1
|
Li B, Sun Q, Ding F, Xu Q, Kang N, Xue Y, Ladron-de-Guevara A, Hirase H, Weikop P, Gong S, Nathan S, Nedergaard M. Anti-seizure effects of norepinephrine-induced free fatty acid release. Cell Metab 2024:S1550-4131(24)00407-8. [PMID: 39486416 DOI: 10.1016/j.cmet.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/17/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
The brain's ability to rapidly transition between sleep, quiet wakefulness, and states of high vigilance is remarkable. Cerebral norepinephrine (NE) plays a key role in promoting wakefulness, but how does the brain avoid neuronal hyperexcitability upon arousal? Here, we show that NE exposure results in the generation of free fatty acids (FFAs) within the plasma membrane from both astrocytes and neurons. In turn, FFAs dampen excitability by differentially modulating the activity of astrocytic and neuronal Na+, K+, ATPase. Direct application of FFA to the occipital cortex in awake, behaving mice dampened visual-evoked potential (VEP). Conversely, blocking FFA production via local application of a lipase inhibitor heightened VEP and triggered seizure-like activity. These results suggest that FFA release is a crucial step in NE signaling that safeguards against hyperexcitability. Targeting lipid-signaling pathways may offer a novel therapeutic approach for seizure prevention.
Collapse
Affiliation(s)
- Baoman Li
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Qian Sun
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fengfei Ding
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qiwu Xu
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ning Kang
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yang Xue
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Antonio Ladron-de-Guevara
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hajime Hirase
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pia Weikop
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sheng Gong
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Smith Nathan
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
2
|
Sorkhou M, Dent EL, George TP. Cannabis use and mood disorders: a systematic review. Front Public Health 2024; 12:1346207. [PMID: 38655516 PMCID: PMC11035759 DOI: 10.3389/fpubh.2024.1346207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Background Problematic cannabis use is highly prevalent among people with mood disorders. This underscores the need to understand the effects of cannabis and cannabinoids in this population, especially considering legalization of recreational cannabis use. Objectives We aimed to (1) systematically evaluate cross-sectional and longitudinal studies investigating the interplay between cannabis use, cannabis use disorder (CUD), and the occurrence of mood disorders and symptoms, with a focus on major depressive disorder (MDD) and bipolar disorder (BD) and; (2) examine the effects of cannabis on the prognosis and treatment outcomes of MDD and BD. Methods Following PRISMA guidelines, we conducted an extensive search for English-language studies investigating the potential impact of cannabis on the development and prognosis of mood disorders published from inception through November 2023, using EMBASE, PsycINFO, PubMed, and MEDLINE databases. Results Our literature search identified 3,262 studies, with 78 meeting inclusion criteria. We found that cannabis use is associated with increased depressive and manic symptoms in the general population in addition to an elevated likelihood of developing MDD and BD. Furthermore, we observed that cannabis use is linked to an unfavorable prognosis in both MDD or BD. Discussion Our findings suggest that cannabis use may negatively influence the development, course, and prognosis of MDD and BD. Future well-designed studies, considering type, amount, and frequency of cannabis use while addressing confounding factors, are imperative for a comprehensive understanding of this relationship. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023481634.
Collapse
Affiliation(s)
- Maryam Sorkhou
- Institute for Mental Health Policy and Research at CAMH, Toronto, ON, Canada
- Department of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Eliza L. Dent
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Tony P. George
- Institute for Mental Health Policy and Research at CAMH, Toronto, ON, Canada
- Department of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Sorkhou M, Singla DR, Castle DJ, George TP. Birth, cognitive and behavioral effects of intrauterine cannabis exposure in infants and children: A systematic review and meta-analysis. Addiction 2024; 119:411-437. [PMID: 37968824 PMCID: PMC10872597 DOI: 10.1111/add.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/18/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND AND AIMS Δ9-tetrahydrocannabinol (THC), the principal psychoactive component of cannabis, has been implicated in affecting fetal neurodevelopment by readily crossing the placenta. However, little is known regarding the long-term effects of intrauterine cannabis exposure. This systematic review and meta-analysis synthesized prospective and cross-sectional human studies to measure the effects of intrauterine cannabis exposure on birth, behavioral, psychological and cognitive outcomes in infancy until early childhood. METHODS Reporting according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, cross-sectional and prospective studies published from database inception until June 2023, investigating developmental outcomes of infants, toddlers and young children with intrauterine cannabis exposure were considered. All articles were obtained from PubMed or PsycINFO databases. RESULTS The literature search resulted in 932 studies, in which 57 articles met eligibility criteria. The meta-analysis revealed that intrauterine cannabis exposure increases the risk of preterm delivery [odds ratio (OR) = 1.68, 95% confidence interval (CI) = 1.05-2.71, P = 0.03], low birth weight (OR = 2.60, CI = 1.71-3.94, P < 0.001) and requirement for neonatal intensive care unit (NICU) admission (OR = 2.51, CI = 1.46-4.31; P < 0.001). Our qualitative synthesis suggests that intrauterine cannabis exposure may be associated with poorer attention and externalizing problems in infancy and early childhood. We found no evidence for impairments in other cognitive domains or internalizing behaviors. CONCLUSIONS Prenatal cannabis use appears to be associated with lower birth weight, preterm birth and neonatal intensive care unit admission in newborns, but there is little evidence that prenatal cannabis exposure adversely impacts behavioral or cognitive outcomes in early childhood, with the exception of attention and externalizing problems.
Collapse
Affiliation(s)
- Maryam Sorkhou
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, Department of Psychiatry, University of Toronto, ON, Canada
| | - Daisy R Singla
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, Department of Psychiatry, University of Toronto, ON, Canada
| | - David J Castle
- Tasmania Centre for Mental Health Service Innovation, University of Tasmania, Hobart, Australia
| | - Tony P George
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, Department of Psychiatry, University of Toronto, ON, Canada
| |
Collapse
|
4
|
ten Barge JA, Baudat M, Meesters NJ, Kindt A, Joosten EA, Reiss IK, Simons SH, van den Bosch GE. Biomarkers for assessing pain and pain relief in the neonatal intensive care unit. FRONTIERS IN PAIN RESEARCH 2024; 5:1343551. [PMID: 38426011 PMCID: PMC10902154 DOI: 10.3389/fpain.2024.1343551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Newborns admitted to the neonatal intensive care unit (NICU) regularly undergo painful procedures and may face various painful conditions such as postoperative pain. Optimal management of pain in these vulnerable preterm and term born neonates is crucial to ensure their comfort and prevent negative consequences of neonatal pain. This entails accurate and timely identification of pain, non-pharmacological pain treatment and if needed administration of analgesic therapy, evaluation of treatment effectiveness, and monitoring of adverse effects. Despite the widely recognized importance of pain management, pain assessment in neonates has thus far proven to be a challenge. As self-report, the gold standard for pain assessment, is not possible in neonates, other methods are needed. Several observational pain scales have been developed, but these often rely on snapshot and largely subjective observations and may fail to capture pain in certain conditions. Incorporation of biomarkers alongside observational pain scores holds promise in enhancing pain assessment and, by extension, optimizing pain treatment and neonatal outcomes. This review explores the possibilities of integrating biomarkers in pain assessment in the NICU.
