1
|
Friesen OC, Aukema HM, Detwiler JT. Species-specific oxylipins and the effects of ontogeny and predation on their emission from freshwater snails. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111607. [PMID: 38360203 DOI: 10.1016/j.cbpa.2024.111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Chemical cues play important roles in mediating ecological interactions. Oxylipins, oxygenated metabolites of fatty acids, are one signalling molecule type that influences the physiology and function of species, suggesting their broader significance in chemical communication within aquatic systems. Yet, our current understanding of their function is restricted taxonomically and contextually making it difficult to infer their ecological significance. Snails and leeches are ubiquitous in freshwater ecosystems worldwide, yet little is known about their oxylipin profiles and the factors that cause their profiles to change. As snails and leeches differ taxonomically and represent different trophic groups, we postulated oxylipin profile differences. For snails, we hypothesized that ontogeny (non-reproductive vs reproductive) and predation (non-infested vs leech-infested) would affect oxylipin profiles. Oxylipins were characterized from water conditioned with the snail Planorbella duryi and leech Helobdella lineata, and included three treatment types (snails, leeches, and leech-infested snails) with the snails consisting of three size classes: small (5-6 mm, non-reproductive) and medium and large (13-14 and 19-20 mm, reproductive). The two species differed in the composition of their oxylipin profiles both in diversity and amounts. Further, ontogeny and predation affected the diversity of oxylipins emitted by snails. Our experimental profiles of oxylipins show that chemical cues within freshwater systems vary depending upon the species emitting the signals, the developmental stage of the species, as well as from ecological interactions such as predation. We also identified some candidates, like 9-HETE and PGE2, that could be explored more directly for their physiological and ecological roles in freshwater systems.
Collapse
Affiliation(s)
- Olwyn C Friesen
- Department of Biological Sciences, University of Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Canada
| | | |
Collapse
|
2
|
Gong Q, Wang Y, He L, Huang F, Zhang D, Wang Y, Wei X, Han M, Deng H, Luo L, Cui F, Hong Y, Liu Y. Molecular basis of methyl-salicylate-mediated plant airborne defence. Nature 2023; 622:139-148. [PMID: 37704724 DOI: 10.1038/s41586-023-06533-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Aphids transmit viruses and are destructive crop pests1. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants2-5. However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses.
Collapse
Affiliation(s)
- Qian Gong
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yunjing Wang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Linfang He
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fan Huang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Danfeng Zhang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiang Wei
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Han
- Protein Research Technology Center, Protein Chemistry and Omics Platform, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- Protein Research Technology Center, Protein Chemistry and Omics Platform, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yiguo Hong
- State Key Laboratory of North China Crop Improvement and Regulation and College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- School of Life Sciences, University of Warwick, Coventry, UK
- School of Science and the Environment, University of Worcester, Worcester, UK
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
3
|
Rocha DDD, Santos BLF, Melo JOF, Nascimento PT, Fadini MAM. Volatile compounds from soybeans under multiple on herbivores infestations attract the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). BRAZ J BIOL 2023; 83:e267598. [PMID: 37283334 DOI: 10.1590/1519-6984.267598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 06/08/2023] Open
Abstract
Plant-induced resistance can be an important component of soybean mites biological control programs. This work evaluates the preference of predatory mite Neoseiulus californicus (Acari: Phytoseiidae) to soybean plants under single and multiple herbivory conditions by two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae), and velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). Using a Y olfactometer, the following scenarios were evaluated: soybean with no infestation and soybean infested with A. gemmatalis; soybean infested with T. urticae and A. gemmatalis, and soybean infested with T. urticae and with both T. urticae and A. gemmatalis. Volatile compounds released by plants were analyzed and identified by a Trace GC Ultra gas chromatograph coupled to a mass spectrometer with a solid phase micro-extraction ion-trap. The predatory mite N. californicus preferred soybean plants infested with T. urticae compared to those infested with A. gemmatalis. Multiple infestation did not interfere with its preference to T. urticae. Multiple herbivory of T. urticae and A. gemmatalis modified the chemical profile of volatile compounds emitted by soybean plants. However, it did not interfere with the search behavior of N. californicus. Out of the 29 identified compounds only five promoted predatory mite response. Thus, regardless of single or multiple herbivory by T. urticae with or without A. gemmatalis, the indirect induced resistance mechanisms operate similarly. As such, this mechanism contributes to an increase in the encounter rate between predator and prey for N. Californicus and T. urticae, and the efficacy of biological control of mites on soybean.
Collapse
Affiliation(s)
- D D D Rocha
- Universidade Federal de São João del-Rei - UFSJ, Department of Agricultural Science, Sete Lagoas, MG, Brasil
| | - B L F Santos
- Universidade Federal de São João del-Rei - UFSJ, Department of Agricultural Science, Sete Lagoas, MG, Brasil
| | - J O F Melo
- Universidade Federal de São João del-Rei - UFSJ, Department of Agricultural Science, Sete Lagoas, MG, Brasil
| | - P T Nascimento
- Universidade Federal de São João del-Rei - UFSJ, Department of Agricultural Science, Sete Lagoas, MG, Brasil
| | - M A M Fadini
- Universidade Federal de São João del-Rei - UFSJ, Department of Agricultural Science, Sete Lagoas, MG, Brasil
| |
Collapse
|
4
|
Root Colonization by Fungal Entomopathogen Systemically Primes Belowground Plant Defense against Cabbage Root Fly. J Fungi (Basel) 2022; 8:jof8090969. [PMID: 36135694 PMCID: PMC9505207 DOI: 10.3390/jof8090969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Entomopathogenic fungi infect insects via spores but also live inside plant tissues as endophytes. Frequently, colonization by entomopathogens provides plants with increased resistance against insects, but the mechanisms are little understood. This study investigated direct, local, and systemic root-mediated interactions between isolates of the fungus Metarhizium brunneum and larvae of the cabbage root fly (CRF) Delia radicum attacking Brassica napus plants. All fungal isolates infected CRF when conidia were present in the soil, leading to 43–93% mortality. Locally, root-associated M. brunneum isolates reduced herbivore damage by 10–20% and in three out of five isolates caused significant insect mortality due to plant-mediated and/or direct effects. A split-root experiment with isolate Gd12 also demonstrated systemic plant resistance with significantly reduced root collar damage by CRF. LC-MS analyses showed that fungal root colonization did not induce changes in phytohormones, while herbivory increased jasmonic acid (JA) and glucosinolate concentrations. Proteinase inhibitor gene expression was also increased. Fungal colonization, however, primed herbivore-induced JA and the expression of the JA-responsive plant defensin 1.2 (PDF1.2) gene. We conclude that root-associated M. brunneum benefits plant health through multiple mechanisms, such as the direct infection of insects, as well as the local and systemic priming of the JA pathway.
Collapse
|
5
|
Liu XW, Wang YH, Shen SK. Transcriptomic and metabolomic analyses reveal the altitude adaptability and evolution of different-colored flowers in alpine Rhododendron species. TREE PHYSIOLOGY 2022; 42:1100-1113. [PMID: 34850945 DOI: 10.1093/treephys/tpab160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/25/2021] [Indexed: 05/28/2023]
Abstract
Understanding the molecular mechanisms and evolutionary process of plant adaptation to the heterogeneous environment caused by altitude gradients in plateau mountain ecosystems can provide novel insight into species' responses to global changes. Flower color is the most conspicuous and highly diverse trait in nature. Herein, the gene expression patterns, evolutionary adaptation and metabolites changes of different-colored flowers of alpine Rhododendron L. species along altitude gradients were investigated based on a combined analysis of transcriptomics and metabolomics. Differentially expressed genes were found to be related to the biosynthesis of carbohydrates, fatty acids, amino acids and flavonoids, suggesting their important roles in the altitude adaptability of Rhododendron species. The evolution rate of high-altitude species was faster than that of low-altitude species. Genes related to DNA repair, mitogen-activated protein kinase and ABA signal transduction, and lipoic acid and propanoate metabolism were positively selected in the flowers of high-altitude Rhododendron species and those associated with carotenoid biosynthesis pathway, ABA signal transduction and ethylene signal transduction were positively selected in low-altitude species. These results indicated that the genes with differentiated expressions or functions exhibit varying evolution during the adaptive divergence of heterogeneous environment caused by altitude gradients. Flower-color variation might be attributed to the significant differences in gene expression or metabolites related to sucrose, flavonoids and carotenoids at the transcription or metabolism levels of Rhododendron species. This work suggests that Rhododendron species have multiple molecular mechanisms in their adaptation to changing environments caused by altitude gradients.
