1
|
Luo P, Li TT, Shi WM, Ma Q, Di DW. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4111. [PMID: 38140438 PMCID: PMC10747189 DOI: 10.3390/plants12244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Balbinott N, Margis R. The many faces of lysine acylation in proteins: Phytohormones as unexplored substrates. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111866. [PMID: 37714383 DOI: 10.1016/j.plantsci.2023.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Protein post-translational modification (PTM) is a ubiquitous process that occurs in most proteins. Lysine residues containing an ε-amino group are recognized as hotspots for the addition of different chemical groups. Lysine acetylation, extensively studied in histones, serves as an epigenetic hallmark capable of promoting changes in chromatin structure and availability. Acyl groups derived from molecules involved in carbohydrate and lipid metabolisms, such as lactate, succinate and hydroxybutyrate, were identified as lysine modifications of histones and other proteins. Lysine-acyltransferases do not exhibit significant substrate specificity concerning acyl donors. Furthermore, plant hormones harboring acyl groups often form conjugates with free amino acids to regulate their activity and function during plant physiological processes and responses, a process mediated by GH3 enzymes. Besides forming low-molecular weight conjugates, auxins have been shown to covalently modify proteins in bean seeds. Aside from auxins, other phytohormones with acyl groups are unexplored potential substrates for post-translational acylation of proteins. Using MS data searches, we revealed various proteins with lysine residues linked to auxin, abscisic acid, gibberellic acid, jasmonic acid, and salicylic acid. These findings raise compelling questions about the ability of plant hormones harboring carboxyl groups to serve as new candidates for protein acylation and acting in protein PTM and modulation.
Collapse
Affiliation(s)
- Natalia Balbinott
- Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rogerio Margis
- Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
3
|
Hladík P, Petřík I, Žukauskaitė A, Novák O, Pěnčík A. Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species. FRONTIERS IN PLANT SCIENCE 2023; 14:1217421. [PMID: 37534287 PMCID: PMC10390838 DOI: 10.3389/fpls.2023.1217421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Auxins are a group of phytohormones that play a key role in plant growth and development, mainly presented by the major member of the family - indole-3-acetic acid (IAA). The levels of free IAA are regulated, in addition to de novo biosynthesis, by irreversible oxidative catabolism and reversible conjugation with sugars and amino acids. These conjugates, which serve as inactive storage forms of auxin and/or degradation intermediates, can also be oxidized to form 2-oxindole-3-acetyl-1-O-ß-d-glucose (oxIAA-glc) and oxIAA-amino acids (oxIAA-AAs). Until now, only oxIAA conjugates with aspartate and glutamate have been identified in plants. However, detailed information on the endogenous levels of these and other putative oxIAA-amino acid conjugates in various plant species and their spatial distribution is still not well understood but is finally getting more attention. Herein, we identified and characterized two novel naturally occurring auxin metabolites in plants, namely oxIAA-leucine (oxIAA-Leu) and oxIAA-phenylalanine (oxIAA-Phe). Subsequently, a new liquid chromatography-tandem mass spectrometry method was developed for the determination of a wide range of IAA metabolites. Using this methodology, the quantitative determination of IAA metabolites including newly characterized oxIAA conjugates in roots, shoots and cotyledons of four selected plant models - Arabidopsis thaliana, pea (Pisum sativum L.), wheat (Triticum aestivum L.) and maize (Zea mays L.) was performed to compare auxin metabolite profiles. The distribution of various groups of auxin metabolites differed notably among the studied species as well as their sections. For example, oxIAA-AA conjugates were the major metabolites found in pea, while oxIAA-glc dominated in Arabidopsis. We further compared IAA metabolite levels in plants harvested at different growth stages to monitor the dynamics of IAA metabolite profiles during early seedling development. In general, our results show a great diversity of auxin inactivation pathways among angiosperm plants. We believe that our findings will greatly contribute to a better understanding of IAA homeostasis.
Collapse
Affiliation(s)
- Pavel Hladík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ivan Petřík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
4
|
Angeles de Paz G, Martínez-Gutierrez H, Ramírez-Granillo A, López-Villegas EO, Medina-Canales MG, Rodríguez-Tovar AV. Rhodotorula mucilaginosa YR29 is able to accumulate Pb 2+ in vacuoles: a yeast with bioremediation potential. World J Microbiol Biotechnol 2023; 39:238. [PMID: 37391528 DOI: 10.1007/s11274-023-03675-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023]
Abstract
Microorganisms showed unique mechanisms to resist and detoxify harmful metals in response to pollution. This study shows the relationship between presence of heavy metals and plant growth regulator compounds. Additionally, the responses of Rhodotorula mucilaginosa YR29 isolated from the rhizosphere of Prosopis sp. growing in a polluted mine jal in Mexico are presented. This research carries out a phenotypic characterization of R. mucilaginosa to identify response mechanisms to metals and confirm its potential as a bioremediation agent. Firstly, Plant Growth-Promoting (PGP) compounds were assayed using the Chrome Azurol S (CAS) medium and the Salkowski method. In addition, to clarify its heavy metal tolerance mechanisms, several techniques were performed, such as optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) supplemented with assorted detectors. Scanning transmission electron microscopy (STEM) was used for elementary mapping of the cell. Finally, yeast viability after all treatments was confirmed by confocal laser scanning microscopy (CLSM). The results have suggested that R. mucilaginosa could be a PGP yeast capable of triggering Pb2+ biosorption (representing 22.93% of the total cell surface area, the heavy metal is encapsulated between the cell wall and the microcapsule), and Pb2+ bioaccumulation (representing 11% of the total weight located in the vacuole). Based on these results, R. mucilaginosa as a bioremediation agent and its wide range of useful mechanisms for ecological purposes are highlighted.
Collapse
Affiliation(s)
- Gabriela Angeles de Paz
- Laboratorio de Nematología Agrícola, Depto. de Parasitología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico
- Laboratorio de Micología Médica, Depto. de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional. Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Hugo Martínez-Gutierrez
- Laboratorio de Microscopía de Barrido de Ultra Alta Resolución, Centro de Nanociencias y Micro y Nanotecnologías (CNMN), Instituto Politécnico Nacional (IPN). Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
| | - Adrián Ramírez-Granillo
- Laboratorio de Micología Médica, Depto. de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional. Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Edgar Oliver López-Villegas
- Laboratorio Central de Microscopía, Depto. de Investigación-SEPI, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional. Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - María Gabriela Medina-Canales
- Laboratorio de Nematología Agrícola, Depto. de Parasitología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico.
| | - Aída Verónica Rodríguez-Tovar
- Laboratorio de Micología Médica, Depto. de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional. Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, 11340, Mexico City, Mexico.
| |
Collapse
|
5
|
Barbaccia P, Gaglio R, Dazzi C, Miceli C, Bella P, Lo Papa G, Settanni L. Plant Growth-Promoting Activities of Bacteria Isolated from an Anthropogenic Soil Located in Agrigento Province. Microorganisms 2022; 10:2167. [PMID: 36363759 PMCID: PMC9695372 DOI: 10.3390/microorganisms10112167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/26/2023] Open
Abstract
Bacteria producers of plant growth-promoting (PGP) substances are responsible for the enhancement of plant development through several mechanisms. The purpose of the present work was to evaluate the PGP traits of 63 bacterial strains that were isolated from an anthropogenic soil, and obtained by modification of vertisols in the Sicily region (Italy) seven years after creation. The microorganisms were tested for the following PGP characteristics: indole acetic acid (IAA), NH3, HCN and siderophore production, 1-aminocyclopropane-1-carboxylate deaminase activity (ACC) and phosphate solubilization. The results of principal component analysis (PCA) showed that Bacillus tequilensis SI 319, Brevibacterium frigoritolerans SI 433, Pseudomonas lini SI 287 and Pseudomonas frederiksbergensis SI 307 expressed high levels of IAA and production of ACC deaminase enzyme, while for the rest of traits analyzed the best performances were registered with Pseudomonas genus, in particular for the strains Pseudomonas atacamensis SI 443, Pseudomonas reinekei SI 441 and Pseudomonas granadensis SI 422 and SI 450. The in vitro screening provided enough evidence for future in vivo growth promotion tests of these eight strains.