Collapse
Affiliation(s)
- Judith A. ten Barge
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Mathilde Baudat
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Naomi J. Meesters
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Elbert A. Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Irwin K.M. Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Sinno H.P. Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Gerbrich E. van den Bosch
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| |
Collapse
|
5
|
Suseelan S, Pinna G. Heterogeneity in major depressive disorder: The need for biomarker-based personalized treatments. Adv Clin Chem 2022; 112:1-67. [PMID: 36642481 DOI: 10.1016/bs.acc.2022.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) or depression is a pathological mental condition affecting millions of people worldwide. Identification of objective biological markers of depression can provide for a better diagnostic and intervention criteria; ultimately aiding to reduce its socioeconomic health burden. This review provides a comprehensive insight into the major biomarker candidates that have been implicated in depression neurobiology. The key biomarker categories are covered across all the "omics" levels. At the epigenomic level, DNA-methylation, non-coding RNA and histone-modifications have been discussed in relation to depression. The proteomics system shows great promise with inflammatory markers as well as growth factors and neurobiological alterations within the endocannabinoid system. Characteristic lipids implicated in depression together with the endocrine system are reviewed under the metabolomics section. The chapter also examines the novel biomarkers for depression that have been proposed by studies in the microbiome. Depression affects individuals differentially and explicit biomarkers identified by robust research criteria may pave the way for better diagnosis, intervention, treatment, and prediction of treatment response.
Collapse
Affiliation(s)
- Shayam Suseelan
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
6
|
Samandar F, Tehranizadeh ZA, Saberi MR, Chamani J. CB1 as a novel target for Ginkgo biloba's terpene trilactone for controlling chemotherapy-induced peripheral neuropathy (CIPN). J Mol Model 2022; 28:283. [PMID: 36044079 DOI: 10.1007/s00894-022-05284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
The application of antineoplastic chemotherapeutic agents causes a common side effect known as chemotherapy-induced peripheral neuropathy (CIPN) that leads to reducing the quality of patient's life. This research involves the performance of molecular docking and molecular dynamic (MD) simulation studies to explore the impact of terpenoids of Ginkgo biloba on the targets (CB-1, TLR4, FAAH-1, COX-1, COX-2) that can significantly affect the controlling of CIPN's symptoms. According to the in-vitro and in-vivo investigations, terpenoids, particularly ginkgolides B, A, and bilobalide, can cause significant effects on neuropathic pain. The molecular docking results disclosed the tendency of our ligands to interact with mainly CB1 and FAAH-1, as well as partly with TLR4, throughout their interactions with targets. Terpene trilactone can exhibit a lower rate of binding energy than CB1's inhibitor (7dy), while being precisely located in the CB1's active site and capable of inducing stable interactions by forming hydrogen bonds. The analyses of MD simulation proved that ginkgolide B was a more suitable activator and inhibitor for CB1 and TLR4, respectively, when compared to bilobalide and ginkgolide A. Moreover, bilobalide is capable of inhibiting FAAH-1 more effectively than the two other ligands. According to the analyses of ADME, every three ligands followed the Lipinski's rule of five. Considering these facts, the exertion of three ligands is recommended for their anti-inflammatory, neuroprotective, and anti-nociception influences caused by primarily activating CB1 and inhibiting FAAH-1 and TLR4; in this regard, these compounds can stand as potential candidates for the control and treatment of CIPN's symptoms.
Collapse
Affiliation(s)
- Farzaneh Samandar
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
7
|
Mass Spectrometry-Based Metabolomics of Phytocannabinoids from Non-Cannabis Plant Origins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103301. [PMID: 35630777 PMCID: PMC9147514 DOI: 10.3390/molecules27103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Phytocannabinoids are isoprenylated resorcinyl polyketides produced mostly in glandular trichomes of Cannabis sativa L. These discoveries led to the identification of cannabinoid receptors, which modulate psychotropic and pharmacological reactions and are found primarily in the human central nervous system. As a result of the biogenetic process, aliphatic ketide phytocannabinoids are exclusively found in the cannabis species and have a limited natural distribution, whereas phenethyl-type phytocannabinoids are present in higher plants, liverworts, and fungi. The development of cannabinomics has uncovered evidence of new sources containing various phytocannabinoid derivatives. Phytocannabinoids have been isolated as artifacts from their carboxylated forms (pre-cannabinoids or acidic cannabinoids) from plant sources. In this review, the overview of the phytocannabinoid biosynthesis is presented. Different non-cannabis plant sources are described either from those belonging to the angiosperm species and bryophytes, together with their metabolomic structures. Lastly, we discuss the legal framework for the ingestion of these biological materials which currently receive the attention as a legal high.
Collapse
|
8
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
9
|
Laudanski K, Wain J. Considerations for Cannabinoids in Perioperative Care by Anesthesiologists. J Clin Med 2022; 11:jcm11030558. [PMID: 35160010 PMCID: PMC8836924 DOI: 10.3390/jcm11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Increased usage of recreational and medically indicated cannabinoid compounds has been an undeniable reality for anesthesiologists in recent years. These compounds’ complicated pharmacology, composition, and biological effects result in challenging issues for anesthesiologists during different phases of perioperative care. Here, we review the existing formulation of cannabinoids and their biological activity to put them into the context of the anesthesia plan execution. Perioperative considerations should include a way to gauge the patient’s intake of cannabinoids, the ability to gain consent properly, and vigilance to the increased risk of pulmonary and airway problems. Intraoperative management in individuals with cannabinoid use is complicated by the effects cannabinoids have on general anesthetics and depth of anesthesia monitoring while simultaneously increasing the potential occurrence of intraoperative hemodynamic instability. Postoperative planning should involve higher vigilance to the risk of postoperative strokes and acute coronary syndromes. However, most of the data are not up to date, rending definite conclusions on the importance of perioperative cannabinoid intake on anesthesia management difficult.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.L.); (J.W.)
| | - Justin Wain
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- Correspondence: (K.L.); (J.W.)
| |
Collapse
|
10
|
Lin YF. Potassium channels as molecular targets of endocannabinoids. Channels (Austin) 2021; 15:408-423. [PMID: 34282702 PMCID: PMC8293965 DOI: 10.1080/19336950.2021.1910461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 10/25/2022] Open
Abstract
Endocannabinoids are a group of endogenous mediators derived from membrane lipids, which are implicated in a wide variety of physiological functions such as blood pressure regulation, immunity, pain, memory, reward, perception, reproduction, and sleep. N-Arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) represent two major endocannabinoids in the human body and they exert many of their cellular and organ system effects by activating the Gi/o protein-coupled, cannabinoid type 1 (CB1) and type 2 (CB2) receptors. However, not all effects of cannabinoids are ascribable to their interaction with CB1 and CB2 receptors; indeed, macromolecules like other types of receptors, ion channels, transcription factors, enzymes, transporters, and cellular structure have been suggested to mediate the functional effects of cannabinoids. Among the proposed molecular targets of endocannabinoids, potassium channels constitute an intriguing group, because these channels not only are crucial in shaping action potentials and controlling the membrane potential and cell excitability, thereby regulating a wide array of physiological processes, but also serve as potential therapeutic targets for the treatment of cancer and metabolic, neurological and cardiovascular disorders. This review sought to survey evidence pertaining to the CB1 and CB2 receptor-independent actions of endocannabinoids on ion channels, with an emphasis on AEA and potassium channels. To better understand the functional roles as well as potential medicinal uses of cannabinoids in human health and disease, further mechanistic studies to delineate interactions between various types of cannabinoids and ion channels, including members in the potassium channel superfamily, are warranted.
