D2 mRNA and protein was up-regulated in the mouse chondrocytic ATDC5 cell line by conditions inducing expression of hypertrophy-associated genes including Col10a1 and Mmp13 (differentiation medium). In ATDC5 cells cultured in control medium, knockdown of Atp6v0d2 or inhibition of V-ATPase activity using bafilomycin A1 caused a decrease in Col2a1 expression, and in cells cultured in differentiation medium the two treatments caused a decrease in nuclear area. Inhibition of V-ATPase, but not Atp6v0d2 knockdown, prevented the upregulation of Col10a1, Mmp13 and Vegf by differentiation medium, while Atp6v0d2 knockdown, but not inhibition of V-ATPase, caused an increase in the number of ATDC5 cells cultured in differentiation medium. These observations identify ATP6V0D2 as a novel chondrocyte hypertrophy-associated gene. The results are consistent with roles for V-ATPase, both ATP6V0D2-dependent and -independent, in supporting chondrocyte differentiation and hypertrophy.
Collapse
Key Words
- ABH, alcian blue/haematoxylin/eosin/acid fuchsin stain
- ATP6V0D2
- ATP6V0D2, vacuolar H+ ATPase V0 subunit d2
- Chondrocyte
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco's modified Eagle's medium
- Endochondral ossification
- FCS, foetal calf serum
- Hypertrophy
- MMP-13, matrix metalloproteinase-13
- MNE, mean normalised expression
- PBS, phosphate-buffered saline
- V-ATPase, vacuolar H+ ATPase
- Vacuolar H+-ATPase
- qPCR, quantitative polymerase chain reaction
Collapse
|
19
|
Takafuji T, Kayama K, Sugimoto N, Fujita M. GRWD1, a new player among oncogenesis-related ribosomal/nucleolar proteins. Cell Cycle 2017; 16:1397-1403. [PMID: 28722511 DOI: 10.1080/15384101.2017.1338987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Increasing attention has been paid to certain ribosomal or ribosome biosynthesis-related proteins involved in oncogenesis. Members of one group are classified as "tumor suppressive factors" represented by RPL5 and RPL11; loss of their functions leads to cancer predisposition. RPL5 and RPL11 prevent tumorigenesis by binding to and inhibiting the MDM2 ubiquitin ligase and thereby up-regulating p53. Many other candidate tumor suppressive ribosomal/nucleolar proteins have been suggested. However, it remains to be experimentally clarified whether many of these factors can actually prevent tumorigenesis and if so, how they do so. Conversely, some ribosomal/nucleolar proteins promote tumorigenesis. For example, PICT1 binds to and anchors RPL11 in nucleoli, down-regulating p53 and promoting tumorigenesis. GRWD1 was recently identified as another such factor. When overexpressed, GRWD1 suppresses p53 and transforms normal human cells, probably by binding to RPL11 and sequestrating it from MDM2. However, other pathways may also be involved.