Collapse
Affiliation(s)
- Pietro Barbaccia
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università Degli Studi di Palermo, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università Degli Studi di Palermo, 90128 Palermo, Italy
| | - Carmelo Dazzi
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università Degli Studi di Palermo, 90128 Palermo, Italy
| | - Claudia Miceli
- Council for Agricultural Research and Economics, Plant Protection and Certification Centre, 90121 Palermo, Italy
| | - Patrizia Bella
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università Degli Studi di Palermo, 90128 Palermo, Italy
| | - Giuseppe Lo Papa
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università Degli Studi di Palermo, 90128 Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università Degli Studi di Palermo, 90128 Palermo, Italy
| |
Collapse
|
6
|
Tillmann M, Tang Q, Gardner G, Cohen JD. Complexity of the auxin biosynthetic network in Arabidopsis hypocotyls is revealed by multiple stable-labeled precursors. PHYTOCHEMISTRY 2022; 200:113219. [PMID: 35523282 DOI: 10.1016/j.phytochem.2022.113219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Auxin is a key regulator of plant development and in Arabidopsis thaliana can be synthesized through multiple pathways; however, the contributions of various biosynthetic pathways to specific developmental processes are largely unknown. To trace the involvement of various biosynthetic routes to indole-3-acetic acid (IAA) under conditions that induce adventitious root formation in Arabidopsis hypocotyls, we treated seedlings with three different stable isotope-labeled precursors ([13C6]anthranilate, [15N1]indole, and [13C3]serine) and monitored label incorporation into a number of proposed biosynthesis intermediates as well as IAA. We also employed inhibitors targeting tryptophan aminotransferases and flavin monooxygenases of the IPyA pathway, and treatment with these inhibitors differentially altered the labeling patterns from all three precursors into intermediate compounds and IAA. [13C3]Serine was used to trace utilization of tryptophan (Trp) and downstream intermediates by monitoring 13C incorporation into Trp, indole-3-pyruvic acid (IPyA), and IAA; most 13C incorporation into IAA was eliminated with inhibitor treatments, suggesting Trp-dependent IAA biosynthesis through the IPyA pathway is a dominant contributor to the auxin pool in de-etiolating hypocotyls that can be effectively blocked using chemical inhibitors. Labeling treatment with both [13C6]anthranilate and [15N1]indole simultaneously resulted in higher label incorporation into IAA through [15N1]indole than through [13C6]anthranilate; however, this trend was reversed in the proposed precursors that were monitored, with the majority of isotope label originating from [13C6]anthranilate. An even greater proportion of IAA became [15N1]-labeled compared to [13C6]-labeled in seedlings treated with IPyA pathway inhibitors, suggesting that, when the IPyA pathway is blocked, IAA biosynthesis from labeled indole may also come from an origin independent of the measured pool of Trp in these tissues.
Collapse
Affiliation(s)
- Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Alderman Hall, 1970 Folwell Ave, St. Paul, Minnesota, 55108, USA.
| | - Qian Tang
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Alderman Hall, 1970 Folwell Ave, St. Paul, Minnesota, 55108, USA.
| | - Gary Gardner
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Alderman Hall, 1970 Folwell Ave, St. Paul, Minnesota, 55108, USA.
| | - Jerry D Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Alderman Hall, 1970 Folwell Ave, St. Paul, Minnesota, 55108, USA.
| |
Collapse
|
7
|
Jez JM. Connecting primary and specialized metabolism: Amino acid conjugation of phytohormones by GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102194. [PMID: 35219141 DOI: 10.1016/j.pbi.2022.102194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases catalyze the ATP-dependent conjugation of phytohormones with amino acids. Traditionally, GH3 proteins are associated with synthesis of the bioactive jasmonate hormone (+)-7- iso -jasmonoyl-l-isoleucine (JA-Ile) and conjugation of indole-3-acetic acid (IAA) with amino acids that tag the hormone for degradation and/or storage. Modifications of JA and IAA by GH3 acyl acid amido synthetases help maintain phytohormones homeostasis. Recent studies broaden the roles of GH3 proteins to include the regulation of JA biosynthesis; the modification of other auxins (i.e., phenylacetic acid and indole-3-butyric acid); the conjugation of auxinic herbicides, such as 4-dichlorophenoxyacetic acid, 4-(2,4-dichlorophenoxy)butyric acid, and dicamba; and the missing step in the isochorismate pathway for the biosynthesis of salicylic acid. The GH3 protein family joins the growing number of versatile enzyme families that blur the line between primary and specialized metabolism for an increasing range of biology functions.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130 USA.
| |
Collapse
|
8
|
Tivendale ND, Millar AH. How is auxin linked with cellular energy pathways to promote growth? THE NEW PHYTOLOGIST 2022; 233:2397-2404. [PMID: 34984715 DOI: 10.1111/nph.17946] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 05/12/2023]
Abstract
Auxin is the 'growth hormone' and modulation of its concentration correlates with changes in photosynthesis and respiration, influencing the cellular energy budget for biosynthesis and proliferation. However, the relative importance of mechanisms by which auxin directly influences photosynthesis and respiration, or vice versa, are unclear. Here we bring together recent evidence linking auxin with photosynthesis, plastid biogenesis, mitochondrial metabolism and retrograde signalling and through it we propose three hypotheses to test to unify current findings. These require delving into the control of auxin conjugation to primary metabolic intermediates, translational control under auxin regulation and post-translational influences of auxin on primary metabolic processes.
Collapse
Affiliation(s)
- Nathan D Tivendale
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
9
|
Syrova DS, Shaposhnikov AI, Yuzikhin OS, Belimov AA. Destruction and Transformation of Phytohormones By Microorganisms. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica. PLANTS 2021; 10:plants10122607. [PMID: 34961078 PMCID: PMC8708889 DOI: 10.3390/plants10122607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/04/2023]
Abstract
Coffea arabica is one of the most important crops worldwide. In vitro culture is an alternative for achieving Coffea regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synchronous precursor selection (SPS)-based MS3 technology on the Orbitrap Fusion™ Tribrid mass spectrometer™ in three types of biological materials corresponding to C. arabica: plantlet leaves, calli, and suspension cultures. Proteins included in the β-oxidation of indole butyric acid and in the signaling, transport, and conjugation of indole-3-acetic acid were identified, such as the indole butyric response (IBR), the auxin binding protein (ABP), the ATP-binding cassette transporters (ABC), the Gretchen-Hagen 3 proteins (GH3), and the indole-3-acetic-leucine-resistant proteins (ILR). A more significant accumulation of proteins involved in auxin homeostasis was found in the suspension cultures vs. the plantlet, followed by callus vs. plantlet and suspension culture vs. callus, suggesting important roles of these proteins in the cell differentiation process.
Collapse
|
11
|
Ostrowski M, Ciarkowska A. Pea GH3 acyl acid amidosynthetase conjugates IAA to proteins in immature seeds of Pisum sativum L. - A new perspective on formation of high-molecular weight conjugates of auxin. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153312. [PMID: 33161181 DOI: 10.1016/j.jplph.2020.153312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Gretchen Hagen 3 (GH3) acyl acid amidosynthetases are encoded by early auxin-responsive genes and catalyze an ATP-dependent biosynthesis of IAA-amino acid conjugates. An amide conjugate of IAA, indole-3-acetyl-aspartate (IAA-aspartate, IAA-Asp), is a predominant form of bound auxin in immature seeds of pea. However, there is some evidence that IAA is also able to form high molecular weight amide conjugates with proteins in pea and other plant species. In this short study we report that recombinant PsGH3 IAA-amino acid synthetase, which exhibits a preference for the formation of IAA-Asp, can also conjugate IAA with the protein fraction from immature seeds of pea (S-10 fraction). We studied [14C]IAA incorporation to the S-10 protein fraction by two assays: TLC method and protein precipitation by trichloroacetic acid (TCA). In both cases, radioactivity of [14C]IAA in the protein fraction increases in comparison to the control (without PsGH3), about 9.3- and 3.17-fold, respectively. l-Asp, as a preferred substrate in the IAA conjugation catalyzed by PsGH3, down-regulates [14C]IAA conjugation to the proteins as shown by the TLC assay (∼2.8-fold decrease) and the TCA precipitation variant (∼2-fold decrease). Moreover, l-Trp that competes with Asp for the catalytic site of PsGH3 and inhibits activity of the enzyme, diminished radioactivity of [14C]IAA-proteins about 1.2- and 2.8-fold, respectively. Taking into account that amino group of an amino acid or a protein acts as an acceptor of the indole-3-acetyl moiety from IAA-AMP intermediate during GH3-dependent conjugation, we masked amine groups (α- and ε-NH2) of the S-10 protein fraction from pea seeds by reductive alkylation. The alkylated proteins revealed about 3- and 2.8-fold lower radioactivity of [14C]IAA than non-alkylated fraction for TLC and TCA precipitation variant, respectively. This is a first study demonstrating that formation of high molecular weight IAA conjugates with proteins is catalyzed by a GH3 acyl acid amidosynthetase.