Collapse
Affiliation(s)
- Yu-Fung Lin
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
11
|
Positive Allosteric Modulation of CB1 and CB2 Cannabinoid Receptors Enhances the Neuroprotective Activity of a Dual CB1R/CB2R Orthosteric Agonist. Life (Basel) 2020; 10:life10120333. [PMID: 33302569 PMCID: PMC7763181 DOI: 10.3390/life10120333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies highlighted that compounds targeting cannabinoid receptors could be useful for developing novel therapies against neurodegenerative disorders. However, the chronic use of orthosteric agonists alone has several disadvantages, limiting their usefulness as clinically relevant drugs. Positive allosteric modulators might represent a promising approach to achieve the potential therapeutic benefits of orthosteric agonists of cannabinoid receptors through increasing their activity and limiting their adverse effects. The aim of the present study was to show the effects of positive allosteric ligands of cannabinoid receptors on the activity of a potent dual orthosteric agonist for neuroinflammation and excitotoxic damage by excessive glutamate release. The results indicate that the combination of an orthosteric agonist with positive allosteric modulators could represent a promising therapeutic approach to the treatment of neurodegenerative disorders.
Collapse
|
12
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
13
|
Ross JA, Van Bockstaele EJ. The role of catecholamines in modulating responses to stress: Sex-specific patterns, implications, and therapeutic potential for post-traumatic stress disorder and opiate withdrawal. Eur J Neurosci 2020; 52:2429-2465. [PMID: 32125035 DOI: 10.1111/ejn.14714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/15/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
Emotional arousal is one of several factors that determine the strength of a memory and how efficiently it may be retrieved. The systems at play are multifaceted; on one hand, the dopaminergic mesocorticolimbic system evaluates the rewarding or reinforcing potential of a stimulus, while on the other, the noradrenergic stress response system evaluates the risk of threat, commanding attention, and engaging emotional and physical behavioral responses. Sex-specific patterns in the anatomy and function of the arousal system suggest that sexually divergent therapeutic approaches may be advantageous for neurological disorders involving arousal, learning, and memory. From the lens of the triple network model of psychopathology, we argue that post-traumatic stress disorder and opiate substance use disorder arise from maladaptive learning responses that are perpetuated by hyperarousal of the salience network. We present evidence that catecholamine-modulated learning and stress-responsive circuitry exerts substantial influence over the salience network and its dysfunction in stress-related psychiatric disorders, and between the sexes. We discuss the therapeutic potential of targeting the endogenous cannabinoid system; a ubiquitous neuromodulator that influences learning, memory, and responsivity to stress by influencing catecholamine, excitatory, and inhibitory synaptic transmission. Relevant preclinical data in male and female rodents are integrated with clinical data in men and women in an effort to understand how ideal treatment modalities between the sexes may be different.
Collapse
Affiliation(s)
- Jennifer A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Welcome MO, Mastorakis NE. Stress-induced blood brain barrier disruption: Molecular mechanisms and signaling pathways. Pharmacol Res 2020; 157:104769. [PMID: 32275963 DOI: 10.1016/j.phrs.2020.104769] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Stress is a nonspecific response to a threat or noxious stimuli with resultant damaging consequences. Stress is believed to be an underlying process that can trigger central nervous system disorders such as depression, anxiety, and post-traumatic stress disorder. Though the pathophysiological basis is not completely understood, data have consistently shown a pivotal role of inflammatory mediators and hypothalamo-pituitary-adrenal (HPA) axis activation in stress induced disorders. Indeed emerging experimental evidences indicate a concurrent activation of inflammatory signaling pathways and not only the HPA axis, but also, peripheral and central renin-angiotensin system (RAS). Furthermore, recent experimental data indicate that the HPA and RAS are coupled to the signaling of a range of central neuro-transmitter, -mediator and -peptide molecules that are also regulated, at least in part, by inflammatory signaling cascades and vice versa. More recently, experimental evidences suggest a critical role of stress in disruption of the blood brain barrier (BBB), a neurovascular unit that regulates the movement of substances and blood-borne immune cells into the brain parenchyma, and prevents peripheral injury to the brain substance. However, the mechanisms underlying stress-induced BBB disruption are not exactly known. In this review, we summarize studies conducted on the effects of stress on the BBB and integrate recent data that suggest possible molecular mechanisms and signaling pathways underlying stress-induced BBB disruption. Key molecular targets and pharmacological candidates for treatment of stress and related illnesses are also summarized.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
15
|
Scheyer AF, Borsoi M, Wager-Miller J, Pelissier-Alicot AL, Murphy MN, Mackie K, Manzoni OJJ. Cannabinoid Exposure via Lactation in Rats Disrupts Perinatal Programming of the Gamma-Aminobutyric Acid Trajectory and Select Early-Life Behaviors. Biol Psychiatry 2020; 87:666-677. [PMID: 31653479 PMCID: PMC7056509 DOI: 10.1016/j.biopsych.2019.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cannabis usage is increasing with its widespread legalization. Cannabis use by mothers during lactation transfers active cannabinoids to the developing offspring during this critical period and alters postnatal neurodevelopment. A key neurodevelopmental landmark is the excitatory to inhibitory gamma-aminobutyric acid (GABA) switch caused by reciprocal changes in expression ratios of the K+/Cl- transporters potassium-chloride cotransporter 2 (KCC2) and sodium-potassium-chloride transporter (NKCC1). METHODS Rat dams were treated with Δ9-tetrahydrocannabinol or a synthetic cannabinoid during the first 10 days of postnatal development, and experiments were then conducted in the offspring exposed to these drugs via lactation. The network influence of GABA transmission was analyzed using cell-attached recordings. KCC2 and NKCC1 levels were determined using Western blot and quantitative polymerase chain reaction analyses. Ultrasonic vocalization and homing behavioral experiments were carried out at relevant time points. RESULTS Treating rat dams with cannabinoids during early lactation retards transcriptional upregulation and expression of KCC2, thereby delaying the GABA switch in pups of both sexes. This perturbed trajectory was corrected by the NKCC1 antagonist bumetanide and accompanied by alterations in ultrasonic vocalization without changes in homing behavior. Neurobehavioral deficits were prevented by CB1 receptor antagonism during maternal exposure, showing that the CB1 receptor underlies the cannabinoid-induced alterations. CONCLUSIONS These results reveal how perinatal cannabinoid exposure retards an early milestone of development, delaying the trajectory of GABA's polarity transition and altering early-life communication.
Collapse
Affiliation(s)
- Andrew F Scheyer
- Institut de neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille, France; Aix-Marseille University, Marseille, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University
| | - Milene Borsoi
- Institut de neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille, France; Aix-Marseille University, Marseille, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University
| | - Jim Wager-Miller
- Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University; Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Anne-Laure Pelissier-Alicot
- Institut de neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille, France; Aix-Marseille University, Marseille, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University; Service de Psychiatrie, CHU Conception, Assistance Publique - Hôpitaux de Marseille, Marseille, France; Service de Médecine Légale, CHU Timone-Adultes, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Michelle N Murphy
- Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University; Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University; Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana.
| | - Olivier J J Manzoni
- Institut de neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille, France; Aix-Marseille University, Marseille, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, Institut National de la Santé et de la Recherche Médicale-Aix-Marseille University/Indiana University.