Collapse
Affiliation(s)
- Takuya Takafuji
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| | - Kota Kayama
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| | - Nozomi Sugimoto
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| | - Masatoshi Fujita
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| |
Collapse
|
20
|
Waespe N, Dhanraj S, Wahala M, Tsangaris E, Enbar T, Zlateska B, Li H, Klaassen RJ, Fernandez CV, Cuvelier GDE, Wu JK, Pastore YD, Silva M, Lipton JH, Brossard J, Michon B, Abish S, Steele M, Sinha R, Belletrutti MJ, Breakey VR, Jardine L, Goodyear L, Kofler L, Cada M, Sung L, Shago M, Scherer SW, Dror Y. The clinical impact of copy number variants in inherited bone marrow failure syndromes. NPJ Genom Med 2017; 2. [PMID: 28690869 PMCID: PMC5498150 DOI: 10.1038/s41525-017-0019-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inherited bone marrow failure syndromes comprise a genetically heterogeneous group of diseases with hematopoietic failure and a wide array of physical malformations. Copy number variants were reported in some inherited bone marrow failure syndromes. It is unclear what impact copy number variants play in patients evaluated for a suspected diagnosis of inherited bone marrow failure syndromes. Clinical and genetic data of 323 patients from the Canadian Inherited Marrow Failure Registry from 2001 to 2014, who had a documented genetic work-up, were analyzed. Cases with pathogenic copy number variants (at least 1 kilobasepairs) were compared to cases with other mutations. Genotype-phenotype correlations were performed to assess the impact of copy number variants. Pathogenic nucleotide-level mutations were found in 157 of 303 tested patients (51.8%). Genome-wide copy number variant analysis by single-nucleotide polymorphism arrays or comparative genomic hybridization arrays revealed pathogenic copy number variants in 11 of 67 patients tested (16.4%). In four of these patients, identification of copy number variant was crucial for establishing the correct diagnosis as their clinical presentation was ambiguous. Eight additional patients were identified to harbor pathogenic copy number variants by other methods. Of the 19 patients with pathogenic copy number variants, four had compound-heterozygosity of a copy number variant with a nucleotide-level mutation. Pathogenic copy number variants were associated with more extensive non-hematological organ system involvement (p = 0.0006), developmental delay (p = 0.006) and short stature (p = 0.04) compared to nucleotide-level mutations. In conclusion, a significant proportion of patients with inherited bone marrow failure syndromes harbor pathogenic copy number variants which were associated with a more extensive non-hematological phenotype in this cohort. Patients with a phenotype suggestive of inherited bone marrow failure syndromes but without identification of pathogenic nucleotide-level mutations should undergo specific testing for copy number variants. Copy number variation in patients with inherited bone marrow failure syndromes (IBMFSs) is associated with more severe clinical symptoms. In addition to persistently low levels of red blood cells, white blood cells and/ or platelets, patients with IBMFSs also present varying degrees of physical malformations. Most cases are associated with single base-pair mutations in the DNA sequence, but Canadian researchers led by Yigal Dror at The Hospital for Sick Children in Toronto, have found that whole sections of the genome are deleted or repeated in an important proportion of patients. Those carrying copy number variants (CNV) presented more commonly with developmental delay, short stature and defects in more organ systems, than patients with point mutations. CNV analysis of patients with suspected IBMFSs could aid early disease evaluation and management.
Collapse
Affiliation(s)
- Nicolas Waespe
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Santhosh Dhanraj
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Manju Wahala
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elena Tsangaris
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tom Enbar
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bozana Zlateska
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Hongbing Li
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Robert J Klaassen
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | | - Geoff D E Cuvelier
- Pediatric Hematology/Oncology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - John K Wu
- Division of Hematology/Oncology, UBC & B.C. Children's Hospital, Vancouver, BC, Canada
| | | | | | - Jeffrey H Lipton
- Allogeneic Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Joseé Brossard
- Centre Hospitalier Universitaire, Sherbrooke, QC, Canada
| | - Bruno Michon
- Centre Hospitalier Universitaire, Québec, QC, Canada
| | - Sharon Abish
- Pediatric Hematology Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | | | - Roona Sinha
- Royal University Hospital, Saskatoon, SK, Canada
| | | | - Vicky R Breakey
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Lawrence Jardine
- Children's Hospital, London Health Sciences Centre, London, ON, Canada
| | - Lisa Goodyear
- Pediatric Hematology/Oncology, Janeway Child Health Centre, St. John's, NF, Canada
