1
|
Zhu JH, Ouyang SX, Zhang GY, Cao Q, Xin R, Yin H, Wu JW, Zhang Y, Zhang Z, Liu Y, Fu JT, Chen YT, Tong J, Zhang JB, Liu J, Shen FM, Li DJ, Wang P. GSDME promotes MASLD by regulating pyroptosis, Drp1 citrullination-dependent mitochondrial dynamic, and energy balance in intestine and liver. Cell Death Differ 2024; 31:1467-1486. [PMID: 39009654 PMCID: PMC11519926 DOI: 10.1038/s41418-024-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Dysregulated metabolism, cell death, and inflammation contribute to the development of metabolic dysfunction-associated steatohepatitis (MASH). Pyroptosis, a recently identified form of programmed cell death, is closely linked to inflammation. However, the precise role of pyroptosis, particularly gasdermin-E (GSDME), in MASH development remains unknown. In this study, we observed GSDME cleavage and GSDME-associated interleukin-1β (IL-1β)/IL-18 induction in liver tissues of MASH patients and MASH mouse models induced by a choline-deficient high-fat diet (CDHFD) or a high-fat/high-cholesterol diet (HFHC). Compared with wild-type mice, global GSDME knockout mice exhibited reduced liver steatosis, steatohepatitis, fibrosis, endoplasmic reticulum stress, lipotoxicity and mitochondrial dysfunction in CDHFD- or HFHC-induced MASH models. Moreover, GSDME knockout resulted in increased energy expenditure, inhibited intestinal nutrient absorption, and reduced body weight. In the mice with GSDME deficiency, reintroduction of GSDME in myeloid cells-rather than hepatocytes-mimicked the MASH pathologies and metabolic dysfunctions, as well as the changes in the formation of neutrophil extracellular traps and hepatic macrophage/monocyte subclusters. These subclusters included shifts in Tim4+ or CD163+ resident Kupffer cells, Ly6Chi pro-inflammatory monocytes, and Ly6CloCCR2loCX3CR1hi patrolling monocytes. Integrated analyses of RNA sequencing and quantitative proteomics revealed a significant GSDME-dependent reduction in citrullination at the arginine-114 (R114) site of dynamin-related protein 1 (Drp1) during MASH. Mutation of Drp1 at R114 reduced its stability, impaired its ability to redistribute to mitochondria and regulate mitophagy, and ultimately promoted its degradation under MASH stress. GSDME deficiency reversed the de-citrullination of Drp1R114, preserved Drp1 stability, and enhanced mitochondrial function. Our study highlights the role of GSDME in promoting MASH through regulating pyroptosis, Drp1 citrullination-dependent mitochondrial function, and energy balance in the intestine and liver, and suggests that GSDME may be a potential therapeutic target for managing MASH.
Collapse
Affiliation(s)
- Jia-Hui Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shen-Xi Ouyang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Yan Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Cao
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University, Shanghai, China
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hang Yin
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Wen Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Liu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiang-Tao Fu
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yi-Ting Chen
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-Bao Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jian Liu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China.
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Zhao M, Sun YD, Yin M, Zhao JJ, Li SA, Li G, Zhang F, Xu J, Meng FY, Zhang B, Sun XY, Zhang JP, Cheng T, Zhang XB. Modulation of Immune Reaction in Hydrodynamic Gene Therapy for Hemophilia A. Hum Gene Ther 2021; 33:404-420. [PMID: 34555961 DOI: 10.1089/hum.2021.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hemophilia A (HA) is a monogenic disease characterized by plasma clotting factor 8 (F8) deficiency due to F8 mutation. We have been attempting to cure HA permanently using a CRISPR-Cas9 gene-editing strategy. Here, we induced targeted integration of BDDF8 (B-domain-deleted F8) gene into the albumin locus of HA mice by hydrodynamic tail vein injection of editing plasmid vectors. One week after treatment, a high F8 activity ranging from 70% to 280% of normal serum levels was observed in all treated HA mice but dropped to background levels 3-5 weeks later. We found that the humoral immune reaction targeting F8 is the predominant cause of the decreased F8 activity. We hypothesized that hydrodynamic injection-induced liver damage triggered the release of large quantities of inflammatory cytokines. However, co-injection of plasmids expressing a dozen immunomodulatory factors failed to curtail the immune reaction and stabilize F8 activity. The spCas9 plasmid carrying a miR-142-3p target sequence alleviated the cellular immune response but was unable to deliver therapeutic efficacy. Strikingly, immunosuppressant cyclo-phosphamide virtually abolished the immune response, leading to a year-long stable F8 level. Our findings should have important implications in developing therapies in mouse models using the hydrodynamic gene delivery approach, highlighting the ne-cessity of modulating the innate immune response triggered by liver damage.
Collapse
Affiliation(s)
- Mei Zhao
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Yi-Dan Sun
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Mengdi Yin
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Juan-Juan Zhao
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China.,Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Si-Ang Li
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Guohua Li
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Feng Zhang
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Jing Xu
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Fei-Ying Meng
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Beldon Zhang
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Xin-Yu Sun
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Jian-Ping Zhang
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Tao Cheng
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Xiao-Bing Zhang
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| |
Collapse
|
3
|
Xie T, Xia Z, Wang W, Zhou X, Xu C. BMPER Ameliorates Renal Fibrosis by Inhibiting Tubular Dedifferentiation and Fibroblast Activation. Front Cell Dev Biol 2021; 9:608396. [PMID: 33644047 PMCID: PMC7905093 DOI: 10.3389/fcell.2021.608396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/08/2021] [Indexed: 12/02/2022] Open
Abstract
Tubulointerstitial fibrosis is both a pathological manifestation of chronic kidney disease and a driving force for the progression of kidney disease. A previous study has shown that bone morphogenetic protein-binding endothelial cell precursor-derived regulator (BMPER) is involved in lung fibrogenesis. However, the role of BMPER in renal fibrosis remains unknown. In the present study, the expression of BMPER was examined by real-time PCR, Western blot and immunohistochemical staining. The in vitro effects of BMPER on tubular dedifferentiation and fibroblast activation were analyzed in cultured HK-2 and NRK-49F cells. The in vivo effects of BMPER were dissected in unilateral ureteral obstruction (UUO) mice by delivery of BMPER gene via systemic administration of plasmid vector. We reported that the expression of BMPER decreased in the kidneys of UUO mice and HK-2 cells. TGF-β1 increased inhibitor of differentiation-1 (Id-1) and induced epithelial mesenchymal transition in HK-2 cells, and knockdown of BMPER aggravated Id-1 up-regulation, E-cadherin loss, and tubular dedifferentiation. On the contrary, exogenous BMPER inhibited Id-1 up-regulation, prevented E-cadherin loss and tubular dedifferentiation after TGF-β1 exposure. In addition, exogenous BMPER suppressed fibroblast activation by hindering Erk1/2 phosphorylation. Knockdown of low-density lipoprotein receptor-related protein 1 abolished the inhibitory effect of BMPER on Erk1/2 phosphorylation and fibroblast activation. Moreover, delivery of BMPER gene improved renal tubular damage and interstitial fibrosis in UUO mice. Therefore, BMPER inhibits TGF-β1-induced tubular dedifferentiation and fibroblast activation and may hold therapeutic potential for tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Ting Xie
- Department of Woman's Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Zunen Xia
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changgeng Xu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Rauch S, Jones KA, Dickinson BC. Small Molecule-Inducible RNA-Targeting Systems for Temporal Control of RNA Regulation. ACS CENTRAL SCIENCE 2020; 6:1987-1996. [PMID: 33274276 PMCID: PMC7706094 DOI: 10.1021/acscentsci.0c00537] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 06/12/2023]
Abstract
All aspects of mRNA lifetime and function, including its stability, translation into protein, and trafficking through the cell, are tightly regulated through coordinated post-transcriptional modifications and interactions with a multitude of RNA effector proteins. Despite the increasing recognition of RNA regulation as a critical layer of mammalian gene expression control and its increasing excitement as a therapeutic target, tools to study and control RNA regulatory mechanisms with temporal precision in their endogenous environment are lacking. Here, we present small molecule-inducible RNA-targeting effectors based on our previously developed CRISPR/Cas-inspired RNA targeting system (CIRTS). The CIRTS biosensor platform is based on guide RNA (gRNA)-dependent RNA binding domains that interact with a target transcript using Watson-Crick-Franklin base pair interactions. Addition of a small molecule recruits an RNA effector to the target transcript, thereby eliciting a local effect on the transcript. In this work, we showcase that these CIRTS biosensors can trigger inducible RNA editing, degradation, or translation on target transcripts in a small molecule-dependent manner. We further go on to show that the CIRTS RNA base editor biosensor can induce RNA base editing in a small molecule-controllable manner in vivo. Collectively this work provides a new set of tools to probe the dynamics of RNA regulatory systems and control gene expression at the RNA level.
Collapse
Affiliation(s)
- Simone Rauch
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Krysten A. Jones
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Wang J, Yang W, Chen Z, Chen J, Meng Y, Feng B, Sun L, Dou L, Li J, Cui Q, Yang J. Long Noncoding RNA lncSHGL Recruits hnRNPA1 to Suppress Hepatic Gluconeogenesis and Lipogenesis. Diabetes 2018; 67:581-593. [PMID: 29382663 DOI: 10.2337/db17-0799] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022]
Abstract
Mammalian genomes encode a huge number of long noncoding RNAs (lncRNAs) with unknown functions. This study determined the role and mechanism of a new lncRNA, lncRNA suppressor of hepatic gluconeogenesis and lipogenesis (lncSHGL), in regulating hepatic glucose/lipid metabolism. In the livers of obese mice and patients with nonalcoholic fatty liver disease, the expression levels of mouse lncSHGL and its human homologous lncRNA B4GALT1-AS1 were reduced. Hepatic lncSHGL restoration improved hyperglycemia, insulin resistance, and steatosis in obese diabetic mice, whereas hepatic lncSHGL inhibition promoted fasting hyperglycemia and lipid deposition in normal mice. lncSHGL overexpression increased Akt phosphorylation and repressed gluconeogenic and lipogenic gene expression in obese mouse livers, whereas lncSHGL inhibition exerted the opposite effects in normal mouse livers. Mechanistically, lncSHGL recruited heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) to enhance the translation efficiency of CALM mRNAs to increase calmodulin (CaM) protein level without affecting their transcription, leading to the activation of the phosphatidyl inositol 3-kinase (PI3K)/Akt pathway and repression of the mTOR/SREBP-1C pathway independent of insulin and calcium in hepatocytes. Hepatic hnRNPA1 overexpression also activated the CaM/Akt pathway and repressed the mTOR/SREBP-1C pathway to ameliorate hyperglycemia and steatosis in obese mice. In conclusion, lncSHGL is a novel insulin-independent suppressor of hepatic gluconeogenesis and lipogenesis. Activating the lncSHGL/hnRNPA1 axis represents a potential strategy for the treatment of type 2 diabetes and steatosis.