Collapse
Affiliation(s)
- Xing-Wen Liu
- School of Ecology and Environmental Science, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
| | - Yue-Hua Wang
- School of Ecology and Environmental Science, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
| | - Shi-Kang Shen
- School of Ecology and Environmental Science, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, No.2 Green lake North road Kunming, Kunming, Yunnan 650091, China
| |
Collapse
|
6
|
Friesen OC, Li CH, Sykes EME, Stout JM, Aukema HM, Kumar A, Detwiler JT. Density-Dependent Prophylaxis in Freshwater Snails Driven by Oxylipin Chemical Cues. Front Immunol 2022; 13:826500. [PMID: 35173735 PMCID: PMC8841777 DOI: 10.3389/fimmu.2022.826500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
While animal aggregations can benefit the fitness of group members, the behaviour may also lead to higher risks of parasite infection as group density increases. Some animals are known to moderate their investment in immunity relative to the risk of infection. These animals exhibit density-dependent prophylaxis (DDP) by increasing their immune investment as group density increases. Despite being documented in many taxa, the mechanisms of DDP remain largely unexplored. Snails are known to aggregate and experience large fluctuations in density and serve as required hosts for many parasites. Further, they are known to use chemical cues to aggregate. To test whether freshwater snails exhibit DDP and investigate the role that chemical signaling compounds may play in triggering this phenomenon, we performed four experiments on the freshwater snail Stagnicola elodes, which is a common host for many trematode parasite species. First, we tested if DDP occurred in snails in laboratory-controlled conditions (control vs snail-conditioned water) and whether differences in exposure to chemical cues affected immune function. Second, we used gas chromatography to characterize fatty acids expressed in snail-conditioned water to determine if precursors for particular signaling molecules, such as oxylipins, were being produced by snails. Third, we characterized the oxylipins released by infected and uninfected field-collected snails, to better understand how differences in oxylipin cocktails may play a role in inducing DDP. Finally, we tested the immune response of snails exposed to four oxylipins to test the ability of specific oxylipins to affect DDP. We found that snails exposed to water with higher densities of snails and raised in snail-conditioned water had higher counts of haemocytes. Additionally, lipid analysis demonstrated that fatty acid molecules that are also precursors for oxylipins were present in snail-conditioned water. Trematode-infected snails emitted 50 oxylipins in higher amounts, with 24 of these oxylipins only detected in this group. Finally, oxylipins that were higher in infected snails induced naïve snails to increase their immune responses compared to sham-exposed snails. Our results provide evidence that snails exhibit DDP, and the changes in oxylipins emitted by infected hosts may be one of the molecular mechanisms driving this phenomenon.
Collapse
Affiliation(s)
- Olwyn C. Friesen
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chen-Hua Li
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ellen M. E. Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jake M. Stout
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Harold M. Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jillian T. Detwiler
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Friesen OC, Detwiler JT. Parasite-Modified Chemical Communication: Implications for Aquatic Community Dynamics. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.634754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chemical communication within an aquatic environment creates an intricate signaling web that provides species with information about their surroundings. Signaling molecules, like oxylipins, mediate a multitude of interactions between free-living members of a community including non-consumptive effects by predators. Parasites are another source of signaling molecules in aquatic communities and contribute directly by synthesizing them or indirectly by manipulating host chemical cues. If chemical cues of infected hosts are altered, then non-consumptive interactions between other members of the community may also be affected. Different cues from infected hosts may alter behaviors in other individuals related to foraging, competition, and defense priming. Here, we discuss how parasites could modify host chemical cues, which may have far reaching consequences for other community members and the ecosystem. We discuss how the modification of signaling molecules by parasites may also represent a mechanism for parasite-modified behavior within some systems and provide a mechanism for non-consumptive effects of parasites. Further, we propose a host-parasite system that could be used to investigate some key, unanswered questions regarding the relationship between chemical cues, parasite-modified behavior, and non-consumptive effects. We explain how trematode-gastropod systems can be used to test whether there are alterations in the diversity and amounts of signaling molecules available, and if habitat use, immune function, and behavior of other individuals and species are affected. Finally, we argue that changes to pathway crosstalk by parasites within communities may have broad ecological implications.
Collapse
|
8
|
Leachates from plants recently infected by root-feeding nematodes cause increased biomass allocation to roots in neighbouring plants. Sci Rep 2021; 11:2347. [PMID: 33504859 PMCID: PMC7840926 DOI: 10.1038/s41598-021-82022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
Plants can adjust defence strategies in response to signals from neighbouring plants attacked by aboveground herbivores. Whether similar responses exist to belowground herbivory remains less studied, particularly regarding the spatiotemporal dynamics of such belowground signalling. We grew the grass Agrostis stolonifera with or without root-feeding nematodes (Meloidogyne minor). Leachates were extracted at different distances from these plants and at different times after inoculation. The leachates were applied to receiver A. stolonifera plants, of which root, shoot, and total biomass, root/shoot ratio, shoot height, shoot branch number, maximum rooting depth and root number were measured 3 weeks after leachate application. Receiver plants allocated significantly more biomass to roots when treated with leachates from nematode-inoculated plants at early infection stages. However, receiver plants’ root/shoot ratio was similar when receiving leachates collected at later stages from nematode-infected or control plants. Overall, early-collected leachates reduced growth of receiver plants significantly. Plants recently infected by root-feeding nematodes can thus induce increased root proliferation of neighbouring plants through root-derived compounds. Possible explanations for this response include a better tolerance of anticipated root damage by nematodes or the ability to grow roots away from the nematode-infected soil. Further investigations are still needed to identify the exact mechanisms.
Collapse
|
9
|
Paudel Timilsena B, Seidl-Adams I, Tumlinson JH. Herbivore-specific plant volatiles prime neighboring plants for nonspecific defense responses. PLANT, CELL & ENVIRONMENT 2020; 43:787-800. [PMID: 31759336 DOI: 10.1111/pce.13688] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 05/03/2023]
Abstract
Plants produce species-specific herbivore-induced plant volatiles (HIPVs) after damage. We tested the hypothesis that herbivore-specific HIPVs prime neighboring plants to induce defenses specific to the priming herbivore. Since Manduca sexta (specialist) and Heliothis virescens (generalist) herbivory induced unique HIPV profiles in Nicotiana benthamiana, we used these HIPVs to prime receiver plants for defense responses to simulated herbivory (mechanical wounding and herbivore regurgitant application). Jasmonic acid (JA) accumulations and emitted volatile profiles were monitored as representative defense responses since JA is the major plant hormone involved in wound and defense signaling and HIPVs have been implicated as signals in tritrophic interactions. Herbivore species-specific HIPVs primed neighboring plants, which produced 2 to 4 times more volatiles and JA after simulated herbivory when compared to similarly treated constitutive volatile-exposed plants. However, HIPV-exposed plants accumulated similar amounts of volatiles and JA independent of the combination of priming or challenging herbivore. Furthermore, volatile profiles emitted by primed plants depended only on the challenging herbivore species but not on the species-specific HIPV profile of damaged emitter plants. This suggests that feeding by either herbivore species primed neighboring plants for increased HIPV emissions specific to the subsequently attacking herbivore and is probably controlled by JA.
Collapse
Affiliation(s)
- Bipana Paudel Timilsena
- Chemical Ecology Lab, Center for Chemical Ecology, The Pennsylvania State University, University Park, PA
| | - Irmgard Seidl-Adams
- Chemical Ecology Lab, Center for Chemical Ecology, The Pennsylvania State University, University Park, PA
| | - James H Tumlinson
- Chemical Ecology Lab, Center for Chemical Ecology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
10
|
Costarelli A, Bianchet C, Ederli L, Salerno G, Piersanti S, Rebora M, Pasqualini S. Salicylic acid induced by herbivore feeding antagonizes jasmonic acid mediated plant defenses against insect attack. PLANT SIGNALING & BEHAVIOR 2019; 15:1704517. [PMID: 31852340 PMCID: PMC7012100 DOI: 10.1080/15592324.2019.1704517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 05/25/2023]
Abstract
We recently reported the transcriptomic signature of salicylic acid (SA) and jasmonic acid (JA) biosynthetic and responsive genes in Arabidopsis thaliana plants infested with the herbivore Eurydema oleracea. We demonstrated that insect feeding causes induction of both SA- and JA-mediated signaling pathways. Using transgenic SA-deficient NahG plants, we also showed antagonistic cross-talk between these two phytohormones. To gain more insight into the roles of the SA and JA pathways in plant defenses against E. oleracea, we report here on the dynamics of SA and JA levels in the wild-type genotype Col-0 and the transgenic Arabidopsis NahG mutant that does not accumulate SA. We show that SA strongly accumulates in the wild-type plants after 24 h of herbivore infestation, while JA levels do not change significantly. On the contrary, in the infested NahG plants, SA levels were not affected by E. oleracea feeding, whereas JA levels which were constitutively higher than the wild-type did not significantly change after 6 hours of herbivore feeding. Accordingly, when the wild-type and the jar1-1 mutant (which fails to accumulate JA-Ile) Arabidopsis plants were challenged with E. oleracea in a two-choice arena, the insect fed preferentially on the jar1-1 plants over the wild-type. These data support the conclusion that E. oleracea infestation strongly induces the SA pathway in the wild-type, thus antagonizing JA-mediated plant defenses against herbivory, as a strategy to suppress plant immunity.
Collapse
Affiliation(s)
- Alma Costarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Chantal Bianchet
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Gianandrea Salerno
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Silvana Piersanti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Manuela Rebora
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefania Pasqualini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Onkokesung N, Reichelt M, Wright LP, Phillips MA, Gershenzon J, Dicke M. The plastidial metabolite 2-C-methyl-D-erythritol-2,4-cyclodiphosphate modulates defence responses against aphids. PLANT, CELL & ENVIRONMENT 2019; 42:2309-2323. [PMID: 30786032 PMCID: PMC6850158 DOI: 10.1111/pce.13538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/09/2019] [Accepted: 02/17/2019] [Indexed: 05/30/2023]
Abstract
Feeding by insect herbivores such as caterpillars and aphids induces plant resistance mechanisms that are mediated by the phytohormones jasmonic acid (JA) and salicylic acid (SA). These phytohormonal pathways often crosstalk. Besides phytohormones, methyl-D-erythriol-2,4-cyclodiphosphate (MEcPP), the penultimate metabolite in the methyl-D-erythritol-4-phosphate pathway, has been speculated to regulate transcription of nuclear genes in response to biotic stressors such as aphids. Here, we show that MEcPP uniquely enhances the SA pathway without attenuating the JA pathway. Arabidopsis mutant plants that accumulate high levels of MEcPP (hds3) are highly resistant to the cabbage aphid (Brevicoryne brassicae), whereas resistance to the large cabbage white caterpillar (Pieris brassicae) remains unaltered. Thus, MEcPP is a distinct signalling molecule that acts beyond phytohormonal crosstalk to induce resistance against the cabbage aphid in Arabidopsis. We dissect the molecular mechanisms of MEcPP mediating plant resistance against the aphid B. brassicae. This shows that MEcPP induces the expression of genes encoding enzymes involved in the biosynthesis of several primary and secondary metabolic pathways contributing to enhanced resistance against this aphid species. A unique ability to regulate multifaceted molecular mechanisms makes MEcPP an attractive target for metabolic engineering in Brassica crop plants to increase resistance to cabbage aphids.