Collapse
Affiliation(s)
- Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
| | - Anna Ciarkowska
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
| |
Collapse
|
12
|
Farci D, Haniewicz P, Cocco E, De Agostini A, Cortis P, Kusaka M, Loi MC, Piano D. The Impact of Fruit Etiolation on Quality of Seeds in Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:563971. [PMID: 33133114 PMCID: PMC7578389 DOI: 10.3389/fpls.2020.563971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Seed's maturity and integrity are essential requirements for germination, and they rely on nutrients availability and a correct phytohormones' balance. These aspects are prerequisites for prompt germination at the end of the dormancy period and strictly depend on chloroplast metabolism and photosynthesis. In the present work, capsules of Nicotiana tabacum were grown in dark during the whole post-anthesis period. Among others, photosynthetic rates, dormancy, and phytohormones levels in seeds were found to be significantly different with respect to controls. In particular, etiolated capsules had expectedly reduced photosynthetic rates and, when compared to controls, their seeds had an increased mass and volume, an alteration in hormones level, and a consequently reduced dormancy. The present findings show how, during fruit development, the presence of light and the related fruit's photosynthetic activity play an indirect but essential role for reaching seeds maturity and dormancy. Results highlight how unripe fruits are versatile organs that, depending on the environmental conditions, may facultatively behave as sink or source/sink with associated variation in seed's reserves and phytohormone levels.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences—SGGW, Warsaw, Poland
| | - Patrycja Haniewicz
- Department of Plant Physiology, Warsaw University of Life Sciences—SGGW, Warsaw, Poland
| | - Emma Cocco
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Antonio De Agostini
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Cortis
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Magdalena Kusaka
- Department of Plant Physiology, Warsaw University of Life Sciences—SGGW, Warsaw, Poland
| | - Maria C. Loi
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences—SGGW, Warsaw, Poland
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
Duca DR, Glick BR. Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl Microbiol Biotechnol 2020; 104:8607-8619. [PMID: 32875364 DOI: 10.1007/s00253-020-10869-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 11/28/2022]
Abstract
Numerous studies have reported the stimulation of plant growth following inoculation with an IAA-producing PGPB. However, the specific mode of IAA production by the PGPB is rarely elucidated. In part, this is due to the overwhelming complexity of IAA biosynthesis and regulation. The promiscuity of the enzymes implicated in IAA biosynthesis adds another element of complexity when attempting to decipher their role in IAA biosynthesis. To date, the majority of research on IAA biosynthesis describes three separate pathways classified in terms of their intermediates-indole acetonitrile (IAN), indole acetamide (IAM), and indole pyruvic acid (IPA). Each of these pathways is mediated by a set of enzymes, many of which are traditionally assumed to exist for that specific catalytic role. This lends the possibility of missing other, novel, enzymes that may also incidentally serve that function. Some of these pathways are constitutively expressed, while others are inducible. Some enzymes involved in IAA biosynthesis are known to be regulated by IAA or by IAA precursors, as well as by a multitude of environmental cues. This review aims to provide an update to our current understanding of the biosynthesis and regulation of IAA in bacteria. KEY POINTS: • IAA produced by PGPB improves bacterial stress tolerance and promotes plant growth. • Bacterial IAA biosynthesis is convoluted; multiple interdependent pathways. • Biosynthesis of IAA is regulated by IAA, IAA-precursors, and environmental factors.
Collapse
Affiliation(s)
- Daiana R Duca
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
14
|
Kalve S, Sizani BL, Markakis MN, Helsmoortel C, Vandeweyer G, Laukens K, Sommen M, Naulaerts S, Vissenberg K, Prinsen E, Beemster GTS. Osmotic stress inhibits leaf growth of Arabidopsis thaliana by enhancing ARF-mediated auxin responses. THE NEW PHYTOLOGIST 2020; 226:1766-1780. [PMID: 32077108 DOI: 10.1111/nph.16490] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 05/18/2023]
Abstract
We investigated the interaction between osmotic stress and auxin signaling in leaf growth regulation. Therefore, we grew Arabidopsis thaliana seedlings on agar media supplemented with mannitol to impose osmotic stress and 1-naphthaleneacetic acid (NAA), a synthetic auxin. We performed kinematic analysis and flow-cytometry to quantify the effects on cell division and expansion in the first leaf pair, determined the effects on auxin homeostasis and response (DR5::β-glucuronidase), performed a next-generation sequencing transcriptome analysis and investigated the response of auxin-related mutants. Mannitol inhibited cell division and expansion. NAA increased the effect of mannitol on cell division, but ameliorated its effect on expansion. In proliferating cells, NAA and mannitol increased free IAA concentrations at the cost of conjugated IAA and stimulated DR5 promotor activity. Transcriptome analysis shows a large overlap between NAA and osmotic stress-induced changes, including upregulation of auxin synthesis, conjugation, transport and TRANSPORT INHIBITOR RESPONSE1 (TIR1) and AUXIN RESPONSE FACTOR (ARF) response genes, but downregulation of Aux/IAA response inhibitors. Consistently, arf7/19 double mutant lack the growth response to auxin and show a significantly reduced sensitivity to osmotic stress. Our results show that osmotic stress inhibits cell division during leaf growth of A. thaliana at least partly by inducing the auxin transcriptional response.
Collapse
Affiliation(s)
- Shweta Kalve
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Manou Sommen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Stefan Naulaerts
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Vissenberg
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
15
|
Song QY, Li F, Nan ZB, Coulter JA, Wei WJ. Do Epichloë Endophytes and Their Grass Symbiosis Only Produce Toxic Alkaloids to Insects and Livestock? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1169-1185. [PMID: 31922733 DOI: 10.1021/acs.jafc.9b06614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Epichloë endophytes in forage grasses have attracted widespread attention and interest of chemistry researchers as a result of the various unique chemical structures and interesting biological activities of their secondary metabolites. This review describes the diversity of unique chemical structures of taxa from Epichloë endophytes and grass infected with Epichloë endophytes and demonstrates their reported biological activities. Until now, nearly 160 secondary metabolites (alkaloids, peptides, indole derivatives, pyrimidines, sesquiterpenoids, flavonoids, phenol and phenolic acid derivatives, aliphatic metabolites, sterols, amines and amides, and others) have been reported from Epichloë endophytes and grass infected with Epichloë endophytes. Among these, non-alkaloids account for half of the population of total metabolites, indicating that they also play an important role in Epichloë endophytes and grass infected with Epichloë endophytes. Also, a diverse array of secondary metabolites isolated from Epichloë endophytes and symbionts is a rich source for developing new pesticides and drugs. Bioassays disclose that, in addition to toxic alkaloids, the other metabolites isolated from Epichloë endophytes and symbionts have notable biological activities, such as antifungal, anti-insect, and phytotoxic activities. Accordingly, the biological functions of non-alkaloids should not be neglected in the future investigation of Epichloë endophytes and symbionts.
Collapse
Affiliation(s)
- Qiu-Yan Song
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology , Lanzhou University , Lanzhou , Gansu 730020 , People's Republic of China
| | - Fan Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology , Lanzhou University , Lanzhou , Gansu 730020 , People's Republic of China
| | - Zhi-Biao Nan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology , Lanzhou University , Lanzhou , Gansu 730020 , People's Republic of China
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Wen-Jun Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , People's Republic of China
| |
Collapse
|
16
|
Kolachevskaya OO, Lomin SN, Arkhipov DV, Romanov GA. Auxins in potato: molecular aspects and emerging roles in tuber formation and stress resistance. PLANT CELL REPORTS 2019; 38:681-698. [PMID: 30739137 DOI: 10.1007/s00299-019-02395-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/02/2019] [Indexed: 05/04/2023]
Abstract
The study of the effects of auxins on potato tuberization corresponds to one of the oldest experimental systems in plant biology, which has remained relevant for over 70 years. However, only recently, in the postgenomic era, the role of auxin in tuber formation and other vital processes in potatoes has begun to emerge. This review describes the main results obtained over the entire period of auxin-potato research, including the effects of exogenous auxin; the content and dynamics of endogenous auxins; the effects of manipulating endogenous auxin content; the molecular mechanisms of auxin signaling, transport and inactivation; the role and position of auxin among other tuberigenic factors; the effects of auxin on tuber dormancy; the prospects for auxin use in potato biotechnology. Special attention is paid to recent insights into auxin function in potato tuberization and stress resistance. Taken together, the data discussed here leave no doubt on the important role of auxin in potato tuberization, particularly in the processes of tuber initiation, growth and sprouting. A new integrative model for the stage-dependent auxin action on tuberization is presented. In addition, auxin is shown to differentially affects the potato resistance to biotrophic and necrotrophic biopathogens. Thus, the modern auxin biology opens up new perspectives for further biotechnological improvement of potato crops.