| | - Liat Kofler
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michaela Cada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Lillian Sung
- Population Health Sciences, Research Institute, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mary Shago
- Cytogenetics Laboratory, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yigal Dror
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Alkhunaizi E, Schrewe B, Alizadehfar R, Vézina C, Stewart GS, Braverman N. Novel 3q27.2-qter deletion in a patient with Diamond-Blackfan anemia and immunodeficiency: Case report and review of literature. Am J Med Genet A 2017; 173:1514-1520. [PMID: 28432740 DOI: 10.1002/ajmg.a.38208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/20/2016] [Accepted: 02/08/2017] [Indexed: 12/31/2022]
Abstract
3q27.2-qter deletion syndromes feature an overlapping set of terminal and interstitial deletions with variable congenital malformations. Diamond-Blackfan anemia (DBA) is etiologically heterogeneous disorder in which one cause is dominant mutations of the RPL35A gene on 3q29. We report a child with a 3q27.2-qter deletion that contains the RPL35A gene. She had clinical and laboratory features consistent with DBA and as well, an unexplained immunodeficiency disorder. Given these unusual findings, we reviewed other patients in the literature with overlapping genomic deletions. In addition, we evaluated our patient for the immunodeficiency disorder, RIDDLE syndrome, due to recessive mutations in the RNF168 gene on 3q29. A PubMed search for case reports of 3q27.2-qter overlapping deletions was performed. To determine if RPL35A was in the deletion region, the chromosomal regions reported were mapped to genomic regions using the UCSC Genome Browser. We identified 85 overlapping deletions, of which six included the RPL35A gene and all should be had DBA. Interestingly, none of the reported cases had immunodeficiency. To evaluate RIDDLE syndrome (radiosensitivity, immunodeficiency, dysmorphic features, and learning difficulties), we sequenced the remaining RNF168 gene and examined her fibroblast culture for a DNA double strand break repair deficiency. These results were normal, indicating that the immunodeficiency is unlikely to result from a RNF168 deficiency. We show that RPL35A haploinsufficiency is a cause of DBA and we report a novel case with 3q27.2-qter deletion and immunodeficiency. The etiology for the immunodeficiency remains unsolved and could be caused by an unknown gene effect or consequent to the DBA phenotype.
Collapse
Affiliation(s)
- Ebba Alkhunaizi
- Department of Medical Genetics and Pediatrics, McGill University Health Centre, Montréal, Quebec, Canada
| | - Brett Schrewe
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza Alizadehfar
- Department of Pediatric Allergy and Immunology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Catherine Vézina
- Department of Pediatric Hematology and Oncology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nancy Braverman
- Department of Medical Genetics and Pediatrics, McGill University Health Centre, Montréal, Quebec, Canada
| |
Collapse
|
22
|
Mirabello L, Khincha PP, Ellis SR, Giri N, Brodie S, Chandrasekharappa SC, Donovan FX, Zhou W, Hicks BD, Boland JF, Yeager M, Jones K, Zhu B, Wang M, Alter BP, Savage SA. Novel and known ribosomal causes of Diamond-Blackfan anaemia identified through comprehensive genomic characterisation. J Med Genet 2017; 54:417-425. [PMID: 28280134 DOI: 10.1136/jmedgenet-2016-104346] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Diamond-Blackfan anaemia (DBA) is an inherited bone marrow failure syndrome (IBMFS) characterised by erythroid hypoplasia. It is associated with congenital anomalies and a high risk of developing specific cancers. DBA is caused predominantly by autosomal dominant pathogenic variants in at least 15 genes affecting ribosomal biogenesis and function. Two X-linked recessive genes have been identified. OBJECTIVES We aim to identify the genetic aetiology of DBA. METHODS Of 87 families with DBA enrolled in an institutional review board-approved cohort study (ClinicalTrials.gov Identifier:NCT00027274), 61 had genetic testing information available. Thirty-five families did not have a known genetic cause and thus underwent comprehensive genomic evaluation with whole exome sequencing, deletion and CNV analyses to identify their disease-associated pathogenic variant. Controls for functional studies were healthy mutation-negative individuals enrolled in the same study. RESULTS Our analyses uncovered heterozygous pathogenic variants in two previously undescribed genes in two families. One family had a non-synonymous variant (p.K77N) in RPL35; the second family had a non-synonymous variant (p. L51S) in RPL18. Both of these variants result in pre-rRNA processing defects. We identified heterozygous pathogenic variants in previously known DBA genes in 16 of 35 families. Seventeen families who underwent genetic analyses are yet to have a genetic cause of disease identified. CONCLUSIONS Overall, heterozygous pathogenic variants in ribosomal genes were identified in 44 of the 61 families (72%). De novo pathogenic variants were observed in 57% of patients with DBA. Ongoing studies of DBA genomics will be important to understand this complex disorder.