Collapse
Affiliation(s)
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Louwrance P. Wright
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Michael A. Phillips
- Department of Biology and Graduate Program in Cellular and Systems BiologyUniversity of Toronto‐MississaugaMississaugaOntarioCanada
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
12
|
Dudley S, Sun C, McGinnis M, Trumble J, Gan J. Formation of biologically active benzodiazepine metabolites in Arabidopsis thaliana cell cultures and vegetable plants under hydroponic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:622-630. [PMID: 30699383 DOI: 10.1016/j.scitotenv.2019.01.259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The use of recycled water for agricultural irrigation comes with the concern of exposure to crops by contaminants of emerging concerns (CECs). The concentration of CECs in plant tissues will depend on uptake, translocation and metabolism in plants. However, relatively little is known about plant metabolism of CECs, particularly under chronic exposure conditions. In this study, metabolism of the pharmaceutical diazepam was investigated in Arabidopsis thaliana cells and cucumber (Cucumis sativus) and radish (Raphanus sativus) seedlings grown in hydroponic solution following acute (7 d)/high concentration (1 mg L-1), and chronic (28 d)/low concentration (1 μg L-1) exposures. Liquid chromatography paired with mass spectrometry, 14C tracing, and enzyme extractions, were used to characterize the metabolic phases. The three major metabolites of diazepam - nordiazepam, temazepam and oxazepam - were detected as Phase I metabolites, with the longevity corresponding to that of human metabolism. Nordiazepam was the most prevalent metabolite at the end of the 5 d incubation in A. thaliana cells and 7 d, 28 d seedling cultivations. At the end of 7 d cultivation, non-extractable residues (Phase III) in radish and cucumber seedlings accounted for 14% and 33% of the added 14C-diazepam, respectively. By the end of 28 d incubation, the non-extractable radioactivity fraction further increased to 47% and 61%, indicating Phase III metabolism as an important destination for diazepam. Significant changes to glycosyltransferase activity were detected in both cucumber and radish seedlings exposed to diazepam. Findings of this study highlight the need to consider the formation of bioactive transformation intermediates and different phases of metabolism to achieve a comprehensive understanding of risks of CECs in agroecosystems.
Collapse
Affiliation(s)
- Stacia Dudley
- Department of Environmental Science, University of California Riverside, CA 92521, United States; Graduate Program in Environmental Toxicology, University of California, Riverside, CA 92521, United States.
| | - Chengliang Sun
- Department of Environmental Science, University of California Riverside, CA 92521, United States
| | - Michelle McGinnis
- Department of Environmental Science, University of California Riverside, CA 92521, United States
| | - John Trumble
- Graduate Program in Environmental Toxicology, University of California, Riverside, CA 92521, United States; Department of Entomology, University of California Riverside, CA 92521, United States
| | - Jay Gan
- Department of Environmental Science, University of California Riverside, CA 92521, United States
| |
Collapse
|
13
|
Dudley S, Sun C, Jiang J, Gan J. Metabolism of sulfamethoxazole in Arabidopsis thaliana cells and cucumber seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1748-1757. [PMID: 30078686 DOI: 10.1016/j.envpol.2018.07.094] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/15/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Reclaimed water is a historically underutilized resource. However, with increased population growth and global climate change, reclaimed water is evolving into an economical and sustainable water resource to meet the needs of citizens, industries, and agriculture. The use of recycled water for agricultural irrigation comes with the potential risk of environmental and food contamination by pharmaceuticals and personal care products (PPCPs). The levels of PPCPs in plants will depend on translocation and metabolism in plant tissues. However, relatively little is known about the metabolism of PPCPs in plants. In this study, the metabolism of the antibiotic sulfamethoxazole was investigated in Arabidopsis thaliana cells as well as cucumber seedlings grown under hydroponic conditions. Using high-resolution mass spectrometry and 14C tracing allowed for sulfamethoxazole metabolism to be comprehensively characterized through all metabolic phases. Six phase I and II metabolites were identified in A. thaliana cell cultures and cucumber seedlings. Sulfamethoxazole metabolism followed oxidation and then rapid conjugation with glutathione and leucine. Direct conjugation with the parent compound was also observed via acetylation and glucosylation. At the end of 96 and 168 h incubation, N4-acetylsulfamethoxazole was the major metabolite and >50% of the radiolabeled sulfamethoxazole became non-extractable in both A. thaliana cells and cucumber seedlings suggesting extensive phase III metabolism and detoxification. The study findings provided information for a better understanding of the uptake and metabolism of sulfamethoxazole in higher plants, highlighting the need to consider metabolic intermediates and terminal fate when assessing the risk of PPCPs in the soil-plant continuum.
Collapse
Affiliation(s)
- Stacia Dudley
- Department of Environmental Science, University of California Riverside, CA, 92521, United States; Graduate Program in Environmental Toxicology, University of California, Riverside, CA, 92521, United States.
| | - Chengliang Sun
- Department of Environmental Science, University of California Riverside, CA, 92521, United States
| | - Ji Jiang
- Sciex, Redwood City, CA, 94065, United States
| | - Jay Gan
- Department of Environmental Science, University of California Riverside, CA, 92521, United States
| |
Collapse
|
14
|
Antoniou C, Fragkoudi I, Martinou A, Stavrinides MC, Fotopoulos V. Spatial response of Medicago truncatula plants to drought and spider mite attack. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:658-662. [PMID: 30139552 DOI: 10.1016/j.plaphy.2018.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Plant response to imposition of biotic and abiotic stresses by inducing their defense mechanisms, with the production of reactive oxygen species (ROS) representing a major defense response. The present work examined the simultaneous impact of two key stress factors, drought and spider mite attack (Tetranychus urticae) in Medicago truncatula plants. Hydrogen peroxide (H2O2), lipid peroxidation (MDA content) and proline content in well-watered and drought-stressed leaves infested by spider mites along with neighboring leaves were examined in order to investigate the local and systemic effect of the two stresses on the antioxidant and osmoprotective response. High levels of lipid peroxidation were recorded in plants under drought stress and plants under combined drought stress and spider mite feeding compared with control plants. Hydrogen peroxide biosynthesis was significantly induced in plants under drought and spider mite attack, with highest levels detected in the feeding leaf (local response). Proline was accumulated in drought stressed-plants, with the highest levels observed in plants exposed to a combination of drought stress and mite feeding. RT-qPCR expression analysis of key genes implicated in ROS metabolism (PAO, DAO, AOX, CuZnSOD, FeSOD, MnSOD) and proline biosynthesis (P5CR, P5CS) pointed to different patterns of regulation between abiotic and biotic stress, as well as their combination. Exposure of plants to both drought stress and attack by spider mites mainly affected the local antioxidant and osmoprotective response of Medicago truncatula, highlighting the relative significance of drought-induced phenomena in combined drought/mite infestation stress responses.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036, Limassol, Cyprus
| | - Ioanna Fragkoudi
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036, Limassol, Cyprus
| | - Angeliki Martinou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036, Limassol, Cyprus
| | - Menelaos C Stavrinides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036, Limassol, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036, Limassol, Cyprus.
| |
Collapse
|
15
|
Alhousari F, Greger M. Silicon and Mechanisms of Plant Resistance to Insect Pests. PLANTS 2018; 7:plants7020033. [PMID: 29652790 PMCID: PMC6027389 DOI: 10.3390/plants7020033] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/17/2023]
Abstract
This paper reviews the most recent progress in exploring silicon-mediated resistance to herbivorous insects and the mechanisms involved. The aim is to determine whether any mechanism seems more common than the others as well as whether the mechanisms are more pronounced in silicon-accumulating than non-silicon-accumulating species or in monocots than eudicots. Two types of mechanisms counter insect pest attacks: physical or mechanical barriers and biochemical/molecular mechanisms (in which Si can upregulate and prime plant defence pathways against insects). Although most studies have examined high Si accumulators, both accumulators and non-accumulators of silicon as well as monocots and eudicots display similar Si defence mechanisms against insects.
Collapse
Affiliation(s)
- Fadi Alhousari
- Department of Ecology, Environment and Plant Science, Stockholm University, 10691 Stockholm, Sweden.
| | - Maria Greger
- Department of Ecology, Environment and Plant Science, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
16
|
Aljbory Z, Chen MS. Indirect plant defense against insect herbivores: a review. INSECT SCIENCE 2018; 25:2-23. [PMID: 28035791 DOI: 10.1111/1744-7917.12436] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 05/09/2023]
Abstract
Plants respond to herbivore attack by launching 2 types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore-associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore-associated elicitors include fatty acid-amino acid conjugates, sulfur-containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants.