Collapse
Affiliation(s)
- Oksana O Kolachevskaya
- Laboratory of Signaling Systems, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Sergey N Lomin
- Laboratory of Signaling Systems, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Dmitry V Arkhipov
- Laboratory of Signaling Systems, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Georgy A Romanov
- Laboratory of Signaling Systems, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
17
|
Rossi GB, Valentim-Neto PA, Blank M, Faria JCD, Arisi ACM. Comparison of Grain Proteome Profiles of Four Brazilian Common Bean (Phaseolus vulgaris L.) Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7588-7597. [PMID: 28777559 DOI: 10.1021/acs.jafc.7b03220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is a source of proteins for about one billion people worldwide. In Brazil, 'BRS Sublime', 'BRS Vereda', 'BRS Esteio', and 'BRS Estilo' cultivars were developed by Embrapa to offer high yield to farmers and excellent quality to final consumers. In this work, grain proteomes of these common bean cultivars were compared based on two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry (MS/MS). Principal component analysis (PCA) was applied to compare 349 matched spots in these cultivars proteomes, and all cultivars were clearly separated in PCA plot. Thirty-two differentially accumulated proteins were identified by MS. Storage proteins such as phaseolins, legumins, and lectins were the most abundant, and novel proteins were also identified. We have built a useful platform that could be used to analyze other Brazilian cultivars and genotypes of common beans.
Collapse
Affiliation(s)
| | | | | | - Josias Correa de Faria
- Embrapa Arroz e Feijão, Caixa Postal 179, 75375-000 Santo Antônio de Goiás, Goiás, Brazil
| | | |
Collapse
|
18
|
Abstract
Control of leaf expansion by auxin is not well understood. Evidence from short term exogenous applications and from treatment of excised tissues suggests auxin positively influences growth. Manipulations of endogenous leaf auxin content, however, suggests that, long-term, auxin suppresses leaf expansion. This study attempts to clarify the growth effects of auxin on unifoliate (primary) leaves of the common bean (Phaseolus vulgaris) by reexamining the response to auxin treatment of both excised leaf strips and attached leaves. Leaf strips, incubated in culture conditions that promoted steady elongation for up to 48 h, treated with 10 μM NAA responded with an initial surge of elongation growth complete within 10 hours followed by insensitivity. A range of NAA concentrations from 0.1 μM to 300 μM induced increased strip elongation after 24 hours and 48 hours. Increased elongation and epinastic curvature of leaf strips was found specific to active auxins. Expanding attached unifoliates treated once with aqueous auxin α-naphthalene acetic acid (NAA) at 1.0 mM showed both an initial surge in growth lasting 4-6 hours followed by growth inhibition sustained at least as long as 24 hours post treatment. Auxin-induced inhibition of leaf expansion was associated with smaller epidermal cell area. Together the results suggest increasing leaf auxin first increases growth then slows growth through inhibition of cell expansion. Excised leaf strips, retain only the initial increased growth response to auxin and not the subsequent growth inhibition, either as a consequence of wounding or of isolation from the plant.
Collapse
Affiliation(s)
- Christopher P Keller
- Department of Biology, Minot State University, 500 University Avenue West, Minot, North Dakota 58707
| |
Collapse
|
19
|
Kumar P, Kesari P, Dhindwal S, Choudhary AK, Katiki M, Neetu, Verma A, Ambatipudi K, Tomar S, Sharma AK, Mishra G, Kumar P. A novel function for globulin in sequestering plant hormone: Crystal structure of Wrightia tinctoria 11S globulin in complex with auxin. Sci Rep 2017; 7:4705. [PMID: 28680092 PMCID: PMC5498579 DOI: 10.1038/s41598-017-04518-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022] Open
Abstract
Auxin levels are tightly regulated within the plant cell, and its storage in the isolated cavity of proteins is a measure adopted by cells to maintain the availability of auxin. We report the first crystal structure of Wrightia tinctoria 11S globulin (WTG) in complex with Indole-3-acetic acid (IAA), an auxin, at 1.7 Å resolution. WTG hexamers assemble as a result of the stacking interaction between the hydrophobic surfaces of two trimers, leaving space for the binding of charged ligands. The bound auxin is stabilized by non-covalent interactions, contributed by four chains in each cavity. The presence of bound ligand was confirmed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and high-resolution mass spectrometry (HRMS). Here, we hypothesize that the cleavage of globulins by endopeptidases leads to the movement of the hydrophilic loop region from the surface to the periphery, leaving space for the binding of auxin, and promotes hexamer formation. As the process of germination proceeds, there is a change in the pH, which induces the dissociation of the hexamer and the release of auxin. The compact hexameric assembly ensures the long-term, stable storage of the hormone. This suggests a role for globulin as a novel player in auxin homeostasis.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pooja Kesari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sonali Dhindwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | | | - Madhusudhanarao Katiki
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Neetu
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Aparna Verma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Girish Mishra
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
20
|
Arabidopsis Myrosinase Genes AtTGG4 and AtTGG5 Are Root-Tip Specific and Contribute to Auxin Biosynthesis and Root-Growth Regulation. Int J Mol Sci 2016; 17:ijms17060892. [PMID: 27338341 PMCID: PMC4926426 DOI: 10.3390/ijms17060892] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022] Open
Abstract
Plant myrosinases (β-thioglucoside glucohydrolases) are classified into two subclasses, Myr I and Myr II. The biological function of Myr I has been characterized as a major biochemical defense against insect pests and pathogens in cruciferous plants. However, the biological function of Myr II remains obscure. We studied the function of two Myr II member genes AtTGG4 and AtTGG5 in Arabidopsis. RT-PCR showed that both genes were specifically expressed in roots. GUS-assay revealed that both genes were expressed in the root-tip but with difference: AtTGG4 was expressed in the elongation zone of the root-tip, while AtTGG5 was expressed in the whole root-tip. Moreover, myrosin cells that produce and store the Myr I myrosinases in aboveground organs were not observed in roots, and AtTGG4 and AtTGG5 were expressed in all cells of the specific region. A homozygous double mutant line tgg4tgg5 was obtained through cross-pollination between two T-DNA insertion lines, tgg4E8 and tgg5E12, by PCR-screening in the F2 and F3 generations. Analysis of myrosinase activity in roots of mutants revealed that AtTGG4 and AtTGG5 had additive effects and contributed 35% and 65% myrosinase activity in roots of the wild type Col-0, respectively, and myrosinase activity in tgg4tgg5 was severely repressed. When grown in Murashiege & Skoog (MS) medium or in soil with sufficient water, Col-0 had the shortest roots, and tgg4tgg5 had the longest roots, while tgg4E8 and tgg5E12 had intermediate root lengths. In contrast, when grown in soil with excessive water, Col-0 had the longest roots, and tgg4tgg5 had the shortest roots. These results suggested that AtTGG4 and AtTGG5 regulated root growth and had a role in flood tolerance. The auxin-indicator gene DR5::GUS was then introduced into tgg4tgg5 by cross-pollination. DR5::GUS expression patterns in seedlings of F1, F2, and F3 generations indicated that AtTGG4 and AtTGG5 contributed to auxin biosynthesis in roots. The proposed mechanism is that indolic glucosinolate is transported to the root-tip and converted to indole-3-acetonitrile (IAN) in the tryptophan-dependent pathways by AtTGG4 and AtTGG5, and IAN is finally converted to indole-3-acetic acid (IAA) by nitrilases in the root-tip. This mechanism guarantees the biosynthesis of IAA in correct cells of the root-tip and, thus, a correct auxin gradient is formed for healthy development of roots.
Collapse
|
21
|
Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S. Indole-3-acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidium paludigenum. Arch Microbiol 2016; 198:429-37. [DOI: 10.1007/s00203-016-1202-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 11/24/2022]
|
22
|
LeFevre GH, Müller CE, Li RJ, Luthy RG, Sattely ES. Rapid Phytotransformation of Benzotriazole Generates Synthetic Tryptophan and Auxin Analogs in Arabidopsis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10959-10968. [PMID: 26301449 DOI: 10.1021/acs.est.5b02749] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Benzotriazoles (BTs) are xenobiotic contaminants widely distributed in aquatic environments and of emerging concern due to their polarity, recalcitrance, and common use. During some water reclamation activities, such as stormwater bioretention or crop irrigation with recycled water, BTs come in contact with vegetation, presenting a potential exposure route to consumers. We discovered that BT in hydroponic systems was rapidly (approximately 1-log per day) assimilated by Arabidopsis plants and metabolized to novel BT metabolites structurally resembling tryptophan and auxin plant hormones; <1% remained as parent compound. Using LC-QTOF-MS untargeted metabolomics, we identified two major types of BT transformation products: glycosylation and incorporation into the tryptophan biosynthetic pathway. BT amino acid metabolites are structurally analogous to tryptophan and the storage forms of auxin plant hormones. Critical intermediates were synthesized (authenticated by (1)H/(13)C NMR) for product verification. In a multiple-exposure temporal mass balance, three major metabolites accounted for >60% of BT. Glycosylated BT was excreted by the plants into the hydroponic medium, a phenomenon not observed previously. The observed amino acid metabolites are likely formed when tryptophan biosynthetic enzymes substitute synthetic BT for native indolic molecules, generating potential phytohormone mimics. These results suggest that BT metabolism by plants could mask the presence of BT contamination in the environment. Furthermore, BT-derived metabolites are structurally related to plant auxin hormones and should be evaluated for undesirable biological effects.