Collapse
Affiliation(s)
- Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Ji Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Biaoqi Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Libo Sun
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Lin Dou
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
| | - Jian Li
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Huang M, Sun R, Huang Q, Tian Z. Technical Improvement and Application of Hydrodynamic Gene Delivery in Study of Liver Diseases. Front Pharmacol 2017; 8:591. [PMID: 28912718 PMCID: PMC5582077 DOI: 10.3389/fphar.2017.00591] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022] Open
Abstract
Development of an safe and efficient in vivo gene delivery method is indispensable for molecular biology research and the progress in the following gene therapy. Over the past few years, hydrodynamic gene delivery (HGD) with naked DNA has drawn increasing interest in both research and potential clinic applications due to its high efficiency and low risk in triggering immune responses and carcinogenesis in comparison to viral vectors. This method, involving intravenous injection (i.v.) of massive DNA in a short duration, gives a transient but high in vivo gene expression especially in the liver of small animals. In addition to DNA, it has also been shown to deliver other substance such as RNA, proteins, synthetic small compounds and even viruses in vivo. Given its ability to robustly mimic in vivo hepatitis B virus (HBV) production in liver, HGD has become a fundamental and important technology on HBV studies in our group and many other groups. Recently, there have been interesting reports about the applications and further improvement of this technology in other liver research. Here, we review the principle, safety, current application and development of hydrodynamic delivery in liver disease studies, and discuss its future prospects, clinical potential and challenges.
Collapse
Affiliation(s)
- Mei Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical UniversityHefei, China
| | - Rui Sun
- Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of ChinaHefei, China
| | - Qiang Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical UniversityHefei, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of ChinaHefei, China
| |
Collapse
|
7
|
Yang W, Wang J, Chen Z, Chen J, Meng Y, Chen L, Chang Y, Geng B, Sun L, Dou L, Li J, Guan Y, Cui Q, Yang J. NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway. Diabetes 2017; 66:1819-1832. [PMID: 28411267 DOI: 10.2337/db16-1172] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/07/2017] [Indexed: 11/13/2022]
Abstract
Hepatic FAM3A expression is repressed under obese conditions, but the underlying mechanism remains unknown. This study determined the role and mechanism of miR-423-5p in hepatic glucose and lipid metabolism by repressing FAM3A expression. miR-423-5p expression was increased in the livers of obese diabetic mice and in patients with nonalcoholic fatty liver disease (NAFLD) with decreased FAM3A expression. miR-423-5p directly targeted FAM3A mRNA to repress its expression and the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic miR-423-5p inhibition suppressed gluconeogenesis and improved insulin resistance, hyperglycemia, and fatty liver in obese diabetic mice. In contrast, hepatic miR-423-5p overexpression promoted gluconeogenesis and hyperglycemia and increased lipid deposition in normal mice. miR-423-5p inhibition activated the FAM3A-ATP-Akt pathway and repressed gluconeogenic and lipogenic gene expression in diabetic mouse livers. The miR-423 precursor gene was further shown to be a target gene of NFE2, which induced miR-423-5p expression to repress the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic NFE2 overexpression upregulated miR-423-5p to repress the FAM3A-ATP-Akt pathway, promoting gluconeogenesis and lipid deposition and causing hyperglycemia in normal mice. In conclusion, under the obese condition, activation of the hepatic NFE2/miR-423-5p axis plays important roles in the progression of type 2 diabetes and NAFLD by repressing the FAM3A-ATP-Akt signaling pathway.
Collapse
Affiliation(s)
- Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Junpei Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Ji Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Liming Chen
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, China
| | - Yongsheng Chang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Geng
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Libo Sun
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Lin Dou
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
| | - Jian Li
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
8
|
CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice. Hum Genet 2017; 136:875-883. [DOI: 10.1007/s00439-017-1801-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
|
9
|
Chen Z, Ding L, Yang W, Wang J, Chen L, Chang Y, Geng B, Cui Q, Guan Y, Yang J. Hepatic Activation of the FAM3C-HSF1-CaM Pathway Attenuates Hyperglycemia of Obese Diabetic Mice. Diabetes 2017; 66:1185-1197. [PMID: 28246289 DOI: 10.2337/db16-0993] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/18/2017] [Indexed: 11/13/2022]
Abstract
FAM3C is a member of the family with sequence similarity 3 (FAM3) gene family, and this study determined its role and mechanism in regulation of hepatic glucose/lipid metabolism. In obese diabetic mice, FAM3C expression was reduced in the liver, and hepatic FAM3C restoration improved insulin resistance, hyperglycemia, and fatty liver. FAM3C overexpression increased the expression of heat shock factor 1 (HSF1), calmodulin (CaM), and phosphorylated protein kinase B (Akt) and reduced that of gluconeogenic and lipogenic genes in diabetic mouse livers with the suppression of gluconeogenesis and lipid deposition. In cultured hepatocytes, FAM3C overexpression upregulated HSF1 expression, which elevated CaM protein level by inducing CALM1 transcription to activate Akt in a Ca2+- and insulin-independent manner. Furthermore, FAM3C overexpression promoted nuclear exclusion of FOXO1 and repressed gluconeogenic gene expression and gluconeogenesis in a CaM-dependent manner in hepatocytes. Hepatic HSF1 overexpression activated the CaM-Akt pathway to repress gluconeogenic and lipogenic gene expression and improve hyperglycemia and fatty liver in obese diabetic mice. In conclusion, the FAM3C-HSF1-CaM-Akt pathway plays important roles in regulating glucose and lipid metabolism in hepatocytes independent of insulin and calcium. Restoring hepatic FAM3C expression is beneficial for the management of type 2 diabetes and fatty liver.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Liwei Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Junpei Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Liming Chen
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, China
| | - Yongsheng Chang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Geng
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
10
|
Feasibility of the functional expression of the human organic anion transporting polypeptide 1B1 (OATP1B1) and its genetic variant 521T/C in the mouse liver. Eur J Pharm Sci 2017; 96:28-36. [PMID: 27619346 DOI: 10.1016/j.ejps.2016.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 11/22/2022]
Abstract
The objective of this study was to examine the feasibility of functional expression of the human organic anion transporting polypeptide 1B1 (hOATP1B1) forms in the liver of the mouse. After the mouse received the gene of interest (i.e., luciferase as the reporter or hOATP1B1) via hydrodynamic gene delivery (HGD) method, the expression was found to be liver-specific while alterations in the serum biochemistry and hepatocyte histology were apparently transient and reversible. The reporter activity was also detected in the plasma, but not in the blood cell in mice that received HGD, suggesting that the protein is probably released due to transiently increased permeability in hepatocytes by HGD. Using this delivery condition, the expression of hOATP1B1 was readily detected in the liver, but not in other tissues, of the mice receiving HGD for the transporter gene. Compared with the sham control mice, the uptake of pravastatin into the liver increased significantly in mice receiving hOATP1B1 wild type; the uptake parameters decreased consistently in mice expressing the 521T>C variant compared with that of the wild type control. These observations suggest that the functional expression of human transporter gene in mice is feasible, further suggesting that this treatment is practically useful in the pharmacokinetic studies for hOATP1B1 substrates.
Collapse
|
11
|
Cui X, Chen Q, Dong Z, Xu L, Lu T, Li D, Zhang J, Zhang M, Xia Q. Inactivation of Sirt1 in mouse livers protects against endotoxemic liver injury by acetylating and activating NF-κB. Cell Death Dis 2016; 7:e2403. [PMID: 27711079 PMCID: PMC5133964 DOI: 10.1038/cddis.2016.270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 11/21/2022]
Abstract
Sirtuin 1 (Sirt1) is a deacetylase that regulates many cellular processes in the liver, and so far its role in endotoxemic liver injury is elusive. So we conditionally inactivate Sirt1 in murine hepatocytes to determine its role in d-galactosamine (GalN)/lipopolysaccharide (LPS)-induced liver damage, which is a well-established experimental model mimicking septic liver injury and fulminant hepatitis. Ablation of Sirt1 shows remarkable protection against GalN/LPS-induced liver injury, which is a result of enhanced NF-κB response because knockdown of RelA/p65 negates the protective effect of Sirt1 knockout. Mechanistically, NF-κB p65 is maintained in a hyperacetylated, DNA-binding competent state in tumor necrosis factor-α (TNF-α)-challenged albumin-Cre+ (AlbCre+) hepatocytes. Transfection of hepatocytes with a recombinant acetylated p65 expression construct replicates the protection afforded by Sirt1 knockout. Transfection of AlbCre+ hepatocytes with a recombinant wild-type Sirt1 construct, rather than a deacetylase-defective one, compromises NF-κB activation and resensitizes hepatocytes to TNF-α-induced apoptosis. Taken together, our results demonstrate that Sirt1 deacetylates p65 and compromises NF-κB activity in hepatocytes when confronted with LPS/TNF-α stimulation, leading to increased susceptibility to endotoxemic injury. These findings identify a possible protein effector to maneuver the hepatic NF-κB signaling pathway under inflammatory circumstances and a feasible way to increase hepatocellular resistance to endotoxin/TNF-α toxicity.
Collapse
Affiliation(s)
- Xiaolan Cui
- Department of Transplantation and Hepatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Chen
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Zhen Dong
- Transplantation Center of the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Longmei Xu
- The Central Laboratory of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianfei Lu
- Department of Transplantation and Hepatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dawei Li
- Department of Transplantation and Hepatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangjun Zhang
- Department of Transplantation and Hepatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- Department of Transplantation and Hepatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Transplantation and Hepatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Mu M, Zhang Z, Cheng Y, Liu G, Chen X, Wu X, Zhuang C, Liu B, Kong X, You S. Augmenter of liver regeneration (ALR) restrains concanavalin A-induced hepatitis in mice. Int Immunopharmacol 2016; 35:280-286. [PMID: 27085679 DOI: 10.1016/j.intimp.2016.03.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/06/2016] [Accepted: 03/28/2016] [Indexed: 01/17/2023]
Abstract
Augmenter of liver regeneration (ALR), produced and released by hepatocytes, has cytoprotective and immunoregulatory effects on liver injury, and has been used in many experimental applications. However, little attention has been paid to the effects of ALR on concanavalin A (Con A)-induced hepatitis. The purpose of this paper is to explore the protective effect of ALR on Con A-induced hepatitis and elucidate potential mechanisms. We found that the ALR pretreatment evidently reduced the amount of ALT and AST in serum. In addition, pro-inflammatory cytokines, chemokines and iNOS were suppressed. ALR pretreatment also decreased CD4(+), CD8(+) T cell infiltration in liver. Besides, we observed that ALR pretreatment was capable of suppressing the activation of several signaling pathways in Con A-induced hepatitis. These findings suggest that ALR can obviously weaken Con A-induced hepatitis and ALR has some certain immune regulation function.