Collapse
Affiliation(s)
- Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Payal P Khincha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven R Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, USA
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Seth Brodie
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Belynda D Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph F Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mingyi Wang
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Blanche P Alter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech 2016; 8:1013-26. [PMID: 26398160 PMCID: PMC4582105 DOI: 10.1242/dmm.020529] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Defects in ribosome biogenesis are associated with a group of diseases called the ribosomopathies, of which Diamond-Blackfan anemia (DBA) is the most studied. Ribosomes are composed of ribosomal proteins (RPs) and ribosomal RNA (rRNA). RPs and multiple other factors are necessary for the processing of pre-rRNA, the assembly of ribosomal subunits, their export to the cytoplasm and for the final assembly of subunits into a ribosome. Haploinsufficiency of certain RPs causes DBA, whereas mutations in other factors cause various other ribosomopathies. Despite the general nature of their underlying defects, the clinical manifestations of ribosomopathies differ. In DBA, for example, red blood cell pathology is especially evident. In addition, individuals with DBA often have malformations of limbs, the face and various organs, and also have an increased risk of cancer. Common features shared among human DBA and animal models have emerged, such as small body size, eye defects, duplication or overgrowth of ectoderm-derived structures, and hematopoietic defects. Phenotypes of ribosomopathies are mediated both by p53-dependent and -independent pathways. The current challenge is to identify differences in response to ribosomal stress that lead to specific tissue defects in various ribosomopathies. Here, we review recent findings in this field, with a particular focus on animal models, and discuss how, in some cases, the different phenotypes of ribosomopathies might arise from differences in the spatiotemporal expression of the affected genes. Summary: This paper reviews recent data on Diamond Blackfan anemia and discusses them in connection with other ribosomopathies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Hanna T Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
24
|
Abstract
Hypoproliferative anemia results from the inability of bone marrow to produce adequate numbers of red blood cells. The list of conditions that cause hypoproliferative anemia is long, starting from common etiologies as iron deficiency to rarer diagnoses of constitutional bone marrow failure syndromes. There is no perfect diagnostic algorithm, and clinical data may not always clearly distinguish "normal" from "abnormal", yet it is important for practicing clinicians to recognize each condition so that treatment can be initiated promptly. This review describes diagnostic approaches to hypoproliferative anemia, with particular emphasis on bone marrow failure syndromes.
Collapse
Affiliation(s)
- Kazusa Ishii
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
25
|
Smetanina NS, Mersiyanova IV, Kurnikova MA, Ovsyannikova GS, Hachatryan LA, Bobrynina VO, Maschan MA, Novichkova GA, Lipton JM, Maschan AA. Clinical and genomic heterogeneity of Diamond Blackfan anemia in the Russian Federation. Pediatr Blood Cancer 2015; 62:1597-600. [PMID: 25946618 PMCID: PMC4515145 DOI: 10.1002/pbc.25534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Diamond Blackfan anemia (DBA) is a genetically and clinically heterogeneous ribosomopathy and inherited bone marrow failure syndrome characterized by anemia, reticulocytopenia, and decreased erythroid precursors in the bone marrow with an increased risk of malignancy and, in approximately 50%, physical abnormalities. METHODS We retrospectively analyzed clinical data from 77 patients with DBA born in the Russian Federation from 1993 to 2014. In 74 families there was one clinically affected individual; in only three instances a multiplex family was identified. Genomic DNA from 57 DBA patients and their first-degree relatives was sequenced for mutations in RPS19, RPS10, RPS24, RPS26, RPS7, RPS17, RPL5, RPL11, RPL35a, and GATA1. RESULTS Severe anemia presented before 8 months of age in all 77 patients; before 2 months in 61 (78.2%); before 4 months in 71 (92.2%). Corticosteroid therapy was initiated after 1 year of age in the majority of patients. Most responded initially to steroids, while 5 responses were transient. Mutations in RP genes were detected in 35 of 57 patients studied: 15 in RPS19, 6 in RPL5, 3 in RPS7, 3 each in RPS10, RPS26, and RPL11 and 1 each in RPS24 and RPL35a; 24 of these mutations have not been previously reported. One patient had a balanced chromosomal translocation involving RPS19. No mutations in GATA1 were found. CONCLUSION In our cohort from an ethnically diverse population the distribution of mutations among RP genes was approximately the same as was reported by others, although within genotypes most of the mutations had not been previously reported.