Collapse
Affiliation(s)
- Gregory H LeFevre
- ReNUWIt Engineering Research Center, ‡Department of Civil & Environmental Engineering, §Department of Chemistry, ∥Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Claudia E Müller
- ReNUWIt Engineering Research Center, ‡Department of Civil & Environmental Engineering, §Department of Chemistry, ∥Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Russell Jingxian Li
- ReNUWIt Engineering Research Center, ‡Department of Civil & Environmental Engineering, §Department of Chemistry, ∥Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Richard G Luthy
- ReNUWIt Engineering Research Center, ‡Department of Civil & Environmental Engineering, §Department of Chemistry, ∥Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Elizabeth S Sattely
- ReNUWIt Engineering Research Center, ‡Department of Civil & Environmental Engineering, §Department of Chemistry, ∥Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
23
|
Ostrowski M, Hetmann A, Jakubowska A. Indole-3-acetic acid UDP-glucosyltransferase from immature seeds of pea is involved in modification of glycoproteins. PHYTOCHEMISTRY 2015; 117:25-33. [PMID: 26057226 DOI: 10.1016/j.phytochem.2015.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/29/2015] [Accepted: 05/27/2015] [Indexed: 05/18/2023]
Abstract
The glycosylation of auxin is one of mechanisms contributing to hormonal homeostasis. The enzyme UDPG: indole-3-ylacetyl-β-D-glucosyltransferase (IAA glucosyltransferase, IAGlc synthase) catalyzes the reversible reaction: IAA+UDPG↔1-O-IA-glucose+UDP, which is the first step in the biosynthesis of IAA-ester conjugates in monocotyledonous plants. In this study, we report IAA-glucosyltransferase isolated using a biochemical approach from immature seed of pea (Pisum sativum). The enzyme was purified by PEG fractionation, DEAE-Sephacel anion-exchange chromatography and preparative PAGE. LC-MS/MS analysis of tryptic peptides of the enzyme revealed the high identity with maize IAGlc synthase, but lack of homology with other IAA-glucosyltransferases from dicots. Biochemical characterization showed that of several acyl acceptors tested, the enzyme had the highest activity on IAA as the glucosyl acceptor (Km=0.52 mM, Vmax=161 nmol min(-1), kcat/Km=4.36 mM s(-1)) and lower activity on indole-3-propionic acid and 1-naphthalene acetic acid. Whereas indole-3-butyric acid and indole-3-propionic acid were competitive inhibitors of IAGlc synthase, D-gluconic acid lactone, an inhibitor of β-glucosidase activity, potentiated the enzyme activity at the optimal concentration of 0.3mM. Moreover, we demonstrated that the 1-O-IA-glucose synthesized by IAGlc synthase is the substrate for IAA labeling of glycoproteins from pea seeds indicating a possible role of this enzyme in the covalent modification of a class of proteins by a plant hormone.
Collapse
Affiliation(s)
- Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland.
| | - Anna Hetmann
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| | - Anna Jakubowska
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| |
Collapse
|
24
|
Yu P, Lor P, Ludwig-Müller J, Hegeman AD, Cohen JD. Quantitative evaluation of IAA conjugate pools in Arabidopsis thaliana. PLANTA 2015; 241:539-548. [PMID: 25420555 DOI: 10.1007/s00425-014-2206-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
This work has demonstrated that the major method of estimating the amount of unknown IAA conjugates-base hydrolysis-can be significantly complicated by chemical artifacts such as glucobrassicin or protein degradation. The concept of 'bound auxin' traces its origin back to more than 80 years ago and has driven research on the sources and forms of these plant hormones since. Indeed, analytical studies have demonstrated that the majority of cellular auxin is conjugated to simple sugars, cyclitols, glycans, amino acids, and other biomolecules. A number of studies have confirmed the enzymatic systems responsible for the synthesis and hydrolysis of a number of such conjugates in Arabidopsis thaliana and some of these compounds have been identified in situ. However, the amount of indole-3-acetic acid (IAA) released upon treating Arabidopsis tissue extracts with base, a commonly employed technique for estimating the amount of IAA conjugates, greatly exceeded the summation of all the IAA conjugates known individually to be present in Arabidopsis. This discrepancy has remained as an unsolved question. In this study, however, we found that a significant portion of the IAA found after base treatment could be attributed to chemical conversions other than conjugate hydrolysis. Specifically, we showed that glucobrassicin conversion, previously thought to occur at insignificant levels, actually accounted for the majority of solvent soluble IAA released and that proteinaceous tryptophan degradation accounted for a large portion of solvent insoluble IAA. These studies clearly demonstrated the limits associated with using a harsh technique like base hydrolysis in determining IAA conjugates and support using more direct approaches such as mass spectrometry-based strategies for unambiguous characterizations of the total complement of IAA conjugates in new plant materials under study.
Collapse
Affiliation(s)
- Peng Yu
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA,
| | | | | | | | | |
Collapse
|
25
|
Auxin production by the plant trypanosomatidPhytomonas serpensand auxin homoeostasis in infected tomato fruits. Parasitology 2014; 141:1299-310. [DOI: 10.1017/s0031182014000547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYPreviously we have characterized the complete gene encoding a pyruvate decarboxylase (PDC)/indolepyruvate decarboxylase (IPDC) ofPhytomonas serpens, a trypanosomatid highly abundant in tomato fruits. Phylogenetic analyses indicated that the clade that contains the trypanosomatid protein behaves as a sister group of IPDCs ofγ-proteobacteria. Since IPDCs are key enzymes in the biosynthesis of the plant hormone indole-3-acetic acid (IAA), the ability for IAA production byP. serpenswas investigated. Similar to many microorganisms, the production of IAA and related indolic compounds, quantified by high performance liquid chromatography, increased inP. serpensmedia in response to amounts of tryptophan. The auxin functionality was confirmed in the hypocotyl elongation assay. In tomato fruits inoculated withP. serpensthe concentration of free IAA had no significant variation, whereas increased levels of IAA-amide and IAA-ester conjugates were observed. The data suggest that the auxin produced by the flagellate is converted to IAA conjugates, keeping unaltered the concentration of free IAA. Ethanol also accumulated inP. serpens-conditioned media, as the result of a PDC activity. In the article we discuss the hypothesis of the bifunctionality ofP. serpensPDC/IPDC and provide a three-dimensional model of the enzyme.
Collapse
|
26
|
Jahn L, Mucha S, Bergmann S, Horn C, Staswick P, Steffens B, Siemens J, Ludwig-Müller J. The Clubroot Pathogen (Plasmodiophora brassicae) Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis. PLANTS 2013; 2:726-49. [PMID: 27137401 PMCID: PMC4844388 DOI: 10.3390/plants2040726] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/17/2013] [Accepted: 11/18/2013] [Indexed: 11/16/2022]
Abstract
The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1) in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA) and transcription factors (ARF). As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3), the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA) resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.
Collapse
Affiliation(s)
- Linda Jahn
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Stefanie Mucha
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Sabine Bergmann
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Cornelia Horn
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska, 379 Keim, Lincoln, NE 68521 USA.
| | - Bianka Steffens
- Botanisches Institut, Universität Kiel, Am Botanischen Garten 5, 24118 Kiel, Germany.
| | - Johannes Siemens
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
27
|
Abstract
Auxin is a plant hormone involved in an extraordinarily broad variety of biological mechanisms. These range from basic cellular processes, such as endocytosis, cell polarity, and cell cycle control over localized responses such as cell elongation and differential growth, to macroscopic phenomena such as embryogenesis, tissue patterning, and de novo formation of organs. Even though the history of auxin research reaches back more than a hundred years, we are still far from a comprehensive understanding of how auxin governs such a wide range of responses. Some answers to this question may lie in the auxin molecule itself. Naturally occurring auxin-like substances have been found and they may play roles in specific developmental and cellular processes. The molecular mode of auxin action can be further explored by the utilization of synthetic auxin-like molecules. A second area is the perception of auxin, where we know of three seemingly independent receptors and signalling systems, some better understood than others, but each of them probably involved in distinct physiological processes. Lastly, auxin is actively modified, metabolized, and intracellularly compartmentalized, which can have a great impact on its availability and activity. In this review, we will give an overview of these rather recent and emerging areas of auxin research and try to formulate some of the open questions. Without doubt, the manifold facets of auxin biology will not cease to amaze us for a long time to come.