Collapse
Affiliation(s)
- Mao Mu
- School of Life Science and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China; Liver Disease Key Laboratory, Center of Infectious Diseases, 458 Hospital, 801 Dongfengdong Road, Guangzhou 510600, People's Republic of China.
| | - Zhenwei Zhang
- Liver Disease Key Laboratory, Center of Infectious Diseases, 458 Hospital, 801 Dongfengdong Road, Guangzhou 510600, People's Republic of China.
| | - Yi Cheng
- School of Life Science and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China; Liver Disease Key Laboratory, Center of Infectious Diseases, 458 Hospital, 801 Dongfengdong Road, Guangzhou 510600, People's Republic of China.
| | - Guangze Liu
- Liver Disease Key Laboratory, Center of Infectious Diseases, 458 Hospital, 801 Dongfengdong Road, Guangzhou 510600, People's Republic of China.
| | - Xiusheng Chen
- Liver Disease Key Laboratory, Center of Infectious Diseases, 458 Hospital, 801 Dongfengdong Road, Guangzhou 510600, People's Republic of China.
| | - Xin Wu
- School of Life Science and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China.
| | - Caifang Zhuang
- Liver Disease Key Laboratory, Center of Infectious Diseases, 458 Hospital, 801 Dongfengdong Road, Guangzhou 510600, People's Republic of China.
| | - Bingying Liu
- School of Life Science and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China.
| | - Xiangping Kong
- Liver Disease Key Laboratory, Center of Infectious Diseases, 458 Hospital, 801 Dongfengdong Road, Guangzhou 510600, People's Republic of China.
| | - Song You
- School of Life Science and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China.
| |
Collapse
|
13
|
Frisch RN, Curtis KM, Aenlle KK, Howard GA. Hepatocyte growth factor and alternative splice variants - expression, regulation and implications in osteogenesis and bone health and repair. Expert Opin Ther Targets 2016; 20:1087-98. [PMID: 26941128 DOI: 10.1517/14728222.2016.1162293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bone marrow-derived mesenchymal stem cells (MSCs) can differentiate into multiple cell types, including osteoblasts, chondrocytes, and adipocytes. These pluripotent cells secrete hepatocyte growth factor (HGF), which regulates cell growth, survival, motility, migration, mitogenesis and is important for tissue development/regeneration. HGF has four splice variants, NK1, NK2, NK3, and NK4 which have varying functions and affinities for the HGF receptor, cMET. HGF promotes osteoblastic differentiation of MSCs into bone forming cells, playing a role in bone development, health and repair. AREAS COVERED This review will focus on the effects of HGF in osteogenesis, bone repair and bone health, including structural and functional insights into the role of HGF in the body. EXPERT OPINION Approximately 6.2 million Americans experience a fracture annually, with 5-10% being mal- or non-union fractures. HGF is important in priming MSCs for osteogenic differentiation in vitro and is currently being studied to assess its role during bone repair in vivo. Due to the high turnover rate of systemic HGF, non-classic modes of HGF-treatment, including naked-plasmid HGF delivery and the use of HGF splice variants (NK1 & NK2) are being studied to find safe and efficacious treatments for bone disorders, such as mal- or non-union fractures.
Collapse
Affiliation(s)
- Rachel N Frisch
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA
| | - Kevin M Curtis
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA.,b Biochemistry & Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Kristina K Aenlle
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA
| | - Guy A Howard
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA.,b Biochemistry & Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA.,c Medicine , University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|
14
|
Giacomin PR, Moy RH, Noti M, Osborne LC, Siracusa MC, Alenghat T, Liu B, McCorkell KA, Troy AE, Rak GD, Hu Y, May MJ, Ma HL, Fouser LA, Sonnenberg GF, Artis D. Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity. J Exp Med 2015; 212:1513-28. [PMID: 26371187 PMCID: PMC4577836 DOI: 10.1084/jem.20141831] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Innate lymphoid cells (ILCs) are critical for maintaining epithelial barrier integrity at mucosal surfaces; however, the tissue-specific factors that regulate ILC responses remain poorly characterized. Using mice with intestinal epithelial cell (IEC)-specific deletions in either inhibitor of κB kinase (IKK)α or IKKβ, two critical regulators of NFκB activation, we demonstrate that IEC-intrinsic IKKα expression selectively regulates group 3 ILC (ILC3)-dependent antibacterial immunity in the intestine. Although IKKβ(ΔIEC) mice efficiently controlled Citrobacter rodentium infection, IKKα(ΔIEC) mice exhibited severe intestinal inflammation, increased bacterial dissemination to peripheral organs, and increased host mortality. Consistent with weakened innate immunity to C. rodentium, IKKα(ΔIEC) mice displayed impaired IL-22 production by RORγt(+) ILC3s, and therapeutic delivery of rIL-22 or transfer of sort-purified IL-22-competent ILCs from control mice could protect IKKα(ΔIEC) mice from C. rodentium-induced morbidity. Defective ILC3 responses in IKKα(ΔIEC) mice were associated with overproduction of thymic stromal lymphopoietin (TSLP) by IECs, which negatively regulated IL-22 production by ILC3s and impaired innate immunity to C. rodentium. IEC-intrinsic IKKα expression was similarly critical for regulation of intestinal inflammation after chemically induced intestinal damage and colitis. Collectively, these data identify a previously unrecognized role for epithelial cell-intrinsic IKKα expression and TSLP in regulating ILC3 responses required to maintain intestinal barrier immunity.
Collapse
Affiliation(s)
- Paul R Giacomin
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan H Moy
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mario Noti
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lisa C Osborne
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Mark C Siracusa
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Theresa Alenghat
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957
| | - Kelly A McCorkell
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Amy E Troy
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gregory D Rak
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yinling Hu
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21701
| | - Michael J May
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hak-Ling Ma
- Inflammation and Immunology-Pfizer Biotherapeutics Research and Development, Cambridge, MA 02140
| | - Lynette A Fouser
- Inflammation and Immunology-Pfizer Biotherapeutics Research and Development, Cambridge, MA 02140
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, NY 10021
| |
Collapse
|
15
|
|
16
|
Hepatocyte growth factor: A regulator of inflammation and autoimmunity. Autoimmun Rev 2014; 14:293-303. [PMID: 25476732 DOI: 10.1016/j.autrev.2014.11.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Abstract
Hepatocyte growth factor (HGF) is a pleiotropic cytokine that has been extensively studied over several decades, but was only recently recognized as a key player in mediating protection of many types of inflammatory and autoimmune diseases. HGF was reported to prevent and attenuate disease progression by influencing multiple pathophysiological processes involved in inflammatory and immune response, including cell migration, maturation, cytokine production, antigen presentation, and T cell effector function. In this review, we discuss the actions and mechanisms of HGF in inflammation and immunity and the therapeutic potential of this factor for the treatment of inflammatory and autoimmune diseases.
Collapse
|
17
|
Mungunsukh O, McCart EA, Day RM. Hepatocyte Growth Factor Isoforms in Tissue Repair, Cancer, and Fibrotic Remodeling. Biomedicines 2014; 2:301-326. [PMID: 28548073 PMCID: PMC5344272 DOI: 10.3390/biomedicines2040301] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 01/18/2023] Open
Abstract
Hepatocyte growth factor (HGF), also known as scatter factor (SF), is a pleotropic factor required for normal organ development during embryogenesis. In the adult, basal expression of HGF maintains tissue homeostasis and is up-regulated in response to tissue injury. HGF expression is necessary for the proliferation, migration, and survival of epithelial and endothelial cells involved in tissue repair in a variety of organs, including heart, lung, kidney, liver, brain, and skin. The administration of full length HGF, either as a protein or using exogenous expression methodologies, increases tissue repair in animal models of tissue injury and increases angiogenesis. Full length HGF is comprised of an N-terminal hairpin turn, four kringle domains, and a serine protease-like domain. Several naturally occurring alternatively spliced isoforms of HGF were also identified. The NK1 variant contains the N-terminal hairpin and the first kringle domain, and the NK2 variant extends through the second kringle domain. These alternatively spliced forms of HGF activate the same receptor, MET, but they differ from the full length protein in their cellular activities and their biological functions. Here, we review the species-specific expression of the HGF isoforms, their regulation, the signal transduction pathways they activate, and their biological activities.
Collapse
Affiliation(s)
- Ognoon Mungunsukh
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA.
| | - Elizabeth A McCart
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA.
| | - Regina M Day
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA.
| |
Collapse
|
18
|
Tomita K, Haga H, Mizuno K, Katsumi T, Sato C, Okumoto K, Nishise Y, Watanabe H, Saito T, Ueno Y. Epiregulin promotes the emergence and proliferation of adult liver progenitor cells. Am J Physiol Gastrointest Liver Physiol 2014; 307:G50-7. [PMID: 24812054 DOI: 10.1152/ajpgi.00434.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously reported that epiregulin is a growth factor that seems to act on liver progenitor cells (LPCs) during liver regeneration. However, the relationship between epiregulin and LPCs has remained unclear. The aim of the present study was to clarify the role of epiregulin during liver regeneration. The serum levels of epiregulin in patients with acute liver failure were examined. A liver injury model was developed using mice fed a diet containing 0.1% 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) to induce LPCs. We then evaluated the expression of epiregulin and LPCs in these mice. The proliferation of epithelial cell adhesion molecule + LPCs cultured with epiregulin was examined in vitro, and finally epiregulin was overexpressed in mouse liver. In patients with acute liver failure, serum epiregulin levels were elevated significantly. In DDC mice, LPCs emerged around the portal area. Epiregulin was also detected around the portal area during the course of DDC-induced liver injury and was partially coexpressed with Thy1. Serum epiregulin levels in DDC mice were also significantly elevated. Recombinant epiregulin augmented the proliferative capacity of the LPCs in a dose-dependent manner. In mice showing overexpression of epiregulin, the expression of PCNA on hepatocytes was increased significantly. Finally, LPCs emerged around the portal area after epiregulin gene delivery. We concluded that epiregulin promotes the proliferation of LPCs and DNA synthesis by hepatocytes and is upregulated in the serum of patients with liver injury. Furthermore, induction of epiregulin leads to the appearance of LPCs. Epiregulin would be a useful biomarker of liver regeneration.