Collapse
Affiliation(s)
- Natalia S. Smetanina
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Irina V. Mersiyanova
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Galina S. Ovsyannikova
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Lili A. Hachatryan
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Vlasta O. Bobrynina
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael A. Maschan
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina. A. Novichkova
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Jeffrey M. Lipton
- Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA,Feinstein Institute for Medical Research (FIMR); Manhasset, NY, USA,Division of Hematology/Oncology and Stem Cell Transplantation, CCMC, New Hyde Park, NY, USA
| | - Alexey A. Maschan
- Dmitry Rogachev Federal Clinical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
26
|
Sjögren SE, Siva K, Soneji S, George AJ, Winkler M, Jaako P, Wlodarski M, Karlsson S, Hannan RD, Flygare J. Glucocorticoids improve erythroid progenitor maintenance and dampen Trp53 response in a mouse model of Diamond-Blackfan anaemia. Br J Haematol 2015; 171:517-29. [PMID: 26305041 PMCID: PMC5014181 DOI: 10.1111/bjh.13632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/03/2015] [Indexed: 01/06/2023]
Abstract
Diamond-Blackfan anaemia (DBA) is a rare congenital disease causing severe anaemia and progressive bone marrow failure. The majority of patients carry mutations in ribosomal proteins, which leads to depletion of erythroid progenitors in the bone marrow. As many as 40% of all DBA patients receive glucocorticoids to alleviate their anaemia. However, despite their use in DBA treatment for more than half a century, the therapeutic mechanisms of glucocorticoids remain largely unknown. Therefore we sought to study disease specific effects of glucocorticoid treatment using a ribosomal protein s19 (Rps19) deficient mouse model of DBA. This study determines for the first time that a mouse model of DBA can respond to glucocorticoid treatment, similar to DBA patients. Our results demonstrate that glucocorticoid treatment reduces apoptosis, rescues erythroid progenitor depletion and premature differentiation of erythroid cells. Furthermore, glucocorticoids prevent Trp53 activation in Rps19-deficient cells- in a disease-specific manner. Dissecting the therapeutic mechanisms behind glucocorticoid treatment of DBA provides indispensible insight into DBA pathogenesis. Identifying mechanisms important for DBA treatment also enables development of more disease-specific treatments of DBA.