Collapse
Affiliation(s)
- Zainab Aljbory
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
17
|
Kang ZW, Liu FH, Tan XL, Zhang ZF, Zhu JY, Tian HG, Liu TX. Infection of Powdery Mildew Reduces the Fitness of Grain Aphids ( Sitobion avenae) Through Restricted Nutrition and Induced Defense Response in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:778. [PMID: 29967627 PMCID: PMC6015903 DOI: 10.3389/fpls.2018.00778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 05/10/2023]
Abstract
In natural ecological systems, plants are often simultaneously attacked by both insects and pathogens, which can affect each other's performance and the interactions can be extended to higher trophic levels, such as parasitoids. The English grain aphid (Sitobion avenae) and powdery mildew (Blumeria graminis f. sp. tritici) are two common antagonists that pose a serious threat to wheat production. Numerous studies have investigated the effect of a single factor (insect or pathogen) on wheat production. However, investigation on the interactions among insect pests, pathogens, and parasitoids within the wheat crop system are rare. Furthermore, the influence of the fungicide, propiconazole, has been found to imitate the natural ecosystem. Therefore, this study investigated the effects of B. graminis on the biological performance of grain aphids and the orientation behavior of its endoparasitic wasp Aphidius gifuensis in the wheat system. Our findings indicated that B. graminis infection suppressed the feeding behavior, adult and nymph weight, and fecundity and prolonged the developmental time of S. avenae. We found that wheat host plants had decreased proportions of essential amino acids and higher content of sucrose following aggravated B. graminis infection. The contents of Pro and Gln increased in the wheat plant tissues after B. graminis infection. In addition, B. graminis infection elicited immune responses in wheat: increase in the expression of defense genes, content of total phenolic compounds, and activity of three related antioxidant enzymes. Moreover, co-infection of B. graminis and S. avenae increased the attraction to A. gifuensis compare to that after infestation with aphids alone. In conclusion, our results indicated that B. graminis infection adversely affected the performance of S. avenae in wheat through restricted nutrition and induced defense response. Furthermore, the preference of parasitoids in such an interactive environment might provide an important basis for pest management control.
Collapse
Affiliation(s)
- Zhi-Wei Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Fang-Hua Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ling Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jing-Yun Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
- *Correspondence: Tong-Xian Liu,
| |
Collapse
|
18
|
Dong YJ, Hwang SY. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2092-2099. [PMID: 28961975 DOI: 10.1093/jee/tox240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphids rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional chemical control methods. Methyl salicylate (MeSA), a herbivore-induced plant volatile, has been shown to affect aphids' behavior and attract the natural enemies of aphids for reducing their population. Therefore, this study examined the direct effects of MeSA on cotton aphids' settling preference, population development, and attractiveness to natural enemies. The efficiency of using MeSA and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed no difference in winged aphids' settling preference and population development between the MeSA and blank treatments. Cucumber plants infested with cotton aphids and baited with 0.1% or 10% MeSA contained significantly higher numbers of the natural enemy of cotton aphids, namely Scymnus (Pullus) sodalis (Weise) (Coleoptera: Coccinellidae), and MeSA-treated cucumber plants contained a lower number of aphids. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m range of MeSA application. In addition, fruit yield showed no difference between the MeSA and pymetrozine treatments. According to our findings, 0.1% MeSA application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use.
Collapse
Affiliation(s)
- Y J Dong
- Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, 189 Zhongzheng Road, Wufeng District, Taichung City 41362, Taiwan (R.O.C.)
| | - S Y Hwang
- Department of Entomology, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 40227, Taiwan (R.O.C.)
| |
Collapse
|
19
|
Pizzolante G, Cordero C, Tredici SM, Vergara D, Pontieri P, Del Giudice L, Capuzzo A, Rubiolo P, Kanchiswamy CN, Zebelo SA, Bicchi C, Maffei ME, Alifano P. Cultivable gut bacteria provide a pathway for adaptation of Chrysolina herbacea to Mentha aquatica volatiles. BMC PLANT BIOLOGY 2017; 17:30. [PMID: 28249605 PMCID: PMC5333409 DOI: 10.1186/s12870-017-0986-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND A chemical cross-talk between plants and insects is required in order to achieve a successful co-adaptation. In response to herbivory, plants produce specific compounds, and feeding insects respond adequately7 to molecules produced by plants. Here we show the role of the gut microbial community of the mint beetle Chrysolina herbacea in the chemical cross-talk with Mentha aquatica (or watermint). RESULTS By using two-dimensional gas chromatography-mass spectrometry we first evaluated the chemical patterns of both M. aquatica leaf and frass volatiles extracted by C. herbacea males and females feeding on plants, and observed marked differences between males and females volatiles. The sex-specific chemical pattern of the frass paralleled with sex-specific distribution of cultivable gut bacteria. Indeed, all isolated gut bacteria from females belonged to either α- or γ-Proteobacteria, whilst those from males were γ-Proteobacteria or Firmicutes. We then demonstrated that five Serratia marcescens strains from females possessed antibacterial activity against bacteria from males belonging to Firmicutes suggesting competition by production of antimicrobial compounds. By in vitro experiments, we lastly showed that the microbial communities from the two sexes were associated to specific metabolic patterns with respect to their ability to biotransform M. aquatica terpenoids, and metabolize them into an array of compounds with possible pheromone activity. CONCLUSIONS Our data suggest that cultivable gut bacteria of Chrysolina herbacea males and females influence the volatile blend of herbivory induced Mentha aquatica volatiles in a sex-specific way.
Collapse
Affiliation(s)
- Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria n°9, 10125 Torino, Italy
| | - Salvatore M. Tredici
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| | - Davide Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| | - Paola Pontieri
- Dipartimento di Biologia, Sezione di Igiene, Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o, 80134 Naples, Italy
| | - Luigi Del Giudice
- Dipartimento di Biologia, Sezione di Igiene, Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o, 80134 Naples, Italy
| | - Andrea Capuzzo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Quarello 15/A, 10135 Torino, Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria n°9, 10125 Torino, Italy
| | - Chidananda N. Kanchiswamy
- Research and Innovation Centre Genomics and Biology of Fruit Crop Department, Fondazione Edmund Mach (FEM), Istituto Agrario San Michele (IASMA), Via Mach 1, 38010 San Michele all’Adige, TN Italy
| | - Simon A. Zebelo
- Department of Natural Sciences, University of Maryland Eastern Shore, 1117 Trigg Hall, Princess Anne, 21853 MD USA
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria n°9, 10125 Torino, Italy
| | - Massimo E. Maffei
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Quarello 15/A, 10135 Torino, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| |
Collapse
|
20
|
Dong L, Jongedijk E, Bouwmeester H, Van Der Krol A. Monoterpene biosynthesis potential of plant subcellular compartments. THE NEW PHYTOLOGIST 2016; 209:679-90. [PMID: 26356766 DOI: 10.1111/nph.13629] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/03/2015] [Indexed: 05/03/2023]
Abstract
Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol.
Collapse
Affiliation(s)
- Lemeng Dong
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Esmer Jongedijk
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Alexander Van Der Krol
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
21
|
Giron D, Huguet E, Stone GN, Body M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:70-89. [PMID: 26723843 DOI: 10.1016/j.jinsphys.2015.12.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 05/04/2023]
Abstract
Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed.
Collapse
Affiliation(s)
- David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Parc Grandmont, 37200 Tours, France.
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Parc Grandmont, 37200 Tours, France
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Mélanie Body
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
22
|
Boggia L, Sgorbini B, Bertea CM, Cagliero C, Bicchi C, Maffei ME, Rubiolo P. Direct Contact - Sorptive Tape Extraction coupled with Gas Chromatography - Mass Spectrometry to reveal volatile topographical dynamics of lima bean (Phaseolus lunatus L.) upon herbivory by Spodoptera littoralis Boisd. BMC PLANT BIOLOGY 2015; 15:102. [PMID: 25887127 PMCID: PMC4415311 DOI: 10.1186/s12870-015-0487-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/01/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND The dynamics of plant volatile (PV) emission, and the relationship between damaged area and biosynthesis of bioactive molecules in plant-insect interactions, remain open questions. Direct Contact-Sorptive Tape Extraction (DC-STE) is a sorption sampling technique employing non adhesive polydimethylsiloxane tapes, which are placed in direct contact with a biologically-active surface. DC-STE coupled to Gas Chromatography - Mass Spectrometry (GC-MS) is a non-destructive, high concentration-capacity sampling technique able to detect and allow identification of PVs involved in plant responses to biotic and abiotic stresses. Here we investigated the leaf topographical dynamics of herbivory-induced PV (HIPV) produced by Phaseolus lunatus L. (lima bean) in response to herbivory by larvae of the Mediterranean climbing cutworm (Spodoptera littoralis Boisd.) and mechanical wounding by DC-STE-GC-MS. RESULTS Time-course experiments on herbivory wounding caused by larvae (HW), mechanical damage by a pattern wheel (MD), and MD combined with the larvae oral secretions (OS) showed that green leaf volatiles (GLVs) [(E)-2-hexenal, (Z)-3-hexen-1-ol, 1-octen-3-ol, (Z)-3-hexenyl acetate, (Z)-3-hexenyl butyrate] were associated with both MD and HW, whereas monoterpenoids [(E)-β-ocimene], sesquiterpenoids [(E)-nerolidol] and homoterpenes (DMNT and TMTT) were specifically associated with HW. Up-regulation of genes coding for HIPV-related enzymes (Farnesyl Pyrophosphate Synthase, Lipoxygenase, Ocimene Synthase and Terpene Synthase 2) was consistent with HIPV results. GLVs and sesquiterpenoids were produced locally and found to influence their own gene expression in distant tissues, whereas (E)-β-ocimene, TMTT, and DMNT gene expression was limited to wounded areas. CONCLUSIONS DC-STE-GC-MS was found to be a reliable method for the topographical evaluation of plant responses to biotic and abiotic stresses, by revealing the differential distribution of different classes of HIPVs. The main advantages of this technique include: a) in vivo sampling; b) reproducible sampling; c) ease of execution; d) simultaneous assays of different leaf portions, and e) preservation of plant material for further "omic" studies. DC-STE-GC-MS is also a low-impact innovative method for in situ PV detection that finds potential applications in sustainable crop management.