| |
Collapse
|
16
|
Harun N, Johari IS, Mansor SM, Shoaib M. Assessing physiological dependence and withdrawal potential of mitragynine using schedule-controlled behaviour in rats. Psychopharmacology (Berl) 2020; 237:855-867. [PMID: 31832720 DOI: 10.1007/s00213-019-05418-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022]
Abstract
RATIONALE Kratom is proposed to exhibit therapeutic potential as an opium substitute, but little is known about its dependence-producing profile, particularly of its main psychoactive compound, mitragynine (MG). OBJECTIVES This study examined the dependence-producing effects of MG using operant-scheduled behaviour in rats and investigated the potential therapeutic effect of MG by comparing effects to buprenorphine in morphine-dependent rats using the same schedule-controlled behavioural task. METHODS The effects of acutely administered MG and morphine were determined in rats trained to respond under fixed-ratio (FR) 10 schedule of food reinforcement. Next, the rats were administered MG and morphine twice daily for 14 consecutive days to determine if physiological dependence would develop by examining cessation of drug treatment and following antagonist-precipitated withdrawal. The study then examined the effects of MG substitution to suppress naloxone-precipitated morphine withdrawal effects on scheduled responding. RESULTS Acute doses of MG did not produce dose-related decreases on FR schedules of responding compared to morphine. Unlike morphine, MG-treated rats showed no suppression of response rates following cessation of MG treatment. However, withdrawal effects were evident for MG after precipitation by either naloxone or SR141716A (rimonabant), similar to morphine-treated rats. MG in higher doses (10 and 30 mg/kg) attenuated the naloxone-precipitated morphine withdrawal effects while smaller doses of buprenorphine (0.3 and 1.0 mg/kg) were necessary to alleviate these effects. CONCLUSION The findings suggest that MG does not induce physiological dependence but can alleviate the physical symptoms associated with morphine withdrawal which represent the desired characteristics of novel pharmacotherapeutic interventions for managing opioid use disorder (OUD).
Collapse
Affiliation(s)
- Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia.
| | - Illa Syafiqah Johari
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia
| | - Sharif Mahsufi Mansor
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia
| | - Mohammed Shoaib
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
17
|
ZUBRZYCKI M, STASIOLEK M, ZUBRZYCKA M. Opioid and Endocannabinoid System in Orofacial Pain. Physiol Res 2019; 68:705-715. [DOI: 10.33549/physiolres.934159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Orofacial pain disorders are frequent in the general population and their pharmacological treatment is difficult and controversial. Therefore, the search for novel, safe and efficient analgesics is an important but still elusive goal for contemporary medicine. In the recent years, the antinociceptive potential of endocannabinoids and opioids has been emphasized. However, concerns for the safety of their use limit their clinical applications. the possibility of modulating the activity of endocannabinoids by regulation of their synthesis and/or degradation offers an innovative approach to the treatment of pain. A rat model of trigeminal pain, utilizing tongue jerks evoked by electrical tooth pulp stimulation during perfusion of the cerebral ventricles with various neurotransmitter solutions can be used in the pharmacological studies of nociception in the orofacial area. The aim of this review is to present the effects of pharmacological activity of opioids and endocannabinoids affecting the transmission of the sensory information from the orofacial area on the example of trigemino-hypoglossal reflex in rats.
Collapse
Affiliation(s)
- M. ZUBRZYCKI
- Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany,
| | - M. STASIOLEK
- Department of Neurology, Medical University of Lodz, Lodz, Poland
| | - M. ZUBRZYCKA
- Department of Cardiovascular Physiology, Interdepartmental Chair of Experimental and Clinical Physiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
18
|
Rodrigues RS, Lourenço DM, Paulo SL, Mateus JM, Ferreira MF, Mouro FM, Moreira JB, Ribeiro FF, Sebastião AM, Xapelli S. Cannabinoid Actions on Neural Stem Cells: Implications for Pathophysiology. Molecules 2019; 24:E1350. [PMID: 30959794 PMCID: PMC6480122 DOI: 10.3390/molecules24071350] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
With the increase of life expectancy, neurodegenerative disorders are becoming not only a health but also a social burden worldwide. However, due to the multitude of pathophysiological disease states, current treatments fail to meet the desired outcomes. Therefore, there is a need for new therapeutic strategies focusing on more integrated, personalized and effective approaches. The prospect of using neural stem cells (NSC) as regenerative therapies is very promising, however several issues still need to be addressed. In particular, the potential actions of pharmacological agents used to modulate NSC activity are highly relevant. With the ongoing discussion of cannabinoid usage for medical purposes and reports drawing attention to the effects of cannabinoids on NSC regulation, there is an enormous, and yet, uncovered potential for cannabinoids as treatment options for several neurological disorders, specifically when combined with stem cell therapy. In this manuscript, we review in detail how cannabinoids act as potent regulators of NSC biology and their potential to modulate several neurogenic features in the context of pathophysiology.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Diogo M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Miguel F Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
19
|
Novel Anti-inflammatory and Vasodilatory ω-3 Endocannabinoid Epoxide Regioisomers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:219-232. [PMID: 31562632 DOI: 10.1007/978-3-030-21735-8_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that diets rich in ω-3 polyunsaturated fatty acids (PUFAs) offer protection against vascular inflammation, neuroinflammation, hypertension, and thrombosis. Recently, biochemical studies have demonstrated that these benefits are partially mediated by their conversion to ω-3 endocannabinoid epoxide metabolites. These lipid metabolites originate from the epoxidation of ω-3 endocannabinoids, docosahexanoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA) by cytochrome P450 (CYP) epoxygenases to form epoxydocosapentaenoic acid-ethanolamides (EDP-EAs) and epoxyeicosatetraenoic acid-ethanolamides (EEQ-EAs), respectively. The EDP-EAs and EEQ-EAs are endogenously produced in rat brain and peripheral organs. Additionally, EDP-EAs and EEQ-EAs dose-dependently decrease pro-inflammatory IL-6 cytokine and increased anti-inflammatory IL-10 cytokine. Furthermore, the EEQ-EAs and EDP-EAs attenuate angiogenesis and cell migration in cancer cells, induce vasodilation in bovine coronary arteries, and reciprocally regulate platelet aggregation in washed human platelets. Taken together, the ω-3 endocannabinoid epoxides represent a new class of dual acting molecules that display unique pharmacological properties.
Collapse
|
20
|
Effect of repeated juvenile exposure to Δ9‑tetrahydrocannabinol on anxiety-related behavior and social interactions in adolescent rats. Neurotoxicol Teratol 2018; 69:11-20. [DOI: 10.1016/j.ntt.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/24/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022]
|
21
|
Di Scala C, Fantini J, Yahi N, Barrantes FJ, Chahinian H. Anandamide Revisited: How Cholesterol and Ceramides Control Receptor-Dependent and Receptor-Independent Signal Transmission Pathways of a Lipid Neurotransmitter. Biomolecules 2018; 8:biom8020031. [PMID: 29789479 PMCID: PMC6022874 DOI: 10.3390/biom8020031] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/02/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Anandamide is a lipid neurotransmitter derived from arachidonic acid, a polyunsaturated fatty acid. The chemical differences between anandamide and arachidonic acid result in a slightly enhanced solubility in water and absence of an ionisable group for the neurotransmitter compared with the fatty acid. In this review, we first analyze the conformational flexibility of anandamide in aqueous and membrane phases. We next study the interaction of the neurotransmitter with membrane lipids and discuss the molecular basis of the unexpected selectivity of anandamide for cholesterol and ceramide from among other membrane lipids. We show that cholesterol behaves as a binding partner for anandamide, and that following an initial interaction mediated by the establishment of a hydrogen bond, anandamide is attracted towards the membrane interior, where it forms a molecular complex with cholesterol after a functional conformation adaptation to the apolar membrane milieu. The complex is then directed to the anandamide cannabinoid receptor (CB1) which displays a high affinity binding pocket for anandamide. We propose that cholesterol may regulate the entry and exit of anandamide in and out of CB1 by interacting with low affinity cholesterol recognition sites (CARC and CRAC) located in transmembrane helices. The mirror topology of cholesterol binding sites in the seventh transmembrane domain is consistent with the delivery, extraction and flip-flop of anandamide through a coordinated cholesterol-dependent mechanism. The binding of anandamide to ceramide illustrates another key function of membrane lipids which may occur independently of protein receptors. Interestingly, ceramide forms a tight complex with anandamide which blocks the degradation pathway of both lipids and could be exploited for anti-cancer therapies.