Collapse
Affiliation(s)
- Michael Sauer
- Centro Nacional de Biotecnología-CNB-CSIC, Darwin 3, 28049 Madrid, Spain
| | | | | |
Collapse
|
28
|
Rosquete MR, Barbez E, Kleine-Vehn J. Cellular auxin homeostasis: gatekeeping is housekeeping. MOLECULAR PLANT 2012; 5:772-86. [PMID: 22199236 DOI: 10.1093/mp/ssr109] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle. The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport. Auxin metabolism and transport are both crucial for plant development; however, it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs. In this review, we provide a glance at very diverse topics of auxin biology, such as biosynthesis, conjugation, oxidation, and transport of auxin. This broad, but certainly superficial, overview highlights the mutual importance of auxin metabolism and transport. Moreover, it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis. Even though these processes have been so far only separately studied, we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport. Besides the integrative power of the global hormone signaling, we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.
Collapse
Affiliation(s)
- Michel Ruiz Rosquete
- Department of Applied Genetics and Cell Biology, University of Applied Life Sciences and Natural Resources (BOKU), 1190 Vienna, Austria
| | | | | |
Collapse
|
29
|
Liu X, Barkawi L, Gardner G, Cohen JD. Transport of indole-3-butyric acid and indole-3-acetic acid in Arabidopsis hypocotyls using stable isotope labeling. PLANT PHYSIOLOGY 2012; 158:1988-2000. [PMID: 22323783 PMCID: PMC3320201 DOI: 10.1104/pp.111.191288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling.
Collapse
Affiliation(s)
- Xing Liu
- Plant Biological Sciences Graduate Program, Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | |
Collapse
|
30
|
Keller CP, Grundstad ML, Evanoff MA, Keith JD, Lentz DS, Wagner SL, Culler AH, Cohen JD. Auxin-induced leaf blade expansion in Arabidopsis requires both wounding and detachment. PLANT SIGNALING & BEHAVIOR 2011; 6:1997-2007. [PMID: 22101347 PMCID: PMC3337194 DOI: 10.4161/psb.6.12.18026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Elevation of leaf auxin (indole-3-acetic acid; IAA) levels in intact plants has been consistently found to inhibit leaf expansion whereas excised leaf strips grow faster when treated with IAA. Here we test two hypothetical explanations for this difference in growth sensitivity to IAA by expanding leaf tissues in vivo versus in vitro. We asked if, in Arabidopsis, IAA-induced growth of excised leaf strips results from the wounding required to excise tissue and/or results from detachment from the plant and thus loss of some shoot or root derived growth controlling factors. We tested the effect of a range of exogenous IAA concentrations on the growth of intact attached, wounded attached, detached intact, detached wounded as well as excised leaf strips. After 24 h, the growth of intact attached, wounded attached, and detached intact leaves was inhibited by IAA concentrations as little as 1 µM in some experiments. Growth of detached wounded leaves and leaf strips was induced by IAA concentrations as low as 10 µM. Stress, in the form of high light, increased the growth response to IAA by leaf strips and reduced growth inhibition response by intact detached leaves. Endogenous free IAA content of intact attached leaves and excised leaf strips was found not to change over the course of 24 h. Together these results indicate growth induction of Arabidopsis leaf blade tissue by IAA requires both substantial wounding as well as detachment from the plant and suggests in vivo that IAA induces parallel pathways leading to growth inhibition.
Collapse
|
31
|
Liu X, Cohen JD, Gardner G. Low-fluence red light increases the transport and biosynthesis of auxin. PLANT PHYSIOLOGY 2011; 157:891-904. [PMID: 21807888 PMCID: PMC3192557 DOI: 10.1104/pp.111.181388] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In plants, light is an important environmental signal that induces photomorphogenesis and interacts with endogenous signals, including hormones. We found that light increased polar auxin transport in dark-grown Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) hypocotyls. In tomato, this increase was induced by low-fluence red or blue light followed by 1 d of darkness. It was reduced in phyA, phyB1, and phyB2 tomato mutants and was reversed by far-red light applied immediately after the red or blue light exposure, suggesting that phytochrome is involved in this response. We further found that the free indole-3-acetic acid (IAA) level in hypocotyl regions below the hook was increased by red light, while the level of conjugated IAA was unchanged. Analysis of IAA synthesized from [¹³C]indole or [¹³C]tryptophan (Trp) revealed that both Trp-dependent and Trp-independent IAA biosynthesis were increased by low-fluence red light in the top section (meristem, cotyledons, and hook), and the Trp-independent pathway appears to become the primary route for IAA biosynthesis after red light exposure. IAA biosynthesis in tissues below the top section was not affected by red light, suggesting that the increase of free IAA in this region was due to increased transport of IAA from above. Our study provides a comprehensive view of light effects on the transport and biosynthesis of IAA, showing that red light increases both IAA biosynthesis in the top section and polar auxin transport in hypocotyls, leading to unchanged free IAA levels in the top section and increased free IAA levels in the lower hypocotyl regions.
Collapse
Affiliation(s)
- Xing Liu
- Plant Biological Sciences Graduate Program, Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
32
|
Abstract
Microbial synthesis of the phytohormone auxin has been known for a long time. This property is best documented for bacteria that interact with plants because bacterial auxin can cause interference with the many plant developmental processes regulated by auxin. Auxin biosynthesis in bacteria can occur via multiple pathways as has been observed in plants. There is also increasing evidence that indole-3-acetic acid (IAA), the major naturally occurring auxin, is a signaling molecule in microorganisms because IAA affects gene expression in some microorganisms. Therefore, IAA can act as a reciprocal signaling molecule in microbe-plant interactions. Interest in microbial synthesis of auxin is also increasing in yet another recently discovered property of auxin in Arabidopsis. Down-regulation of auxin signaling is part of the plant defense system against phytopathogenic bacteria. Exogenous application of auxin, e.g., produced by the pathogen, enhances susceptibility to the bacterial pathogen.
Collapse
Affiliation(s)
- Stijn Spaepen
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
33
|
Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1757-73. [PMID: 21307383 DOI: 10.1093/jxb/erq412] [Citation(s) in RCA: 345] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Auxin conjugates are thought to play important roles as storage forms for the active plant hormone indole-3-acetic acid (IAA). In its free form, IAA comprises only up to 25% of the total amount of IAA, depending on the tissue and the plant species studied. The major forms of IAA conjugate are low molecular weight ester or amide forms, but there is increasing evidence of the occurrence of peptides and proteins modified by IAA. Since the discovery of genes and enzymes involved in synthesis and hydrolysis of auxin conjugates, much knowledge has been gained on the biochemistry and function of these compounds, but there is still much to discover. For example, recent work has shown that some auxin conjugate hydrolases prefer conjugates with longer-chain auxins such as indole-3-propionic acid and indole-3-butyric acid as substrate. Also, the compartmentation of these reactions in the cell or in tissues has not been resolved in great detail. The function of auxin conjugates has been mainly elucidated by mutant analysis in genes for synthesis or hydrolysis and a possible function for conjugates inferred from these results. In the evolution of land plants auxin conjugates seem to be connected with the development of certain traits such as embryo, shoot, and vasculature. Most likely, the synthesis of auxin conjugates was developed first, since it has been already detected in moss, whereas sequences typical of auxin conjugate hydrolases were found according to database entries first in moss ferns. The implications for the regulation of auxin levels in different species will be discussed.