Collapse
Affiliation(s)
- Lorenzo Boggia
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| | - Barbara Sgorbini
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| | - Cinzia M Bertea
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.
| | - Cecilia Cagliero
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| | - Carlo Bicchi
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| | - Massimo E Maffei
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.
| |
Collapse
|
23
|
Takei M, Yoshida S, Kawai T, Hasegawa M, Suzuki Y. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees. JOURNAL OF INSECT PHYSIOLOGY 2015; 72:43-51. [PMID: 25437243 DOI: 10.1016/j.jinsphys.2014.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 05/04/2023]
Abstract
Insect galls are abnormal plant tissues induced by external stimuli from parasitizing insects. It has been suggested that the stimuli include phytohormones such as auxin and cytokinins produced by the insects. In our study on the role of hormones in gall induction by the aphid Tetraneura nigriabdominalis, it was found that feedback regulation related to auxin and cytokinin activity is absent in gall tissues, even though the aphids contain higher concentrations of those phytohormones than do plant tissues. Moreover, jasmonic acid signaling appears to be compromised in gall tissue, and consequently, the production of volatile organic compounds, which are a typical defense response of host plants to herbivory, is diminished. These findings suggest that these traits of the gall tissue benefit aphids, because the gall tissue is highly sensitive to auxin and cytokinin, which induce and maintain it. The induced defenses against aphid feeding are also compromised. The abnormal responsiveness to phytohormones is regarded as a new type of extended phenotype of gall-inducing insects.
Collapse
Affiliation(s)
- Mami Takei
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Sayaka Yoshida
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Takashi Kawai
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Morifumi Hasegawa
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Yoshihito Suzuki
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan.
| |
Collapse
|
24
|
Ponzio C, Gols R, Weldegergis BT, Dicke M. Caterpillar-induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or non-host insect herbivore. PLANT, CELL & ENVIRONMENT 2014; 37:1924-35. [PMID: 24697624 DOI: 10.1111/pce.12301] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 05/07/2023]
Abstract
Plants respond to herbivory with the emission of plant volatiles, which can be used by the herbivores' natural enemies to locate their hosts or prey. In nature, plants are often simultaneously confronted with insect herbivores and phytopathogens, potentially interfering with the attraction of the herbivores' enemies as a result of modifications of the induced volatile blend. Here, we investigated parasitoid (Cotesia glomerata) attraction to volatiles of plants challenged by different attackers, either alone or in combination with Pieris brassicae caterpillars, hosts of C. glomerata. We used a natural system consisting of Brassica nigra plants, eggs and larvae of P. brassicae, Brevicoryne brassicae aphids and the bacterial phytopathogen Xanthomonas campestris pv. campestris. In all cases, parasitoids successfully located host-infested plants, and wasp foraging behaviour was unaffected by the simultaneous presence of a non-host attacker or host eggs. Analysis of the volatile emissions show that the volatile blends of caterpillar-infested treatments were different from those without caterpillars. Furthermore, dually attacked plants could not be separated from those with only caterpillars, regardless of non-host identity, supporting the behavioural data. Our results suggest that, in this system, indirect plant defences may be more resistant to interference than is generally assumed, with volatiles induced during dual attack remaining reliable indicators of host presence for parasitoids.
Collapse
Affiliation(s)
- Camille Ponzio
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Zhang PJ, Broekgaarden C, Zheng SJ, Snoeren TAL, van Loon JJA, Gols R, Dicke M. Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2013; 197:1291-1299. [PMID: 23311965 DOI: 10.1111/nph.12106] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/13/2012] [Indexed: 05/07/2023]
Abstract
Upon herbivore attack, plants activate an indirect defense, that is, the release of a complex mixture of volatiles that attract natural enemies of the herbivore. When plants are simultaneously exposed to two herbivore species belonging to different feeding guilds, one herbivore may interfere with the indirect plant defense induced by the other herbivore. However, little is understood about the mechanisms underlying such interference. Here, we address the effect of herbivory by the phloem-feeding whitefly Bemisia tabaci on the induced indirect defense of Arabidopsis thaliana plants to Plutella xylostella caterpillars, that is, the attraction of the parasitoid wasp Diadegma semiclausum. Assays with various Arabidopsis mutants reveal that B. tabaci infestation interferes with indirect plant defense induced by P. xylostella, and that intact jasmonic acid and ethylene signaling are required for such interference caused by B. tabaci. Chemical analysis of plant volatiles showed that the composition of the blend emitted in response to the caterpillars was significantly altered by co-infestation with whiteflies. Moreover, whitefly infestation also had a considerable effect on the transcriptomic response of the plant to the caterpillars. Understanding the mechanisms underlying a plant's responses to multiple attackers will be important for the development of crop protection strategies in a multi-attacker context.
Collapse
Affiliation(s)
- Peng-Jun Zhang
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, the Netherlands
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Colette Broekgaarden
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700 AJ, Wageningen, the Netherlands
| | - Si-Jun Zheng
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, the Netherlands
| | - Tjeerd A L Snoeren
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, the Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, the Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, the Netherlands
| |
Collapse
|
26
|
Savchenko T, Pearse IS, Ignatia L, Karban R, Dehesh K. Insect herbivores selectively suppress the HPL branch of the oxylipin pathway in host plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:653-62. [PMID: 23134585 DOI: 10.1111/tpj.12064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/28/2012] [Accepted: 10/30/2012] [Indexed: 05/23/2023]
Abstract
Insect herbivores have developed a myriad of strategies to manipulate the defense responses of their host plants. Here we provide evidence that chewing insects differentially alter the oxylipin profiles produced by the two main and competing branches of the plant defensive response pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, which are responsible for wound-inducible production of jasmonates (JAs), and green leafy volatiles (GLVs) respectively. Specifically, we used three Arabidopsis genotypes that were damaged by mechanical wounding or by insects of various feeding guilds (piercing aphids, generalist chewing caterpillars and specialist chewing caterpillars). We established that emission of GLVs is stimulated by wounding incurred mechanically or by aphids, but release of these volatiles is constitutively impaired by both generalist and specialist chewing insects. Simultaneously, however, these chewing herbivores stimulated JA production, demonstrating targeted insect suppression of the HPL branch of the oxylipin pathway. Use of lines engineered to express HPL constitutively, in conjunction with quantitative RT-PCR-based expression analyses, established a combination of transcriptional and post-transcriptional reprogramming of the HPL pathway genes as the mechanistic basis of insect-mediated suppression of the corresponding metabolites. Feeding studies suggested a potential evolutionary advantage of suppressing GLV production, as caterpillars preferably consumed leaf tissue from plants that had not been primed by these volatile cues.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
27
|
Pineda A, Soler R, Weldegergis BT, Shimwela MM, VAN Loon JJA, Dicke M. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling. PLANT, CELL & ENVIRONMENT 2013; 36:393-404. [PMID: 22812443 DOI: 10.1111/j.1365-3040.2012.02581.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores.
Collapse
Affiliation(s)
- Ana Pineda
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Ponzio C, Gols R, Pieterse CMJ, Dicke M. Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12035] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Camille Ponzio
- Laboratory of Entomology Wageningen University P.O. Box 8031 6700 EH Wageningen The Netherlands
| | - Rieta Gols
- Laboratory of Entomology Wageningen University P.O. Box 8031 6700 EH Wageningen The Netherlands
| | - Corné M. J. Pieterse
- Plant‐Microbe Interactions Department of Biology Faculty of Science Utrecht University P.O. Box 800.563508 TB UtrechtThe Netherlands
| | - Marcel Dicke
- Laboratory of Entomology Wageningen University P.O. Box 8031 6700 EH Wageningen The Netherlands
| |
Collapse
|
29
|
Gaquerel E, Baldwin IT. Honing in on phenotypes: comprehensive two-dimensional gas chromatography of herbivory-induced volatile emissions and novel opportunities for system-level analyses. AOB PLANTS 2013; 5:plt002. [PMID: 23444146 PMCID: PMC3581813 DOI: 10.1093/aobpla/plt002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/12/2012] [Indexed: 05/18/2023]
Abstract
Plant volatile organic compound (VOC) production requires a complex network of biochemical pathways, which, although well mapped from a biochemical point of view, remains only partly understood with regard to its physiological and genetic regulation. Additionally, although analytical procedures for plant VOC measurement have become increasingly faster and more sensitive in recent years, pinpointing relevant shifts in VOC production from the thousands of molecular fragments that are generated by modern mass spectrometer instruments remains challenging. Here we discuss novel opportunities for system-wide analysis provided by the implementation of non-targeted data processing and multivariate statistics in VOC analysis. We illustrate the value of implementing non-targeted data processing with examples of recent findings from our group on the interactive control exerted by salivary components of a lepidopteran herbivore, Manduca sexta, on herbivory-induced VOC emissions in the wild tobacco Nicotiana attenuata. Finally, we briefly discuss the use of multi-platform data integration for probing the nature of metabolic and regulatory systems underlying VOC emissions.