Collapse
Affiliation(s)
- Kyoko Tomita
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan; CREST, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kei Mizuno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan; CREST, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tomohiro Katsumi
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Chikako Sato
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan; CREST, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kazuo Okumoto
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuko Nishise
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hisayoshi Watanabe
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan; CREST, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takafumi Saito
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan; CREST, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
19
|
Kovacsics D, Raper J. Transient expression of proteins by hydrodynamic gene delivery in mice. J Vis Exp 2014. [PMID: 24837006 DOI: 10.3791/51481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Efficient expression of transgenes in vivo is of critical importance in studying gene function and developing treatments for diseases. Over the past years, hydrodynamic gene delivery (HGD) has emerged as a simple, fast, safe and effective method for delivering transgenes into rodents. This technique relies on the force generated by the rapid injection of a large volume of physiological solution to increase the permeability of cell membranes of perfused organs and thus deliver DNA into cells. One of the main advantages of HGD is the ability to introduce transgenes into mammalian cells using naked plasmid DNA (pDNA). Introducing an exogenous gene using a plasmid is minimally laborious, highly efficient and, contrary to viral carriers, remarkably safe. HGD was initially used to deliver genes into mice, it is now used to deliver a wide range of substances, including oligonucleotides, artificial chromosomes, RNA, proteins and small molecules into mice, rats and, to a limited degree, other animals. This protocol describes HGD in mice and focuses on three key aspects of the method that are critical to performing the procedure successfully: correct insertion of the needle into the vein, the volume of injection and the speed of delivery. Examples are given to show the application of this method to the transient expression of two genes that encode secreted, primate-specific proteins, apolipoprotein L-I (APOL-I) and haptoglobin-related protein (HPR).
Collapse
Affiliation(s)
| | - Jayne Raper
- Department of Biological Sciences, Hunter College, CUNY;
| |
Collapse
|
20
|
Ruan GX, Zhang TY, Li LM, Zhang XG, Shen YQ, Tabata Y, Gao JQ. Hepatic-Targeted Gene Delivery Using Cationic Mannan Vehicle. Mol Pharm 2014; 11:3322-9. [DOI: 10.1021/mp5000899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Gui-Xin Ruan
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tian-Yuan Zhang
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li-Ming Li
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xing-Guo Zhang
- Department
of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, P. R. China
| | - You-Qing Shen
- Center
for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yasuhiko Tabata
- Department
of Biomaterials, Field of Tissue Engineering, Institute for Frontier
Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jian-Qing Gao
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
21
|
Aguilar-Valenzuela R, Carlsen ED, Liang Y, Soong L, Sun J. Hepatocyte growth factor in dampening liver immune-mediated pathology in acute viral hepatitis without compromising antiviral activity. J Gastroenterol Hepatol 2014; 29:878-86. [PMID: 24224701 PMCID: PMC3983911 DOI: 10.1111/jgh.12456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIM Hepatocyte growth factor (HGF) is a pleiotropic cytokine related with cell proliferation and survival; however, its role in viral hepatitis is not elucidated. In this study, we studied HGF immune role in viral hepatitis. METHODS Mice received hydrodynamically delivered HGF plasmid or control plasmid and then infected with adenovirus, and parameters of immune-mediated liver damage were evaluated. We studied dendritic cell (DC) activation in the presence of HGF. T cells collected from infected mice were restimulated with virally infected DC to measure cytokine production in vitro. RESULTS HGF ameliorated the liver inflammation during viral hepatitis as alanine transferase, intrahepatic lymphocytes, and splenocyte counts were diminished by HGF. Lower histological scores of liver pathology were observed in the HGF group. DC from the HGF group expressed reduced CD40. The hepatic expression and serum concentration of IL-12p40 were diminished in HGF-transfected mice. In vitro experiments with DC confirmed that HGF diminished CD40 expression and IL-12p40 production. The expression and serum levels of IFN-γ, IL-6 and CXCL9 were significantly decreased in the HGF group. HGF overexpression diminished the expression and concentration of IL-10 and TGF-β. The frequency of PD-1(+) Tim-3(+) in CD8 T cells was decreased by HGF overexpression. Moreover, T cells in the HGF group at day 14 secreted more IFN-γ and TNF-α than those in the control group when restimulated with virally infected DC. CONCLUSION HGF modulated DC activation and T cell priming, thereby limiting the immune-mediated damage in the liver. However, viral clearance was not compromised by HGF.
Collapse
Affiliation(s)
- Renan Aguilar-Valenzuela
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-1070, USA
| | - Eric D. Carlsen
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-1070, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-1070, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-1070, USA,Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-1070, USA
| |
Collapse
|
22
|
Durable expression of minicircle DNA-liposome-delivered androgen receptor cDNA in mice with hepatocellular carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:156356. [PMID: 24734226 PMCID: PMC3966419 DOI: 10.1155/2014/156356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/25/2013] [Accepted: 01/21/2014] [Indexed: 11/28/2022]
Abstract
Background. The most common gene-based cancer therapies involve the suppression of oncogenic molecules and enhancement of the expression of tumor-suppressor genes. Studies in noncancer disease animal models have shown that minicircle (MC) DNA vectors are easy to deliver and that the proteins from said MC-carrying DNA vectors are expressed over a long period of time. However, delivery of therapeutic genes via a liposome-mediated, MC DNA complex has never been tested in vascular-rich hepatocellular carcinoma (HCC). Liposome-mediated DNA delivery exhibits high in vivo transfection efficiency and minimal systemic immune response, thereby allowing for repetitive interventions. In this study, we evaluated the efficacy of delivering an MC-liposome vector containing a 3.2 kb androgen receptor (AR; HCC metastasis suppressor) cDNA into Hepatitis B Virus- (HBV-) induced HCC mouse livers. Results. Protein expression and promoter luciferase assays revealed that liposome-encapsulated MC-AR resulted in abundant functional expression of AR protein (100 kD) for up to two weeks. The AR cDNA was also successfully delivered into normal livers and diseased livers, where it was persistently expressed. In both normal livers and livers with tumors, the expression of AR was detectable for up to 60 days. Conclusion. Our results show that an MC/liposome delivery system might improve the efficacy of gene therapy in patients with HCC.
Collapse
|
23
|
Li Q, Sun H, Xiao F, Wang X, Yang Y, Liu Y, Zhang Q, Wu C, Wang H, Wang LS. Protection against radiation-induced hematopoietic damage in bone marrow by hepatocyte growth factor gene transfer. Int J Radiat Biol 2014; 90:36-44. [PMID: 24059647 DOI: 10.3109/09553002.2014.847294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor (HGF) gene could prevent radiation-induced hematopoietic damage. MATERIALS AND METHODS Thirty C57BL/6 mice were randomized into three groups, in which phosphate buffer saline (PBS), mock adenovirus vector (Ad-null) or adenovirus vector containing HGF (Ad-HGF) were injected into the tail vein of each group, respectively. After 48 hours, the mice received a single irradiation dose of 6.5 Gy (60)Co gamma rays. Blood samples were extracted via the tail vein at day 0, 4, 7, 10, 14, 21, 24 and 30 after irradiation, for red blood cell (RBC) and white blood cell (WBC) and cluster of differentiation4 (CD4)/cluster of differentiation8 (CD8) ratio assessment. At weekly intervals following irradiation, serum erythropoietin (EPO), Interleukin-6 (IL-6) and Interferon-gamma (IFN-γ) levels were measured using enzyme-linked immunosorbent assay (ELISA). On post-irradiation day 30, the mice were autopsied and erythroid burst-forming units (BFU-E) were evaluated. RESULTS Adenovirus-mediated HGF gene transfer could increase human HGF level in serum and have a significant elevation in RBC and WBC count. Ad-HGF increased EPO and IL-6 levels and prompted BFU-E formation. Ad-HGF decreased radiation- induced micronucleus frequency in the mouse bone marrow (BM). Most evidence of radiation-induced hematopoietic damage was observed morphologically in bone marrow specimen four weeks after irradiation. Ad-HGF protected against radiation-induced BM failure and increased survival. Finally, Ad-HGF increased the thymic index and enhanced immune function in the irradiated C57BL/6 mice. CONCLUSIONS This is the first report to date that demonstrates the potential of HGF gene transfer to prevent radiation-induced hematopoietic damage.
Collapse
Affiliation(s)
- Qingfang Li
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine , Beijing , P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang HY, Yang LZ, Gu CM, Chen Y, Zhao Y, Zhao D, Li TS, Cui MJ. Pathological changes, TGF-β1 expression, and the effects of hepatocyte growth factor in 5/6 nephrectomized rats. Ren Fail 2013; 36:393-9. [PMID: 24345300 DOI: 10.3109/0886022x.2013.867797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several studies have shown that hepatocyte growth factor (HGF) ameliorates chronic renal failure, but its mechanism of action is unclear. This study was designed to test the delivery of HGF in the PCI-neo vector, using the 5/6 nephrectomized rat as a model for chronic renal failure, and to confirm that this protective function is associated with decreased protein expression of transforming growth factor-beta1 (TGF-β1). Rats were randomly divided into the following groups: Control (untreated), PCI-neo (vector control), 5/6 nephrectomy, and PCI-neo-HGF. Rats were sacrificed at both the fifth and ninth week after 5/6 nephrectomy. Kidney specimens were used for pathological examination (hematoxylin-eosin staining), and detection of TGF-β1 protein (Western blot and immunohistochemistry) expression. Blood urea nitrogen, serum creatinine, and 24-h urinary protein excretion (UPE) were increased, renal interstitium was seriously injured, and TGF-β1 protein expression was elevated in 5/6 nephrectomized rats compared to control rats at either time point. Red blood cell and hemoglobin levels decreased in the ninth week after 5/6 nephrectomy. PCI-neo-HGF expression ameliorated the aforementioned changes and decreased TGF-β1 expression, not only in the fifth week, but also in the ninth week after surgery. The process of renal injury in the 5/6 nephrectomized rat was consistent with that of chronic renal failure. The increase in TGF-β1 expression was maintained after 5/6 nephrectomy. HGF relieved chronic renal failure, this protection was associated with down-regulation of TGF-β1 protein expression, and the protective effects were long-term and stable after 5/6 nephrectomy.