Collapse
Affiliation(s)
- Coralie Di Scala
- INMED, INSERM U1249, Parc Scientifique de Luminy, 163 Avenue de Luminy, BP13 13273 Marseille CEDEX 09, France.
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France.
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA⁻CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix-Marseille Université, 13015 Marseille, France.
| |
Collapse
|
22
|
de Luis DA, Izaola O, Primo D, de la Fuente B, Aller R. Polymorphism rs3123554 in the cannabinoid receptor gene type 2 ( CNR2 ) reveals effects on body weight and insulin resistance in obese subjects. ENDOCRINOL DIAB NUTR 2017; 64:440-445. [DOI: 10.1016/j.endinu.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/07/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
|
23
|
Castilla-Ortega E, Ladrón de Guevara-Miranda D, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F, Santín LJ. The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder. Biochem Pharmacol 2017; 141:100-117. [DOI: 10.1016/j.bcp.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
|
24
|
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2017; 21:695-714. [PMID: 28686542 DOI: 10.1080/1028415x.2017.1347373] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs). They mediate significant effects in the fine-tune adjustment of body homeostasis. Phyto- and synthetic cannabinoids also rule the daily life of billions worldwide, as they are involved in obesity, depression and drug addiction. Consequently, there is growing interest to reveal novel active compounds in this field. Cloning of cannabinoid receptors in the 90s and the identification of the endogenous mediators arachidonylethanolamide (anandamide, AEA) and 2-arachidonyglycerol (2-AG), led to the characterization of the endocannabinoid system (ECS), together with their metabolizing enzymes and membrane transporters. Today, the ECS is known to be involved in diverse functions such as appetite control, food intake, energy balance, neuroprotection, neurodegenerative diseases, stroke, mood disorders, emesis, modulation of pain, inflammatory responses, as well as in cancer therapy. Western diet as well as restriction of micronutrients and fatty acids, such as DHA, could be related to altered production of pro-inflammatory mediators (e.g. eicosanoids) and ECs, contributing to the progression of cardiovascular diseases, diabetes, obesity, depression or impairing conditions, such as Alzheimer' s disease. Here we review how diets based in PUFAs might be linked to ECS and to the maintenance of central and peripheral metabolism, brain plasticity, memory and learning, blood flow, and genesis of neural cells.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Alinny Rosendo Isaac
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | | | - Bruno Lourenço Diaz
- c Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Isis Hara Trevenzoli
- d Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Ricardo Augusto De Melo Reis
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| |
Collapse
|
25
|
Shiri M, Komaki A, Oryan S, Taheri M, Komaki H, Etaee F. Effects of cannabinoid and vanilloid receptor agonists and their interaction on learning and memory in rats. Can J Physiol Pharmacol 2017; 95:382-387. [DOI: 10.1139/cjpp-2016-0274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite previous findings on the effects of cannabinoid and vanilloid systems on learning and memory, the effects of the combined stimulation of these 2 systems on learning and memory have not been studied. Therefore, in this study, we tested the interactive effects of cannabinoid and vanilloid systems on learning and memory in rats by using passive avoidance learning (PAL) tests. Forty male Wistar rats were divided into the following 4 groups: (1) control (DMSO+saline), (2) WIN55,212–2, (3) capsaicin, and (4) WIN55,212–2 + capsaicin. On test day, capsaicin, a vanilloid receptor type 1 (TRPV1) agonist, or WIN55,212–2, a cannabinoid receptor (CB1/CB2) agonist, or both substances were injected intraperitoneally. Compared to the control group, the group treated with capsaicin (TRPV1 agonist) had better scores in the PAL acquisition and retention test, whereas treatment with WIN55,212–2 (CB1/CB2 agonist) decreased the test scores. Capsaicin partly reduced the effects of WIN55,212–2 on PAL and memory. We conclude that the acute administration of a TRPV1 agonist improves the rats’ cognitive performance in PAL tasks and that a vanilloid-related mechanism may underlie the agonistic effect of WIN55,212–2 on learning and memory.
Collapse
Affiliation(s)
- Mariam Shiri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrbanoo Oryan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Taheri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamidreza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farshid Etaee
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
26
|
Abstract
Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
27
|
Fride E, Bregman T, Kirkham TC. Endocannabinoids and Food Intake: Newborn Suckling and Appetite Regulation in Adulthood. Exp Biol Med (Maywood) 2016; 230:225-34. [PMID: 15792943 DOI: 10.1177/153537020523000401] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The appetite-stimulating effects of the cannabis plant (Cannabis sativa) have been known since ancient times, and appear to be effected through the incentive and rewarding properties of foods. Investigations into the biological basis of the multiple effects of cannabis have yielded important breakthroughs in recent years: the discovery of two cannabinoid receptors in brain and peripheral organ systems, and endogenous ligands (endocannabinoids) for these receptors. These advances have greatly increased our understanding of how appetite is regulated through these endocannabinoid receptor systems. The presence of endocannabinoids in the developing brain and in maternal milk have led to evidence for a critical role for CB, receptors in oral motor control of suckling during neonatal development. The endocannabinoids appear to regulate energy balance and food intake at four functional levels within the brain and periphery: (i) limbic system (for hedonic evaluation of foods), (ii) hypothalamus and hindbrain (integrative functions), (iii) intestinal system, and (iv) adipose tissue. At each of these levels, the endocannabinoid system interacts with a number of better known molecules involved in appetite and weight regulation, including leptin, ghrelin, and the melanocortins. Therapeutically, appetite stimulation by cannabinoids has been studied for several decades, particularly in relation to cachexia and malnutrition associated with cancer, acquired immunodeficiency syndrome, or anorexia nervosa. The recent advances in cannabinoid pharmacology may lead to improved treatments for these conditions or, conversely, for combating excessive appetite and body weight, such as CB, receptor antagonists as antiobesity medications. In conclusion, the exciting progress in the understanding of how the endocannabinoid CB receptor systems influence appetite and body weight is stimulating the development of therapeutic orexigenic and anorectic agents. Furthermore, the role of cannabinoid CB, receptor activation for milk suckling in newborns may open new doors toward understanding nonorganic failure-to-thrive in infants, who display growth failure without known organic cause.
Collapse
Affiliation(s)
- Ester Fride
- Department of Behavioral Sciences, College of Judea and Samaria, Ariel, Israel.
| | | | | |
Collapse
|
28
|
Spectroscopic and dynamic properties of arachidonoyl serotonin- β-lactoglobulin complex: A molecular modeling and chemometric study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:519-528. [DOI: 10.1016/j.jphotobiol.2016.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/08/2016] [Indexed: 11/22/2022]
|
29
|
Cobellis G, Meccariello R, Chianese R, Chioccarelli T, Fasano S, Pierantoni R. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells. Front Endocrinol (Lausanne) 2016; 7:47. [PMID: 27375550 PMCID: PMC4891325 DOI: 10.3389/fendo.2016.00047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis.