Collapse
|
30
|
Houshyani B, Assareh M, Busquets A, Ferrer A, Bouwmeester HJ, Kappers IF. Three-step pathway engineering results in more incidence rate and higher emission of nerolidol and improved attraction of Diadegma semiclausum. Metab Eng 2013; 15:88-97. [DOI: 10.1016/j.ymben.2012.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 01/20/2023]
|
31
|
Crespo E, Hordijk CA, de Graaf RM, Samudrala D, Cristescu SM, Harren FJM, van Dam NM. On-line detection of root-induced volatiles in Brassica nigra plants infested with Delia radicum L. root fly larvae. PHYTOCHEMISTRY 2012; 84:68-77. [PMID: 22995928 DOI: 10.1016/j.phytochem.2012.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/12/2012] [Accepted: 08/19/2012] [Indexed: 05/02/2023]
Abstract
Plants emit various volatile organic compounds (VOCs) upon herbivore attack. These VOC emissions often show temporal dynamics which may influence the behavior of natural enemies using these volatiles as cues. This study analyzes on-line VOC emissions by roots of Brassica nigra plants under attack by cabbage root fly larvae, Delia radicum. Root emitted VOCs were detected using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Gas Chromatography-Mass Spectrometry (GC-MS). These analyses showed that several sulfur containing compounds, such as methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and glucosinolate breakdown products, such as thiocyanates (TC) and isothiocyanates (ITC), were emitted by the roots in response to infestation. The emissions were subdivided into early responses, emerging within 1-6 h after infestation, and late responses, evolving only after 6-12 h. The marker for rapid responses was detected at m/z 60. The ion detected at m/z 60 was identified as thiocyanic acid, which is also a prominent fragment in some TC or ITC spectra. The emission of m/z 60 stopped when the larvae had pupated, which makes it an excellent indicator for actively feeding larvae. Methanethiol, DMS and DMDS levels increased much later in infested roots, indicating that activation of enzymes or genes involved in the production of these compounds may be required. Earlier studies have shown that both early and late responses can play a role in tritrophic interactions associated with Brassica species. Moreover, the identification of these root induced responses will help to design non-invasive analytical procedures to assess root infestations.
Collapse
Affiliation(s)
- Elena Crespo
- Life Science Trace Gas Facility, Institute of Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Radhika V, Kost C, Bonaventure G, David A, Boland W. Volatile emission in bracken fern is induced by jasmonates but not by Spodoptera littoralis or Strongylogaster multifasciata herbivory. PLoS One 2012. [PMID: 23185246 PMCID: PMC3502421 DOI: 10.1371/journal.pone.0048050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Jasmonate-mediated regulation of VOC emission has been extensively investigated in higher plants, however, only little is known about VOC production and its regulation in ferns. Here, we investigate whether the emission of VOCs from bracken fern Pteridium aquilinum is triggered by herbivory and if so - whether it is regulated by the octadecanoid signaling pathway. Interestingly, feeding of both generalist (Spodoptera littoralis) and specialist (Strongylogaster multifasciata) herbivores as well as application of singular and continuous mechanical wounding of fronds induced only very low levels of VOC emission. In contrast, treatment with jasmonic acid (JA) led to the emission of a blend of VOCs that was mainly comprised of terpenoids. Likewise, treatment with the JA precursor 12-oxo-phytodienoic acid (OPDA) and α-linolenic acid also induced VOC emission, albeit to a lower intesity than the JA treatment. Accumulation of endogenous JA was low in mechanically wounded fronds and these levels were unaffected by the application of oral secretions from both generalist or specialist herbivores. The emission of terpenoids upon JA treatment could be blocked with fosmidomycin and mevinolin, which are inhibitors of the MEP- and MVA pathways, respectively. These results indicate that similar to higher plants, terpenoid VOCs are produced via these pathways in bracken fern and that these pathways are JA-responsive. However, the very low amounts of terpenoids released after herbivory or mechanical damage are in stark contrast to what is known from higher plants. We speculate that S. multifasciata and S. littoralis feeding apparently did not induce the threshold levels of JA required for activating the MEP and MVA pathways and the subsequent volatile emission in bracken fern.
Collapse
Affiliation(s)
- Venkatesan Radhika
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant Productivity System Research, Plant Science Center, RIKEN Yokohama Institute, Yokohama City, Japan
| | - Christian Kost
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Experimental Ecology and Evolution Research Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Gustavo Bonaventure
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anja David
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail:
| |
Collapse
|
33
|
Abstract
Plants have evolved a plethora of different chemical defenses covering nearly all classes of (secondary) metabolites that represent a major barrier to herbivory: Some are constitutive; others are induced after attack. Many compounds act directly on the herbivore, whereas others act indirectly via the attraction of organisms from other trophic levels that, in turn, protect the plant. An enormous diversity of plant (bio)chemicals are toxic, repellent, or antinutritive for herbivores of all types. Examples include cyanogenic glycosides, glucosinolates, alkaloids, and terpenoids; others are macromolecules and comprise latex or proteinase inhibitors. Their modes of action include membrane disruption, inhibition of nutrient and ion transport, inhibition of signal transduction processes, inhibition of metabolism, or disruption of the hormonal control of physiological processes. Recognizing the herbivore challenge and precise timing of plant activities as well as the adaptive modulation of the plants' metabolism is important so that metabolites and energy may be efficiently allocated to defensive activities.
Collapse
Affiliation(s)
- Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | |
Collapse
|
34
|
Pesek J, Büchler R, Albrecht R, Boland W, Zeth K. Structure and mechanism of iron translocation by a Dps protein from Microbacterium arborescens. J Biol Chem 2011; 286:34872-82. [PMID: 21768097 PMCID: PMC3186433 DOI: 10.1074/jbc.m111.246108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dps (DNA protection during starvation) enzymes are a major class of dodecameric proteins that bacteria use to detoxify their cytosol through the uptake of reactive iron species. In the stationary growth phase of bacteria, Dps enzymes are primarily used to protect DNA by biocrystallization. To characterize the wild type Dps protein from Microbacterium arborescens that displays additional catalytic functions (amide hydrolysis and synthesis), we determined the crystal structure to a resolution of 2.05 Å at low iron content. The structure shows a single iron at the ferroxidase center coordinated by an oxo atom, one water molecule, and three ligating residues. An iron-enriched protein structure was obtained at 2 Å and shows the stepwise uptake of two hexahydrated iron atoms moving along channels at the 3-fold axis before a restriction site inside the channels requires removal of the hydration sphere. Supporting biochemical data provide insight into the regulation of this acylamino acid hydrolase. Moreover, the peroxidase activity of the protein was determined. The influence of iron and siderophores on the expression of acylamino acid hydrolase was monitored during several stages of cell growth. Altogether our data provide an interesting view of an unusual Dps-like enzyme evolutionarily located apart from the large Dps sequence clusters.
Collapse
Affiliation(s)
- Jelena Pesek
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|
35
|
Broekgaarden C, Snoeren TAL, Dicke M, Vosman B. Exploiting natural variation to identify insect-resistance genes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:819-25. [PMID: 21679292 DOI: 10.1111/j.1467-7652.2011.00635.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Herbivorous insects are widespread and often serious constraints to crop production. The use of insect-resistant crops is a very effective way to control insect pests in agriculture, and the development of such crops can be greatly enhanced by knowledge on plant resistance mechanisms and the genes involved. Plants have evolved diverse ways to cope with insect attack that has resulted in natural variation for resistance towards herbivorous insects. Studying the molecular genetics and transcriptional background of this variation has facilitated the identification of resistance genes and processes that lead to resistance against insects. With the development of new technologies, molecular studies are not restricted to model plants anymore. This review addresses the need to exploit natural variation in resistance towards insects to increase our knowledge on resistance mechanisms and the genes involved. We will discuss how this knowledge can be exploited in breeding programmes to provide sustainable crop protection against insect pests. Additionally, we discuss the current status of genetic research on insect-resistance genes. We conclude that insect-resistance mechanisms are still unclear at the molecular level and that exploiting natural variation with novel technologies will contribute greatly to the development of insect-resistant crop varieties.
Collapse
Affiliation(s)
- Colette Broekgaarden
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
36
|
Kost C, Tremmel M, Wirth R. Do leaf cutting ants cut undetected? Testing the effect of ant-induced plant defences on foraging decisions in Atta colombica. PLoS One 2011; 6:e22340. [PMID: 21799831 PMCID: PMC3140513 DOI: 10.1371/journal.pone.0022340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 06/26/2011] [Indexed: 11/19/2022] Open
Abstract
Leaf-cutting ants (LCAs) are polyphagous, yet highly selective herbivores. The factors that govern their selection of food plants, however, remain poorly understood. We hypothesized that the induction of anti-herbivore defences by attacked food plants, which are toxic to either ants or their mutualistic fungus, should significantly affect the ants' foraging behaviour. To test this "induced defence hypothesis," we used lima bean (Phaseolus lunatus), a plant that emits many volatile organic compounds (VOCs) upon herbivore attack with known anti-fungal or ant-repellent effects. Our results provide three important insights into the foraging ecology of LCAs. First, leaf-cutting by Atta ants can induce plant defences: Lima bean plants that were repeatedly exposed to foraging workers of Atta colombica over a period of three days emitted significantly more VOCs than undamaged control plants. Second, the level to which a plant has induced its anti-herbivore defences can affect the LCAs' foraging behaviour: In dual choice bioassays, foragers discriminated control plants from plants that have been damaged mechanically or by LCAs 24 h ago. In contrast, strong induction levels of plants after treatment with the plant hormone jasmonic acid or three days of LCA feeding strongly repelled LCA foragers relative to undamaged control plants. Third, the LCA-specific mode of damaging leaves allows them to remove larger quantities of leaf material before being recognized by the plant: While leaf loss of approximately 15% due to a chewing herbivore (coccinelid beetle) was sufficient to significantly increase VOC emission levels after 24 h, the removal of even 20% of a plant's leaf area within 20 min by LCAs did not affect its VOC emission rate after 24 h. Taken together, our results support the "induced defence hypothesis" and provide first empirical evidence that the foraging behaviour of LCAs is affected by the induction of plant defence responses.