Collapse
Affiliation(s)
- Sara E Sjögren
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Kavitha Siva
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Shamit Soneji
- Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Amee J George
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Marcus Winkler
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Pekka Jaako
- Lund Stem Cell Centre, Lund University, Lund, Sweden.,Division of Molecular Haematology, Lund University, Lund, Sweden
| | - Marcin Wlodarski
- Division of Paediatric Haematology and Oncology, University of Freiburg, Freiburg, Germany
| | - Stefan Karlsson
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Ross D Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Johan Flygare
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Elucidation of the EP defect in Diamond-Blackfan anemia by characterization and prospective isolation of human EPs. Blood 2015; 125:2553-7. [PMID: 25755292 DOI: 10.1182/blood-2014-10-608042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/25/2015] [Indexed: 01/19/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a disorder characterized by a selective defect in erythropoiesis. Delineation of the precise defect is hampered by a lack of markers that define cells giving rise to erythroid burst- and erythroid colony-forming unit (BFU-E and CFU-E) colonies, the clonogenic assays that quantify early and late erythroid progenitor (EEP and LEP) potential, respectively. By combining flow cytometry, cell-sorting, and single-cell clonogenic assays, we identified Lin(-)CD34(+)CD38(+)CD45RA(-)CD123(-)CD71(+)CD41a(-)CD105(-)CD36(-) bone marrow cells as EEP giving rise to BFU-E, and Lin(-)CD34(+/-)CD38(+)CD45RA(-)CD123(-)CD71(+)CD41a(-)CD105(+)CD36(+) cells as LEP giving rise to CFU-E, in a hierarchical fashion. We then applied these definitions to DBA and identified that, compared with controls, frequency, and clonogenicity of DBA, EEP and LEP are significantly decreased in transfusion-dependent but restored in corticosteroid-responsive patients. Thus, both quantitative and qualitative defects in erythroid progenitor (EP) contribute to defective erythropoiesis in DBA. Prospective isolation of defined EPs will facilitate more incisive study of normal and aberrant erythropoiesis.
Collapse
|
28
|
Nakhoul H, Ke J, Zhou X, Liao W, Zeng SX, Lu H. Ribosomopathies: mechanisms of disease. PLASMATOLOGY 2014; 7:7-16. [PMID: 25512719 PMCID: PMC4251057 DOI: 10.4137/cmbd.s16952] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/03/2014] [Accepted: 07/16/2014] [Indexed: 01/05/2023]
Abstract
Ribosomopathies are diseases caused by alterations in the structure or function of ribosomal components. Progress in our understanding of the role of the ribosome in translational and transcriptional regulation has clarified the mechanisms of the ribosomopathies and the relationship between ribosomal dysfunction and other diseases, especially cancer. This review aims to discuss these topics with updated information.
Collapse
Affiliation(s)
- Hani Nakhoul
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Jiangwei Ke
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA. ; Department of Laboratory Medicine, Jiangxi Children's Hospital, Nanchang, Jiangxi, China
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Wenjuan Liao
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| |
Collapse
|
29
|
Farrar JE. Diamond Blackfan anemia: a Cheshire cat of hematology. Pediatr Blood Cancer 2014; 61:1154-5. [PMID: 24634369 PMCID: PMC4255456 DOI: 10.1002/pbc.25014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Jason E Farrar
- Department of Pediatrics, Section of Pediatric Hematology/Oncology, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, Arkansas
| |
Collapse
|
30
|
Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood 2014; 124:24-32. [PMID: 24829207 DOI: 10.1182/blood-2013-11-540278] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a cancer-prone inherited bone marrow failure syndrome. Approximately half of DBA patients have a germ-line mutation in a ribosomal protein gene. We used whole-exome sequencing to identify disease-causing genes in 2 large DBA families. After filtering, 1 nonsynonymous mutation (p.I31F) in the ribosomal protein S29 (RPS29[AUQ1]) gene was present in all 5 DBA-affected individuals and the obligate carrier, and absent from the unaffected noncarrier parent in 1 DBA family. A second DBA family was found to have a different nonsynonymous mutation (p.I50T) in RPS29. Both mutations are amino acid substitutions in exon 2 predicted to be deleterious and resulted in haploinsufficiency of RPS29 expression compared with wild-type RPS29 expression from an unaffected control. The DBA proband with the p.I31F RPS29 mutation had a pre-ribosomal RNA (rRNA) processing defect compared with the healthy control. We demonstrated that both RPS29 mutations failed to rescue the defective erythropoiesis in the rps29(-/-) mutant zebra fish DBA model. RPS29 is a component of the small 40S ribosomal subunit and essential for rRNA processing and ribosome biogenesis. We uncovered a novel DBA causative gene, RPS29, and showed that germ-line mutations in RPS29 can cause a defective erythropoiesis phenotype using a zebra fish model.