Collapse
Affiliation(s)
- Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
34
|
Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, Zermiani M, Moscatello S, Battistelli A, Velasco R, Ruperti B, Ramina A. Signaling pathways mediating the induction of apple fruitlet abscission. PLANT PHYSIOLOGY 2011; 155:185-208. [PMID: 21037112 PMCID: PMC3075760 DOI: 10.1104/pp.110.165779] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/28/2010] [Indexed: 05/18/2023]
Abstract
Apple (Malus × domestica) represents an interesting model tree crop for studying fruit abscission. The physiological fruitlet drop occurring in this species can be easily magnified by using thinning chemicals, such as benzyladenine (BA), to obtain fruits with improved quality and marketability. Despite the economic importance of this process, the molecular determinants of apple fruitlet abscission are still unknown. In this research, BA was used to obtain fruitlet populations with different abscission potentials to be analyzed by means of a newly released 30K oligonucleotide microarray. RNAs were extracted from cortex and seed of apple fruitlets sampled over a 4-d time course, during which BA triggers fruit drop, and used for microarray hybridization. Transcriptomic profiles of persisting and abscising fruitlets were tested for statistical association with abscission potential, allowing us to identify molecular signatures strictly related to fruit destiny. A hypothetical model for apple fruitlet abscission was obtained by putting together available transcriptomic and metabolomic data. According to this model, BA treatment would establish a nutritional stress within the tree that is primarily perceived by the fruitlet cortex whose growth is blocked by resembling the ovary growth inhibition found in other species. In weaker fruits, this stress is soon visible also at the seed level, likely transduced via reactive oxygen species/sugar and hormones signaling cross talk, and followed by a block of embryogenesis and the consequent activation of the abscission zone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Angelo Ramina
- University of Padova, Department of Environmental Agronomy and Crop Science, Agripolis, 35020 Legnaro, Italy (A.B., G.E., C.F., M.B., M.Z., B.R., A.R.); University of Verona, Department of Biotechnology, 37134 Verona, Italy (A.F.); Consiglio Nazionale delle Ricerche-National Research Council, Institute of Agroenvironmental and Forest Biology, 05010 Porano, Italy (S.M., A.B.); Istituto Agrario San Michele all’Adige Research and Innovation Center, Edmund Mach Foundation, 38010 San Michele all’Adige, Italy (R.V.)
| |
Collapse
|
35
|
Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S. Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. PLANT PHYSIOLOGY 2011; 155:589-602. [PMID: 21071600 PMCID: PMC3075746 DOI: 10.1104/pp.110.163774] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 11/10/2010] [Indexed: 05/18/2023]
Abstract
Breeding crops with the quality of broad-spectrum disease resistance using genetic resources is one of the principal goals of crop improvement. However, the molecular mechanism of broad-spectrum resistance remains largely unknown. Here, we show that GH3-2, encoding an indole-3-acetic acid (IAA)-amido synthetase, mediates a broad-spectrum resistance to bacterial Xanthomonas oryzae pv oryzae and Xanthomonas oryzae pv oryzicola and fungal Magnaporthe grisea in rice (Oryza sativa). IAA, the major form of auxin in rice, results in rice more vulnerable to the invasion of different types of pathogens, which is at least partly due to IAA-induced loosening of the cell wall, the natural protective barrier of plant cells to invaders. X. oryzae pv oryzae, X. oryzae pv oryzicola, and M. grisea secrete IAA, which, in turn, may induce rice to synthesize its own IAA at the infection site. IAA induces the production of expansins, the cell wall-loosening proteins, and makes rice vulnerable to pathogens. GH3-2 is likely contributing to a minor quantitative trait locus for broad-spectrum resistance. Activation of GH3-2 inactivates IAA by catalyzing the formation of an IAA-amino acid conjugate, which results in the suppression of expansin genes. Thus, GH3-2 mediates basal resistance by suppressing pathogen-induced IAA accumulation. It is expected that, regulated by a pathogen-induced strong promoter, GH3-2 alone may be used for breeding rice with a broad-spectrum disease resistance.
Collapse
|
36
|
Normanly J. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2010; 2:a001594. [PMID: 20182605 DOI: 10.1101/cshperspect.a001594] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is abundant evidence of multiple biosynthesis pathways for the major naturally occurring auxin in plants, indole-3-acetic acid (IAA), and examples of differential use of two general routes of IAA synthesis, namely Trp-dependent and Trp-independent. Although none of these pathways has been completely defined, we now have examples of specific IAA biosynthetic pathways playing a role in developmental processes by way of localized IAA synthesis, causing us to rethink the interactions between IAA synthesis, transport, and signaling. Recent work also points to some IAA biosynthesis pathways being specific to families within the plant kingdom, whereas others appear to be more ubiquitous. An important advance within the past 5 years is our ability to monitor IAA biosynthesis and metabolism at increasingly higher resolution.
Collapse
Affiliation(s)
- Jennifer Normanly
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
37
|
Abstract
A plant's roots system determines both the capacity of a sessile organism to acquire nutrients and water, as well as providing a means to monitor the soil for a range of environmental conditions. Since auxins were first described, there has been a tight connection between this class of hormones and root development. Here we review some of the latest genetic, molecular, and cellular experiments that demonstrate the importance of generating and maintaining auxin gradients during root development. Refinements in the ability to monitor and measure auxin levels in root cells coupled with advances in our understanding of the sources of auxin that contribute to these pools represent important contributions to our understanding of how this class of hormones participates in the control of root development. In addition, we review the role of identified molecular components that convert auxin gradients into local differentiation events, which ultimately defines the root architecture.
Collapse
Affiliation(s)
- Paul Overvoorde
- Department of Biology, Macalester College, St. Paul, MN 55105, USA
| | | | | |
Collapse
|
38
|
Ludwig-Müller J, Decker EL, Reski R. Dead end for auxin conjugates in Physcomitrella? PLANT SIGNALING & BEHAVIOR 2009; 4:116-8. [PMID: 19649185 PMCID: PMC2637494 DOI: 10.4161/psb.4.2.7536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 05/18/2023]
Abstract
For proper development of plants auxin levels need to be tightly controlled. For this, several routes have evolved and it is plausible that different organisms use these differently. To determine whether members of the family of GH3 proteins, which partially act as auxin conjugate synthetases in Arabidopsis thaliana, have similar roles in the moss Physcomitrella patens, we have investigated the in vitro activity of the two GH3 members in moss. We showed that both proteins can form amino acid conjugates with indole-3-acetic acid (IAA) but also with jasmonic acid (JA). Confirming these findings, single and double knockout-mutants showed lower levels of IAA conjugates than wild type. We discuss the results in light of the possible functions of IAA conjugate formation in lower land plants.
Collapse
|
39
|
Ludwig-Müller J, Jülke S, Bierfreund NM, Decker EL, Reski R. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. THE NEW PHYTOLOGIST 2009; 181:323-338. [PMID: 19032442 DOI: 10.1111/j.1469-8137.2008.02677.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Auxins are hormones involved in many cellular, physiological and developmental processes in seed plants and in mosses such as Physcomitrella patens. Control of auxin levels is achieved in higher plants via synthesis of auxin conjugates by members of the GH3 family. The role of the two GH3-like proteins from P. patens for growth and auxin homeostasis was therefore analysed. The in vivo-function of the two P. patens GH3 genes was investigated using single and double knockout mutants. The two P. patens GH3 proteins were also heterologously expressed to determine their enzymatic activity. Both P. patens GH3 enzymes accepted the auxin indole acetic acid (IAA) as substrate, but with different preferences for the amino acid to which it is attached. Cytoplasmic localization was shown for PpGH3-1 tagged with green fluorescent protein (GFP). Targeted knock-out of either gene exhibited an increased sensitivity to auxin, resulting in growth inhibition. On plain mineral media mutants had higher levels of free IAA and less conjugated IAA than the wild type, and this effect was enhanced when auxin was supplied. The DeltaPpGH3-1/DeltaPpGH3-2 double knockout had almost no IAA amide conjugates but still synthesized ester conjugates. Taken together, these data suggest a developmentally controlled involvement of P. patens GH3 proteins in auxin homeostasis by conjugating excess of physiologically active free auxin to inactive IAA-amide conjugates.
Collapse
Affiliation(s)
- Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, D-01062 Dresden, Germany;Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany;Centre for Biological Signalling Studies (bioss), University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Sabine Jülke
- Institute of Botany, Technische Universität Dresden, D-01062 Dresden, Germany;Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany;Centre for Biological Signalling Studies (bioss), University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Nicole M Bierfreund
- Institute of Botany, Technische Universität Dresden, D-01062 Dresden, Germany;Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany;Centre for Biological Signalling Studies (bioss), University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Eva L Decker
- Institute of Botany, Technische Universität Dresden, D-01062 Dresden, Germany;Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany;Centre for Biological Signalling Studies (bioss), University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Ralf Reski
- Institute of Botany, Technische Universität Dresden, D-01062 Dresden, Germany;Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany;Centre for Biological Signalling Studies (bioss), University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| |
Collapse
|
40
|
Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1371-83. [PMID: 18785832 DOI: 10.1094/mpmi-21-10-1371] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis growth and reproduction are stimulated by the endophytic fungus Piriformospora indica. The fungus produces low amounts of auxins, but the auxin levels and the expression of auxin-regulated genes are not altered in colonized roots. Also, mutants with reduced auxin levels (ilr1-1, nit1-3, tfl2, cyp79 b2b3) respond to P. indica. However, the fungus rescues the dwarf phenotype of the auxin overproducer sur1-1 by converting free auxin into conjugates, which also results in the downregulation of the auxin-induced IAA6 and the upregulation of the P. indica-induced LRR1 gene. The fungus produces relatively high levels of cytokinins, and the cytokinin levels are higher in colonized roots compared with the uncolonized controls. trans-Zeatin cytokinin biosynthesis and the CRE1/AHK2 receptor combination are crucial for P. indica-mediated growth stimulation, while mutants lacking cis-zeatin, impaired in other cytokinin receptor combinations, or containing reduced cytokinin levels respond to the fungus. Since root colonization is not affected in the cytokinin mutants, we propose that cytokinins are required for P. indica-induced growth promotion. Finally, a comparative analysis of the phytohormone mutants allows the conclusion that the response to P. indica is independent of the architecture and size of the roots.