Collapse
Affiliation(s)
- Christian Kost
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | | | |
Collapse
|
37
|
Bidart-Bouzat MG, Kliebenstein D. An ecological genomic approach challenging the paradigm of differential plant responses to specialist versus generalist insect herbivores. Oecologia 2011; 167:677-89. [PMID: 21625984 DOI: 10.1007/s00442-011-2015-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/27/2011] [Indexed: 12/24/2022]
Abstract
A general prediction of the specialist/generalist paradigm indicates that plant responses to insect herbivores may depend on the degree of ecological specialization of the insect attacker. However, results from a single greenhouse experiment evaluating the responses of the model plant Arabidopsis thaliana to three specialist (Plutella xylostella, Pieris rapae, and Brevicoryne brassicae) and three generalist (Trichoplusia ni, Spodoptera exigua, and Myzus persicae) insect species did not support the previous prediction. Using an ecological genomic approach, we assessed plant responses in terms of herbivore-induced changes in genome-wide gene expression, defense-related pathways, and concentrations of glucosinolates (i.e., secondary metabolites that are ubiquitously present in cruciferous plants). Our results showed that plant responses were not influenced by the degree of specialization of insect herbivores. In contrast, responses were more strongly shaped by insect taxa (i.e., aphid vs. lepidopteran species), likely due to their different feeding modes. Interestingly, similar patterns of plant responses were induced by the same insect herbivore species in terms of defense signaling (jasmonic acid pathway), aliphatic glucosinolate metabolism (at both the gene expression and phenotypic levels) and genome-wide responses. Furthermore, plant responses to insect herbivores belonging to the same taxon (i.e., four lepidopteran species) were not explained by herbivore specialization or phylogenetic history. Overall, this study suggests that different feeding modes of insect taxa as well as herbivore-specific plant responses, which may result from distinct ecological/evolutionary interactions between A. thaliana (or a close relative) and each of the lepidopteran species, may explain why observed responses deviate from those predicted by the specialist/generalist paradigm.
Collapse
Affiliation(s)
- M Gabriela Bidart-Bouzat
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43402, USA.
| | | |
Collapse
|
38
|
Atsbaha Zebelo S, Bertea CM, Bossi S, Occhipinti A, Gnavi G, Maffei ME. Chrysolina herbacea modulates terpenoid biosynthesis of Mentha aquatica L. PLoS One 2011; 6:e17195. [PMID: 21408066 PMCID: PMC3052309 DOI: 10.1371/journal.pone.0017195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/23/2011] [Indexed: 01/26/2023] Open
Abstract
Interactions between herbivorous insects and plants storing terpenoids are poorly understood. This study describes the ability of Chrysolina herbacea to use volatiles emitted by undamaged Mentha aquatica plants as attractants and the plant's response to herbivory, which involves the production of deterrent molecules. Emitted plant volatiles were analyzed by GC-MS. The insect's response to plant volatiles was tested by Y-tube olfactometer bioassays. Total RNA was extracted from control plants, mechanically damaged leaves, and leaves damaged by herbivores. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran, which acts as a deterrent to C. herbacea. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase.
Collapse
Affiliation(s)
- Simon Atsbaha Zebelo
- Plant Physiology Unit, Department of Plant Biology, University of Turin,
Innovation Centre, Turin, Italy
| | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Plant Biology, University of Turin,
Innovation Centre, Turin, Italy
| | - Simone Bossi
- Plant Physiology Unit, Department of Plant Biology, University of Turin,
Innovation Centre, Turin, Italy
| | - Andrea Occhipinti
- Plant Physiology Unit, Department of Plant Biology, University of Turin,
Innovation Centre, Turin, Italy
| | - Giorgio Gnavi
- Plant Physiology Unit, Department of Plant Biology, University of Turin,
Innovation Centre, Turin, Italy
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Plant Biology, University of Turin,
Innovation Centre, Turin, Italy
| |
Collapse
|
39
|
Peng J, van Loon JJA, Zheng S, Dicke M. Herbivore-induced volatiles of cabbage (Brassica oleracea) prime defence responses in neighbouring intact plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:276-284. [PMID: 21309974 DOI: 10.1111/j.1438-8677.2010.00364.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
When attacked by herbivores, plants release herbivore-induced plant volatiles (HIPV) that may function in direct defence by repelling herbivores or reducing their growth. Emission of HIPV may also contribute to indirect defence by attracting natural enemies of the herbivore. Here, cabbage (Brassica oleracea L.) plants (receiver plants) previously exposed to HIPV and subsequently induced through feeding by five Pieris brassicae L. caterpillars attracted more Cotesia glomerata L. parasitoids than control plants. HIPVs to which receiver plants had been exposed were emitted by B. oleracea infested with 50 P. brassicae caterpillars. Control plants had been exposed to volatiles from undamaged plants. In contrast, there were no differences in the attraction of wasps to receiver plants induced through feeding of one or ten larvae of P. brassicae compared to control plants. In addition, RT-PCR demonstrated higher levels of LIPOXYGENASE (BoLOX) transcripts in HIPV-exposed receiver plants. Exposure to HIPV from emitter plants significantly inhibited the growth rate of both P. brassicae and Mamestra brassicae caterpillars compared to growth rates of caterpillars feeding on control receiver plants. Our results demonstrate plant-plant signalling leading to priming of both indirect and direct defence in HIPV-exposed B. oleracea plants.
Collapse
Affiliation(s)
- J Peng
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
40
|
GIRON DAVID, HUGUET ELISABETH. A genomically tractable and ecologically relevant model herbivore for a model plant: new insights into the mechanisms of insect-plant interactions and evolution. Mol Ecol 2011. [DOI: 10.1111/j.1365-294x.2010.04902.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Ontogenetic changes in tolerance to herbivory in Arabidopsis. Oecologia 2010; 164:1005-15. [DOI: 10.1007/s00442-010-1738-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 07/15/2010] [Indexed: 12/31/2022]
|
42
|
Bricchi I, Leitner M, Foti M, Mithöfer A, Boland W, Maffei ME. Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L.). PLANTA 2010; 232:719-29. [PMID: 20563731 DOI: 10.1007/s00425-010-1203-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 05/18/2010] [Indexed: 05/17/2023]
Abstract
Insect herbivory on plants is a complex incident consisting of at least two different aspects, mechanical damage and chemical factors. Only the combination of both is able to induce the respective plant defenses. Thus, diverse plant species emit volatile organic compounds (VOCs) in response to herbivory (HW), whereas mechanical damage inflicted as single wounding event (MD) does not induce increased VOC emissions. In contrast, a robotic worm (MecWorm, MW) allowed demonstrating that continuous mechanical damage is sufficient to induce volatile emission in Lima bean. However, the induced VOC blends remain characteristic for the respective stimulus. In order to identify putative differences in plant signaling leading to defenses, we compared time courses of early signals induced by wounding in Lima bean. Neither MD nor MW alone was able to induce plasma membrane (V (m)) depolarization, as observed after Spodoptera littoralis HW, but V (m) depolarization occurred in both treatments when used in combination with herbivore-derived oral secretions. A significant increase in cytosolic Ca(2+) concentrations was observed only after HW, whereas MD and MW did not affect this second messenger. H(2)O(2) was generated within 2-3 h after leaf damage by HW and MW, whereas MD induced only half of the H(2)O(2) levels compared to the other treatments. Both HW and MW induced a marked accumulation of NO, but with distinct temporal patterns. NO production after MD followed the same trend but reached significantly lower values. The results indicate that chemical signals from the herbivores are responsible for the induction of the earliest signaling events. These changes appear to be characteristic for the reaction to herbivory.
Collapse
Affiliation(s)
- Irene Bricchi
- Plant Physiology Unit, Department of Plant Biology, Innovation Centre, University of Turin, Via Quarello 11/A, 10135 Turin, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Radhika V, Kost C, Boland W, Heil M. Towards elucidating the differential regulation of floral and extrafloral nectar secretion. PLANT SIGNALING & BEHAVIOR 2010; 5:924-926. [PMID: 20622524 PMCID: PMC3115044 DOI: 10.4161/psb.5.7.12134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 05/29/2023]
Abstract
Nectar is a rich source of sugars that serves the attraction of pollinators (floral nectar) or predatory arthropods (extrafloral nectar). We just begin to understand the similarities and differences that underlie the secretory control of these two important types of plant secretions. Jasmonates are phytohormones, which are well documented to be involved in plant developmental processes and plant defence responses against herbivores, including the secretion of extrafloral nectar. Recently, jasmonates have also been implicated in the regulation of floral nectar secretion in Brassica napus. Due to a trade-off between reproduction and defence, however, plants need to functionally separate the regulation of these two secretory processes. In line with this prediction, externally applying jasmonates to leaves did indeed not affect floral nectar secretion. Here we compare the current knowledge on the regulation of floral and extrafloral nectar secretion to understand similarities and dissimilarities between these two secretory processes and highlight future research directions in this context.
Collapse
Affiliation(s)
- Venkatesan Radhika
- Department of Bioorganic Chemistry; Max Planck Institute for Chemical Ecology; Jena, Germany
| | - Christian Kost
- Department of Bioorganic Chemistry; Max Planck Institute for Chemical Ecology; Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry; Max Planck Institute for Chemical Ecology; Jena, Germany
| | - Martin Heil
- Depto.de Ingeniería Genética; CINVESTAV-Irapuato, Irapuato; Guanajuato, México
| |
Collapse
|
44
|
Snoeren TAL, Kappers IF, Broekgaarden C, Mumm R, Dicke M, Bouwmeester HJ. Natural variation in herbivore-induced volatiles in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3041-56. [PMID: 20488836 PMCID: PMC2892144 DOI: 10.1093/jxb/erq127] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/19/2010] [Accepted: 04/22/2010] [Indexed: 05/18/2023]
Abstract
To study whether natural variation in Arabidopsis thaliana could be used to dissect the genetic basis of responses to herbivory in terms of induced volatile emissions, nine accessions were characterized upon herbivory by biting-chewing Pieris rapae caterpillars or after treatment with the phytohormone jasmonic acid (JA). Analysis of 73 compounds in the headspace showed quantitative differences in the emission rates of several individual compounds among the accessions. Moreover, variation in the emission of volatile compounds after JA treatment was reflected in the behaviour of the parasitoid Diadegma semiclausum when they were offered the headspace volatiles of several combinations of accessions in two-choice experiments. Accessions also differ in transcript levels of genes that are associated with the emission of plant volatiles. The genes BSMT1 and Cyp72A13 could be connected to the emission of methyl salicylate and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), respectively. Overall, Arabidopsis showed interesting phenotypic variations with respect to the volatile blend emitted in response to herbivory that can be exploited to identify genes and alleles that underlie this important plant trait.