Collapse
|
31
|
Klar J, Khalfallah A, Arzoo PS, Gazda HT, Dahl N. Recurrent GATA1 mutations in Diamond-Blackfan anaemia. Br J Haematol 2014; 166:949-51. [PMID: 24766296 DOI: 10.1111/bjh.12919] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Joakim Klar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
32
|
Abstract
Pearson marrow pancreas syndrome (PS) is a multisystem disorder caused by mitochondrial DNA (mtDNA) deletions. Diamond-Blackfan anemia (DBA) is a congenital hypoproliferative anemia in which mutations in ribosomal protein genes and GATA1 have been implicated. Both syndromes share several features including early onset of severe anemia, variable nonhematologic manifestations, sporadic genetic occurrence, and occasional spontaneous hematologic improvement. Because of the overlapping features and relative rarity of PS, we hypothesized that some patients in whom the leading clinical diagnosis is DBA actually have PS. Here, we evaluated patient DNA samples submitted for DBA genetic studies and found that 8 (4.6%) of 173 genetically uncharacterized patients contained large mtDNA deletions. Only 2 (25%) of the patients had been diagnosed with PS on clinical grounds subsequent to sample submission. We conclude that PS can be overlooked, and that mtDNA deletion testing should be performed in the diagnostic evaluation of patients with congenital anemia.
Collapse
|
33
|
Armistead J, Triggs-Raine B. Diverse diseases from a ubiquitous process: the ribosomopathy paradox. FEBS Lett 2014; 588:1491-500. [PMID: 24657617 DOI: 10.1016/j.febslet.2014.03.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 01/03/2023]
Abstract
Collectively, the ribosomopathies are caused by defects in ribosome biogenesis. Although these disorders encompass deficiencies in a ubiquitous and fundamental process, the clinical manifestations are extremely variable and typically display tissue specificity. Research into this paradox has offered fascinating new insights into the role of the ribosome in the regulation of mRNA translation, cell cycle control, and signaling pathways involving TP53, MYC and mTOR. Several common features of ribosomopathies such as small stature, cancer predisposition, and hematological defects, point to how these diverse diseases may be related at a molecular level.
Collapse
Affiliation(s)
- Joy Armistead
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; The Manitoba Institute of Child Health, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
34
|
Matsui K, Giri N, Alter BP, Pinto LA. Cytokine production by bone marrow mononuclear cells in inherited bone marrow failure syndromes. Br J Haematol 2013; 163:81-92. [PMID: 23889587 PMCID: PMC3930339 DOI: 10.1111/bjh.12475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/21/2013] [Indexed: 12/11/2022]
Abstract
Fanconi anaemia (FA), dyskeratosis congenita (DC), Diamond-Blackfan anaemia (DBA), and Shwachman-Diamond syndrome (SDS) are characterized by the progressive development of bone marrow failure. Overproduction of tumour necrosis factor-α (TNF-α) from activated bone marrow T-cells has been proposed as a mechanism of FA-related aplasia. Whether such overproduction occurs in the other syndromes is unknown. We conducted a comparative study on bone marrow mononuclear cells to examine the cellular subset composition and cytokine production. We found lower proportions of haematopoietic stem cells in FA, DC, and SDS, and a lower proportion of monocytes in FA, DC, and DBA compared with controls. The T- and B-lymphocyte proportions were similar to controls, except for low B-cells in DC. We did not observe overproduction of TNF-α or IFN-γ by T-cells in any patients. Induction levels of TNF-α, interleukin (IL)-6, IL-1β, IL-10, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor in monocytes stimulated with high-dose lipopolysaccharide (LPS) were similar at 4 h but lower at 24 h when compared to controls. Unexpectedly, patient samples showed a trend toward higher cytokine level in response to low-dose (0·001 μg/ml) LPS. Increased sensitivity to LPS may have clinical implications and could contribute to the development of pancytopenia by creating a chronic subclinical inflammatory micro-environment in the bone marrow.