Collapse
Affiliation(s)
- Hong-Yue Wang
- Department of Nephrology, First Hospital of Jilin University , Changchun , China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou D, Tan RJ, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int 2013; 84:509-20. [PMID: 23715119 PMCID: PMC3758808 DOI: 10.1038/ki.2013.102] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 12/16/2022]
Abstract
Hepatocyte growth factor is a pleiotrophic protein that promotes injury repair and regeneration in multiple organs. Here, we show that after acute kidney injury (AKI), the HGF receptor, c-met, was induced predominantly in renal tubular epithelium. To investigate the role of tubule-specific induction of c-met in AKI, we generated conditional knockout mice, in which the c-met gene was specifically disrupted in renal tubules. These Ksp-met−/−mice were phenotypically normal and had no appreciable defect in kidney morphology and function. However, in AKI induced by cisplatin or ischemia-reperfusion injury, the loss of tubular c-met substantially aggravated renal injury. Compared with controls, Ksp-met−/−mice displayed higher serum creatinine, more severe morphologic lesions, and increased apoptosis, which was accompanied by an increased expression of Bax and Fas ligand and decreased phosphorylation-activation of Akt. In addition, ablation of c-met in renal tubules promoted chemokine expression and renal inflammation after AKI. Consistently, ectopic expression of hepatocyte growth factor in vivo protected the kidneys against AKI in control mice, but not in Ksp-met−/−counterparts. Thus, our results suggest that tubule-specific c-met signaling is crucial in conferring renal protection after AKI, primarily by its anti-apoptotic and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
26
|
Role of recombinant plasmid pEGFP-N1-IGF-1 transfection in alleviating osteoporosis in ovariectomized rats. J Mol Histol 2013; 44:535-44. [PMID: 23508541 DOI: 10.1007/s10735-013-9498-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/11/2013] [Indexed: 01/13/2023]
Abstract
Decreased levels of serum insulin-like growth factor-1 (IGF-1) have been proven to cause osteoporosis. Gene transfer of IGF-1 offers an attractive technology to treat skeletal metabolic disorders including osteoporosis, but the viral vectors are limited by their high antigenicity and immune response. Our purpose was to investigate the expression of a non-invasive vector, recombinant plasmid enhanced green fluorescent protein-N1 (pEGFP-N1) that transferred IGF-1 gene into ovariectomized (OVX) rats in vivo and evaluate the effect of this therapy on osteoporosis. OVX or sham operations were performed in 60 female, 7-month-old unmated SD rats. 12 weeks after OVX operation, the vectors were transfected to the 10-month-old rats and experimental data were detected from 48 h to 7 week after transfection. Our results showed that remarkable expression of fluorescence and serum IGF-1 was observed in the rats transfected by recombinant plasmids, indicating that IGF-1 gene was successfully transferred to OVX rats by injecting the vector through hydrodynamic method via the tail vein. The bone metabolism index including serum alkaline phosphatase, the histomorphometric parameters of lumbar vertebra including trabecular area percentage, trabecular thickness, trabecular number and trabecular separation, and the bone mineral density (BMD) and biomechanical parameters of lumbar vertebra including BMD, maximum condensing force, crushing strength in OVX rats transfected by pEGFP-N1-IGF-1 were improved remarkably compared with OVX+pEGFP-N1 rats, indicating that the transfection of recombinant plasmid pEGFP-N1-IGF-1 played a significant role in alleviating osteoporosis in rats induced by OVX. This encouraged a potential approach of IGF-1 gene therapy to the treatment of osteoporosis.
Collapse
|
27
|
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1:27. [PMID: 23210086 PMCID: PMC3507026 DOI: 10.4103/2277-9175.98152] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/10/2012] [Indexed: 12/14/2022] Open
Abstract
Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation and side effects. In this review we explain about the history of gene therapy, all types of gene delivery systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells) and somatic cells by viral [retroviral, adenoviral, adeno association, helper-dependent adenoviral systems, hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, Epstein-Barr virus)] and nonviral systems (physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection) and (chemical: Cationic lipids, different cationic polymers, lipid polymers). In addition to the above-mentioned, advantages, disadvantages, and practical use of each system are discussed.
Collapse
Affiliation(s)
- Nouri Nayerossadat
- Molecular Genetic Laboratory, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Talebi Maedeh
- Molecular Genetic Laboratory, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Palizban Abas Ali
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| |
Collapse
|
28
|
Wang HY, Yang LZ, Cui MJ, Gu CM, Zhao Y, Chen Y, Zhao D, Li TS, Chi B. Hepatocyte growth factor-induced amelioration in chronic renal failure is associated with reduced expression of α-smooth muscle actin. Ren Fail 2012; 34:862-70. [PMID: 22680062 DOI: 10.3109/0886022x.2012.687344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed to examine whether hepatocyte growth factor (HGF) can improve renal function in 5/6 nephrectomized rats and investigate whether this function is associated with a decrease in α-smooth muscle actin (α-SMA) expression in rat glomerulus mesangial cells and renal interstitium. Rats were randomly divided into the following groups: control, PCI-neo, sham-operation, 5/6 nephrectomy, and low-dose and high-dose PCI-neo-HGF. Rats were killed in the ninth week after 5/6 nephrectomy, and the kidney specimens were subjected to pathological examination by Hematoxylin-Eosin staining and detection of α-SMA expression by reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry. The results showed that blood urea nitrogen and serum creatinine levels were increased, renal interstitium was injured, and α-SMA expression was elevated in 5/6 nephrectomized rats compared with that in control. The above changes were ameliorated in the rats injected with PCI-neo-HGF vector. At the molecular level we found that PCI-neo-HGF repressed α-SMA expression in mesangial cells stimulated by lipopolysaccharide. In conclusion, our data suggest that HGF can relieve chronic renal failure, and this protection is associated with the down-regulation of α-SMA expression in mesangial cells and renal interstitium.
Collapse
Affiliation(s)
- Hong-yue Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li L, He D, Yang J, Wang X. Cordycepin inhibits renal interstitial myofibroblast activation probably by inducing hepatocyte growth factor expression. J Pharmacol Sci 2011; 117:286-94. [PMID: 22134049 DOI: 10.1254/jphs.11127fp] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Renal interstitial fibrosis is the common end point of progressive renal diseases leading to the deterioration and eventual loss of renal function. This study investigated the effect and potential mechanism of cordycepin on activation of renal interstitial fibroblast cells. The time and dose-responses of cordycepin in rat renal interstitial fibroblast (NRK-49F) cells were analyzed. The proliferation of NRK-49F and the expression of α-smooth muscle actin (α-SMA) and fibronectin (FN) were examined. The expression and translocation of Smad proteins also were measured by western blot and indirect immunofluorescence staining. The mRNA level of hepatocyte growth factor (HGF) and the expression of HGF receptor c-Met and its phosphorylation (p-Met) were also detected. Cordycepin suppressed the proliferation of NRK-49F and the expression of α-SMA and FN induced by transforming growth factor-β1 (TGF-β1). The pretreatment of cordycepin markedly attenuated the nuclear translocation and accumulation of activated Smad2/3 in NRK-49F cells. Furthermore, cordycepin not only increased HGF expression, but also induced HGF secretion, as well as HGF receptor phosphorylation in NRK-49F cells. Cordycepin possesses renoprotective activity through suppression myofibroblast activation. This action is mediated, at least in part, by blocking nuclear translocation and accumulation of activated Smad2/3 protein and up-regulating anti-fibrotic HGF expression and secretion and HGF receptor activation.
Collapse
Affiliation(s)
- Li Li
- First Clinical Medical College of Nanjing Medical University, Nanjing 210029, PR China.
| | | | | | | |
Collapse
|
30
|
He W, Tan RJ, Li Y, Wang D, Nie J, Hou FF, Liu Y. Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/β-catenin activity in CKD. J Am Soc Nephrol 2011; 23:294-304. [PMID: 22095947 DOI: 10.1681/asn.2011050490] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A variety of chronic kidney diseases exhibit reactivation of Wnt/β-catenin signaling. In some tissues, β-catenin transcriptionally regulates matrix metalloproteinase-7 (MMP-7), but the association between MMP-7 and Wnt/β-catenin signaling in chronic kidney disease is unknown. Here, in mouse models of both obstructive nephropathy and focal segmental glomerulosclerosis (adriamycin nephropathy), we observed upregulation of MMP-7 mRNA and protein in a time-dependent manner. The pattern and extent of MMP-7 induction were positively associated with Wnt/β-catenin signaling in these models. Activation of β-catenin through ectopic expression of Wnt1 promoted MMP-7 expression in vivo, whereas delivery of the gene encoding the endogenous Wnt antagonist Dickkopf-1 abolished its induction. Levels of MMP-7 protein detected in the urine correlated with renal Wnt/β-catenin activity. Pharmacologic blockade of Wnt/β-catenin signaling by paricalcitol inhibited MMP-7 expression in diseased kidneys and reduced the levels detected in the urine. In vitro, β-catenin activation induced the expression and secretion of MMP-7 and promoted the binding of T cell factor to the MMP-7 promoter in kidney epithelial cells. We also observed higher levels of MMP-7 expression, which correlated with β-catenin, in kidney tissue from patients with various nephropathies. In summary, levels of renal MMP-7 correlate with Wnt/β-catenin activity, and urinary MMP-7 may be a noninvasive biomarker of this profibrotic signaling in the kidney.
Collapse
Affiliation(s)
- Weichun He
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Augmenter of liver regeneration (ALR) gene therapy attenuates CCl₄-induced liver injury and fibrosis in rats. Biochem Biophys Res Commun 2011; 415:152-6. [PMID: 22033404 DOI: 10.1016/j.bbrc.2011.10.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/09/2011] [Indexed: 01/09/2023]
Abstract
Liver fibrosis represents a process of healing and scarring in response to chronic liver injury. Augmenter of liver regeneration (ALR) has been shown to protect hepatocytes from various toxins. The aim of this study was to investigate the effects of ALR gene therapy on liver injury and fibrosis induced by CCl(4) in rats and further explore the underlying mechanisms. Human ALR expression plasmid was delivered via the tail vein. ALR gene therapy might protect the liver from CCl(4)-induced injury and fibrogenesis by attenuating the mitochondrial dysfunction, suppressing oxidative stress, and inhibiting activation of HSCs. This report demonstrated that ALR gene therapy protected against the ATP loss, increased the activity of ATPase, decreased intrahepatic reactive oxygen species level, and down-regulated transforming growth factor-β1, platelet-derived growth factor-BB, and α-smooth muscle actin expression. Following gene transfer liver function tests were significantly improved. In brief, ALR gene therapy might be an effective therapeutic reagent for liver fibrosis with potential clinical applications.