Collapse
|
41
|
Ehlert B, Schöttler MA, Tischendorf G, Ludwig-Müller J, Bock R. The paramutated SULFUREA locus of tomato is involved in auxin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3635-47. [PMID: 18757490 PMCID: PMC2561159 DOI: 10.1093/jxb/ern213] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/23/2008] [Accepted: 07/24/2008] [Indexed: 05/23/2023]
Abstract
The tomato (Solanum lycopersicum) sulfurea mutation displays trans-inactivation of wild-type alleles in heterozygous plants, a phenomenon referred to as paramutation. Homozygous mutant plants and paramutated leaf tissue of heterozygous plants show a pigment-deficient phenotype. The molecular basis of this phenotype and the function of the SULFUREA gene (SULF) are unknown. Here, a comprehensive physiological analysis of the sulfurea mutant is reported which suggests a molecular function for the SULFUREA locus. It is found that the sulf mutant is auxin-deficient and that the pigment-deficient phenotype is likely to represent only a secondary consequence of the auxin deficiency. This is most strongly supported by the isolation of a suppressor mutant which shows an auxin overaccumulation phenotype and contains elevated levels of indole-3-acetic acid (IAA). Several lines of evidence point to a role of the SULF gene in tryptophan-independent auxin biosynthesis, a pathway whose biochemistry and enzymology is still completely unknown. Thus, the sulfurea mutant may provide a promising entry point into elucidating the tryptophan-independent pathway of IAA synthesis.
Collapse
Affiliation(s)
- Britta Ehlert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Gilbert Tischendorf
- Freie Universität Berlin, Institut für Biologie, Pflanzenphysiologie, D-14195 Berlin, Germany
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, D-01062, Dresden, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
42
|
Walz A, Seidel C, Rusak G, Park S, Cohen JD, Ludwig-Müller J. Heterologous expression of IAP1, a seed protein from bean modified by indole-3-acetic acid, in Arabidopsis thaliana and Medicago truncatula. PLANTA 2008; 227:1047-1061. [PMID: 18097685 DOI: 10.1007/s00425-007-0679-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 12/05/2007] [Indexed: 05/25/2023]
Abstract
The seed protein IAP1 from bean (PvIAP1; Phaseolus vulgaris L.) that is modified by the phytohormone indole-3-acetic acid (IAA) was heterologously expressed in the two reference plant species Arabidopsis thaliana and Medicago truncatula. For the transformation of Medicago we devised a novel protocol using seedling infiltration. When PvIAP1 was overexpressed under the control of the constitutive 35SCaMV promoter in Arabidopsis, the plants showed signs of earlier bolting and enhanced branching. Expression of a fusion protein of PvIAP1 with both a green fluorescence protein (GFP) as reporter and 6x histidine (His) tag under the control of the native bean IAP1 promoter resulted in the accumulation of the protein in both plant species exclusively in seeds as shown by immunoblotting and by fluorescence microscopy. During seed development, PvIAP1 was first expressed in the vascular bundle of Arabidopsis, whereas in later stages GFP fluorescence was visible essentially in all tissues of the seed. Fluorescence decreased rapidly after imbibition in the seeds for both Arabidopsis and Medicago, although the fluorescence persisted longer in Arabidopsis. GFP fluorescence was distributed evenly between an organelle fraction, the microsomal membrane fraction, and the cytosol. This was also confirmed by immunoblot analysis. Clusters of higher GFP fluorescence were observed by confocal microscopy. Although PvIAP1 protein accumulated in seeds of both Arabidopsis and Medicago, neither species post-translationally modified the protein with an indoleacyl moiety as shown by quantitative GC-MS analysis after alkaline hydrolysis. These results indicate an apparent specificity for IAA attachment in different plant species.
Collapse
Affiliation(s)
- Alexander Walz
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Delker C, Raschke A, Quint M. Auxin dynamics: the dazzling complexity of a small molecule's message. PLANTA 2008; 227:929-941. [PMID: 18299888 DOI: 10.1007/s00425-008-0710-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/29/2008] [Indexed: 05/26/2023]
Abstract
The phytohormone auxin is a potent regulator of plant development. Since its discovery in the beginning of the twentieth century many aspects of auxin biology have been extensively studied, ranging from biosynthesis and metabolism to the elucidation of molecular components of downstream signaling. With the identification of the F-box protein TIR1 as an auxin receptor a major breakthrough in understanding auxin signaling has been achieved and recent modeling approaches have shed light on the putative mechanisms underlying the establishment of auxin gradients and maxima essential for many auxin-regulated processes. Here, we review these and other recent advances in unraveling the entanglement of biosynthesis, polar transport and cellular signaling events that allow small auxinic molecules to facilitate their complex regulatory action.
Collapse
Affiliation(s)
- Carolin Delker
- Independent Junior Research Group, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, Germany
| | | | | |
Collapse
|
44
|
Ludwig-Müller J, Georgiev M, Bley T. Metabolite and hormonal status of hairy root cultures of Devil's claw (Harpagophytum procumbens) in flasks and in a bubble column bioreactor. Process Biochem 2008. [DOI: 10.1016/j.procbio.2007.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 2007; 31:425-48. [PMID: 17509086 DOI: 10.1111/j.1574-6976.2007.00072.x] [Citation(s) in RCA: 783] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Diverse bacterial species possess the ability to produce the auxin phytohormone indole-3-acetic acid (IAA). Different biosynthesis pathways have been identified and redundancy for IAA biosynthesis is widespread among plant-associated bacteria. Interactions between IAA-producing bacteria and plants lead to diverse outcomes on the plant side, varying from pathogenesis to phyto-stimulation. Reviewing the role of bacterial IAA in different microorganism-plant interactions highlights the fact that bacteria use this phytohormone to interact with plants as part of their colonization strategy, including phyto-stimulation and circumvention of basal plant defense mechanisms. Moreover, several recent reports indicate that IAA can also be a signaling molecule in bacteria and therefore can have a direct effect on bacterial physiology. This review discusses past and recent data, and emerging views on IAA, a well-known phytohormone, as a microbial metabolic and signaling molecule.
Collapse
Affiliation(s)
- Stijn Spaepen
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Heverlee, Belgium
| | | | | |
Collapse
|
46
|
Seidel C, Walz A, Park S, Cohen JD, Ludwig-Müller J. Indole-3-acetic acid protein conjugates: novel players in auxin homeostasis. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:340-5. [PMID: 16807826 DOI: 10.1055/s-2006-923802] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Indole-3-acetic acid (IAA) is found in plants in both free and conjugated forms. Within the group of conjugated IAA there is a unique class of proteins and peptides where IAA is attached directly to the polypeptide structure as a prosthetic group. The first gene, IAP1, encoding for a protein with IAA as a prosthetic group, was cloned from bean (Phaseolus vulgaris). It was shown that the expression of IAP1 as a major IAA modified protein in bean seed (PvIAP1) was correlated to a developmental period of rapid growth during seed development. Moreover, this protein underwent rapid degradation during germination. Since further molecular analysis was difficult in bean, the IAP1 gene was transformed into Arabidopsis thaliana and Medicago truncatula. Expression of the bean IAP1 gene in both plant species under the control of its native promoter targeted protein expression to the seeds. In Arabidopsis no IAA was found to be attached to PvIAP1. These results show that there is specificity to protein modification by IAA and suggests that protein conjugation may be catalyzed by species specific enzymes. Furthermore, subcellular localization showed that in Arabidopsis PvIAP1 was predominantly associated with the microsomal fraction. In addition, a related protein and several smaller peptides that are conjugated to IAA were identified in Arabidopsis. Further research on this novel class of proteins from Arabidopsis will both advance our knowledge of IAA proteins and explore aspects of auxin homeostasis that were not fully revealed by studies of free IAA and lower molecular weight conjugates.
Collapse
Affiliation(s)
- C Seidel
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 22, 01062 Dresden, Germany
| | | | | | | | | |
Collapse
|