Collapse
Affiliation(s)
- Ken Matsui
- Human Papillomavirus Immunology Laboratory, Science Applications
International Corporation (SAIC)-Frederick, Incorporated, Frederick National
Laboratory for Cancer Research, Frederick, MD 21702
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics Clinical Genetics
Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD,
20892, United States
| | - Blanche P. Alter
- Division of Cancer Epidemiology and Genetics Clinical Genetics
Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD,
20892, United States
| | - Ligia A. Pinto
- Human Papillomavirus Immunology Laboratory, Science Applications
International Corporation (SAIC)-Frederick, Incorporated, Frederick National
Laboratory for Cancer Research, Frederick, MD 21702
| |
Collapse
|
35
|
|
36
|
Gerrard G, Valgañón M, Foong HE, Kasperaviciute D, Iskander D, Game L, Müller M, Aitman TJ, Roberts I, de la Fuente J, Foroni L, Karadimitris A. Target enrichment and high-throughput sequencing of 80 ribosomal protein genes to identify mutations associated with Diamond-Blackfan anaemia. Br J Haematol 2013; 162:530-6. [DOI: 10.1111/bjh.12397] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/10/2013] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | | | - Deena Iskander
- Centre for Haematology; Faculty of Medicine; Imperial College London; Hammersmith Hospital; London; UK
| | - Laurence Game
- Genomics Laboratory; MRC Clinical Sciences Centre; Imperial College London; London; UK
| | - Michael Müller
- Imperial NIHR Biomedical Research Centre; Imperial College London; London; UK
| | | | | | | | | | - Anastasios Karadimitris
- Centre for Haematology; Faculty of Medicine; Imperial College London; Hammersmith Hospital; London; UK
| |
Collapse
|
37
|
Farruggia P, Quarello P, Garelli E, Paolicchi O, Ruffo GB, Cuccia L, Cannella S, Bruno G, D'Angelo P. The spectrum of non-classical Diamond-Blackfan anemia: a case of late beginning transfusion dependency associated to a new RPL5 mutation. Pediatr Rep 2012; 4:e25. [PMID: 22803003 PMCID: PMC3395983 DOI: 10.4081/pr.2012.e25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/13/2012] [Indexed: 11/23/2022] Open
Abstract
Diamond Blackfan anemia typically presents in infants and is often associated with many kinds of malformations. Severity of anemia often needs transfusional support in the first months of life. We describe here a patient with Diamond Blackfan anemia related to a RPL5 mutation. The patient had no physical abnormalities and experienced a very late onset of transfusion dependency.
Collapse
Affiliation(s)
- Piero Farruggia
- Pediatric Hematology and Oncology Unit, Oncology Department, A.R.N.A.S. Civico, Di Cristina and Benfratelli Hospitals, Palermo
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Diamond-Blackfan anemia (DBA) is a congenital BM failure syndrome characterized by hypoproliferative anemia, associated physical abnormalities, and a predisposition to cancer. Perturbations of the ribosome appear to be critically important in DBA; alterations in 9 different ribosomal protein genes have been identified in multiple unrelated families, along with rarer abnormalities of additional ribosomal proteins. However, at present, only 50% to 60% of patients have an identifiable genetic lesion by ribosomal protein gene sequencing. Using genome-wide single-nucleotide polymorphism array to evaluate for regions of recurrent copy variation, we identified deletions at known DBA-related ribosomal protein gene loci in 17% (9 of 51) of patients without an identifiable mutation, including RPS19, RPS17, RPS26, and RPL35A. No recurrent regions of copy variation at novel loci were identified. Because RPS17 is a duplicated gene with 4 copies in a diploid genome, we demonstrate haploinsufficient RPS17 expression and a small subunit ribosomal RNA processing abnormality in patients harboring RPS17 deletions. Finally, we report the novel identification of variable mosaic loss involving known DBA gene regions in 3 patients from 2 kindreds. These data suggest that ribosomal protein gene deletion is more common than previously suspected and should be considered a component of the initial genetic evaluation in cases of suspected DBA.
Collapse
|