Collapse
|
32
|
Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria. Kidney Int 2011; 80:1159-1169. [PMID: 21832980 DOI: 10.1038/ki.2011.255] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) upregulation occurs in virtually all chronic kidney diseases and is associated with podocyte injury and proteinuria; however, the mechanisms contributing to this in vivo are ambiguous. In vitro, incubation of podocytes with TGF-β1 induced Wnt1 expression, β-catenin activation, and stimulated the expression of Wnt/β-catenin downstream target genes. Ectopic expression of Wnt1 or β-catenin mimicked TGF-β1, induced Snail1, and suppressed nephrin expression. The Wnt antagonist, Dickkopf-1, blocked TGF-β1-induced β-catenin activation, Snail1 induction, and nephrin suppression. In vivo, ectopic expression of TGF-β1 induced Wnt1 expression, activated β-catenin, and upregulated Wnt target genes such as Snail1, MMP-7, MMP-9, desmin, Fsp1, and PAI-1 in mouse glomeruli, leading to podocyte injury and albuminuria. Consistently, concomitant expression of Dickkopf-1 gene abolished β-catenin activation, inhibited TGF-β1-triggered Wnt target gene expression, and mitigated albuminuria. Thus, canonical Wnt/β-catenin signaling mediates TGF-β1-driven podocyte injury and proteinuria. These studies suggest that Wnt/β-catenin signaling may be exploited as a therapeutic target for the treatment of proteinuric kidney diseases.
Collapse
|
33
|
Li S, Tang Z, Yu H, Li W, Jiang Y, Wang Y, An W. Administration of naked plasmid encoding hepatic stimulator substance by hydrodynamic tail vein injection protects mice from hepatic failure by suppressing the mitochondrial permeability transition. J Pharmacol Exp Ther 2011; 338:750-7. [PMID: 21613410 DOI: 10.1124/jpet.111.181305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acute liver failure is a devastating illness of various causes with considerable mortality. Hepatic stimulator substance (HSS) has been suggested for use as a protective agent against acute hepatic injury induced by chemical poisons because it has a variety of biological activities. However, the mechanism whereby HSS protects against hepatotoxins is poorly understood. In this study, we established a hepatic gene transfer system via hydrodynamic tail vein injection to deliver a naked plasmid containing the human HSS gene (hHSS) and analyzed HSS-mediated protection of the liver during fulminant hepatic failure (FHF) induced by D-galactosamine (D-gal) and lipopolysaccharide (LPS). The results showed that the reporter gene, enhanced green fluorescent protein, was efficiently expressed in the liver of BALB/c mice. Hydrodynamic-based transfection of hHSS yielded a 70% survival rate compared with 36.7% for the control group at 24 h after D-gal/LPS treatment. In addition, hHSS expression preserved liver morphology and function. It is noteworthy that hHSS hydrodynamic-based transfer ameliorated indices of the mitochondrial permeability transition (MPT) resulting from the toxic effects of d-gal/LPS on the liver such as mitochondrial swelling, mitochondrial transmembrane potential disruption, and cytochrome c translocation. Furthermore, mitochondrial morphology and ATP levels were maintained in hHSS-administered mice. HSS-mediated protection was similar to that observed with the MPT inhibitor N-methyl-4-isoleucine-cyclosporin (NIM811), indicating a possible role for HSS in the regulation of MPT. In conclusion, a single dose of hHSS plasmid protected mice from FHF, and this hepatoprotective effect seemed to correlate with the inhibition of MPT.
Collapse
Affiliation(s)
- Shenglan Li
- Department of Cell Biology and Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Atta HM. Gene therapy for liver regeneration: experimental studies and prospects for clinical trials. World J Gastroenterol 2010; 16:4019-30. [PMID: 20731015 PMCID: PMC2928455 DOI: 10.3748/wjg.v16.i32.4019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/03/2010] [Accepted: 03/10/2010] [Indexed: 02/06/2023] Open
Abstract
The liver is an exceptional organ, not only because of its unique anatomical and physiological characteristics, but also because of its unlimited regenerative capacity. Unfolding of the molecular mechanisms that govern liver regeneration has allowed researchers to exploit them to augment liver regeneration. Dramatic progress in the field, however, was made by the introduction of the powerful tool of gene therapy. Transfer of genetic materials, such as hepatocyte growth factor, using both viral and non-viral vectors has proved to be successful in augmenting liver regeneration in various animal models. For future clinical studies, ongoing research aims at eliminating toxicity of viral vectors and increasing transduction efficiency of non-viral vectors, which are the main drawbacks of these systems. Another goal of current research is to develop gene therapy that targets specific liver cells using receptors that are unique to and highly expressed by different liver cell types. The outcome of such investigations will, undoubtedly, pave the way for future successful clinical trials.
Collapse
|
35
|
Nejak-Bowen KN, Thompson MD, Singh S, Bowen WC, Dar MJ, Khillan J, Dai C, Monga SPS. Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant beta-catenin. Hepatology 2010; 51:1603-13. [PMID: 20432254 PMCID: PMC2908905 DOI: 10.1002/hep.23538] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED The Wnt/beta-catenin pathway is implicated in the pathogenesis of hepatocellular cancer (HCC). We developed a transgenic mouse (TG) in the FVB strain that overexpresses Ser45-mutated-beta-catenin in hepatocytes to study the effects on liver regeneration and cancer. In the two independent TG lines adult mice show elevated beta-catenin at hepatocyte membrane with no increase in the Wnt pathway targets cyclin-D1 or glutamine synthetase. However, TG hepatocytes upon culture exhibit a 2-fold increase in thymidine incorporation at day 5 (D5) when compared to hepatocytes from wildtype FVB mice (WT). When subjected to partial hepatectomy (PH), dramatic increases in the number of hepatocytes in S-phase are evident in TG at 40 and WT at 72 hours. Coincident with the earlier onset of proliferation, we observed nuclear translocation of beta-catenin along with an increase in total and nuclear cyclin-D1 protein at 40 hours in TG livers. To test if stimulation of beta-catenin induces regeneration, we used hydrodynamic delivery of Wnt-1 naked DNA to control mice, which prompted an increase in Wnt-1, beta-catenin, and known targets, glutamine synthetase (GS) and cyclin-D1, along with a concomitant increase in cell proliferation. beta-Catenin-overexpressing TG mice, when followed up to 12 months, showed no signs of spontaneous tumorigenesis. However, intraperitoneal delivery of diethylnitrosamine (DEN), a known carcinogen, induced HCC at 6 months in TG mice only. Tumors in TG livers showed up-regulation of beta-catenin, cyclin-D1, and unique genetic aberrations, whereas other canonical targets were unremarkable. CONCLUSION beta-Catenin overexpression offers growth advantage during liver regeneration. Also, whereas no spontaneous HCC is evident, beta-catenin overexpression makes TG mice susceptible to DEN-induced HCC.
Collapse
Affiliation(s)
- Kari N Nejak-Bowen
- Department of Pathology University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Michael D. Thompson
- Department of Pathology University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - William C. Bowen
- Department of Pathology University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Mohd Jamal Dar
- Department of Pathology University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Jaspal Khillan
- Molecular Genetics and Biochemistry University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Chunsun Dai
- Department of Pathology University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P S Monga
- Department of Pathology University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania,Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Paranjpe S, Bowen WC, Tseng GC, Luo JH, Orr A, Michalopoulos GK. RNA interference against hepatic epidermal growth factor receptor has suppressive effects on liver regeneration in rats. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2669-81. [PMID: 20395437 DOI: 10.2353/ajpath.2010.090605] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver regeneration after a two-thirds partial hepatectomy (PHx) is a complex process requiring interaction and cooperation of many growth factors and cytokines and cross talk between multiple pathways. Along with hepatocyte growth factor and its receptor MET (HGF-MET), the epidermal growth factor receptor (EGFR) signaling pathway is activated within 60 minutes after PHx. To investigate the role of EGFR in liver regeneration, we used two EGFR-specific short hairpin silencing RNAs to inhibit EGFR expression in regenerating normal rat liver. Suppression of EGFR mRNA and protein was evident in treated rats. There was also a demonstrable decrease but not complete elimination of bromo-deoxyuridine incorporation and mitoses at 24 hours after PHx. In addition, we observed up-regulation of MET and Src as well as activation of the ErbB-3-ErbB-2-PI3K-Akt pathway and down-regulation of STAT 3, cyclin D1, cyclin E1, p21, and C/EBP beta. The decrease in the ratio of C/EBP alpha to C/EBP beta known to occur after PHx was offset in shEGFR-treated rats. Despite suppression of hepatocyte proliferation lasting into day 3 after PHx, liver weight restoration occurred. Interestingly, hepatocytes in shEGFR-treated rats were considerably larger when compared with ScrRNA-treated controls. The data indicate that although the MET and EGFR pathways are similar, the contributions made by MET and EGFR are unique and are not compensated by each other or other cytokines.
Collapse
Affiliation(s)
- Shirish Paranjpe
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hepatocyte growth factor signaling ameliorates podocyte injury and proteinuria. Kidney Int 2010; 77:962-73. [PMID: 20375988 DOI: 10.1038/ki.2010.40] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hepatocyte growth factor (HGF) is a potent antifibrotic protein that inhibits kidney fibrosis through several mechanisms. To study its role in podocyte homeostasis, injury, and repair in vivo, we generated conditional knockout mice in which the HGF receptor, c-met, was specifically deleted in podocytes using the Cre-LoxP system. Mice with podocyte-specific ablation of c-met (podo-met(-/-)) developed normally. No albuminuria or overt pathologic lesions were detected up to 6 months of age, suggesting that HGF signaling is dispensable for podocyte maturation, survival, and function under normal physiologic conditions. However, after adriamycin treatment, podo-met(-/-) mice developed more severe podocyte injury and albuminuria than their control littermates. Ablation of c-met also resulted in more profound suppression of Wilms tumor 1 (WT1) and nephrin expression, and podocyte apoptosis after injury. When HGF was expressed ectopically in vivo, it ameliorated adriamycin-induced albuminuria, preserved WT1 and nephrin expression, and inhibited podocyte apoptosis. However, exogenous HGF failed to significantly reduce albuminuria in podo-met(-/-) mice, suggesting that podocyte-specific c-met activation by HGF confers renal protection. In vitro, HGF was able to preserve WT1 and nephrin expression in cultured podocytes after adriamycin treatment. HGF also protected podocytes from apoptosis induced by a lethal dose of adriamycin primarily through a phosphoinositide 3-kinase (PI3K)/Akt-dependent pathway. Collectively, these results indicate that HGF/c-met signaling has an important role in protecting podocytes from injury, thereby reducing proteinuria.