Collapse
Affiliation(s)
- Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Napoli, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Napoli, Italy
| | - Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Napoli, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Napoli, Italy
| |
Collapse
|
30
|
Abdel-Salam O. Gastric acid inhibitory and gastric protective effects of Cannabis and cannabinoids. ASIAN PAC J TROP MED 2016; 9:413-9. [PMID: 27261847 DOI: 10.1016/j.apjtm.2016.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/16/2016] [Accepted: 03/10/2016] [Indexed: 11/26/2022] Open
Abstract
Cannabis sativa has long been known for its psychotropic effect. Only recently with the discovery of the cannabinoid receptors, their endogenous legends and the enzymes responsible for their synthesis and degradation, the role of this 'endocannabinoid system' in different pathophysiologic processes is beginning to be delineated. There is evidence that CB1 receptor stimulation with synthetic cannabinoids or Cannabis sativa extracts rich in Δ(9)-tetrahydrocannabinol inhibit gastric acid secretion in humans and experimental animals. This is specially seen when gastric acid secretion is stimulated by pentagastrin, carbachol or 2-deoxy-d-glucose. Cannabis and/or cannabinoids protect the gastric mucosa against noxious challenge with non-steroidal anti-inflammatory drugs, ethanol as well as against stress-induced mucosal damage. Cannabis/cannabinoids might protect the gastric mucosa by virtue of its antisecretory, antioxidant, anti-inflammatory, and vasodilator properties.
Collapse
Affiliation(s)
- Omar Abdel-Salam
- Department of Toxicology and Narcotics, Medical Division, National Research Centre, Tahrir Street, Dokki, Cairo, Egypt.
| |
Collapse
|
31
|
Richter F, Koulen P, Kaja S. N-Palmitoylethanolamine Prevents the Run-down of Amplitudes in Cortical Spreading Depression Possibly Implicating Proinflammatory Cytokine Release. Sci Rep 2016; 6:23481. [PMID: 27004851 PMCID: PMC4804239 DOI: 10.1038/srep23481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/08/2016] [Indexed: 02/07/2023] Open
Abstract
Cortical spreading depression (CSD), a wave of neuronal depolarization in the cerebral cortex following traumatic brain injury or cerebral ischemia, significantly aggravates brain damage. Here, we tested whether N-palmitoylethanolamine (PEA), a substance that effectively reduces lesion volumes and neurological deficits after ischemic stroke, influences CSD. CSD was elicited chemically in adult rats and occurrence, amplitude, duration and propagation velocity of CSD was determined prior to and for 6 hours after intraperitoneal injection of PEA. The chosen systemic administration of PEA stabilized the amplitude of CSD for at least four hours and prevented the run-down of amplitudes that is typically observed and was also seen in untreated controls. The propagation velocity of the CSD waves was unaltered indicating stable neuronal excitability. The stabilization of CSD amplitudes by PEA indicates that inhibition or prevention of CSD does not underlie PEA's profound neuroprotective effect. Rather, PEA likely inhibits proinflammatory cytokine release thereby preventing the run-down of CSD amplitudes. This contribution of PEA to the maintenance of neuronal excitability in healthy tissue during CSD potentially adds to neuroprotection outside a damaged area, while other mechanisms control PEA-mediated neuroprotection in damaged tissue resulting from traumatic brain injury or cerebral ischemia.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology I/Neurophysiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
- Department of Basic Medical Science, University of Missouri – Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Simon Kaja
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
- Departments of Ophthalmology and Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, 2160 South First Ave., Maywood, IL 60153, USA
- Edward Hines Jr. VA Hospital, Research Service, 5000 S Fifth Ave., Hines, IL 60141, USA
| |
Collapse
|
32
|
Ahmadi-Mahmoodabadi N, Nasehi M, Emam Ghoreishi M, Zarrindast MR. Synergistic effect between prelimbic 5-HT3 and CB1 receptors on memory consolidation deficit in adult male Sprague–Dawley rats: An isobologram analysis. Neuroscience 2016; 317:173-83. [DOI: 10.1016/j.neuroscience.2015.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
33
|
Cermak TL. Clinical Approach to the Heavy Cannabis User in the Age of Medical Marijuana. J Psychoactive Drugs 2016; 48:31-40. [DOI: 10.1080/02791072.2015.1130279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Fluorine nuclear magnetic resonance-based assay in living mammalian cells. Anal Biochem 2015; 495:52-9. [PMID: 26686030 DOI: 10.1016/j.ab.2015.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
Nuclear magnetic resonance (NMR)-based screening has been recognized as a powerful approach for the identification and characterization of molecules interacting with pharmaceutical targets. Indeed, several NMR methods have been developed and successfully applied to many drug discovery projects. Whereas most of these approaches have targeted isolated biomolecular receptors, very few cases are reported with the screening performed in intact cells and cell extracts. Here we report the first successful application of the fluorine NMR-based assay n-FABS (n-fluorine atoms for biochemical screening) in living mammalian cells expressing the membrane protein fatty acid amide hydrolase (FAAH). This method allows the identification of both weak and potent inhibitors and the measurement of their potency in a physiological environment.
Collapse
|
35
|
The intracerebroventricular injection of rimonabant inhibits systemic lipopolysaccharide-induced lung inflammation. J Neuroimmunol 2015; 286:16-24. [PMID: 26298320 DOI: 10.1016/j.jneuroim.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/22/2015] [Accepted: 07/01/2015] [Indexed: 01/23/2023]
Abstract
We investigated the role of intracerebroventricular (ICV) injection of rimonabant (500ng), a CB1 antagonist, on lipopolysaccharide ((LPS) 5mg/kg)-induced pulmonary inflammation in rats in an isolated perfused lung model. There were decreases in pulmonary capillary pressure (Ppc) and increases in the ((Wet-Dry)/Dry lung weight)/(Ppc) ratio in the ICV-vehicle/LPS group at 4h. There were decreases in TLR4 pathway markers, such as interleukin receptor-associated kinase-1, IκBα, Raf1 and phospho-SFK (Tyr416) at 30min and at 4h increases in IL-6, vascular cell adhesion molecule-1 and myeloperoxidase in lung homogenate. Intracerebroventricular rimonabant attenuated these LPS-induced responses, indicating that ICV rimonabant modulates LPS-initiated pulmonary inflammation.
Collapse
|
36
|
Day NL, Goldschmidt L, Day R, Larkby C, Richardson GA. Prenatal marijuana exposure, age of marijuana initiation, and the development of psychotic symptoms in young adults. Psychol Med 2015; 45:1779-87. [PMID: 25534593 PMCID: PMC8128137 DOI: 10.1017/s0033291714002906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Studies have demonstrated that an early age of onset of marijuana use (EAOM) is associated with a higher risk of developing psychotic symptoms (PS) compared to initiating marijuana use at a later age or not at all. Research has also found that prenatal marijuana exposure (PME) predicts EAOM. This report evaluates the relationships among PME, EAOM, and PS. METHOD Subjects were initially interviewed in their fourth prenatal month. Women and offspring who completed the birth assessment (n = 763) were selected for follow-up. Women and their offspring were followed until the offspring were 22 years of age: 596 offspring were evaluated. At age 22, PS were assessed in the offspring with the Diagnostic Interview Schedule using DSM-IV criteria. Analyses controlled for significant covariates including other prenatal substance exposures, race, gender, and offspring substance use at 22 years. RESULTS PME and EAOM significantly predicted increased rates of PS at 22 years controlling for other significant covariates. The direct effect of PME on PS was marginally significant (p = 0.06) when EAOM was entered into the model and other covariates were fixed. In the mediation analysis, EAOM did not significantly mediate the association between PME and PS, controlling for significant covariates, nor was the indirect pathway significant when structural equation modeling was used. The total effect of the direct and indirect pathways was significant. CONCLUSIONS In addition to EAOM, PME may also play a role in the association between marijuana use and the development of PS. This could highlight a new area for prevention.