Collapse
Affiliation(s)
- Tjeerd A L Snoeren
- Laboratory of Entomology, Wageningen University, EH Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
45
|
Blande JD, Korjus M, Holopainen JK. Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder. TREE PHYSIOLOGY 2010; 30:404-16. [PMID: 20097686 DOI: 10.1093/treephys/tpp124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is well documented that when plants are damaged by insects they respond by emitting a range of volatile organic compounds (VOCs). While there have been numerous reports concerning VOCs induced by chewing herbivores, there are relatively few studies detailing the VOCs induced by aphid feeding. The effects of aphid feeding on VOCs emitted by boreal forest trees have been particularly neglected. Herbivore-induced VOCs have relevance to direct and indirect plant defence and atmospheric chemistry. In this study, we analysed the VOCs emitted by Betula pendula (Roth) and Alnus glutinosa (L.) (Gaertn.) infested by specialist aphid species under laboratory conditions. We also complemented this by collecting VOCs from leaf beetle-damaged saplings under field conditions. In addition to induction of some inducible terpenes, we detected substantial aphid-induced emissions of methyl salicylate (MeSA) in both B. pendula and A. glutinosa. MeSA emission intensity depended on the length of aphid infestation. Feeding by beetles induced emission of (E)-DMNT in both tree species and (E)-beta-ocimene in A. glutinosa but had no effect on MeSA emissions. MeSA has been shown to have aphid-repellent qualities and has been shown recently to have impact on formation of secondary organic aerosols in the atmosphere. We discuss our results in relation to these two phenomena.
Collapse
Affiliation(s)
- James D Blande
- Department of Environmental Science, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | | | | |
Collapse
|
46
|
Abstract
Plants produce nectar in their flowers as a reward for their pollinators and most of our crops depend on insect pollination, but little is known on the physiological control of nectar secretion. Jasmonates are well-known for their effects on senescence, the development and opening of flowers and on plant defences such as extrafloral nectar. Their role in floral nectar secretion has, however, not been explored so far. We investigated whether jasmonates have an influence on floral nectar secretion in oil-seed rape, Brassica napus. The floral tissues of this plant produced jasmonic acid (JA) endogenously, and JA concentrations peaked shortly before nectar secretion was highest. Exogenous application of JA to flowers induced nectar secretion, which was suppressed by treatment with phenidone, an inhibitor of JA synthesis. This effect could be reversed by additional application of JA. Jasmonoyl-isoleucine and its structural mimic coronalon also increased nectar secretion. Herbivory or addition of JA to the leaves did not have an effect on floral nectar secretion, demonstrating a functional separation of systemic defence signalling from reproductive nectar secretion. Jasmonates, which have been intensively studied in the context of herbivore defences and flower development, have a profound effect on floral nectar secretion and, thus, pollination efficiency in B. napus. Our results link floral nectar secretion to jasmonate signalling and thereby integrate the floral nectar secretion into the complex network of oxylipid-mediated developmental processes of plants.
Collapse
|
47
|
Ozawa R, Bertea CM, Foti M, Narayana R, Arimura GI, Muroi A, Horiuchi JI, Nishioka T, Maffei ME, Takabayashi J. Exogenous polyamines elicit herbivore-induced volatiles in lima bean leaves: involvement of calcium, H2O2 and Jasmonic acid. PLANT & CELL PHYSIOLOGY 2009; 50:2183-99. [PMID: 19884250 DOI: 10.1093/pcp/pcp153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We investigated the role of polyamines (PAs) in lima bean (Phaseolus lunatus) leaves on the production of herbivorous mite (Tetranychus urticae)-induced plant volatiles that attract carnivorous natural enemies of the herbivores. To do this, we focused on the effects of the exogenous PAs [cadaverine, putrescine, spermidine and spermine (Spm)] on the production of volatiles, H(2)O(2) and jasmonic acid (JA) and the levels of defensive genes, cytosolic calcium and reactive oxygen species (ROS). Among the tested PAs, Spm was the most active in inducing the production of volatile terpenoids known to be induced by T. urticae. An increase in JA levels was also found after Spm treatment, indicating that Spm induces the biosynthesis of JA, which has been shown elsewhere to regulate the production of some volatile terpenoids. Further, treatment with JA and Spm together resulted in greater volatile emission than that with JA alone. In a Y-tube olfactometer, leaves treated with Spm + JA attracted more predatory mites (Phytoseiulus persimilis) than those treated with JA alone. After treatment with Spm + JA, no effects were found on the enzyme activity of polyamine oxidase and copper amine oxidase. However, induction of calcium influx and ROS production, and increased enzyme activities and gene expression for NADPH oxidase complex, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and glutathione peroxidase were found after treatment with Spm + JA. These results indicate that Spm plays an important role in the production of T. urticae-induced lima bean leaf volatiles.
Collapse
Affiliation(s)
- Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, 520-2113, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Provecho Y, Josens R. Olfactory memory established during trophallaxis affects food search behaviour in ants. J Exp Biol 2009; 212:3221-7. [DOI: 10.1242/jeb.033506] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Camponotus mus ants can associate sucrose and odour at the source during successive foraging cycles and use this memory to locate the nectar in the absence of other cues. These ants perform conspicuous trophallactic behaviour during recruitment while foraging for nectar. In this work, we studied whether Camponotus mus ants are able to establish this odour–sucrose association in the social context of trophallaxis and we evaluated this memory in another context previously experienced by the ant, as a nectar source. After a single trophallaxis of a scented solution, the receiver ant was tested in a Y-maze without any reward, where two scents were presented: in one arm, the solution scent and in the other, a new scent. Ants consistently chose the arm with the solution scent and stayed longer therein. Trophallaxis duration had no effect on the arm choice or with the time spent in each arm. Workers are able to associate an odour (conditioned stimulus)with the sucrose (unconditioned stimulus) they receive through a social interaction and use this memory as choice criteria during food searching.
Collapse
Affiliation(s)
- Yael Provecho
- Grupo de Estudio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales,Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Roxana Josens
- Grupo de Estudio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales,Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
49
|
Kos M, van Loon JJA, Dicke M, Vet LEM. Transgenic plants as vital components of integrated pest management. Trends Biotechnol 2009; 27:621-7. [PMID: 19783315 DOI: 10.1016/j.tibtech.2009.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/05/2009] [Accepted: 08/13/2009] [Indexed: 01/01/2023]
Abstract
Although integrated pest management (IPM) strategies have been developed worldwide, further improvement of IPM effectiveness is required. The use of transgenic technology to create insect-resistant plants can offer a solution to the limited availability of highly insect-resistant cultivars. Commercially available insect-resistant transgenic crops show clear benefits for agriculture and there are many exciting new developments such as transgenic plants that enhance biological control. Effective evaluation tools are needed to ascertain that transgenic plants do not result in undesired non-target effects. If these conditions are met, there will be ample opportunities for transgenic plants to become key components of environmentally benign and durable pest management systems. Here we discuss the potential and challenges for incorporating transgenic plants in IPM.
Collapse
Affiliation(s)
- Martine Kos
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Kissen R, Pope TW, Grant M, Pickett JA, Rossiter JT, Powell G. Modifying the alkylglucosinolate profile in Arabidopsis thaliana alters the tritrophic interaction with the herbivore Brevicoryne brassicae and parasitoid Diaeretiella rapae. J Chem Ecol 2009; 35:958-69. [PMID: 19701726 DOI: 10.1007/s10886-009-9677-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/28/2009] [Accepted: 08/03/2009] [Indexed: 01/12/2023]
Abstract
Arabidopsis thaliana was used as an experimental model plant to investigate a tritrophic interaction between the plant, a specialist aphid herbivore, Brevicoryne brassicae, and its natural enemy, the parasitoid Diaeretiella rapae. The A. thaliana ecotype Col-5 was transformed with a functional 2-oxoglutarate dependent dioxygenase (BniGSL-ALK) that converts 3-methylsulfinylpropylglucosinolate and 4-methylsulfinylbutylglucosinolate to 2-propenylglucosinolate and 3-butenylglucosinolate, respectively. This transformation results in a change in the glucosinolate hydrolysis profile where 3-butenylisothiocyanate, 2-propenylisothiocyanate and 5-vinyloxazolidine-2-thione are produced in contrast to the wild-type plant where 4-methylsulfinylbutylisothiocyanate is the main product. Performance of B. brassicae was affected negatively by transforming Col-5 with BniGSL-ALK in terms of mean relative growth rates. In a series of behavioral bioassays, naïve D. rapae females were able to discriminate between B. brassicae infested and uninfested Col-5 plants transformed with BniGSL-ALK, with parasitoids showing a preference for B. brassicae infested plants. By contrast, naïve D. rapae females were unable to discriminate between aphid infested and uninfested Col-5 plants. Subsequent air entrainments of B. brassicae infested Col-5 plants transformed with BniGSL-ALK further confirmed the presence of 3-butenylisothiocyanate in the headspace. By contrast, no glucosinolate hydrolysis products were recorded from similarly infested Col-5 plants.
Collapse
Affiliation(s)
- Ralph Kissen
- Division of Biology, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|