Collapse
|
38
|
Wang T, Shah YM, Matsubara T, Zhen Y, Tanabe T, Nagano T, Fotso S, Krausz KW, Zabriskie TM, Idle JR, Gonzalez FJ. Control of steroid 21-oic acid synthesis by peroxisome proliferator-activated receptor alpha and role of the hypothalamic-pituitary-adrenal axis. J Biol Chem 2009; 285:7670-85. [PMID: 20032461 DOI: 10.1074/jbc.m109.090175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A previous study identified the peroxisome proliferator-activated receptor alpha (PPARalpha) activation biomarkers 21-steroid carboxylic acids 11beta-hydroxy-3,20-dioxopregn-4-en-21-oic acid (HDOPA) and 11beta,20-dihydroxy-3-oxo-pregn-4-en-21-oic acid (DHOPA). In the present study, the molecular mechanism and the metabolic pathway of their production were determined. The PPARalpha-specific time-dependent increases in HDOPA and 20alpha-DHOPA paralleled the development of adrenal cortex hyperplasia, hypercortisolism, and spleen atrophy, which was attenuated in adrenalectomized mice. Wy-14,643 activation of PPARalpha induced hepatic FGF21, which caused increased neuropeptide Y and agouti-related protein mRNAs in the hypothalamus, stimulation of the agouti-related protein/neuropeptide Y neurons, and activation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in increased adrenal cortex hyperplasia and corticosterone production, revealing a link between PPARalpha and the HPA axis in controlling energy homeostasis and immune regulation. Corticosterone was demonstrated as the precursor of 21-carboxylic acids both in vivo and in vitro. Under PPARalpha activation, the classic reductive metabolic pathway of corticosterone was suppressed, whereas an alternative oxidative pathway was uncovered that leads to the sequential oxidation on carbon 21 resulting in HDOPA. The latter was then reduced to the end product 20alpha-DHOPA. Hepatic cytochromes P450, aldehyde dehydrogenase (ALDH3A2), and 21-hydroxysteroid dehydrogenase (AKR1C18) were found to be involved in this pathway. Activation of PPARalpha resulted in the induction of Aldh3a2 and Akr1c18, both of which were confirmed as target genes through introduction of promoter luciferase reporter constructs into mouse livers in vivo. This study underscores the power of mass spectrometry-based metabolomics combined with genomic and physiologic analyses in identifying downstream metabolic biomarkers and the corresponding upstream molecular mechanisms.
Collapse
Affiliation(s)
- Ting Wang
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Hepatic fibrosis is a common consequence in patients with chronic liver damage. To date, no agent has been approved for the treatment of hepatic fibrosis. RNA interference (RNAi) is known to be a powerful tool for post-transcriptional gene silencing and has opened new avenues in gene therapy. The problems of lack of cell specificity in vivo and subsequently the occurrence of side effects has hampered the development of hepatic fibrosis treatment. To overcome these shortcomings, several targeted strategies have been developed, such as hydrodynamics-based approaches, local administration, cell-type-selective ligands and cell-type-specific promoters or enhancers, etc. Here, we provide an overview of targeted strategies for the treatment of hepatic fibrosis, and particularly, targeted RNAi for hepatic fibrosis.
Collapse
Affiliation(s)
- Ping-Fang Hu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 20003, China
| | | |
Collapse
|
40
|
Nejak-Bowen KN, Zeng G, Tan X, Cieply B, Monga SP. Beta-catenin regulates vitamin C biosynthesis and cell survival in murine liver. J Biol Chem 2009; 284:28115-28127. [PMID: 19690176 PMCID: PMC2788862 DOI: 10.1074/jbc.m109.047258] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Indexed: 12/18/2022] Open
Abstract
Because the Wnt/beta-catenin pathway plays multiple roles in liver pathobiology, it is critical to identify gene targets that mediate such diverse effects. Here we report a novel role of beta-catenin in controlling ascorbic acid biosynthesis in murine liver through regulation of expression of regucalcin or senescence marker protein 30 and L-gulonolactone oxidase. Reverse transcription-PCR, Western blotting, and immunohistochemistry demonstrate decreased regucalcin expression in beta-catenin-null livers and greater expression in beta-catenin overexpressing transgenic livers, HepG2 hepatoma cells (contain constitutively active beta-catenin), regenerating livers, and in hepatocellular cancer tissues that exhibit beta-catenin activation. Interestingly, coprecipitation and immunofluorescence studies also demonstrate an association of beta-catenin and regucalcin. Luciferase reporter and chromatin immunoprecipitation assays verified a functional TCF-4-binding site located between -163 and -157 (CTTTGCA) on the regucalcin promoter to be critical for regulation by beta-catenin. Significantly lower serum ascorbate levels were observed in beta-catenin knock-out mice secondary to decreased expression of regucalcin and also of L-gulonolactone oxidase, the penultimate and last (also rate-limiting) steps in the synthesis of ascorbic acid, respectively. These mice also show enhanced basal hepatocyte apoptosis. To test if ascorbate deficiency secondary to beta-catenin loss and regucalcin decrease was contributing to apoptosis, beta-catenin-null hepatocytes or regucalcin small interfering RNA-transfected HepG2 cells were cultured, which exhibited significant apoptosis that was alleviated by the addition of ascorbic acid. Thus, through regucalcin and L-gulonolactone oxidase expression, beta-catenin regulates vitamin C biosynthesis in murine liver, which in turn may be one of the mechanisms contributing to the role of beta-catenin in cell survival.
Collapse
Affiliation(s)
- Kari N Nejak-Bowen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15216
| | - Gang Zeng
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15216
| | - Xinping Tan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15216
| | - Benjamin Cieply
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15216
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15216; Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15216.
| |
Collapse
|
41
|
He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y. Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol 2009; 20:765-76. [PMID: 19297557 DOI: 10.1681/asn.2008060566] [Citation(s) in RCA: 457] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Wnts compose a family of signaling proteins that play an essential role in kidney development, but their expression in adult kidney is thought to be silenced. Here, we analyzed the expression and regulation of Wnts and their receptors and antagonists in normal and fibrotic kidneys after obstructive injury. In the normal mouse kidney, the vast majority of 19 different Wnts and 10 frizzled receptor genes was expressed at various levels. After unilateral ureteral obstruction, all members of the Wnt family except Wnt5b, Wnt8b, and Wnt9b were upregulated in the fibrotic kidney with distinct dynamics. In addition, the expression of most Fzd receptors and Wnt antagonists was also induced. Obstructive injury led to a dramatic accumulation of beta-catenin in the cytoplasm and nuclei of renal tubular epithelial cells, indicating activation of the canonical pathway of Wnt signaling. Numerous Wnt/beta-catenin target genes (c-Myc, Twist, lymphoid enhancer-binding factor 1, and fibronectin) were induced, and their expression was closely correlated with renal beta-catenin abundance. Delivery of the Wnt antagonist Dickkopf-1 gene significantly reduced renal beta-catenin accumulation and inhibited the expression of Wnt/beta-catenin target genes. Furthermore, gene therapy with Dickkopf-1 inhibited myofibroblast activation; suppressed expression of fibroblast-specific protein 1, type I collagen, and fibronectin; and reduced total collagen content in the model of obstructive nephropathy. In summary, these results establish a role for Wnt/beta-catenin signaling in the pathogenesis of renal fibrosis and identify this pathway as a potential therapeutic target.
Collapse
Affiliation(s)
- Weichun He
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
42
|
Zhu HZ, Chen HY, Feng DM, Shen Q, Xue JL, Jia W. Eliminating bacteria backbone of naked DNA enhanced hFIX expression and reduced inflammatory response in mice. Biomed Pharmacother 2009; 63:129-35. [DOI: 10.1016/j.biopha.2008.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 02/12/2008] [Indexed: 12/22/2022] Open
|
43
|
Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, Zhang SH, Huang DD, Tang L, Kong XN, Chen C, Liu SQ, Wu MC, Wang HY. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 2008; 68:4287-95. [PMID: 18519688 DOI: 10.1158/0008-5472.can-07-6691] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adult hepatic progenitor (oval) cells are facultative stem cells in liver, which participate in a range of human liver diseases, including hepatocellular carcinoma (HCC). However, the molecular pathways regulating the expansion and differentiation of these cells are poorly understood. We show that active Wnt/beta-catenin signaling occurs preferentially within the oval cell population, and forced expression of constitutively active beta-catenin mutant promotes expansion of the oval cell population in the regenerated liver. More importantly, we identify a subpopulation of less differentiated progenitor-like cells in HCC cell lines and primary HCC tissues, which are defined by expression of the hepatic progenitor marker OV6 and endowed with endogenously active Wnt/beta-catenin signaling. These OV6(+) HCC cells possess a greater ability to form tumor in vivo and show a substantial resistance to standard chemotherapy compared with OV6(-) tumor cells. The fraction of tumor cells expressing OV6 is enriched after Wnt pathway activation, whereas inhibition of beta-catenin signaling leads to a decrease in the proportion of OV6(+) cells. In addition, the chemoresistance of OV6(+) HCC progenitor-like cells can be reversed by lentivirus-delivered stable expression of microRNA targeting beta-catenin. These results highlight the importance of the Wnt/beta-catenin pathway in activation and expansion of oval cells in normal rodent models and human HCCs. OV6(+) tumor cells may represent the cellular population that confers HCC chemoresistance, and therapies targeted to the Wnt/beta-catenin signaling may provide a specific method to disrupt this resistance mechanism to improve overall tumor control with chemotherapy.
Collapse
Affiliation(s)
- Wen Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang WY, Zhang JQ, Li XG, Cheng J, Li GL, Wang Q, Zhang CY, Wang XC, Chai YY. Screening of genes differentially expressed in HepG2 cells transfected with human hepatocyte growth factor. Shijie Huaren Xiaohua Zazhi 2008; 16:2458-2463. [DOI: 10.11569/wcjd.v16.i22.2458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct the eukaryotic expression vector of pcDNA3.1(-)-hHGF, and to screen the differentially expressed genes in HepG2 cells transfected with the vector.
METHODS: We constructed the expression vector of pcDNA3.1(-)-hHGF, which was confirmed by restriction enzyme digestion and DNA sequencing, and then transfected it into HepG2 cell line. The expression of HGF protein was observed by Western blotting. At last, we compared the differentially expressed genes between HepG2 cells transfected with pcDNA3.1(-)-hHGF and pcDNA3.1(-) respectively by cDNA microarray technique.
RESULTS: The expression vector was constructed successfully and confirmed by restriction enzyme digestion and DNA sequencing analysis. The expression of hHGF protein was confirmed by Western blotting. High quality mRNA and cDNA had been prepared and successful microarray screening had been conducted. From the scanning results, we found 430 genes that were up-regulated and 88 genes down-regulated in HepG2 cells transfected with hHGF.
CONCLUSION: cDNA microarray technology is successfully used to screen the genes differentially expressed in HepG2 cells transfected with hHGF, which brings some new clues for studying the regulatory mechanism of hHGF in liver cells.