Collapse
Affiliation(s)
- N. L. Day
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L. Goldschmidt
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - R. Day
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - C. Larkby
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G. A. Richardson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
37
|
de Luis DA, Ballesteros M, Lopez Guzman A, Ruiz E, Muñoz C, Penacho MA, Iglesias P, Maldonado A, San Martin L, Izaola O, Delgado M. Polymorphism G1359A of the cannabinoid receptor gene (CNR1): allelic frequencies and influence on cardiovascular risk factors in a multicentre study of Castilla-Leon. J Hum Nutr Diet 2015; 29:112-7. [PMID: 25682784 DOI: 10.1111/jhn.12297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND A polymorphism (1359 G/A) of the CNR1 gene was reported as a common polymorphism in Caucasian populations and was related to cardiovascular risk factors. The present study aimed to investigate the allelic distribution of polymorphism (G1359A) of the CB1 receptor gene in a geographical area of Spain (Community of Castilla y Leon) and to evaluate the influence of this polymorphism on obesity anthropometric parameters and cardiovascular risk factors in the fasted state in obese patients. METHODS A population of 341 obese subjects was analysed. Tetrapolar electrical bioimpedance measurement, blood pressure measurement, a serial assessment of nutritional intake with 3 days of written food records and a biochemical analysis were all performed. RESULTS One hundred and seventy-seven patients (51.9%) had the genotype G1359G (wild-type group) and 164 (48.1%) patients were A carriers: G1359A (136 patients; 39.9%) or A1359A (28 patients; 8.2%) (mutant type group). The Health Area of Palencia had a lower frequency of wild-type genotype and G allelic frequency than all the other Health Areas. Segovia and Burgos Areas had a higher frequency of wild-type genotype and G allelic frequency than the other Health Areas. High-density lipoprotein (HDL) cholesterol was higher in the mutant type group and blood tryglicerides were lower in the same group. CONCLUSIONS In conclusion, the novel finding of the present study is the association of the mutant type group G1359A and A1359A with a better lipid profile (triglycerides and HDL cholesterol) than the wild-type group. The frequencies of this polymorphism are different among Health Areas of Castilla y Leon (Spain).
Collapse
Affiliation(s)
- D A de Luis
- Group of Nutrition of SCLEDYN.,Department Endocrinology and Nutrition Hª Clinico Universitario, University of Valladolid, Valladolid, Spain
| | | | | | - E Ruiz
- Group of Nutrition of SCLEDYN
| | - C Muñoz
- Group of Nutrition of SCLEDYN
| | | | | | | | | | - O Izaola
- Group of Nutrition of SCLEDYN.,Department Endocrinology and Nutrition Hª Clinico Universitario, University of Valladolid, Valladolid, Spain
| | | |
Collapse
|
38
|
Zelasko S, Arnold WR, Das A. Endocannabinoid metabolism by cytochrome P450 monooxygenases. Prostaglandins Other Lipid Mediat 2014; 116-117:112-23. [PMID: 25461979 DOI: 10.1016/j.prostaglandins.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
The endogenous cannabinoid system was first uncovered following studies of the recreational drug Cannabis sativa. It is now recognized as a vital network of signaling pathways that regulate several physiological processes. Following the initial discovery of the cannabinoid receptors 1 (CB1) and 2 (CB2), activated by Cannabis-derived analogs, many endogenous fatty acids termed "endocannabinoids" are now known to be partial agonists of the CB receptors. At present, the most thoroughly studied endocannabinoid signaling molecules are anandamide (AEA) and 2-arachidonylglycerol (2-AG), which are both derived from arachidonic acid. Both AEA and 2-AG are also substrates for the eicosanoid-synthesizing pathways, namely, certain cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes. In the past, research in the endocannabinoid field focused on the interaction of AEA and 2-AG with the COX and LOX enzymes, but accumulating evidence also points to the involvement of CYPs in modulating endocannabinoid signaling. The focus of this review is to explore the current understanding of CYP-mediated metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|
39
|
D’Addario C, Micioni Di Bonaventura M, Pucci M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M. Endocannabinoid signaling and food addiction. Neurosci Biobehav Rev 2014; 47:203-24. [DOI: 10.1016/j.neubiorev.2014.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
40
|
Antioxidant drug therapy approaches for neuroprotection in chronic diseases of the retina. Int J Mol Sci 2014; 15:1865-86. [PMID: 24473138 PMCID: PMC3958826 DOI: 10.3390/ijms15021865] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
The molecular pathways contributing to visual signal transduction in the retina generate a high energy demand that has functional and structural consequences such as vascularization and high metabolic rates contributing to oxidative stress. Multiple signaling cascades are involved to actively regulate the redox state of the retina. Age-related processes increase the oxidative load, resulting in chronically elevated levels of oxidative stress and reactive oxygen species, which in the retina ultimately result in pathologies such as glaucoma or age-related macular degeneration, as well as the neuropathic complications of diabetes in the eye. Specifically, oxidative stress results in deleterious changes to the retina through dysregulation of its intracellular physiology, ultimately leading to neurodegenerative and potentially also vascular dysfunction. Herein we will review the evidence for oxidative stress-induced contributions to each of the three major ocular pathologies, glaucoma, age-related macular degeneration, and diabetic retinopathy. The premise for neuroprotective strategies for these ocular disorders will be discussed in the context of recent clinical and preclinical research pursuing novel therapy development approaches.
Collapse
|
41
|
Cannabinoid and opioid interactions: implications for opiate dependence and withdrawal. Neuroscience 2013; 248:637-54. [PMID: 23624062 DOI: 10.1016/j.neuroscience.2013.04.034] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 12/12/2022]
Abstract
Withdrawal from opiates, such as heroin or oral narcotics, is characterized by a host of aversive physical and emotional symptoms. High rates of relapse and limited treatment success rates for opiate addiction have prompted a search for new approaches. For many opiate addicts, achieving abstinence may be further complicated by poly-drug use and co-morbid mental disorders. Research over the past decade has shed light on the influence of endocannabinoids (ECs) on the opioid system. Evidence from both animal and clinical studies point toward an interaction between these two systems, and suggest that targeting the EC system may provide novel interventions for managing opiate dependence and withdrawal. This review will summarize the literature surrounding the molecular effects of cannabinoids and opioids on the locus coeruleus-norepinephrine system, a key circuit implicated in the negative sequelae of opiate addiction. A consideration of the trends and effects of marijuana use in those seeking treatment to abstain from opiates in the clinical setting will also be presented. In summary, the present review details how cannabinoid-opioid interactions may inform novel interventions in the management of opiate dependence and withdrawal.
Collapse
|
42
|
Endogenous cannabinoids revisited: A biochemistry perspective. Prostaglandins Other Lipid Mediat 2013; 102-103:13-30. [DOI: 10.1016/j.prostaglandins.2013.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
|
43
|
Tou WI, Chang SS, Lee CC, Chen CYC. Drug design for neuropathic pain regulation from traditional Chinese medicine. Sci Rep 2013; 3:844. [PMID: 23378894 PMCID: PMC3558695 DOI: 10.1038/srep00844] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/18/2012] [Indexed: 12/04/2022] Open
Abstract
FAAH-like anandamide transporter (FLAT) regulates anandamide transport for hydrolysis and may be an attractive drug target for pain regulation. We aimed to discover potential FLAT antagonists from traditional Chinese medicine (TCM) using virtual screening, ligand-based drug design and molecular dynamics simulation (MD). Guineensine and Retrofractamide A exhibited high Dock Scores in FLAT. Consensus from multiple linear regression (MLR; R2 = 08973) and support vector machine (SVM; R2 = 0.7988) showed similar bioactivities for Guineensine and the FAAH-1 inhibitor (9Z)-1-(5-pyridin-2-yl-1,3,4-oxadiazol-2-yl)octadec-9-en-1-one. Contour of Guineensine to CoMFA and CoMSIA features also imply bioactivity. MD revealed shake or vibration in the secondary structure of FLAT complexed with Guineensine and (9Z)-1-(5-pyridin-2-yl-1,3,4-oxadiazol-2-yl)octadec-9-en-1-one. Ligand movement might contribute to protein changes leading to vibration patterns. Violent vibrations leading to an overall decrease in FLAT function could be the underlying mechanism for Guineensine. Here we suggest Guineensine as a drug-like compound with potential application in relieving neuropathic pain by inhibiting FLAT.