Collapse
|
45
|
Giannopoulou M, Dai C, Tan X, Wen X, Michalopoulos GK, Liu Y. Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-kappaB signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:30-41. [PMID: 18502824 DOI: 10.2353/ajpath.2008.070583] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Renal inflammation, characterized by the influx of inflammatory cells, is believed to play a critical role in the initiation and progression of a wide range of chronic kidney diseases. Here, we show that hepatocyte growth factor (HGF) inhibited renal inflammation and proinflammatory chemokine expression by disrupting nuclear factor (NF)-kappaB signaling. In vivo, HGF gene delivery inhibited interstitial infiltration of inflammatory T cells and macrophages, and suppressed expression of both RANTES (regulated on activation, normal T cell expressed and secreted) and monocyte chemoattractant protein-1 in a mouse model of obstructive nephropathy. In vitro, HGF abolished RANTES induction in human kidney epithelial cells, which was dependent on NF-kappaB signaling. HGF did not significantly affect the phosphorylation or degradation of IkappaBalpha; it also did not influence the phosphorylation or nuclear translocation of p65 NF-kappaB. However, HGF prevented p65 NF-kappaB binding to its cognate cis-acting element in the RANTES promoter. HGF action was dependent on the activation of the phosphoinositide 3-kinase/Akt pathway, which led to the phosphorylation and inactivation of glycogen synthase kinase (GSK)-3beta. Suppression of GSK-3beta activity mimicked HGF and abolished RANTES expression, whereas ectopic expression of GSK-3beta restored RANTES induction. HGF also induced renal GSK-3beta phosphorylation and inactivation after obstructive injury in vivo. These observations suggest that HGF is a potent anti-inflammatory cytokine that inhibits renal inflammation by disrupting NF-kappaB signaling and may be a promising therapeutic agent for progressive renal diseases.
Collapse
Affiliation(s)
- Myrto Giannopoulou
- Department of Pathology, University of PittsburghSchool of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
46
|
ZHAO YONGGE, DIFRANCESCA DANIELL, WANG XUE, ZARNEGAR REZA, MICHALOPOULOS GEORGEK, YIN XIAOMING. Promotion of Fas-mediated apoptosis in Type II cells by high doses of hepatocyte growth factor bypasses the mitochondrial requirement. J Cell Physiol 2008; 213:556-63. [PMID: 17620325 PMCID: PMC2636794 DOI: 10.1002/jcp.21136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The death receptor pathway is coupled to the mitochondria apoptosis pathway. However, mitochondrial participation, which is stimulated by Bid but suppressed by Bcl-2/Bcl-x(L), is required in certain cells (Type II), but not in others (Type I). While these differences were originally characterized in the lymphoid cell lines, the typical Type II cells are represented by hepatocytes in vivo. The molecular mechanisms that distinguish Type II from Type I cells and the regulation are not fully understood. Fas can be sequestered by the HGF receptor c-Met and high doses of HGF can promote cell death by freeing Fas from c-Met complex. We thus reasoned that treatment of the Type II cells with high doses of HGF could enhance Fas-mediated apoptosis and spare the mitochondria amplification. Indeed, such treatment led to increased apoptosis in Type II lymphoid cells, which could not be blocked by Bcl-x(L). Moreover, significant hepatocyte apoptosis was induced by this scheme in the absence of Bid with increased dissociation of Fas from c-Met. These findings indicate that high doses of HGF could be used to promote apoptosis in Type II cells bypassing the requirement for mitochondria activation.
Collapse
Affiliation(s)
- YONGGE ZHAO
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - DANIELL DIFRANCESCA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - XUE WANG
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - REZA ZARNEGAR
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - GEORGE K. MICHALOPOULOS
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - XIAO-MING YIN
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Correspondence to: Xiao-Ming Yin, Department of Pathology, University of Pittsburgh School of Medicine, 7th Floor, Scaife Hall, Room S739, 3550 Terrace Street, Pittsburgh, PA 15261. E-mail:
| |
Collapse
|
47
|
Wang Z, Ge L, Wang M, Carr BI. Grb2-associated binder-1 plays a central role in the hepatocyte growth factor enhancement of hepatoma growth inhibition by K vitamin analog compound 5. Hepatology 2007; 46:2003-13. [PMID: 18046719 DOI: 10.1002/hep.21900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Compound 5 (Cpd 5), a K vitamin analog, has been shown to inhibit Hep3B human hepatoma cell growth in cultures and rat hepatoma growth in vivo through prolonged epidermal growth factor receptor (EGFR)-extracellular response kinase (ERK) phosphorylation, and hepatocyte growth factor (HGF) synergizes with Cpd 5 to enhance the inhibition of Hep3B cell and rat hepatoma growth. To explore the mechanisms mediating the HGF/Cpd 5 synergy, we examined the possible involvement of the Grb2-associated binder-1 (Gab1) docking protein because it interacts with both EGFR and HGF receptor c-Met pathways. We found that HGF enhanced Cpd 5-induced c-Met phosphorylation at Tyr-1349, a binding site for Gab1, resulting in increased c-Met binding to Gab1, and induced strong and prolonged Gab1 tyrosine phosphorylation. Prolonged Gab1 phosphorylation by HGF/Cpd 5 in turn enhanced the ability of Gab1 to bind to protein tyrosine phosphatase SHP2 and enhanced the activation of its downstream mitogen-activated protein kinase pathway. In contrast, this same HGF/Cpd 5 treatment inhibited Gab1 binding to phosphatidylinositol 3-kinase (PI3K), leading to the inactivation of the PI3K-Akt pathway. The inhibition of Akt phosphorylation by HGF/Cpd 5 further activated the Raf-MEK-ERK signaling cascade via an Akt-Raf1 interaction, leading to strong and prolonged ERK phosphorylation. The transfection of Hep3B cells with mutated Gab1 (Gab1 Y627F), which had lost its ability to bind SHP2, antagonized HGF/Cpd 5-induced ERK phosphorylation, whereas the transfection of Hep3B cells with mutated Gab1 3YF, which lost its ability to bind PI3K, further enhanced HGF/Cpd 5-induced ERK phosphorylation and cell growth inhibition. CONCLUSION Gab1 plays a central role in regulating HGF/Cpd 5 synergy in their actions on Hep3B cell growth inhibition.
Collapse
Affiliation(s)
- Ziqiu Wang
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
48
|
Khamaisi M, Søndergaard M, Segev Y, Dagnaes-Hansen F, Jensen TG, Landau D, Raz I, Flyvbjerg A. Differential effects on kidney and liver growth of a non-viral hGH-expression vector in hypophysectomized mice. Growth Horm IGF Res 2007; 17:279-287. [PMID: 17392003 DOI: 10.1016/j.ghir.2007.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Revised: 01/26/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
Non-viral gene transfer was investigated as a potential modality for the treatment of growth hormone deficiency (GHD) using hypophysectomized (Hx) mice as a model. Hx mice were injected with a control plasmid or a plasmid containing the human (h) GH gene driven by a ubiquitin promoter, or left untreated. Treatment with the hGH gene has previously been shown to normalize longitudinal growth and serum insulin-like growth factor I (IGF-I). The present study was conducted to examine the renal/hepatic changes and gene/peptide expression of the GH/IGF-I axis in animals chronically expressing hGH. Following a single hydrodynamic administration of a plasmid DNA containing the hGH gene, a sustained elevation of the circulating hGH level was observed throughout the entire observation period, with a concomitant normalization of circulating IGF-I and IGF-binding protein 3 (IGFBP-3). In addition, longitudinal growth was corrected by normalizing tibia length, tail length, and body weight gain. Interestingly, kidney weights were only partly normalized, whereas kidney glomerular volume and liver weights were fully normalized. Kidney and liver IGF-I protein content was reduced in the Hx mice, but was normalized by hGH treatment. Kidney and liver GH receptor (GHR) mRNA levels were unchanged in the Hx mice, whereas the liver IGF-I mRNA level was reduced in the Hx mice, but was normalized by hGH treatment. We conclude that non-viral hGH gene transfer in Hx mice, which normalizes longitudinal growth and serum IGF-I levels, has differential effects on renal growth and glomerular volume. The potential effects of such excess glomerular growth induced by this intervention require further investigation.
Collapse
Affiliation(s)
- Mogher Khamaisi
- The Medical Research Laboratories, Clinical Institute and Medical Department M (Diabetes and Endocrinology), Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Paranjpe S, Bowen WC, Bell AW, Nejak-Bowen K, Luo JH, Michalopoulos GK. Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c-Met in regenerating rat livers by RNA interference. Hepatology 2007; 45:1471-7. [PMID: 17427161 PMCID: PMC2632963 DOI: 10.1002/hep.21570] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED Hepatocyte growth factor (HGF) and its receptor c-Met are involved in liver regeneration. The role of HGF and c-Met in liver regeneration in rat following two-thirds partial hepatectomy (PHx) was investigated using RNA interference to silence HGF and c-Met in separate experiments. A mixture of 2 c-Met-specific short hairpin RNA (ShRNA) sequences, ShM1 and ShM2, and 3 HGF-specific ShRNA, ShH1, ShH3, and ShH4, were complexed with linear polyethylenimine. Rats were injected with the ShRNA/PEI complex 24 hours before and at the time of PHx. A mismatch and a scrambled ShRNA served as negative controls. ShRNA treatment resulted in suppression of c-Met and HGF mRNA and protein compared with that in controls. The regenerative response was assessed by PCNA, mitotic index, and BrdU labeling. Treatment with the ShHGF mixture resulted in moderate suppression of hepatocyte proliferation. Immunohistochemical analysis revealed severe suppression of incorporation of BrdU and complete absence of mitosis in rats treated with ShMet 24 hours after PHx compared with that in controls. Gene array analyses indicated abnormal expression patterns in many cell-cycle- and apoptosis-related genes. The active form of caspase 3 was seen to increase in ShMet-treated rats. The TUNEL assay indicated a slight increase in apoptosis in ShMet-treated rats compared with that in controls. CONCLUSION The data indicated that in vivo silencing of c-Met and HGF mRNA by RNA interference in normal rats results in suppression of mRNA and protein, which had a measurable effect on proliferation kinetics associated with liver regeneration.
Collapse
Affiliation(s)
- Shirish Paranjpe
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Gene delivery using nonviral approaches has been extensively studied as a basic tool for intracellular gene transfer and gene therapy. In the past, the primary focus has been on application of physical, chemical, and biological principles to development of a safe and efficient method that delivers a transgene into target cells for appropriate expression. This review summarizes the current status of the most commonly used nonviral methods, with an emphasis on their mechanism of action for gene delivery, and their advantages and limitations for gene therapy applications. The technical aspects of each delivery system are also reviewed, with a focus on how to achieve optimal delivery efficiency. A brief discussion of future development and further improvement of the current systems is intended to stimulate new ideas and encourage rapid advancement in this new and promising field.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 15261 Pittsburgh, PA
| | - Keun-Sik Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 15261 Pittsburgh, PA
| | - Dexi Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 15261 Pittsburgh, PA
| |
Collapse
|