Collapse
Affiliation(s)
- Weng Ieong Tou
- School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | | | | | | |
Collapse
|
44
|
Antonio de Luis D, Sagrado MG, Aller R, Conde R, Izaola O, de la Fuente B, Primo D. Role of G1359A polymorphism of the cannabinoid receptor gene on weight loss and adipocytokines levels after two different hypocaloric diets. J Nutr Biochem 2012; 23:287-91. [DOI: 10.1016/j.jnutbio.2010.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 12/05/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
|
45
|
Cosenza-Nashat MA, Bauman A, Zhao ML, Morgello S, Suh HS, Lee SC. Cannabinoid receptor expression in HIV encephalitis and HIV-associated neuropathologic comorbidities. Neuropathol Appl Neurobiol 2011; 37:464-83. [PMID: 21450051 DOI: 10.1111/j.1365-2990.2011.01177.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Cannabinoids have been proposed for treating various neurodegenerative disorders and as adjunct therapy for HIV+ patients with neurologic sequelae. The expression of cannabinoid receptors (CB1 and CB2) has been reported in neurodegenerative diseases and in simian immunodeficiency virus encephalitis, yet the receptor expression in the central nervous system of HIV+ individuals is not known. METHODS An anti-CB1 antibody and two anti-CB2 antibodies were employed for immunohistochemistry in the cerebral cortex and white matter of HIV encephalitis (HIVE) and HIV-associated comorbidities, as well as control brains (HIV- and HIV+). RESULTS By quantitative image analysis, we observed that CB1 was increased in HIVE brains and those with comorbidities, while CB2 was significantly increased in the white matter of HIVE. Morphologically, CB1 was present in neurones, and both CB1 and CB2 were present in meningeal macrophages and subpial glia in all brains. In HIVE, CB1 was found in white matter microglia and perivascular cells, while CB2 was increased in microglia, astrocytes and perivascular macrophages. Double immunofluorescence with cell-specific markers and immunoblots on primary cultured microglia and astrocytes substantiated the glial localization of the cannabinoid receptors and specificity of the antibodies. CONCLUSIONS Our study indicates that cannabinoid receptor expression occurs in glia in HIVE brains, and this may have ramifications for the potential use of cannabinoid ligands in HIV-infected patients.
Collapse
Affiliation(s)
- M A Cosenza-Nashat
- Department of Pathology, Albert Einstein College of Medicine, Bronx Department of Pathology, Mt Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
46
|
Chianese R, Ciaramella V, Fasano S, Pierantoni R, Meccariello R. Anandamide modulates the expression of GnRH-II and GnRHRs in frog, Rana esculenta, diencephalon. Gen Comp Endocrinol 2011; 173:389-95. [PMID: 21802420 DOI: 10.1016/j.ygcen.2011.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/17/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
Abstract
In the hypothalamus, endocannabinoids affect neuroendocrine activity by means of Gonadotropin-Releasing-Hormone-I (GnRH-I) inhibition. Since most vertebrates, human included, possess at least two GnRH molecular forms, the aim of this work was to investigate the effect of endocannabinoids on GnRH molecular forms other than GnRH-I and on GnRHRs. Thus, we cloned GnRH precursors as well as GnRH receptors (GnRHR-I, GnRHR-II, GnRHR-III) from the diencephalons of the anuran amphibian, Rana esculenta. GnRH-II expression was evaluated in pituitary, whole brain, spinal cord, hindbrain, midbrain and forebrain during the annual sexual cycle. Then, in post-reproductive period (May), GnRH-I, GnRH-II and GnRHRs expression was evaluated by quantitative real time (qPCR) after incubation of diencephalons with the endocannabinoid anandamide (AEA). AEA significantly decreased GnRH-I and GnRH-II expression, up regulated GnRHR-I and GnRHR-II mRNA and it had no effect upon GnRHR-III expression. These effects were counteracted by SR141716A (Rimonabant), a selective antagonist of type I cannabinoid receptor (CB1). In conclusion our results demonstrate a CB1 receptor dependent modulation of GnRH system expression rate (both ligands and receptors) in frog diencephalons. In particular, we show that AEA, besides GnRH-I, also acts on GnRH-II expression.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale sez F. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | | | | | | | | |
Collapse
|
47
|
Involvement of endocannabinoids in antidepressant and anti-compulsive effect of fluoxetine in mice. Behav Brain Res 2011; 223:125-34. [DOI: 10.1016/j.bbr.2011.04.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/11/2011] [Accepted: 04/20/2011] [Indexed: 01/17/2023]
|
48
|
Taheri-Kafrani A, Choiset Y, Faizullin DA, Zuev YF, Bezuglov VV, Chobert JM, Bordbar AK, Haertlé T. Interactions of β-lactoglobulin with serotonin and arachidonyl serotonin. Biopolymers 2011; 95:871-80. [DOI: 10.1002/bip.21690] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 11/10/2022]
|
49
|
Andrianova EL, Genrikhs EE, Bobrov MY, Lizhin AA, Gretskaya NM, Frumkina LE, Khaspekov LG, Bezuglov VV. In Vitro Effects of Anandamide and Prostamide E2 on Normal and Transformed Nerve Cells. Bull Exp Biol Med 2011; 151:30-2. [DOI: 10.1007/s10517-011-1252-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Toussaint K, Yang XC, Zielinski MA, Reigle KL, Sacavage SD, Nagar S, Raffa RB. What do we (not) know about how paracetamol (acetaminophen) works? J Clin Pharm Ther 2011; 35:617-38. [PMID: 21054454 DOI: 10.1111/j.1365-2710.2009.01143.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
WHAT IS KNOWN AND BACKGROUND Although paracetamol (acetaminophen), N-(4-Hydroxyphenyl)acetamide, is one of the world's most widely used analgesics, the mechanism by which it produces its analgesic effect is largely unknown. This lack is relevant because: (i) optimal pain treatment matches the analgesic mechanism to the (patho)physiology of the pain and (ii) modern drug discovery relies on an appropriate screening assay. OBJECTIVE To review the clinical profile and preclinical studies of paracetamol as means of gaining insight into its mechanism of analgesic action. METHODS A literature search was conducted of clinical and preclinical literature and the information obtained was organized and reviewed from the perspective of its contribution to an understanding of the mechanism of analgesic action of paracetamol. RESULTS Paracetamol's broad spectrum of analgesic and other pharmacological actions is presented, along with its multiple postulated mechanism(s) of action. No one mechanism has been definitively shown to account for its analgesic activity. WHAT IS NEW AND CONCLUSION Further research is needed to uncover the mechanism of analgesic action of paracetamol. The lack of this knowledge affects optimal clinical use and impedes drug discovery efforts.
Collapse
Affiliation(s)
- K Toussaint
- Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|